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ABSTRACT

The internal angular momentum distribution of a star is the key to determining its evolution. Fortunately, stellar
internal rotation can be probed through studies of rotationally split nonradial oscillation modes. In particular, the
detection of nonradial gravity modes (g modes) in massive young stars has recently become feasible thanks to the
Kepler space mission. Our goal is to derive the internal rotation profile of the Kepler B8V star KIC 10526294
through asteroseismology. We interpret the observed rotational splittings of its dipole g modes using four different
approaches based on the best seismic models of the star and their rotational kernels. We show that these kernels can
resolve differential rotation within the radiative envelope if a smooth rotational profile is assumed and if the
observational errors are small. Based on Kepler data, we find that the rotation rate near the core-envelope boundary
is well constrained to 163 ± 89 nHz. The seismic data are consistent with rigid rotation but a profile with counter-
rotation within the envelope has a statistical advantage over constant rotation. Our study should be repeated for
other massive stars with a variety of stellar parameters in order to determine the physical conditions that control the
internal rotation profile of young massive stars, with the aim of improving the input physics of their models.
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1. INTRODUCTION

Rotation is one of the major components in the computation
of stellar evolution models, beginning with the star formation
process and lasting until the death of the star (e.g.,
Maeder 2009, for a recent monograph on the subject). Even
in the case of slow rotation, the related dynamical and mixing
processes are not negligible as they substantially affect the
structure of the star. Unfortunately, direct measurements of the
internal rotation profile of stars are not possible. Hence, the
inclusion of rotational effects in models relies on uncalibrated
theoretical prescriptions.

Fortunately, the oscillation frequencies of a star are affected
by its rotational properties (Ledoux 1951). The frequency
splitting of the oscillation modes is well understood in the case
of slowly rotating stars for which a first-order perturbation
method is sufficient to model the frequencies (e.g., Aerts
et al. 2010, for an extensive description). In this work, we
assume that we are dealing with an unevolved star that does not
possess a magnetic field and whose central frequencies of
rotationally split multiplets are not affected by slow rotation.
Moreover, we assume that the deformation from spherical
symmetry due to centrifugal forces can be ignored. In this case,
the frequency splitting of the oscillation modes, as measured in
the observer’s frame, is due to a combination of mode
advection and the Coriolis force, and can be computed from
the so-called rotational kernels (see Equation (3.356) in Aerts
et al. 2010).

Helioseismology provided a very detailed view of the
internal rotation profile qW r,( ) of the Sun for the radial range
Î  r R R0.2 , 1.0[ ] ( R denotes the solar radius) and for all

co-latitudes θ, through frequency inversion of the rotational
splittings of its hundreds of detected acoustic modes (e.g.,
Christensen-Dalsgaard 2002; Thompson et al. 2003), a
technique that has even found its way to laboratory experi-
ments (Triana et al. 2014). Given that acoustic modes do not
have sufficient probing power in the innermost regions, and
that the Sun does not reveal gravity modes, it is not possible to
deduce the rotational profile for  r R0.2 .
Currently, we are unable to derive the rotation profiles for

distant stars with similar precision as for the Sun, but
applications of asteroseismology have allowed us to determine
averaged rotation rate ratios W Wcore envelope from forward
modeling of the rotational splitting for a few main-sequence
B stars from ground-based monitoring campaigns (Aerts
et al. 2003; Pamyatnykh et al. 2004; Briquet et al. 2007), as
well as two d Sct-g Dor-type hybrid main-sequence pulsators
from Kepler space-based photometry (Kurtz et al. 2014; Saio
et al. 2015). Moreover, Wcore was derived from gravity-
dominated mixed modes in hundreds of red giants observed
with Kepler (Beck et al. 2012; Mosser et al. 2012), while the
estimate of their Wenvelope is uncertain due to the remaining
dominant influence of the core regions on the measured
splittings of the pressure-dominated mixed modes. Deheuvels
et al. (2012, 2014) performed frequency inversions for seven
selected subgiants in different evolutionary stages relying
on the splitting of their dipole mixed modes. These authors
selected profiles representing a linear decrease in the rotation
frequency in the core regions, followed by a constant
rotation profile in the extended convective envelope, with
W Wcore envelope ranging from 2 to about 20. Beck et al. (2014)
obtained a similar result for the red giant KIC 5006817, which
is the primary of an eccentric binary. Only in some of those
studies, e.g., Deheuvels et al. (2014), was a statistical model
comparison used to evaluate the likelihood of the optimal shape
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of the rotational frequency throughout the stars, and few
continuous and discontinuous functions for W r( ) were
considered. Despite their frequent occurrence in, e.g., geophy-
sics, counter-rotating solutions were considered inappropriate
for stars. Independent of that restriction, the Kepler results for
W r( ) have so far delivered an important calibration for the
improvement of evolutionary models for single and binary low-
mass stars, given that the theoretical predictions of angular
momentum transport result in core rotation rates that are higher
by at least an order of magnitude than observed (see, e.g.,
Eggenberger et al. 2012; van Saders & Pinsonneault 2013;
Cantiello et al. 2014, for the input physics in question). The
redistribution and loss of angular momentum during evolution
is also required based on the internal rotation properties
of white dwarfs derived from both forward modeling and
the inversion of their rotationally split g mode oscillation
frequencies (Charpinet et al. 2009; Córsico et al. 2012).

In this work, we provide the first frequency inverted rotation
profile of an unevolved intermediate-mass B-type main-
sequence star from its rotationally split dipole gravity modes
detected in four years of Kepler data. The paper is organized as
follows. We summarize the observational data and the resuls of
forward seismic modeling in Section 2. In Sections 3and 4, we
examine in detail the rotational kernels and splittings associated
with linear rotation models. In Section 5, we present piece-wise
two- and three-zone rotation models. Section 6 is devoted to
inversion methods, including theory and results. In Section 7,
we present our results for the rotation profile based on Monte
Carlo simulations. We summarize and conclude in Section 8.

2. OBSERVATIONAL INPUT AND RESULTS OF
FORWARD SEISMIC MODELING

The first detailed asteroseismic analysis of the main-
sequence B star KIC 10526294 was presented by Pápics
et al. (2014) and included an estimate of the amount of core
overshoot following earlier approaches for main-sequence B
stars with a well-developed convective core. They character-
ized KIC 10526294 as a slowly rotating SPB star (see, e.g.,
Aerts et al. 2010 for a definition) exhibiting a series of 19
quasi-equally spaced dipole modes. So far, KIC 10526294 is
the only multiperiodic SPB star with unambiguous detection of
rotationally split triplets from the Kepler light curve. For this
reason, we are able to probe its interior structure to a deeper
level than for any other SPB thus far.

For the purpose of detailed seismic modeling, Moravveji
et al. (2015) elaborated on optimal frequency error estimation,
taking into account the signal-to-noise ratio, sampling, and
correlated nature of the Kepler data, following the method by
Degroote et al. (2009). This resulted in a correction factor of
3.0 being applied to the formal errors obtained from the
nonlinear least-squares fit. We estimated the splitting for each
dipole mode as the average splitting between the measured

= +m 1 and = -m 1 peaks with respect to the central m = 0
peak. This comes down to considering only the symmetric
component of the splittings. The total variance was then
estimated as the variance of the symmetric component plus the
inter-variance:

s s s s d d= + +- + - +
1

2
, , 1Total

2
1

2
1

2 2
1 1( ) ( ) ( )

where d1 denotes the = m 1 splittings and s1 their
individual uncertainties. This results in larger errors for those

splittings with larger asymmetric components. Furthermore, as
explained by the authors, the error estimates for the triplet
components as computed from the Rayleigh limit, and taking
into account mode crowding effects, are too large (Pápics
et al. 2014, their Figure 8). Nevertheless, we also used those
overestimated values based on the argument that they deliver
the most conservative upper limit to the true frequency errors.
We list both error sets in Table 1 and in this work show that our
conclusions on W r( ) are essentially independent on the choice
of error set. The best error estimates (Error Set 1) are used
throughout the main text, while all of the results relying on the
errors that were too large (Error Set 2) are treated in
Appendix A.
Following an essentially identical approach as in Pápics et al.

