
µPnP-Mesh: the Plug-and-Play Mesh Network for the Internet of Things

Nelson Matthys, Fan Yang, Wilfried Daniels,
Sam Michiels, Wouter Joosen, and Danny Hughes

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium.
Email: {first.last}@cs.kuleuven.be

Thomas Watteyne
Inria Paris-Rocquencourt,

EVA team, France.
Email: thomas.watteyne@inria.fr

Abstract—Deploying and customizing networks of Internet of
Things (IoT) devices remains extremely challenging. This com-
plexity has two main sources. First, end-users must integrate
diverse sensor and actuator peripherals with IoT devices to
realize their application. Second, the resulting system must pro-
vide reliable mesh networking in harsh network environments
at extremely low power. This paper addresses both problems
by proposing µPnP-Mesh, which combines the ease of use of
µPnP with the industrial performance of SmartMesh IP. µPnP
provides a low-power and low-cost method for achieving plug-
and-play integration of peripherals with embedded IoT devices;
SmartMesh IP provides low-power reliable mesh networking.
With a true plug-and-play user experience and a lifetime above
6.5 years on a pair of AA batteries, µPnP-Mesh is a ready-
to-use game-changing solution for applications such as home,
building and factory automation.

I. INTRODUCTION

The Internet-of-Things (IoT) is composed of resource-
constrained embedded devices, equipped with low-power
radios and diverse sensors and actuators. These devices
typically self-organize and form large networks, capable
of monitoring and acting upon phenomena in the physical
world. It is commonly accepted that this setting holds great
promise for many application scenarios, including smart
buildings and smart factories, which are nowadays finding
their way into our daily lives.

As technology matures, non-expert IoT users are in-
creasingly in charge of creating and configuring complete
applications running on top of embedded IoT devices. This
includes the integration of various third-party sensing or
actuation peripherals in a “plug-and-play” fashion after the
network is already installed. For example, devices deployed
in a smart home may initially be configured to monitor
temperature. After some time, they may also be equipped
with passive RFID sensors and configured to engage in
person detection.

Unfortunately, integrating new sensing peripherals on em-
bedded IoT devices is non-trivial and error-prone as this re-
quires knowledge of low-level hardware and software. Each
peripheral may also posses specific bandwidth demands.
Configuring the networking correctly and guaranteeing that
these requirements are met is far from trivial.

A second major hurdle for most contemporary scenarios
is that IoT devices are expected to operate over long periods

SmartMesh IP

Plug-and-Play
Peripherals

Application MCU

Figure 1. A µPnP-Mesh device with 4 sensor peripherals connected. The
µPnP-Mesh device fetches and installs peripheral drivers from the Internet.

of time on limited energy supplies, and in harsh radio com-
munication environments. Multi-path fading, external inter-
ference or other environmental factors [1] make it difficult
to achieve reliable wireless communication at low energy
costs, a critical requirement for most IoT applications.

Over the last decade, plug-and-play integration of pe-
ripherals has gained significant attraction in the context
of mainstream systems; solutions such as PCI, USB, or
Firewire have been proposed. More recently, lightweight
plug-and-play solutions targeting embedded IoT have been
proposed by the research community. For example, solutions
such as µPnP [2] offer facilities to support auto-identification
of peripherals at near-zero energy cost, automatic driver
installation, and support for remote peripheral discovery and
usage.

Existing solutions for reliable wireless communication
are either achieved through contention-based or reservation-
based protocols. Resource constraints on embedded IoT de-
vices render contention-based protocols less efficient, while
the efficient reservation-based protocols suffer from external
interference and multi-path fading, making them unreliable.
The Time Synchronized Channel Hopping (TSCH) [3] ap-
proach solves this problem by combining a reservation-

based Time Division Multiple Access (TDMA) scheme with
channel hopping.

