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Testing the Intervention Effect in Single-Case Experiments: 

A Monte Carlo Simulation Study 

 

Abstract: This article reports on a Monte Carlo simulation study, evaluating two 

approaches for testing the intervention effect in replicated randomized AB designs: two-level 

hierarchical linear modeling (HLM) and using the additive method to combine randomization 

test p values (RTcombiP). Four factors were manipulated: the mean intervention effect, the 

number of cases included in a study, the number of measurement occasions for each case, and 

the between-case variance. Under the simulated conditions, Type I error rate was under 

control at the nominal 5% level for both HLM and RTcombiP. Furthermore, for both 

procedures, a larger number of combined cases resulted in higher statistical power, with many 

realistic conditions reaching statistical power of 80% or higher. Smaller values for the 

between-case variance resulted in higher power for HLM. A larger number of data points 

resulted in higher power for RTcombiP. 
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A considerable number of studies published in the domain of education rely on single-

case experimental designs (SCEDs) (Shadish & Sullivan, 2011). SCEDs can be used to 

evaluate the effect of an intervention for a single entity by comparing the repeated 

measurements of a dependent variable under at least two manipulated conditions, typically a 

baseline and a treatment condition. The most basic SCEDs are AB designs: Repeated 

measurements of the dependent variable are first made under a control condition in the A 

phase or baseline phase, and then continued under an experimental condition in the B phase or 

intervention phase. Because all baseline measurements precede all treatment measurements, 

AB designs are suitable to study irreversible behavior or behavior that is undesirable to return 

to baseline conditions for ethical or practical reasons. For instance, when in the B phase an 

intervention was introduced that targeted reading skills, math skills, or social skills, it is 

unlikely that all treatment effects would disappear when the intervention is discontinued in the 

withdrawal phase in an ABA design (i.e., the second A phase). Furthermore, it can be 

considered unethical to withdraw a beneficial intervention and re-introduce an A phase. 

A major disadvantage of AB designs is that they provide little control over internal 

validity threats, such as history and maturation. ‘History’ refers to the influence of external 

events (e.g., weather change, big news event, holidays) that occur during the course of an 

SCED that may influence the participant's behavior in such a way as to make it appear that 

there was a treatment effect, whereas ‘maturation’ deals with changes within the participant 

(e.g., physical maturation, tiredness, boredom, hunger) during the course of the SCED 

(Edgington, 1996). 

A first possible answer to internal validity threats is to include randomization in 

SCEDs. In SCEDs where randomization is feasible and logical, random assignment of the 

measurement occasions to the experimental conditions can yield statistical control over 

(known and unknown) confounding variables and can facilitate causal inference (Heyvaert, 



 

Wendt, Van den Noortgate, & Onghena, in press; Kratochwill & Levin, 2010; Onghena & 

Edgington, 2005). In AB designs, the start of the intervention (i.e., the moment of phase 

change) can be randomly determined. In order to prevent that the number of measurement 

occasions for a phase would be too small, it is usually recommended using a restricted 

randomized phase change, in which a minimum length for each phase is determined a priori. 

For instance, a randomized AB design with eight measurement occasions and with at least 

three measurement occasions in each phase implies three possible assignments: AAABBBBB, 

AAAABBBB, and AAAAABBB. Next, one of the possible assignments is selected randomly 

(cf. Bulté & Onghena, 2008). 

A second possible answer to validity threats is to include replication in SCEDs. 

SCEDs can be replicated simultaneously or sequentially. The multiple baseline across 

participants design is an often used simultaneous replication design: Several AB designs are 

conducted at the same time over several participants, and the intervention is introduced at 

different moments in time for the included participants in order to control for historical 

confounding factors. An alternative to the basic simultaneous replication design is the 

randomized simultaneous replication design: For each participant the moment of phase 

change is randomly determined, while simultaneous phase change for the included 

participants is avoided (cf. Bulté & Onghena, 2009). Using simultaneous replication designs 

can be challenging. First, they can involve a high workload for the experimenter because all 

data have to be collected in the same period for all included participants. Second, the 

intervention is withheld temporarily from some participants in order to assure the staggered 

administration of the intervention, which might imply ethical (e.g., withholding effective 

treatment) and practical (e.g., boredom) problems. An alternative to simultaneous replication 

designs are sequential replication designs: The replications over the included participants are 

carried out consecutively. In randomized sequential replication designs, for each participant 



 

the moment of phase change is randomly determined. For instance, in a randomized 

sequential AB replication design with four participants, for each participant the start of the B 

phase is randomly determined a priori, then the experiments are conducted consecutively for 

the four participants, and afterwards the collected data are analyzed over the four participants. 