(2014), Moravveji et al. (2015) were able to find seismic
models that match more closely the observed frequencies due
to the inclusion of extra diffusive mixing in the stellar
envelope, in addition to core overshooting. Such additional
mixing was already found necessary for the B3V SPB star
HD 50230 (Degroote et al. 2010). The parameters of the two
models are given in Table 2. We base the present work on the
best matching Model 1 from Moravveji et al. (2015) but we
checked that the main qualitative features of the resulting
rotation profiles from inversion do not depend on our choice of
seismic model, as long as it is able to reproduce reasonably
well the main observed characteristics of the star. We return to
this in Section 6.3.
In a non-rotating star, oscillation mode families are

characterized by their radial order n and degree l, with
individual family members corresponding to different values of
m, the azimuthal wave number, sharing the same eigenfre-
quency. Rotation lifts this degeneracy. The radial order n of the
19 detected modes of KIC 10526294 was identified by
comparing the periods of the observed zonal (m= 0) dipole
(l= 1) g modes with those predicted by equilibrium models
computed with the MESA stellar structure and evolution code
(Paxton et al. 2011, 2013) and coupled to the GYRE stellar

Table 1
Symmetric Components of the Observed Rotational

Splittings of KIC 10526294

Central Fre-
quency (μHz)

Splitting dnlm

(nHz)
Error

Set 1 (nHz)
Error

Set 2 (nHz)

5.4655 45.28 14.72 16.54
5.6272 29.49 0.69 8.70
5.7978 33.91 7.37 8.81
5.9873 32.64 7.47 10.33
6.1739 41.99 4.42 7.56
6.3959 35.74 0.36 4.91
6.6200 29.43 4.06 7.38
6.8703 30.42 0.55 8.55
7.1235 33.07 3.46 6.09
7.4213 29.99 1.00 9.41
7.7616 41.55 15.04 17.17
8.1163 28.73 1.03 6.42
8.5036 29.50 2.59 7.75
8.9398 28.18 3.18 7.23
9.4090 27.53 0.85 4.63
9.9115 26.11 1.67 5.82
10.4495 26.41 7.02 10.04
11.0429 25.74 0.49 5.21
11.7293 23.32 4.55 9.34
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oscillation code (Townsend & Teitler 2013). This comparison
is possible thanks to the detected triplets on the one hand, and
the almost equally spaced sequence of dipole g modes with
consecutive order as theoretically expected for such modes on
the other hand. The radial orders matching the observations
range from n = 32 to n = 14.

Most of the 19 dipole modes of KIC 10526294 reveal a very
narrow rotationally split triplet structure. If we assume that the
cyclic rotation frequency, which we denote as Ω, depends on
the radial coordinate r only, then the frequency splitting of a
mode with degree l and radial order n, denoted as dnlm, can be
written as

*òd b= Wm K r r dr, 2nlm nl

R

nl
0

( ) ( ) ( )

where the unimodular mode kernel Knl(r) is a function of the
mode’s displacement amplitudes x rr ( ) (vertical) and x rh ( )
(horizontal), while bnl is given by

*

*

ò

ò
b

x x x x x r

x x r
=

+ + - -

+ +

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

l l r dr

l l r dr
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1
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R

r h r h h

R

r h

0

2 2 2 2

0

2 2 2

( )
( )

and is connected with Ledoux splitting as b = - C1nl nl (e.g.,
Aerts et al. 2010, Chapter 3). The rotationally induced

splittings for the 19 detected modes are shown in Figure 1
(top panel, adapted from Figure 8 in Pápics et al. 2014),
together with the mode periods derived from Models 1 and 2
(bottom panel). The mode kernels for both models are shown in
Figure 2 and their squared Brunt–Väisälä frequency N2 is
shown in Figure 3. The latter figure illustrates the slightly more
advanced stage of Model 1 compared to Model 2.
Some of the observed splittings are not symmetric with

respect to the central m = 0 peak. These asymmetries are
usually related to mechanisms capable of partially lifting the

+l2 1 degeneracy of a given multiplet, such as deviations
from sphericity or large-scale magnetic fields. We assume
that we are dealing with a physical phenomenon that causes
asymmetries without lifting the degeneracy between the
retrograde ( <m 0) and prograde ( >m 0) modes. Rotationally
induced splittings as expressed by Equation (2) are only
capable of lifting the m degeneracy. Hence, forward
modeling including only differential rotation up to first order
cannot fully capture these observed asymmetries. On the other
hand, Equation (2) is still perfectly valid even in the presence
of the mechanisms mentioned above, with the caveat that it
then accounts for one-half of the splitting between the+m and
-m modes and not for the splitting between a mode with a
given m and the corresponding central m = 0 peak. It is
known that the presence of a magnetic field near the convective

Table 2
Fundamental Stellar Parameters of KIC 10526294 from the Best Matching Theoretical Model (Model 1) Found by Moravveji et al. (2015)

and by Pápics et al. (2014) (Model 2)

Model Teff (K) * M M * R R fov Z Xc Age (Myr) c2

1 13000 3.25 2.215 0.017 0.014 0.627 63 1.42
2 12470 3.20 2.100 <0.015 0.020 0.693 12 10.9

Figure 1. Top: observed rotational splittings (top panel, blue error bars), and the symmetric component used as inversion inputs (top panel, red error bars). The errors
on the inversion inputs were taken from Moravveji et al. (2015) and the green error bars are from Pápics et al. (2014); see the text for details. We chose the abscissae of
the inversion inputs so as to coincide with the central m = 0 peak of the observed triplets. Bottom: the location of the central peaks are shown as black dots, and the
mode periods from models: vertical solid lines are for the best model in Moravveji et al. (2015; Model 1), the vertical dashed lines are for the best model in Pápics
et al. (2014; Model 2).
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core, as discussed by Hasan et al. (2005), can give rise to
such effects. In fact, the mode kernels considered here
have substantial amplitudes precisely in that zone, making
them particularly susceptible to this effect. Given that we have
no information on the presence or absence of a magnetic field
in KIC 10526294, we will only address the symmetric
components of the splittings in this study, assuming rotation
to be the dominant mechanism responsible for the observed
splittings and leaving the modeling of the asymmetries for a
future, more specialized study. As explained earlier, the
presence of the asymmetries leads to increased errors in the
splittings.

3. CUMULATIVE KERNEL INTEGRALS

Each mode samples differently the internal rotation of the
star. This is usually illustrated by plotting the cumulative
integral of the kernels Ki. For increased contrast, in Figure 4,
we instead plot the cumulative integral of ki(r), which we
define by

= - á ñk r K r K r , 3i i( ) ( ) ( ) ( )

where á ñK r( ) is the average of the kernels across modes at each
radius r. This á ñK r( ) is the “common” kernel and its integral
will only contribute to the average of the splittings. Similarly,

Figure 2. Rotational kernels of dipole zonal modes of highest and lowest radial order, plotted against the stellar fractional radius *r R , for the best-matching models
found by (Pápics et al. 2014, lower panel) and (Moravveji et al. 2015, upper panel)—see the lower panel of Figure 1. Some of the modes in the upper panel are trapped
near the convective core, as evidenced by the large peak just outside the convective core, as visible in the inset. The kernels from the best seismic model found by
Pápics et al. (2014) shown in the bottom panel do not exhibit trapping, but the overall shapes are similar otherwise. Inversion results from both of these models are
qualitatively similar.

Figure 3. Squared Brunt–Väisälä frequency N2 as a function of stellar fractional radius for the best model from Moravveji et al. (2015; continuous blue curve) and for
the best model from Pápics et al. (2014; red-dashed curve). The larger peak of the former model near the core boundary (at *~r R0.15 ) is comparatively further away
from that boundary than the peak of the latter model, thus allowing some modes to be “trapped” between the core boundary and the peak. See also Figure 2.

4
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we can express a given profile W r( ) as the sum of its mean
value W̄ (across the radial coordinate) plus a fluctuating part
w r( ) (with zero mean):

wW = W +r r . 4( ) ¯ ( ) ( )

Therefore, we can write the scaled splittings as

*

*

ò

ò

d
b

w

w

D = = W + á ñ

+

m
K r r dr

k r r dr. 5

i
nlm

nl

R

R

i

0

0

¯ ( ) ( )

( ) ( ) ( )

The first two terms on the right-hand side comprise the average
splitting, while differences across modes come into play in the
last term. Figure 4 shows the cumulative integrals of ki(r) and
of k r ri ( ) for a sample of modes from Model 1 with various
degrees of trapping near the core. From the figure, it is evident
that the “least” trapped mode (the one with n= 21) would have
the largest splitting in response to a rotation profile that
increases linearly with radius. Conversely, the “most” trapped
mode near the core (n= 27) would have the smallest splitting
under the same condition.