This paper proposes the complete design of a new low-
power, reliable plug-and-play enabled platform for the IoT.
We combine the ease-of-use of µPnP with the industrial
performance of SmartMesh IP. µPnP enables a true plug-
and-play experience of sensor or actuator peripherals on em-
bedded IoT devices. SmartMesh IP [4] is a proven, market-
leading networking solution rooted in TSCH, and which
provides ultra low-power and ultra reliable communication
for IoT applications. The result is a production-quality and
ready-to-use low-power wireless solution.

The remainder of this paper is organized as follows.
Section II provides background on low power approaches
to mesh networking and plug-and-play sensor integration.
Section III describes the µPnP-Mesh system architecture.
Section IV presents preliminary evaluation results. Section V
concludes and discusses directions for future work.

II. BACKGROUND

Plug-and-Play IoT Peripheral Solutions. Throughout
the years, plug-and-play integration of peripherals has re-
ceived significant attention in the context of mainstream
systems. A number of standardized hardware interconnec-
tion technologies – such as the Universal Serial Bus (USB)
or IEEE 1394 (FireWire) – have been defined. They pro-
vide auto-detection and configuration based on device type
identifiers. Despite the increase in flexibility, these conven-
tional approaches either come with large software stacks
or consume significant amounts of energy, making them
unsuitable for constrained IoT devices that are expected to
operate on batteries for years. In contrast, interconnection
technologies commonly found on embedded IoT devices –
such as ADC, UART, I2C – focus on minimizing CPU,
memory and energy consumption, but lack mechanisms to
support auto-identification and configuration.

µPnP [2] addresses these issues and provides a mechanism
to encapsulate device identifiers by using cheap and low-
power passive electrical components. µPnP also comes with
a dedicated runtime system, supporting auto-installation and
configuration of peripheral drivers, in combination with
remote discovery and access through standardized IPv6-
based networking. Each time a peripheral is plugged in, the
µPnP runtime queries the gateway to find a suitable driver,
which is then remotely downloaded. After installation, the
peripheral’s API is made available over the network.

Evaluation in realistic use-cases shows that µPnP achieves
plug-and-play peripheral integration at several orders of
magnitude lower energy consumption than embedded USB,
and with a flash footprint of only 15 kB [2].

Industrial IoT Network Solutions. Low-power wireless
solutions are particularly suited for industrial applications, as
they enable “peel-and-stick” deployment, instead of having
to install wiring. Industrial applications do require wireless

networks to offer the same level of reliability as their wired
counterpart, while at the same time offering multiple years
of battery lifetime. A new wave of standards and commercial
products are appearing, specifically targeted at the Industrial
IoT [5].

These standards are rooted in Time Synchronized Channel
Hopping (TSCH), a novel communication paradigm partic-
ularly well suited for low-power wireless IoT devices. In
a TSCH network, all nodes are tightly synchronized, and a
schedule orchestrates all communication within the network.
The schedule indicates what to do in each timeslot: trans-
mit, listen or sleep. Through time synchronization, nodes
only wake up when they effectively communicate, yielding
very low power consumption. Successive packets exchanged
between two neighbor nodes are done so at different fre-
quencies. The resulting “channel hopping” communication
combats external interference and multi-path fading.

SmartMesh IP [4] is a commercial implementation of
TSCH, and combines its performance with the ease of use
of IPv6. The SmartMesh IP protocol stack is composed
of IEEE802.15.4e TSCH at the link layer, and a tradi-
tional IPv6-ready IoT “upper stack” (6LoWPAN, UDP). A
SmartMesh IP network is composed of a gateway node –
the “manager” – and up to 100 “motes”. The motes form a
redundant low-power wireless multi-hop mesh network.

The manager is responsible for building and maintaining
the TSCH schedule of the network. Each mote sends its
communication requirements to the manager. The manager
computes a TSCH schedule which satisfies the different
nodes’ requirements, while minimizing the overall energy
consumption. It then injects the calculated schedule back
into the network. By continuously monitoring the network
and adapting the TSCH schedule to topological changes
or different communication requirements, a SmartMesh IP
network runs autonomously without human intervention.