In our simulation study we will focus on testing intervention effects in randomized sequential 

replication designs. Empirical examples of randomized sequential replication designs are for 

instance Holden et al. (2003), ter Kuile et al. (2009), O'Neill and Findlay (2014), Van de Vliet 

et al. (2003), and Vlaeyen, de Jong, Geilen, Heuts, and van Breukelen (2001). 

 

Testing the intervention effect in randomized sequential replication designs 

A first step in analyzing SCE data is visual analysis (Egel & Barthold, 2010; 

Kratochwill et al., 2010). Single-case researchers are advised to examine the following 

features and data patterns within and between the phases of their SCED: (1) level, (2) trend, 

(3) variability, (4) immediacy of the effect, (5) overlap, and (6) consistency of data patterns 

across similar phases (see e.g., Bulté & Onghena, 2012, and Kratochwill et al., 2010, for 

guidelines and available software). 

Second, researchers can statistically test the intervention effect. This testing of the 

intervention effect will be the focus of the present paper. Various parametric and 

nonparametric approaches could be used for testing the intervention effect in randomized 

sequential replication designs. In our simulation study we will focus on two-level hierarchical 

linear modeling (HLM; Van den Noortgate & Onghena, 2003a, 2003b), a parametric 

approach, and using the additive method to combine randomization test p values (RTcombiP; 

Edgington & Onghena, 2007), a nonparametric approach. 

The first approach we studied was the two-level HLM approach of Van den Noortgate 

and Onghena (2003a, 2003b). HLM is opportune for analyzing hierarchically structured data. 



 

In randomized sequential replication designs, the measurement occasions are nested within 

the participants. This implies that the measurements for one participant are probably more 

alike than the measurements for another participant included in the replication design. HLM 

allows taking into account the dependencies that may result from the hierarchical clustering. 

Using two-level HLM for analyzing randomized sequential replication designs allows to 

estimate various parameters of interest: case-specific intercepts and treatment effects, the 

average baseline level over the included cases, the average treatment effect over the included 

cases, and estimates for within- and between-case variance in the baseline level and in the 

treatment effect. The HLM approach typically includes using the Wald test to test the null 

hypothesis that on average there is no statistically significant effect of the independent 

variable on the level of the dependent variable, and using the likelihood ratio test to test the 

variance at the between-case level. When the latter test indicates that there is significant 

between-case variance, the presence of moderators is likely. Predictor variables can be 

included in the analyses to test whether the treatment effect depends on characteristics of the 

cases included in the replication design. The HLM approach for analyzing randomized 

sequential replication designs is related to other regression approaches proposed for analyzing 

SCED data, for instance ordinary least squares regression analysis (Huitema & McKean, 

1998), generalized least squares regression analysis (Maggin et al., 2011), interrupted time 

series analysis procedures such as ITSACORR (Crosbie, 1993, 1995), and piecewise 

regression analysis (Center, Skiba, & Casey, 1985-1986). Whereas these approaches however 

are developed for the analysis of data from one single case, the HLM approach allows 

combining the data from multiple cases, accounting for the dependencies that may result from 

the hierarchical clustering of the SCED data.  

Our simulation study on testing the intervention effect in randomized sequential 

replication designs concerns two-level HLMs. However, it is also possible to add an 



 

additional level and use three-level HLMs, for instance when conducting a meta-analysis of 

published SCED studies (see e.g., Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 

2014). For the present simulation study we used a two-level HLM, as described by Van den 

Noortgate and Onghena (2003a, 2003b), for testing the intervention effect. The restricted 

maximum likelihood estimation (REML) approach in SAS PROC MIXED was used to 

estimate the overall intervention effect (Littell, Milliken, Stroup, Wolfinger, & 

Schabenberger, 2006). We used the Satterthwaite approach to approximate the degrees of 

freedom and to derive the corresponding p value, because this approach showed to provide 

accurate confidence intervals for the estimates of the average treatment effect for the two-

level analysis of SCED data (Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009). 