4. TRAPPED MODES AND LINEAR
ROTATION PROFILES

Here, we closely follow the analysis by Kawaler et al. (1999)
for g modes in white dwarf pulsators. We take advantage of the

fact that some modes are trapped as revealed by the kernel
amplitudes. They are trapped very close to the overshooting
zone while other modes have comparatively more spread-out
amplitudes. This trapping manifests itself as reduced period
spacings if we plot them as functions of period (Kawaler &
Bradley 1994). The observed spacings of KIC 10526294 are
shown in Figure 5 together with the scaled splittings d bmnlm nl

(see Equation (2)). A linear fit to the scaled splittings results in
a slope of 27.04 nHz 10 s5( ) and an intercept of 26.20 nHz.
We now perform forward modeling to find the predicted

splittings using synthetic, linear rotation test profiles. Two test
profiles have W = 5 nHz at r = 0 and have the same slope in
absolute value, *R1 nHz , but are opposite in sign. The results
are shown in Figure 6 where the top and bottom plots
correspond to increasing and decreasing rotation profiles,
respectively. We see the clear signature of mode trapping.
Trapped modes are closer to the core, so if the rotation profile
increases with radius, then the corresponding splittings are
comparatively smaller. Analogously, if the rotation decreases
with radius, then the trapped modes will show comparatively
larger splittings than the other modes. The latter situation is
precisely what we see in Figure 6. A similar situation occurs for
the white dwarf PG 1159-035, as reported by Kawaler et al.
(1999), where the only difference is that some modes in the
white dwarf are trapped close to the surface, such that the
results are reversed compared to those for KIC 10526294.
This simplified analysis is helpful because it provides a first

idea of the sign of the slope of an unknown rotation profile just

Figure 4. Cumulative integrals of ki(r) (top) and r k ri ( ) (bottom) for a sample of dipole (l = 1) modes from Model 1 with various degrees of trapping. The mode with
n = 27 is the “most” trapped near the core, as compared with the n = 21 mode, which is the “least” trapped.
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by plotting the splitings and the period spacings and allows us
to see if they vary in phase. In our case, it is not very clear if
they vary in phase or not, and so instead we make use of the
linear trends of the splittings as indicated with the linear fits
(dotted lines) in Figure 6. When period spacings and splittings
vary in phase, the linear trend is downward (negative slope).
Conversely, when period spacings and splittings are in anti-
phase, the linear trend is upward (positive slope). The observed
splittings of KIC 10526294 have an increasing trend, as shown
by the linear fit (dotted red line) in Figure 5. We associate this
with a decreasing rotation rate.

We can now perform a simple calculation to estimate the
optimal slope a of a linear rotation profile W = +r a r b( ) that

best matches the observed slope. We assume that the slope of
the fit to the measured splittings is linear with respect to the
slope of the rotation profile, which seems to be the case. The
ratio of the linear slopes associated with the observed splittings
and the splittings of the linearly decreasing test profile
discussed above is ~ ´2.0918 103. Therefore, if we use a
linearly decreasing rotation profile with a slope of

´2.0918 103 times the original slope of our (linearly
decreasing) test profile and adjust its mean level to match the
mean of the observed splittings, then we might get an idea of
the underlying rotation profile. The slope we obtain in this way
is *m~ -a R2.0918 Hz . Adjusting the slope of the test profile
to match the trend of the observed splittings also requires

Figure 5. Scaled rotational splittings d bmnlm nl deduced from the observations (red error bars) as a function of the mode period together with a linear fit (dotted red
line, slope: 27.04 nHz 10 s5( ), intercept: 26.20 nHz, scale is on the left). The dashed line connects the observed period spacings defined as D = P - P -Pn n n 1. The
black continuous line connects the spacings derived from the seismic Model 1 in Table 1while the gray continuous line connects the spacings derived from Model 2
(the scale is on the right). The trapped modes of Model 1 are those with periods close to ´0.95 10 s5 and ´1.6 10 s5 .

Figure 6. Top: the scaled rotational splittings for a linearly increasing rotation profile derived from Models 1 and 2 (continuous blue and gray curves, respectively), the
blue dotted line is a linear fit to the splittings from Model 1; the scale is on the left. Bottom: the splittings for a linearly decreasing rotation profile derived from both
Models 1 and 2 (continuous green and gray curves, respectively), the green dotted line is a linear fit to the splittings from Model 1; the scale is on the left. For
comparison, the horizontal lines show the splittings from constant rotation profiles that have the same mean splittings as the splittings from the increasing or
decreasing profiles (top, blue horizontal line and bottom, green horizontal line, respectively). The black dashed lines on both plots show the period spacings from
observation; the scales are on the right.
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adjusting b according to Equation (6) if we are to match the
average of the observed splittings. We calculate the intercept b
as (see also Equation (5))

*òd= á ñ - á ñb a K r r dr, 6
R

0
( ) ( )

where áñ denotes the average over all of the modes, and we
obtain m~b 0.957 Hz. These values of a and b imply that part
of the rotation profile becomes negative. Hence, if the splittings
are actually caused by a linear rotation profile or any other
profile closely resembling a linear one, then the mean observed
splittings should have been considerably higher in magnitude
in order to obtain a rotation profile that would not include
counter-rotation inside the star. Of course, with this exercise,
we were only trying to match the linear trend and the mean of
the observed splittings through a linear test profile. In this case,
the rms deviation of the predicted splitting from observations is
around 22.42 nHz, which is relatively large compared to the
mean error from the observations, which is 8.41 nHz (scaled,
from Error Set 1). We can also use the reduced c2˜ values which
we compute throughout this work as

åc
c
n n

d d
= =

-

=

⎛
⎝⎜

⎞
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1
, 7

i

M
i i

i

2
2

1

2

˜
¯

( )

where di and di
¯ are the measured and predicted splittings,

respectively, i are the errors, ν is the effective number of
degrees of freedom, andM is the number of observed splittings.
In the case just discussed above, we fit two parameters, a and b,
so that the number of degrees of freedom is n = - =M 2 17,
which leads to c ~ 194.82˜ .

Figure 7 again hints that the rotation is decreasing as the
radius increases. We plot the observed splittings as a function
of *ò k r r dr

R
i0
( ) , where ki(r) is defined in Equation (3). This

should have been a straight line with a negative slope if the
splittings were actually caused by a linear rotation profile. As
the figure shows, the splittings have an overall downward trend

which is a rough indication that the rotation profile decreases as
we move toward the star’s surface.
In our next exercise, we search for the linear profile that

minimizes c2˜ . This profile has a slope of *= -a R530.7 nHz
and an intercept of =b 285.1 nHz, leading to c = 6.742˜ . This
profile again leads to negative values for the rotation frequency
in the outer envelope. To have an idea of the comparative
statistical significance of this result, we computed the optimal
constant rotational profile, as well as the optimal linear profile
restricted to positive values (using a Lagrange multiplier as an
additional fitting parameter). We obtained c = 19.86const

2˜ and
c =+ 16.862˜ , respectively. None of the positive linear rotational
profiles have a c2˜ similar to the linear profile with counter-
rotation.

5. LINEAR, PIECE-WISE ROTATION MODELS

We now assume a two-zone, piece-wise rotational profile
such that its value is W1 if < <r r0 0 and W2 if *< <r r R0 .
The parameter r0 is variable and we optimize c r2

0˜ ( ) so as to
best match the observations, whose errors are derived from
Error Set 1. The resulting c2˜ versus r0 is shown in the top left
panel of Figure 8. The minimum occurs at *~r R0.1660 . The
values of W W,1 2 are shown as functions of r0 in the top right
panel of Figure 8. The bottom right panel of Figure 8 shows the
observed splittings (scaled) and the splittings for the two-zone
model with the minimum at *=r R0.1660 , corresponding to
W = 262.711 nHz and W = 49.332 nHz. We note that the
boundary of the convective core of Model 1, extended with
the core overshoot zone, is situated at *R0.1652 (Moravveji
et al. 2015). The second deepest minimum in the top left panel
of Figure 8 occurs at *=r R0.7410 and corresponds to
W = 142.01 nHz and W = -418.22 nHz; this solution leads to
an r0 that does not play a special role in Model 1 in terms of
physical quantities.
The two-zone model thus favors a region rotating with a

period of 42 days near the core overshoot zone and a co-
rotating envelope with a period of 254 days (c = 1.592˜ ). The
second minimum has c = 2.362˜ and corresponds to a counter-
rotating profile. The averaging kernels (for a definition, see

Figure 7. Observed splittings (scaled) as a function of *ò k r r dr
R

i
0

( ) . Even considering the two splittings marked in red (which are coincidentally the ones with

largest errors), there is a downward trend which hints at decreasing rotation as the radius increases.
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Section 6) associated with the best two-zone model are
presented in Figure 9 and reveal that the outer zone averaging
kernel mostly probes the radiative envelope, while the inner
zone averaging kernel exhibits a large maximum just before
reaching the core-envelope boundary and rapid oscillations
around zero away from it.