[6] highlights the performance of SmartMesh IP. In a
typical urban deployment in which 100 nodes form a 8-hop
deep mesh network, each one publishing a packet every hour
with 90 bytes of application payload, the nodes consume
between 8.4 µA (nodes furthest from the root) and 22.2 µA
(nodes closest to the root). This consumption translates into
a battery lifetime of over ten years when using a 2200 mAh
battery. In all configurations, a SmartMesh IP network is
designed to offer over 99.999% of end-to-end reliability.

III. UPNP-MESH

µPnP-Mesh combines the ease-of-use of µPnP with the
industrial performance of SmartMesh IP. The result is a fully
plug-and-play mesh network: a user installs µPnP-Mesh
motes is his/her facility, which automatically form an ultra
low-power and ultra high reliable IEEE802.15.4 network.
He/she then connects sensor and actuator peripherals to the
motes, whose corresponding drivers are downloaded auto-
matically. Afterward, each peripheral automatically exposes

μPnP Runtime

SmartMesh IP

Driver code
annotated

with bandwidth
requirements

...

Service Request
(total bandwidth
required)

Application-
specific

Parameters

Bandwidth
Request

Service
Request
Granted

SmartMesh IP
Manager

(Gateway)
Total Bandwidth
Requirements

TSCH Schedule
μPnP-Mesh Mote

Driver Installation

Driver Request

User
Application

(Back-end)

Driver code
annotated

with bandwidth
requirements

Peripheral API
exposed over network

+

Application-specific
parameters

+

Peripheral

Peripheral

Peripheral
Identification

Σ

Figure 2. Detailed overview of the µPnP-Mesh solution

the relevant API for data retrieval or actuation. Peripheral
drivers are also annotated with information pertaining to
their bandwidth requirements. This information is used, in
combination with application-specific parameters such as
sampling rate, to correctly configure the network.

Section III-A zooms in on the overall system architecture
of µPnP-Mesh. Section III-B focuses on how the µPnP-Mesh
architecture realizes low-power reliable and QoS-aware net-
working. Finally, Section III-C describes how drivers inform
the allocation of timeslots.

A. System Architecture

As can be seen in Fig. 2, there are three key elements in
the µPnP system architecture:

1) Peripherals are identified based upon four standard
resistors that encode a 32-bit peripheral type identifier.
This identifier is read by the µPnP host board con-
nected to the mote. Based upon the type of connected
peripheral, it is connected to the appropriate pins on
the host micro-controller. Finally the peripheral type
identifier is transmitted to the host micro-controller.
µPnP currently supports ADC, I2C, SPI and UART
peripherals [2].

2) Each µPnP-Mesh mote is effectively a wireless hub
for locally connected peripherals. A mote combines
(1) an application micro-controller which runs the
µPnP software stack to support peripheral identifica-
tion, driver installation and remote access to peripheral
APIs, and (2) a specialized network chip implementing
SmartMesh IP for ultra low power wireless mesh
networking.

3) The SmartMesh IP manager coordinates network
behavior through the allocation of timeslots and ap-
plication configuration through the deployment of
appropriate device drivers to motes with matching
peripherals.

B. Low-power, Reliable and QoS-aware Networking

In a SmartMesh IP network, all nodes are tightly synchro-
nized, and time is cut into timeslots. All communication is

orchestrated by a communication schedule. The communi-
cation schedule indicates to each node what to do in each
of the timeslots: transmit, listen or sleep. A timeslot (which
is 7.25 ms long) is long enough for the transmitter node
to send a data frame to the neighbor it is scheduled to
communicate with on that timeslot, and for that neighbor
to send back an acknowledgment indicating successful re-
ception. Timeslots are grouped into a “slotframe” (typically
10’s to 100’s timeslots long) which continuously repeats
over time. Between a pair of neighbor nodes, the scheduler
can assign multiple timeslots in a slotframe. Assigning more
timeslots results in a higher bandwidth (i.e. a larger number
of communication opportunities), at the cost of a higher
average power consumption.