In addition to this specific two-level HLM approach, other HLM approaches and 

extensions have been developed and used for analyzing randomized sequential replication 

designs. For instance, two-level HLMs can be extended to account for trends (linear and non-

linear; Shadish, Kyse, & Rindskopf, 2013; Van den Noortgate & Onghena, 2003b), 

autocorrelation (Van den Noorgate & Onghena, 2003a), unequal within-phase variances 

(Baek & Ferron, 2013), external events (Moeyaert, Ugille, Ferron, Beretvas, & Van den 

Noortgate, 2013b), and non-normal outcomes, such as counts (Shadish et al., 2013). 

Furthermore, as an alternative to using the REML approach for estimating the overall 

intervention effect (Littell et al., 2006), maximum likelihood (ML) estimations (e.g., 

Moeyaert, Ferron, Beretvas, & Van den Noortgate, 2014) and Bayesian methods (e.g., 

Shadish et al., 2013) have also been applied in the context of SCEDs. We acknowledge that 

the way we have operationalized the two-level HLM approach with a specific model and with 

a specific estimation method may impact the results and conclusions of our simulation study 

(cf. Discussion). 



 

The second approach we studied was the RTcombiP approach of Edgington and 

Onghena (2007). This RTcombiP approach for testing the intervention effect in randomized 

sequential replication designs includes first conducting a randomization test (RT) for each 

participant, and afterwards using the additive method to combine the RT p values for all 

included participants. The RT is a statistical significance test based on the random assignment 

of the measurement occasions to the experimental conditions (Edgington & Onghena, 2007; 

Koehler & Levin, 1998; Levin & Wampold, 1999; Todman & Dugard, 2001; Wampold & 

Worsham, 1986). In order to guarantee the validity of RTs, it is generally advised to randomly 

assign the measurement occasions to the experimental conditions before the start of the SCED 

(see Discussion for exceptions and alternative procedures). Furthermore, it is generally 

advised to formulate the null hypothesis and the alternative hypothesis and select an 

appropriate test statistic a priori to conducting the experiment (see Discussion for alternative 

procedures). After collecting the empirical data for each participant, the RT involves 

calculating the test statistic for each possible assignment and looking where the observed test 

statistic (i.e., the value of the test statistic based on the collected data) falls within the 

distribution of all possible test statistic values (i.e., the randomization distribution). The p 

value of the RT is calculated as the proportion of possible test statistic values that is as 

extreme, or even more extreme, than the observed test statistic. A second step is to combine 

the RT p values for all participants included in the randomized sequential replication design. 

For our simulation study we will use the additive method for determining the significance of a 

sum of p values (see Edgington, 1972). In the RTcombiP approach, the overall null hypothesis 

is that there is no treatment effect for any of the cases included in the study. An advantage of 

the RTcombiP approach is that it does not make any assumptions about the distribution of the 

SCED data and does not demand that the SCED data are serially independent. 



 

In addition to the RTcombiP approach of Edgington and Onghena (2007) we used for 

the present simulation study, other RT approaches have been developed. Whereas the 

RTcombiP approach for testing the intervention effect in randomized sequential replication 

designs includes first conducting an RT for each participant and afterwards using the additive 

method to combine the RT p values for all participants included in the SCED, the Marascuilo 

and Busk (1988) RT approach, for instance, works with the raw data instead of the p values. 

In the Discussion section, we will focus on how the selected RT approach may impact the 

results and conclusions of the simulation study. 

In the following sections we will present an empirical example to illustrate how single-

case researchers can use HLM and RTcombiP to test the intervention effect in randomized 

sequential replication designs. The empirical example will be helpful for understanding the 

design and the methods of our Monte Carlo simulation study. After presenting the empirical 

example, we will describe the aims, methods, and results of our simulation study. 

 

Empirical illustration: Testing the intervention effect for one participant within a 

randomized AB design 

Our first fictive example concerns a randomized AB design that is used to evaluate the 

effect of an intervention aimed at increasing the self-esteem of a student. The self-esteem is 

measured daily on a scale from 0 to 10. There are 30 measurement occasions. In accordance 

with the Design and Evidence Standards for SCEDs developed by the What Works 

Clearinghouse (Kratochwill et al., 2010), the experimenter wishes to have minimally three 

observations per phase. This implies that there are 25 possible assignments. Randomly, one 

out of the possible assignments is selected, and the actual experiment has to be conducted in 

accordance with this assignment. For our example, the random assignment resulted for this 

participant in 11 measurement occasions during the A phase and 19 measurement occasions 



 

during the B phase (cf. first column of Table 1). The self-esteem scores for this participant 

(‘Participant 1’) are described in the second column of Table 1, and plotted in Figure 1. 