A slightly more complex version of this two-zone model is
implemented by introducing a third, middle zone where the
rotation profile changes linearly from W1 at the end of the inner
zone to W2 at the start of the outer zone. In this case, we have
two linear parameters W W,1 2 and two nonlinear parameters
r r,1 2 defining the zone boundaries. The lowest c = 1.512˜ for
this three-zone model is achieved when *=r R0.851 and

*=r R0.912 (see bottom left panel of Figure 8) and indicates
counter-rotation W = W = -151.8 nHz, 1069.5 nHz1 2( ). The
corresponding splittings are also shown in the bottom right
panel of Figure 8.

Very similar results are obtained when the uncertainties are
derived from Error Set 2 or when the most asymmetric modes
are excluded, as shown by Figures 19 through 21. All of the
three-zone c2˜ minima in the four cases, i.e., using Error Sets 1
or 2 and with or without the most asymmetric splittings,
correspond to cases with counter-rotation. According to their
c2˜ values, these three-zone models have a statistical signifi-
cance comparable to the best two-zone model. However, the
position of their discontinuities r1 and r2 have no obvious
physical meaning.

To estimate the performance of different models with the
goal of choosing the statistically best option, one can only rely
on likelihood ratios in the case of nested models, i.e., for
models where all of the terms of a simpler model version also
occur in a more complex version of the model (e.g., Hastie
et al. 2009). We are not in such a situation here because we
wish to compare linear, discontinuous linear multi-zone, and
continous nonlinear inversion profiles (the latter will be
discussed in the next section). In such a case of non-nested
models, an adequate statistical measure for model selection is
the Akaike Information Criterion (AIC), which assigns a score
to a given model rewarding goodness-of-fit (e.g., as measured
by c2) but penalizing overfitting, and thus discouraging the use
of complex models with too many adjustable parameters
(Burnham & Anderson 2002; Hastie et al. 2009). For our
purposes, since we only have a relatively small number of
measurements (M= 19), it is appropriate to use the corrected
AIC (AICc), which we define according to its common use in
the literature (e.g., Hurvich & Tsai 1989):

c= + +
+

- -
k

k k

M k
AICc 2

2 1

1
, 82 ( ) ( )

where k is the number of parameters to fit and M is the number
of observations. As advocated by Burnham & Anderson
(2002), k should include the variance of the residuals as a
parameter to be fitted, e.g., k = 3 for a linear regression. Based

Figure 8. Top left: c2˜ from the difference between the predicted and observed splittings as a function of the two-zone parameter r0. Top right: the values of W1 (blue)
corresponding to <r r0 and W2 (green) for >r r0, both as functions of r0. The vertical dotted line in black indicates the extent of the core and the overshoot region, it
coincides closely with the optimum r0. Bottom left: c2˜ computed from a three-zone model with r1 and r2 as parameters. The lowest c2˜ is achieved when *=r R0.851

and *=r R0.912 . Bottom right: observed and predicted splittings from the two-zone model together with the predicted splittings corresponding to the lowest c2˜ from
the three-zone model (green squares).
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on this definition, n= - +k M 1. The preferred model among
a set of models is the one with the lowest AICc value, where
we limit proper model comparison to the case - >M k 1.
These AICc values are only intended for model inter-
comparison and have no absolute meaning by themselves.
Table 3 lists all the rotation models considered in this work
together with some of their associated statistical measures,
including their AICc’s. Similar tables based on Error Set 2 or
on avoiding the most asymmetric splittings are given in
Appendix A. We can see from the AICc values in Table 3 that
the two-zone piece-wise model outperforms the three-zone
model.

We end this section by noting that the overall spectral line
broadening of 18 km s−1 measured for KIC 10526294, which is
the combination of rotational and pulsational broadening
(Pápics et al. 2014), is compatible with all of the W2-values

found from the minima listed in this section and does not allow
any discrimination among those solutions, as was the case for
the subgiant studied by Deheuvels et al. (2012). In the
following, we investigate the rotation profiles obtained from the
inversion methods.

6. INVERSIONS

First, we introduce the basic concepts and terminology
behind the inversion approaches that we applied. We are
interested in the approximate determination of W r( ) based on a
set of observed rotational splittings dnlm, see, e.g., Gough
(1985) for one of the earliest applications of this method in the
solar case and Kawaler et al. (1999) and Deheuvels et al.
(2012) for applications to white dwarfs and subgiants,
respectively. This constitutes a linear problem and the

Figure 9. Top: averaging kernelsK ¢r r,( ) of the optimum two-zone model with a discontinuity at * =r R 0.1660 . Bottom: zoom on the core-envelope boundary region.
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approximate solution W r¯ ( ) can be written as

åW = D
=

r c r , 9
i

M

i i
1

¯ ( ) ( ) ( )

where i{ } represents the collective index nlm{ },
d bD º mi nlm nl are the scaled splittings, ci(r) are the yet-

unknown inversion coefficients, and M is the number of
observed modes. It is convenient to express the approximate
rotational profile W r¯ ( ) in terms of the true profile W r( ) by
means of the averaging kernels K ¢r r,( ). They are related to
the kernels Ki(r) through K ¢ = å ¢=r r c r K r, i

M
i i1( ) ( ) ( ) and

fulfill

K
*òW ¢ = ¢ Wr r r r dr, . 10

R

0

¯ ( ) ( ) ( ) ( )

From the preceding relation, it is clear that the averaging
kernels K ¢r r,( ) should be localized around r′ as much as
possible, ideally resembling a delta function d ¢r r,( ).

In the following, we consider a radial grid (scaled with
the stellar radius R*) of +N 1 uniformly spaced points

¼r r r, , , N0 1{ } with =r 00 and rN = 1 covering the full range
of fractional radius. The goal of the inverse problem is to
determine the N unknowns Wj

¯ , which represent the predicted
angular velocity W̄ at radius r such that  -r r rj j1 , where
j = 1,K, N is the grid index. This discretization of W̄ on a radial
grid allows us to write an expression for the corresponding
predicted splittings Di

¯ , based on Equation (2), as

òåD = W =
= -

G G K r dr, where , 11i
j

N

ij j ij
r

r

i
1 j

j

1

¯ ¯ ( ) ( )

or simply WD = G¯ ¯ in matrix form. Analogously, we express
Equation (9) as

åW = D
=

c , 12j
i

M

ij i
1

¯ ( )

with the inversion coefficients cij constituting the matrix C. It is
instructive to put the above relation in terms of the discrete

version of the true rotation profile W r( ). It is straightforward to
show that the matrix A, defined through =A C G, accom-
plishes such a task by fulfilling

åW = W
=

A . 13j
k

N

jk k
1

¯ ( )

Ideally Ajk should resemble a Kronecker-delta djk indicating
that the recovered profile at a given radius (specified by the grid
index j) does not suffer from “leakage” coming from other
radial regions. The matrix A is thus the discrete equivalent of
the averaging kernels K ¢r r,( ).
Note that the observed splittings are linearly related to the

predicted splittings through the matrix GC , which is known as
the “hat” matrix. The trace of this matrix is an estimate of the
effective number of adjustable parameters (Hastie et al. 2009).
If the observational errors i are uncorrelated, as we assume

here, then the variance of the recovered profiles can be
estimated as

ås W =
=

c . 14j
i

M

ij i
2

1

2 2( )¯ ( )

The relation above only accounts for the errors on the
measurements and its impact on the inversion results; it does
not account for the errors inherent to the inversion process
itself.
Below, we describe two different inversion techniques that

we used to obtain an approximation of the internal rotation of
KIC 10526294, as well as quantitative estimates of the
uncertainties originating from the measurement errors.