The goal of the network is to satisfy the communication
requirements of the applications running on each node, while
maintaining the energy consumption of the nodes as low as
possible. At any time, a mote can request a “service”. A
service is expressed in the number of ms between successive
packets. If a mote needs to publish a packet per minute,
it requests a service of 60000 ms. If it needs to publish
ten packets per second, it requests a service of 100 ms.
It is the network that assigns the appropriate number of
timeslots to satisfy all the nodes’ service requests, including
cascading bandwidth requirements in case the requesting
mote is multiple hops away from the destination. At any
point in time, a SmartMesh IP mote can send a new service
request to the network to increase/decrease its bandwidth
requirement, which the SmartMesh IP network translates in
more/less scheduled timeslots.

µPnP-Mesh uses the “services” mechanism built into
SmartMesh IP. A user plugs a sensor into a µPnP-Mesh
device, then optionally configures – over the air – how often
the device should sample it and publish the measured value.
The µPnP middleware contains an “aggregator” module
which keeps track of the total bandwidth required by all the
applications running on the device. The aggregator issues
new service requests as this total bandwidth changes.

C. Calculating the Bandwidth Requirements of Peripheral

The bandwidth requirement of the peripherals is auto-
matically derived from two pieces of information. First, the
data type used by the remote API of the peripheral driver
determines the number of bytes that must be transferred
for each operation (e.g. light is encoded in a 16-bit signed
integer). Second, the application specification running in the
resource-rich back-end determines how frequently these API
calls are executed (e.g. a temperature sensor deployed in a
smart building publishes once per minute). In the current de-
sign of µPnP-Mesh, we do not provide support for modeling
the bandwidth requirements of stochastic interactions.

The combination of payload and frequency results in
a per-driver bandwidth requirement. The µPnP software
stack aggregates all bandwidth requirements for host drivers

and issues an appropriate service request, as described in
Section III-B.

The resulting service request travels back to the man-
ager, which allocates the necessary timeslots to support
each peripheral connected to each µPnP-Mesh device. This
approach ensures that the network reconfigures to maintain
optimal operation, even when heterogeneous sensors – such
as for example cameras (high bandwidth) and temperature
sensors (low bandwidth) – are connected after deployment.

IV. EVALUATION

We have built a production-ready prototype platform of
µPnP-Mesh. We describe this platform (Section IV-A), its
current draw (Section IV-B), and calculate its battery lifetime
in an example scenario (Section IV-C).

A. Production-Ready Prototype Platform

Fig. 1 shows a µPnP-Mesh device prototype. An At-
mega1284p micro-controller (10 MHz MCU, 16 kB RAM,
128 kB Flash) implements µPnP on top of Contiki OS [7].
This “µPnP board” is connected to a SmartMesh IP module,
which features an LTC5800-IPR chip (ARM Cortex-M3,
IEEE802.15.4 compatible radio). Up to four µPnP-enabled
peripherals can be connected to a µPnP-Mesh device, as
shown in Fig. 1.

B. Instantaneous Current Draw

Table I lists (measured) instantaneous current draw for
the main operating modes of the µPnP board and the
SmartMesh IP module. The additional current draw of spe-
cific peripherals is discussed in Section IV-C. Section IV-C
uses those instantaneous current values to build a full energy
model and extract the node’s lifetime based on its activity.