Using ordinary least square regression for testing the intervention effect for one 

participant. A parametric approach that can be used to test the intervention effect for this 

participant is ordinary least square regression (OLS) analysis (the HLM approach we will 

focus on in our simulation study is an extension of the OLS approach). The equation that can 

be used to conduct this analysis is: 

Eq. (1): 𝑦𝑖 =  β0 +  β1 𝑃ℎ𝑎𝑠𝑒𝑖   + 𝑒𝑖              

In this regression equation, the measurement occasions are depicted by the symbol i. 

The dummy coded variable 𝑃ℎ𝑎𝑠𝑒𝑖 indicates the experimental condition: If 𝑃ℎ𝑎𝑠𝑒𝑖 = 0 then 

measurement occasion i belongs to the baseline phase, and if 𝑃ℎ𝑎𝑠𝑒𝑖 = 1 then i belongs to the 

intervention phase. β0 and β1 indicate the intercept (i.e., baseline level) and treatment effect 

(difference between baseline level and level in the treatment phase), respectively. The model 

assumes that the within-case residuals (𝑒𝑖) are normally distributed. 

We used SAS® 9.3 Software (SAS Institute Inc., 2011-2015) to conduct the OLS 

analyses. Appendix A includes the SAS code for analyzing this dataset. PROC REG was used 

to estimate the baseline level (i.e., β̂0) and the treatment effect (i.e., β̂1) for this student. For 

both parameters, SAS conducted a Student t test of the null hypothesis that the true parameter 

is zero. The estimated baseline level for this student was 1.55 (SE = 0.15), t(28) = 10.00, p < 

.0001, indicating a low level of self-esteem in the baseline phase that is statistically significant 

at an alpha level of .05. The estimated treatment effect for this student was 4.03 (SE = 0.19), 

t(28) = 20.77, p < .0001, indicating an increase in self-esteem due to the treatment this is 

statistically significant at an alpha level of .05. 

Using the RT for testing the intervention effect for one participant. A 

nonparametric approach that can be used to test the intervention effect for this participant is 



 

the RT. The RT null hypothesis says that there is no effect of the intervention: The responses 

of the participant are independent of the condition (i.e., ‘baseline’ versus ‘intervention’) under 

which they are observed. We formulated the alternative hypothesis in a non-directional, two-

tailed manner: There is a difference in self-esteem between the intervention phase and the 

baseline phase. In accordance with the alternative hypothesis, we used the absolute difference 

between the condition means as the test statistic for the RT (i.e., T = |𝐴̅ − 𝐵̅|). Note that this 

test statistic is analogous to the test statistic we used for the OLS analysis. 

For our example, the observed test statistic (i.e., the value of the test statistic for the 

collected data) is 4.03. Constructing the randomization distribution implies that all 30 

observed scores are kept fixed, whereas the start of the intervention phase is randomly 

determined taking into account the minimum of three measurement occasions for each phase. 

Accordingly, the test statistic can be calculated for each of the 25 assignments. Afterwards, 

the 25 test statistics can be sorted in ascending order, which forms the randomization 

distribution under the null hypothesis. The 25 test statistics range from 1.62 to 4.03. No other 

test statistic is as high as or higher than 4.03, the observed test statistic. Accordingly, the 

proportion of test statistics in the randomization distribution that exceeds or equals the 

observed test statistic is 1/25 or .04. Note that this is the smallest possible p value for this 

randomized AB design with 30 measurement occasions and a minimum of three measurement 

occasions per phase. We can reject the null hypothesis, and accept the alternative hypothesis, 

because the p value of the RT is smaller than the significance level α (.05 for our example). 

We conclude that that there is a statistically significant difference in self-esteem between the 

intervention phase and the baseline phase for this participant. 

The RT analyses can be conducted using a free software package in R that assists 

researchers in designing and analyzing SCEDs using RTs: the SCDA package (Bulté & 



 

Onghena, 2008, 2009, 2013). Appendix B includes the R code for testing the intervention 

effect for this dataset. 