6.1. Regularized Least-squares Method

A technique commonly used in helio- and asteroseismology
is the regularized least-squares (RLS or Tikhonov) method
(e.g., Craig & Brown 1986), which seeks to minimize the
quantity T defined as

T
*

 òå m=
D - D

+
¶ W
¶=

⎛
⎝⎜

⎞
⎠⎟r

dr, 15
i

M i i

i

R

1

2

2 RLS
0

2

2

2( )¯ ¯
( )

where Di are the observed splittings, i is the corresponding
measurement error,Di

¯ are the predicted splittings, and mRLS is a
free parameter (known as the regularization or smoothing
parameter) used to limit the norm of the second derivative on
the predicted W r¯ ( ). Using our discrete radial grid described
earlier, minimization means T¶ ¶W = 0j

¯ for all j. This
condition can be written more explicitly using Equations (11)
and (15) as


 m

d
W W- D + =H G L L 0, 16RLS

0
2 3( )¯ ¯ ( )

where =H Gij ij i
2, with L being the discrete second

derivative operator, δ the radial grid spacing, and  0
2 a scale

factor (introduced for convenience) which we set equal to the
squared mean of the errors i. A formal solution is


  m

d
W = + D

-⎛
⎝⎜

⎞
⎠⎟H G L L H . 17RLS

0
2 3

1

¯ ( )

Table 3
Comparison of Rotation Profiles for Model 1 (Except for One Entry,

where We Used Model 2)

Rotation Profile rms Error (nHz) ν c2˜ AICc

Constant 11.63 18.00 19.86 362.3
Linear 12.32 17.00 6.74 122.1
Linear+ 11.46 16.00 16.86 280.7
Two-zone 10.88 16.00 1.59 36.36
Three-zone 9.48 15.00 1.51 37.35
RLS, N = 8 9.31 14.43 0.52 24.52
RLS, N = 14 10.46 14.32 1.44 38.18
RLS, N = 8 (Model 2) 11.35 14.74 6.42 110.3
RLS+, N = 8 12.05 10.43 17.16 222.2
RLS+, N = 14 11.09 5.32 3.07 184.3
SOLA, N = 8 9.77 12.64 0.58 33.59
SOLA, N = 14 8.19 9.28 0.45 60.11

Note. The Profiles marked with + are enforced to be positive-definite. The
effective number of degrees of freedom ν for the inversions were computed as

k-M , where κ is the trace of the “hat” matrix GC (see Section 6), following
the same approach as used by Deheuvels et al. (2014) and explained in Hastie
et al. (2009). Error set 1 is used here.
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Obviously, the inverse matrix on the right-hand side of
Equation (17) might not exist and in practice we seek a
solution in the least-squares sense instead.

6.2. The Subtractive Optimally Localized Averaging
(SOLA) Method

The SOLA method (Pijpers & Thompson 1994) consists of
determining a linear combination of the inversion coefficients

¢c ri ( ) such that the averaging kernels resemble as much as
possible a target function ¢T r r,( ) while keeping the variance
of the predicted profiles, s W2 ( ¯ ), low. To implement this
method, we minimize

K
*


ò å

m
¢ - ¢ + ¢

=

r r T r r dr c r, , 18
R

i

M

i i
0

2 SOLA

0
2

1

2 2[ ( ) ( )] ( ) ( )

at each r′ with the constraint K
*ò ¢ =r r dr, 1

R

0
( ) . In

addition to the free parameter mSOLA, we can also adjust the
shape of the target function T. The problem reduces to solving
the linear set of M equations (i = 1,K,M and for each radial
location r′)

*òå ¢ = ¢
=

W c r K r T r r dr, , 19
k

M

ik k

R

i
1 0

( ) ( ) ( ) ( )

where *  ò m d= +W K r K r drik
R

i k ik i0 SOLA 0
2 2( ) ( ) ( ) , together

with the constraint å ¢ =c r 1k k ( ) . Using the discrete radial grid
with N segments and choosing the target functions as

¢ =
¢ Î -⎧⎨⎩T r r

N r r r
,

if ,

0 otherwise,
j j1( )

( ]

the problem to solve becomes


å

m
d+ =

=

⎡
⎣⎢

⎤
⎦⎥G GN c NG , 20

k

M

ik ik i kj ij
1

SOLA

0
2

2( ) ( )

with the constraint å == c 1k
M

kj1 . In this case, the target
function will approach a Dirac-δ as N increases. On the other
hand, N can be low or moderate as long as W r( ) can be
assumed not to vary appreciably over a radial segment of
the grid.

6.3. Profiles from Inversion

We present the internal rotation profiles obtained using the
two methods described above. For both the RLS and SOLA
methods, we scanned different resolutions ranging from N = 2
to 14, each covering a wide range of smoothing parameters
mRLS and mSOLA, to examine the resulting inversion profiles. To
choose the appropriate parameters N and μ is not an easy task
and in practice depends on the a priori information we might
have. For example, if we can assume that the rotation profile
does not change appreciably over a radial distance λ, then we
can safely use a resolution such that l=N 1 . Alternatively,
we can interpret the inversion result as providing information
only on those components of the rotation profile that do not
change appreciably over a distance N1 . Generally, the higher
the change of the profile is over a given length scale, the lower
the accuracy of the inversion. If we consider that the rotation
profile can be represented as a superposition of profiles with
increasing detail (e.g., like a Fourier expansion), then the

inversion methods can provide useful information at least for
those components that change slowly with radius. Below, we
discuss the results for the N values with the best statistical score
in terms of the AICc.
In Figure 10, we show the inversion profiles with

m = -10RLS
5 and m = -10SOLA

2, which represent a good
balance between the error and resolution for Error Set 1.
Similar figures for Error Set 2 and/or ignoring the asymmetric
splittings are shown in Figures 22–24 in Appendix A. We see
that both methods give qualitatively similar results for N = 8
and N = 14. The uncertainty of the SOLA method grows
quickly as N increases, as opposed to the RLS method. The
averaging kernels, as can be judged from Figures 26 and 27 in
Appendix B, are better localized using the SOLA method (as
expected, by design), although the uncertainties are somewhat
larger compared to the RLS method. The kernels feature larger
amplitudes near *~r R0.2 , corresponding to small uncertain-
ties at that location. Further out in radius, near *~r R0.9 , the
uncertainty is larger but the rotation rate is still constrained to
be opposite in sign. Note that the kernels provide no
information for *<r R0.15 and so the inversion results within
this radial range have no meaning (see Appendix B). An
appropriate assessment of the inversion’s accuracy is provided
by the averaging kernels, or their discrete counterpart
represented by the matrix A (see Figures 26 and 27). Generally
speaking, as mRLS or mSOLA increases, the predicted splittings
Di
¯ will deviate more from the measured ones. The predicted
splittings for N = 14 using both the RLS and SOLA methods
and Error Set 1 are displayed in Figure 11. The result in the
case of the omission of the asymmetric splittings is provided in
Figure 25 of Appendix A.
The best two-zone model from Section 5 might seem to

disagree with the profiles obtained from inversion, but upon
further inspection they are actually in good agreement, at least
for the outer zone. Indeed, if we take the profile from RLS
inversion with m= = -N 8, 10RLS

5 and interpolate it appro-
priately, then the resulting average rotation using the outer zone
averaging kernel displayed in Figure 9 amounts to 50.34 nHz,
which is in very good agreement with the 49.33 nHz value
obtained in Section 5 for the outer zone. The rotation rate
computed from the inversion profile and the inner zone
averaging kernel amounts to 206.01 nHz, which is to be
compared with the 262.71 nHz value for the inner zone in the
two-zone model. Although both the best RLS model and the
best two-zone are mutually consistent, the RLS model resolves
the outer zone better. The AICc values also give preference to
the RLS inversions, as we deduce from Table 3.
To add yet another model comparison, we have performed

the so-called leave-one-out cross-validation technique (see,
e.g., Hastie et al. 2009), which does not rely on c2˜ values. This
technique consists of omitting one of the measurements when
fitting a model and comparing the predicted splitting based on
the fitted modelDi

¯ with the measurement that has been omitted
Di: = D - Dei i i i( ¯ ) . We performed this procedure omitting
one measurement at a time for all measurements and obtained a
final score by computing the rms value of all of the ei. The
preferred model is then the one with the lowest score. In the
case of the two-zone model, this score is 1.51 while for the best
RLS inversion the score is 0.79.
Using a synthetic profile without counter-rotation as a test,

we found that the RLS inversion method works properly and
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Figure 10. Inversion profiles resulting from the RLS method (top row) with m = -10RLS
5 and the SOLA method (bottom row) with m = -10SOLA

2 for two different
resolutions =N 8, 14 (left to right). Vertical dashed lines indicate the approximate location of the convective core’s radius. Error Set 1 has been used.

Figure 11. Predicted splittings for both the RLS (top) and SOLA methods (bottom) using a resolution of N = 14 and a range of μ parameters for each method. The
predicted splittings were computed based on the uncertainties from Error Set 1.
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that it is not prone to give spurious counter-rotation solutions.
See Appendix D for further details.