µPnP board: peripheral identification occurs every time
a peripheral is plugged into a device. The device remains in
this mode until the peripheral has been identified, which
takes on average 640 ms. In the active sensing mode,
the application micro-controller is retrieving data from a
sensor. In the sleep mode, the application micro-controller is
powered down. It can be woken by (i) a wakeup timer, (ii)
an interrupt-based sensor or (ii) an incoming message from
the SmartMesh IP module.

peripheral active sleep
identification sensing mode

µPnP board 8.32 mA 8.30 mA 6.85 µA

radio on radio on radio off
transmitting (+8 dBm) receiving (sleep mode)

SmartMesh IP module 9.7 mA 4.5 mA 1.2 µA

Table I
MEASURED INSTANTANEOUS CURRENT FOR THE MAIN OPERATING
MODES OF THE µPNP BOARD AND THE SMARTMESH IP MODULE.

SmartMesh IP module: The radio chip on the
SmartMesh IP module is in sleep mode the vast majority
of the time (with its radio turned off). From time to time,
it turns on its radio, either to transmit or to receive. How
often this happens depends on the activity of the module, as
detailed in Section IV-C.

C. Example Battery Lifetime

We use the energy model for the SmartMesh IP module
described in [6], and combine that with the measured values
of the µPnP board from Table I to fully characterize the
energy consumption (and resulting battery lifetime) of a
µPnP-Mesh device.

Fig. 3 illustrates a realistic 36-hour usage scenario of
a µPnP-Mesh network. By combining the energy model
from [6] and the measurements from Table I, we characterize
the total charge consumed by a µPnP-Mesh device during
that period (Fig. 4).

There are 4 phases in this example use case:

1) For the first hour, 32 µPnP-Mesh devices are deployed
and switched on. They are configured to periodically
send advertisements (beacons) to allow new devices
to join. A device consumes 49.2 µA on average.

2) After one hour, the network has formed. The user
enters a command at the manager to turn network
advertisement off. The average current draw of a
device drops to 33.8 µA.

3) 11 hours after that, a µPnP-ready TMP36 analogue
temperature sensor is connected to a device. This
device identifies the peripheral and downloads the
correct driver from the µPnP back-end, which fits in 3
packets. From that moment on, this device publishes
a temperature reading every 10 s.

4) 12 hours later, a µPnP-ready BMP180 I2C pressure
sensor is connected to the same µPnP-Mesh device.
Again, the peripheral is identified and its driver auto-
installed. This device now publishes an additional
pressure reading every 10 s.

The total charge consumed by the µPnP-Mesh device the
sensors are connected to is shown in Fig. 4. Battery charge
is consumed most quickly during the first hour, due to cost
of sending advertisements. The small “jumps” at t=12 h and
t=24 h reflect the energy spent to identify the peripheral and
download its driver. These operations account for 80.08 mC
and 129.84 mC for the temperature and pressure sensor,
respectively. The pressure sensor consumes more energy
during its configuration as its I2C driver is larger and thus
requires more packet transmissions.

During those 36 hours, the network has formed, two
devices are installed in a plug-and-play fashion and start
publishing. This activity consumes less that 0.06% of the
available battery charge (a standard 2200 mAh AA battery).
The total battery lifetime of the µPnP-Mesh device is over

Id
en

tifi
ca

tio
n

D
riv

er
D

ow
nl

oa
d

C
on

fig
ur

at
io

n

Se
ns

e

R
ep

or
t

Sl
ee

p

Pr
es

su
re

Pe
rip

he
ra

l
C

on
ne

ct
ed

Id
en

tifi
ca

tio
n

D
riv

er
D

ow
nl

oa
d

C
on

fig
ur

at
io

n

Se
ns

e

R
ep

or
t

Sl
ee

p

Se
ns

e

R
ep

or
t

Sl
ee

p

Se
ns

e

R
ep

or
t

Sl
ee

p

... ...

...

periodically every
10 seconds

36 hours experiment duration

periodically every
10 seconds

Te
m

pe
ra

tu
re

Pe
rip

he
ra

l
C

on
ne

ct
ed

...

PHASE 2: 11 hours
(no peripherals

plugged in)

PHASE 3: 12 hours
(only 1 peripheral plugged in and sampling)

PHASE 4: 12 hours (both peripherals plugged in and sampling)

...M
ot

e
D

ep
lo

ye
d

N
et

w
or

k
Fo

rm
at

io
n

Fi
ni

sh
ed

PHASE 1: 1 hour (network formation)

Figure 3. An example 36-hour usage scenario of a µPnP-Mesh device.