It is possible to perform RLS regularized inversions
enforcing a priori a rotation profile that does not exhibit
counter-rotation. We can achieve this by including additional
terms to the quantityT defined in Equation (15) in such a way
that they represent our prior knowledge of the rotation profiles
being definite positive. Loosely speaking, we can express the
probability of obtaining a value Wj at a given radial location as
being proportional to l We j j, with l 0j . A concrete technique
to solve such a minimization problem is provided by the
Karush–Kuhn–Tucker conditions (Kuhn & Tucker 1951),
which consist of minimizing T l- å Wj j j together with the
constraints l W = 0j j for all of the radial locations j (see, e.g.,
Boyd & Vandenberghe 2004). The lj are treated as Lagrange
multipliers. The result of this exercise is shown in Figure 12.

A qualitative idea of how well these restricted-positive
profiles represent the data is provided by the plot on the right
of Figure 12. Quantitatively, the c2˜ for the restricted-positive
profiles are c =+ 112.98

2˜ and c =+ 46.114
2˜ , corresponding

to resolutions of N = 8 and N = 14, respectively. These
values are to be compared with c = 0.528

2˜ and c = 1.4414
2˜

from the unrestricted case. Note here that the effective
number of degrees of freedom ν is reduced considerably
when restricting the profiles to be positive-definite given
the additional parameters included as Lagrange multipliers.
In Table 3, we assembled all of the AICc scores of
these and other inversions along with results from previous
sections.

Although it is possible to increase the resolution N
beyond the number of observations M without overfitting for
the inversion result itself, following the principle of regulariza-
tion (see Appendix C), the value of ν computed as the trace
of the “hat” matrix GC might become smaller than unity if
the regularization parameters are small, pushing the AICc
used for model comparison beyond meaningful values. For
this reason, we limit ourselves to moderate resolutions for
the sake of meaningful model comparisons. The best models
are the RLS or SOLA inversions with N = 8 with a large
statistical margin over all of the other rotational profiles we
obtained.

The profiles obtained using the Error Set 2 (Figures 22 and
24) are very similar to those obtained with Error Set 1.
Obviously, the inversion uncertainties are larger but still result
in very similar counter-rotating profiles. Note that the
corresponding c2˜ and AICc values (Table 4) give a clear
indication of the appreciable error over-estimate in Error Set 2,
as already stressed before. Indeed, c < 12˜ in virtually all cases.
This is already evident from Figure 1 where the point-to-point
variation of the rotational splittings is visibly much smaller
than the average uncertainty from Error Set 2. The inversion
profiles are equally unaffected if the inversion procedure is
carried out excluding the most asymmetric splittings as
demonstrated by Figures 23 and 24. This is not surprising
since the large errors associated with the most asymmetric
splittings already give them less weight compared to the others
when minimizing c2˜ .
The RLS inversions can also be carried out by regularizing

the norm of the first derivative of the profile or even the
norm of the profile itself. It turns out that they are all consistent
and have similar properties to the RLS inversions using
the norm of the second derivative that we presented
earlier. Figure 13 shows the corresponding inversion profiles
and their associated uncertainties derived from the measure-
ment errors.
So far, we have based our inversions on Model 1 by

Moravveji et al. (2015). However, the main qualitative
characteristics of the inversion profiles are robust under
different model choices. We have explicitly tested that all the
models among the best ones from the forward modeling in
Pápics et al. (2014) and Moravveji et al. (2015) produce
qualitatively similar results for the inverted rotation profiles,
i.e., counter-rotation in the radiative envelope. To provide a
specific example, in Figure 14, we show the resulting profile
using Model 2 by Pápics et al. (2014). Although the kernels
based on this model do not exhibit a large peak right outside
the convective core (i.e., no trapped modes), they otherwise
have a similar shape (see also Figure 3). Again, the inversion
profile hints at counter-rotation within the star’s radiative zone.
The uncertainty on the recovered profile is somewhat larger
overall compared to the uncertainty associated with Model 1
(Figure 10, top left panel). We attribute this to the lack of
variation of the kernels in this model, i.e., there are no trapped

Figure 12. Left: comparison of inversion profiles obtained by restricting the rotation to be positive for all r and those using unrestricted RLS regularization for two
different resolutions N = 8, 14 and for m = -10RLS

5. Right: the corresponding predicted splittings compared to observations. See the main text for details.
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modes to make the kernels more “different” from mode to
mode. The more similar kernels for the modes of Model 2 result
in higher c2˜ and AICc values, which we have added for the
case of RLS and N = 8 in Table 3.

7. MONTE CARLO SIMULATIONS

Yet another method for obtaining an approximation of the
real profile W r( ) under the assumption of a smooth profile
involves generating a large collection of random, synthetic test
profiles and assigning a score to each, measuring how close the
predicted splittings are to the observed ones. This method is
straightforward but very inefficient computationally since the
number of synthetic profiles that need to be calculated is
necessarily large.

A random, synthetic profile on a radial grid with Q points
can be generated by choosing a random rotation value Wj at
each radial location rj. The rotation values are to be picked
from a random (uniform) distribution extending from -h to h
(in nHz), where the range h is to be chosen appropriately as
described below. In general, such a profile will exhibit strong
fluctuations along the radius, i.e., it will be a “noisy” spiky
profile, particularly if Q is large (we used Q 100 in our

simulations). There are a number of ways to smooth out the
profile, a simple one being to use a “low pass” filter to remove
the “high frequency” components of the profile (if we think of
it as a time series). The filter cutoff point defines a
characteristic length scale λ below which the profile can be
considered to have only smooth variations. Some padding at
each end of the profile is necessary to avoid end effects when
filtering. See Figure 15 for an illustrative example. Once the
profile has been smoothed out, it will have spatial fluctuations
only on length scales larger than λ. Since generally >Q N ,
i.e., the random profiles are defined on a finer grid than the one
used to define G, we should resample the profile to match the
radial grid with N points. We do this by calculating the integral
average of the random profile along each segment in the radial
grid associated with G after an appropriate interpolation. Other
methods can be used to achieve the same result. What is
essential here is that the smoothing should be chosen in
agreement with the final resolution N so that lN 1.
Once the smoothing is performed, the rotation values are no

longer distributed uniformly on the -h h,[ ] interval, resem-
bling instead a Gaussian distribution. This is simply because
we have introduced short-range correlations with our smooth-
ing. Therefore, we should adjust the range h to ensure that the

Figure 13. Inversion profiles obtained by regularizing the norm of the profile (red, m c == - , 0.53RLS 10
2

6 ˜ ), regularizing the norm of the first derivative (green,
m c == - , 0.51RLS 10

2
6 ˜ ) and regularizing the norm of the second derivative (blue, m c == - , 0.52RLS 10

2
5 ˜ ). For visual aid, the profiles have been slightly shifted

horizontally with respect to each other.

Figure 14. Inversion profile obtained using kernels from Model 2 as found by Pápics et al. (2014). Here, the parameters are identical to those used for the top left panel
in Figure 10 (m = =- N10 , 8RLS

5 ). The vertical dashed line marks the convective core radius. The counter-rotation within the radiative zone is a characteristic feature
of all the models we examined.
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rotation values at a given radial location are more or less
equally probable, thus uniformly covering the expected range
ofW r( ). This expected range can be roughly estimated from the
mean of the observed rotational splittings d bmi i . As a
concrete example, we found that for l = 0.3 and m=h 4 Hz,
the random profiles visited more or less uniformly the range

m-0.2, 0.2 Hz[ ] within a 14% margin.
If we interpret the rotation value Wj at each radial location as

a random variable, and given a large collection of random
rotation profiles, then it is possible to calculate the associated
covariance matrix. A given row j of this matrix will resemble a
Gaussian distribution centered at rj. The mean of the FWHM of
the Gaussians in all rows is then an (after-the-fact, of course)
estimate of λ. In practice, the random profiles can be
considered to remain approximately constant over radial scales
not larger than l~ 3.

Once a random profile has been generated and smoothed out,
its associated splittings are calculated via Equation (2). We then

compute a score which is proportional to c-4 (using Error
Set 1). The lower c2 is the higher the score becomes. After
scoring a large number of profiles (109), we compute the
histogram of the rotation rates at each radial location weighted
with their corresponding scores and then normalized by an
ordinary histogram count. In this way, for each radial location
and each rotation rate interval, we obtain a number indicative
of its likelihood to explain the observed splittings.
For the results shown in Figure 16, the random profiles have

a resolution of N = 14 and have been smoothed so that
l = 0.3. At each radial segment < < +r r r 1j j , we computed
the weighted histogram of the ocurrences of Wj (as explained
above) over an interval starting at −1500 and going to
1200 nHz, subdivided into 71 bins. By comparing Figures 10
and 16, we see that the Monte Carlo method reproduces very
well the rotation rates at *~r R0.2 while giving only a broad
distribution of rotation rates centered around negative values at

*~r R0.8 . We note that virtually none of the high scoring

Figure 16. Color coded weighted histogram count for each radial location of a large sample of random rotation profiles using c1 4 as weights (see text for details).
The original random profiles have been smoothed out so that the typical length scale is l = 0.3.