 0

 1

 2

 3

 4

 5

 0 4 8 12 16 20 24 28 32 36
 0

 0.02

 0.04

 0.06

E
le

ct
ric

 C
ha

rg
e

C
on

su
m

ed
 (C

)

B
at

te
ry

 L
ife

tim
e

C
on

su
m

ed
 (%

)
(2

20
0

m
A

h
ba

tte
ry

)

Time (Hours)

Figure 4. Total battery charge consumed by the scenario illustrated in
Fig. 3. We assume two AA batteries (2200 mAh) running at 3.2 V, at 25 C.

6.5 years. µPnP-Mesh achieves true plug-and-play sensor
integration while maintaining ultra low-power operation.

V. CONCLUSION

Applications for the IoT are expected to be deployed in
dynamic scenarios and operate reliably for long periods over
time. The work presented in this paper provides a real-world
state-of-the-art approach to realizing this vision.

µPnP-Mesh makes two key contributions. The first is
to combine the benefits of µPnP, i.e. true plug-and-play
integration of embedded sensors and actuators, with those of
SmartMesh IP, i.e. ultra reliable and ultra low-power mesh
networking. The second is to extend the zero-configuration
philosophy of µPnP to include Quality of Service (QoS) con-
figuration for Time Synchronized Channel Hopping (TSCH)
protocols such as SmartMesh IP.

Our current work focuses on three fronts: (i) real-world
large-scale deployments of µPnP-Mesh in realistic appli-
cation case-studies such as domotics and smart cities, (ii)
augmenting the current solution with an algorithm to esti-
mate the bandwidth requirements of stochastically triggered

sensor and actuator peripherals, (iii) implementing the µPnP
functionality directly on the LTC5800-IPR micro-controller
(which also runs the SmartMesh IP protocol stack), so that
the application processor can be removed to reduce cost and
energy consumption.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund
KU Leuven and the iMinds IoT research program.

REFERENCES

[1] T. Watteyne, A. Mehta, and K. Pister, “Reliability Through
Frequency Diversity: Why Channel Hopping Makes Sense,” in
Symposium on Performance Evaluation of Wireless Ad Hoc,
Sensor, and Ubiquitous Networks (PE-WASUN). Tenerife,
Canary Islands, Spain: ACM, 29-30 October 2009.

[2] F. Yang, N. Matthys, R. Bachiller, S. Michiels, W. Joosen, and
D. Hughes, “µPnP: Plug and Play Peripherals for the Internet
of Things,” in European Conference on Computer Systems
(EuroSys). Bordeaux, France: ACM, April 21-24 2015.

[3] K. Pister and L. Doherty, “TSMP: Time Synchronized Mesh
Protocol,” in International Symposium on Distributed Sensor
Networks (DSN), Orlando, FL, USA, 16-18 November 2008.

[4] T. Watteyne, L. Doherty, J. Simon, and K. Pister, “Technical
Overview of SmartMesh IP,” in Int’l Workshop on Extending
Seamlessly to the Internet of Things (esIoT), Taiwan, July 2013.

[5] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert,
“6TiSCH: Deterministic IP-enabled Industrial Internet (of
Things),” IEEE Communications Magazine, vol. 52, no. 12,
pp. 36–41, December 2014.

[6] T. Watteyne, J. Weiss, L. Doherty, and J. Simon, “Industrial
IEEE802.15.4e Networks: Performance and Trade-offs,” in
IEEE Int’l Conference on Communications (ICC), 2015.

[7] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a Lightweight
and Flexible Operating System for Tiny Networked Sensors,”
in International Conference on Local Computer Networks
(LCN). Tampa, FL, USA: IEEE, 16-18 November 2004.