Figure 15. Random profile (blue) before any smoothing with Q = 100 and =h 500 nHz. The “low pass” filtering produces the green curve. The correlation length is
l = 0.3.
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random profiles are strictly positive (or negative), they all
involve at least one sign change along the radial coordinate.

This use of random profiles is also suitable to establish the
“quality” of a set of kernels. To do this, we first take a random
profile (the reference profile) and calculate its associated
splittings via Equation (2). These splittings are then “inverted”
and we compare the resulting profile with the reference profile.
Some random noise could in principle be added to the splittings
before attempting the inversion in order to simulate measure-
ment errors, but this is unnecessary here since Equation (14)
already properly describes the effect of the measurement
variance on the inversion profiles. The differences between the
inverted and reference profiles can therefore be attributed solely
to the inadequacy of the kernel set to fully recover the solution.

To implement the above, we computed three sets of smooth
random profiles (l = 0.3, 0.4, 0.5, respectively, and with 106

profiles each). We then rescaled the amplitude of each
individual profile so as to make the corresponding splittings
have a mean that equals the mean of the observed splittings.
After discarding those profiles whose splittings had mixed
signs, we proceeded to perform the inversions (m = -10RLS

5).
We computed inverted profiles with N = 8 intervals of radial
resolution and compared them with the reference profiles

(integral-averaged over the same radial intervals). The standard
errors at each radial interval calculated from all the profiles in
the set are shown in Figure 17. We clearly see that the error
becomes larger as the profiles have more variability. The radial
locations where the errors are comparatively smaller coincide
roughly with the locations where the A matrices have better
localization (see Figure 26).
To conclude this section we present the inversion profile

(from the real KIC 10526294 data) together with an overall
(1σ) uncertainty (derived from both the measurement errors
and the kernel error as explained above) in Figure 18. This
profile represents a balance between good overall statistical
measures and good localization properties, at least near the
bottom of the radiative zone and close to the stellar surface.
Note that a fully positive rotation profile is possible at the 2σ
level.

8. SUMMARY AND CONCLUSION

Numerical models and their pulsation properties (based on
the MESA evolution code and the GYRE pulsation code)
have allowed us to obtain kernels of oscillation modes whose
frequencies closely match the identified zonal dipole mode
frequencies of the B8V star KIC 1052629419 (Pápics

Figure 17. rms error incurred by RLS inversions with m = -10RLS
5 and N = 8 computed from random profiles with various degrees of smoothing. See the text for

details.

Figure 18. RLS inversion profile (solid line) of KIC 10526294 ( m= = -N 8, 10RLS
5). The error margins incorporate both the measurements errors (from Error Set 1)

and the errors related to the inadequacy of the kernels to recover the “true” rotation profile. This latter error was estimated by using smooth random profiles with
l = 0.3.
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et al. 2014; Moravveji et al. 2015). Based on these kernels,
we computed the rotational profiles explaining the detected
rotationally split dipole mode frequencies by assuming
different functional forms (constant, linear, two-zone, and
three-zone). We also performed RLS and SOLA inversions
and implemented a Monte Carlo approach to obtain an
approximate rotational profile and to estimate the errors
incurred by the inversion process. We relied on the optimal
equilibrium model found so far for this pulsator (Moravveji
et al. 2015; Model 1), but other seismically derived
equilibrium models were also examined and lead to
qualitatively similar results.

While the most likely rotation profiles depend on assump-
tions made about the functional form of the profile, we were
able to constrain the average rotation rate near the overshoot
region to be about 163 ± 89 nHz, a value supported by almost
all of the rotational models we considered. Toward the surface
of the star, our results are less constrained since they are
sensitive to the a priori assumptions on the shape of the
rotational profile. If a smooth and continuous profile is
assumed, then our results point to a mild counter-rotating
region in the envelope toward the surface of the star rotating at
frequency - 717 412 nHz with the sign change occurring
around *~r R0.7 . On the other hand, if we assume a
discontinuous two-zone profile, then we find an outer envelope
rotating about six times slower than the overshoot region at
49 nHz. The averaging kernel associated with the outer zone of
this two-zone model leads to a weighted average over most of
the radiative envelope. The best counter-rotating profiles from
inversion, when averaged over the radiative zone using this
outer zone averaging kernel, lead to rotation rates entirely
consistent between the two models.

We performed model comparisons based on the AIC as well
as the leave-one-out cross-validation technique, which are both
better suited than the reduced c2˜ when comparing the
performance of models that are not nested, as is the case for
the models we considered in this study. Both methods give
preference to inversion models with mild counter-rotation in
the radiative envelope at the s1 level. The Monte Carlo
simulations, fully independent of the above, are consistent with
such a result. Current stellar structure models have so far not
considered this type of physical ingredient.

Following the first rough estimates of W Wcore envelope for
three core-hydrogen burning B stars prior to the asteroseis-
mology space era (Aerts et al. 2003; Pamyatnykh et al. 2004;
Briquet et al. 2007), the recent studies by Kurtz et al. (2014)
and Saio et al. (2015) made the first high-precision
asteroseismic measurement of surface-to-core rotation in two
~1.5 M main-sequence hybrid heat-driven pulsators from
four years of Kepler photometry. They found the star
KIC 11145123 to have slightly faster envelope than core
rotation and an average rotation period of ∼100 day, while
KIC 9244992 has slightly faster core than envelope rotation
and an average rotation period of ∼65 day. The authors
deduced these results from the measured rotationally split
g-mode triplets and p-mode triplets and quintuplets without
relying on forward seismic modeling of the zonal modes as
we have done in the present work. Our study of the 3.2M
main-sequence B-type star KIC 10526294 hints to an
envelope whose inner rotation rate is opposite to its outer
rate with a small factor ranging from ~-0.06 to ~-0.2
taking into account the uncertainties, while the star has a

depth-averaged rotation period of about 186 day. In these
three cases, even after taking into account that rotation rates at
stellar birth have been largely overestimated (e.g., Zwintz
et al. 2014), a strong and efficient mechanism must have been
at work to slow down these stars’ rotation after their birth.
Moreover, an efficient mechanism must be active to transport
angular momentum within the star. Internal gravity waves
(IGWs) could be viable as such a mechanism. Indeed,
numerical simulations based on IGWs for a 3M star by
Rogers et al. (2013) have shown that such waves can transfer
angular momentum on short timescales and over the
appropriate distances in stars with a convective core and a
radiative envelope. Additionally, the study by Rogers et al.
(2013) led to the conclusion that IGWs can lead to either a
slightly faster envelope than core rotation, or an outer
envelope rotating opposite to the inner regions. This
mechanism thus could be the natural cause of the observa-
tional results on the rotational properties of KIC 10526294,
KIC 11145123, and KIC 9244992.
The type of rotation profile found for KIC 10526294 and

KIC 11145123 is not achieved in any standard stellar
evolutionary scenario. A similar but much stronger discrepancy
between models and observations occurs for the core rotation
of red giants (e.g., Cantiello et al. 2014). In our next step, we
plan not only to perform similar studies for OB-type stars with
various stellar parameters, but we will also investigate how the
stellar structure, and in particular the density profile, behaves
during the evolution of the star in the presence of the most
likely rotation profiles we found in this study, testing new
physical ingredients such as IGWs that have not yet been
included to describe the physics in the radiative envelope of
massive stars. Only an extension of the sample of stars with
seismic inversion treated with appropriate statistical model
selection and coupled to an iterative procedure to upgrade the
input physics can deliver a meaningful improvement in the
stellar models. Our study is the first step in this direction for
massive stars.
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APPENDIX A
RESULTS FOR ERROR SET 2 AND/OR FOR LIMITED

TRIPLET SETS

Figures 19–25 and Tables 4–6 show the results obtained
when Error Set 2 is used as well as the results when considering
only a limited set of splittings.

APPENDIX B
THE A MATRICES

As mentioned in Section 6, the matrix A gives an
indication of how well the inversion profile recovers the true
profile (in the ideal case of no measurement error in the

Figure 19. Same as Figure 8 with the exception that Error Set 2 has been used. The vertical dashed line in the top right panel marks the location of the minimum of c2˜
for the two-zone model.

Table 5
Same as Table 3, but Excluding the Three Most Asymmetric Splittings, i.e.,

Those with Periods Near ´0.96 105 s, ´1.29 105 s, and ´1.83 105 s

Rotation Profile rms Error (nHz) ν c2˜ AICc

Constant 9.07 14.00 25.07 355.9
Linear 7.22 13.00 8.55 119.4
Linear+ 8.29 12.00 22.08 277.0
Two-zone 4.95 12.00 1.69 32.27
Three-zone 5.16 11.00 0.53 22.46
RLS, N = 8 4.84 11.29 0.63 22.33
RLS, N = 14 4.77 11.20 2.35 42.00
SOLA, N = 8 5.86 9.45 0.86 34.48
SOLA, N = 14 3.58 7.21 0.40 53.45

Note. The single = +m 1 mode with period near ´1.78 10 s5 was also
excluded. Error set 1 is used.

Table 6
Same as Table 5, but Using the Observation Uncertainties from Error Set 2

Rotation Profile rms Error (nHz) ν c2˜ AICc

Constant 8.95 14.00 0.47 11.63
Linear 7.05 13.00 0.32 12.36
Linear+ 8.27 12.00 0.47 17.66
Two-zone 4.91 12.00 0.14 13.67
Three-zone 4.70 11.00 0.13 18.11
RLS, N = 8 4.96 12.15 0.14 13.11
RLS, N = 14 5.85 12.39 0.24 13.42
SOLA, N = 8 6.04 10.99 0.23 19.27
SOLA, N = 14 3.49 8.59 0.10 34.55

Table 4
Same as Table 3, but Using the Observation Uncertainties from Error Set 2

Rotation Profile rms Error (nHz) ν c2˜ AICc

Constant 11.85 18.00 0.45 12.82
Linear 11.78 17.00 0.36 13.67
Linear+ 11.66 16.00 0.45 18.05
Two-zone 9.61 16.00 0.19 13.93
Three-zone 8.44 15.00 0.17 17.13
RLS, N = 8 9.17 15.93 0.17 13.83
RLS, N = 14 10.29 16.09 0.26 14.66
SOLA, N = 8 9.46 14.30 0.22 20.80
SOLA, N = 14 7.59 11.48 0.15 35.90
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Figure 20. Same as Figure 19 with the exception that the three most asymmetric splittings have been excluded from the c2˜ minimization, i.e., those with periods near
´0.96 105 s, ´1.29 10 s5 , and ´1.83 105 s. The single = +m 1 splitting with period near ´1.78 10 s5 was also excluded. Error Set 1 has been used.

Figure 21. Same as Figure 20, i.e., omitting the three most asymmetric modes and the single = +m 1 splitting, but this time using Error Set 2.
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splittings). Using the best model from Moravveji et al.
(2015), we can see this fact at work very clearly in both
Figures 26 and 27 as the respective μ parameter is varied. The
more A resembles the identity matrix, the better the
reconstruction is, thus providing a qualitative assessment of
the inversion.

APPENDIX C
AVERAGING KERNELS IN THE CONTINUOUS LIMIT

The RLS and SOLA inversions behave very differently
when the resolution is increased. In this section’s experi-
ments, we kept m = -10RLS

5 and m = -10SOLA
2
fixed but used

three different resolutions, =N 14, 28, 5000. From the

Figure 22. Same as Figure 10 with the exception that Error Set 2 has been used.

Figure 23. Same as Figure 10 but this time excluding the three most asymmetric splittings, i.e., those with periods near ´0.96 105 s, ´1.29 10 s5 , and ´1.83 105 s.
The single = +m 1 mode with period near ´1.78 10 s5 was also excluded from the computation.
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Figure 24. Same as Figure 23 with the exception that Error Set 2 has been used.

Figure 25. Same as Figure 11 but excluding the three most asymmetric splittings, i.e., those with periods near ´0.96 105 s, ´1.29 10 s,5 and ´1.83 105 s. The
single = +m 1 mode with period near ´1.78 10 s5 was also excluded from the computation.
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viewpoint of the inversion, it is possible to increase the
resolution beyond the number of observations M since
regularization keeps the effective number of fitted parameters
below M. Here, we do not include the variances on the

inversions in the discussion. We have chosen Error Set 1 as
the uncertainties on the splittings.
In Figure 28, we show the resulting inversion profiles. There

are two radial locations where most of the rotation rates

Figure 26.Matrix A for the RLS method using the kernels from the best model in Moravveji et al. (2015) with two different resolutions ( =N 8, 14{ }; top and bottom
rows, respectively) and a range of smoothing parameters mRLS. Each row of these matrices is the discrete version of the averaging kernel K ¢r r,( ). The A matrix
should resemble as much as possible the identity matrix, as Equation (13) indicates, if we want a faithful reconstruction of the rotation rate (at the radial location
defined by the row index, i.e., first row corresponds to the first bin in the radial grid). Note how near * ~r R 0.17 the rotation rate is well recovered almost
independently of the choice of N or mRLS.

Figure 27. Same as in Figure 26, but using the SOLA method. The matrices are very well localized except at higher resolutions and higher mSOLA. At m = -10SOLA
2

and N = 8, there is a small amount of leakage from regions close to *=r R0.4 into the outer radial bins ( *¢ ~r R0.9 ). We estimate from this that the rotation rate
there is overestimated by the inversion by about 3%.
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Figure 28. Rotation profiles from the RLS (m = -10RLS
5) and SOLA (m = -10SOLA

2) methods and three different resolutions =N 14, 28, 5000. The inversions are
based on the kernels from the best model of Moravveji et al. (2015). The measurement uncertainties are taken from Error Set 2.

Figure 29. Row of A corresponding to r0 = 0.17 at three resolutions (top three plots). The bottom plot is a zoom of the one immediately above.
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roughly coincide. One is at ~r 0.17 and the other is at
~r 0.92 where the rotation values are not too far from each

other, except for the SOLA inversions with N= 28,5000.
Let us examine the averaging kernels from three selected

radial locations *=r R0.170 , *=r R0.480 , and *=r R0.92
as shown in Figures 29–31, respectively. From the figures, we
see that for *=r R0.170 , all of the averaging kernels are
indeed generally well behaved, and so we expect inferences for
this location to be consistent. At r0= 0.48 (Figure 30), the
localization is acceptable as long as N is low. Closer to the
stellar surface, at r0= 0.92 (Figure 31), the situation is
similar although the RLS kernels degrade considerably
when N = 28.

From these figures, we conclude that consistent inferences
can be found using either the RLS or SOLA methods if the
resolution is kept low, i.e., N 14. Such a resolution also
implies a sensible model comparison through the AICc (see
Table 3), while larger N and small smoothing parameters would
lead to an effective number of degrees of freedom n < 1 and
strongly negative AICc values, implying overfitting from the
viewpoint of the model comparison.

APPENDIX D
TESTING RLS INVERSIONS WITH A SYNTHETIC

PROFILE

The following test is to check that the counter-rotation
profiles are not produced by some undesired property of the
RLS inversion methods. We take the optimum two-zone model
from Section 5 and smooth it using the “low pass” filter with
correlation length l = 0.3 described in Section 7. This is taken
as the “actual” rotational profile, which does not exhibit
counter-rotation. Subsequently, we calculate the associated
exact rotational splittings via Equation (2). To each of these 19
splittings we add random noise sampled from a Gaussian
distribution with zero mean and the same standard deviation
as the actual measurement errors (Error Set 1). We set

m= = -N 8, 10RLS
5 as used for the RLS inversions in the

main text and proceed to calculate the inversion profile.
At each radial bin, we compare the inversion value with the

integral average of the “actual” profile over the same radial bin.
This gives us a direct estimate of the inversion error. By
repeating this process a large number of times, we can obtain
well-defined statistics (we used 107 iterations). Figure 32 shows

Figure 30. Same as Figure 29, but for r0 = 0.48.
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Figure 31. Same as Figure 30, but for r0 = 0.92.

Figure 32. Smoothed-out two-zone model (blue, correlation length l = 0.3) and the recovered profile from RLS inversion (black, m = -10RLS
5). Error bounds are

in red.
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the “actual” profile in blue, the recovered profile in black, and
the estimated s1 uncertainty range in red. The RLS method
does a good job of recovering the actual profile, which always
occurs within the errors. Some inversion profiles must counter-
rotate mildly since the error region extends below zero in the
outer half of the star. However, given the errors, we do not find
a counter-rotating profile in this case.
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