 

Empirical illustration: Testing the intervention effect for multiple participants within a 

replicated randomized AB design 

We will now build further on the randomized AB design aimed at increasing the self-

esteem of one student: In order to increase the external validity, it is possible that the 

experimenter planned to consecutively replicate the same experiment over three other students 

with low self-esteem as well. Accordingly, he would conduct a randomized sequential AB 

replication design (also called: replicated randomized AB design) with four participants. In 

accordance with the What Works Clearinghouse guidelines (Kratochwill et al., 2010), the 

experimenter conducted for each participant a randomized AB design with minimally three 

observations per phase. The selected assignments and collected data for each participant 

included in the example are included in Table 1 and plotted in Figure 2. 

Using two-level HLM for testing the intervention effect for the replicated 

randomized AB design with four participants. We used OLS analysis to parametrically 

study the data relating to the first participant. For testing the intervention effect for the SCED 

with four participants, we could use OLS analysis to study the data relating to each included 

participant separately and estimate the case-specific treatment effect for each participant. 

Afterwards, these four treatment effects could be averaged and the between- and within-case 

variability could be calculated. However, a more efficient alternative is to use two-level HLM 

proposed by Van den Noortgate and Onghena (2003a, 2003b). The basic two-level HLM as 

well as extensions of the model are described in detail by Moeyaert, Ferron, Beretvas, and 

Van den Noortgate (2014). In the basic two-level HLM, measurement occasions (i) are 

situated at the first level, and go from 1 up to I. Measurement occasions are nested within a 



 

case (j), that is situated at the second level. The cases included in one SCED study take on 

values from 1 to J. At the first level, the following regression equation can be used: 

Eq. (2): 𝑦𝑖𝑗 =  β0𝑗 +  β1𝑗 𝑃ℎ𝑎𝑠𝑒𝑖𝑗  + 𝑒𝑖𝑗               𝑒𝑖𝑗 ∼ N(0,σ𝑒
2) 

The terms included in this regression equation are parallel to the ones discussed above 

for the OLS analysis. The only difference is that in this second equation the included cases are 

depicted by the symbol j. For instance, 𝑦𝑖𝑗 is the outcome score (i.e., self-esteem) for case j at 

measurement occasion i in the second regression equation. The model poses strong 

assumptions: It assumes that the within-case residuals (𝑒𝑖𝑗) are independently, identically, and 

normally distributed. 

At the second level, the following regression equations can be used:  

Eq. (3): {
β0𝑗 =  θ00 +  u0𝑗  

β1𝑗 =  θ10 +  u1𝑗  
                 [

u0𝑗

u1𝑗
] ∼ N([

0
0

] , [
σ𝑢0

2      σ𝑢0𝑢1

σ𝑢1𝑢0
  σ𝑢1

2  
] ) 

Because it is unlikely that the estimated baseline level and the treatment effect are 

identical for all participants within a study, the case-specific intercept (β0𝑗) and treatment 

effect (β1𝑗) from the first level regression equation (i.e., equation 2) are modeled to vary 

across the included participants in the regression equation relating to the second level (Eq. 

(3)). In the third regression equation, θ00 depicts the average baseline level and θ10 depicts 

the average treatment effect across the included participants. The equation includes 

participant-specific residuals (u0𝑗 and u1𝑗), because each individual participant can have a 

baseline level and a treatment effect that deviate from the average baseline level (θ00) and the 

average treatment effect (θ10). Parallel to the first level residuals (Eq. (2)), the second level 

residuals (Eq. (3)) are assumed to be independently, identically, and multivariate normally 

distributed. The average baseline level (θ00) can be used as an indicator for the need for the 

intervention: If the level of self-esteem is already high under the baseline condition, it might 

not be needed to intervene. The average treatment effect (θ10) indicates the estimated 



 

magnitude of the shift in the dependent variable (i.e., self-esteem) that tends to occur with the 

intervention. In addition to estimating the average baseline level (θ00) and average treatment 

effect (θ10), the two-level HLM can be used to estimate the between-case variance in the 

baseline level (σ𝑢0
2 ) and the between-case variance in the treatment effect (σ𝑢1

2 ), as well as the 

covariance between the baseline level and treatment effect (σ𝑢0𝑢1). Single-case researchers 

using the two-level HLM are usually primarily interested in the average treatment effect over 

the included cases (θ10). The null hypothesis that is tested is that the average treatment effect 

over all cases included in the study is zero. 

Using the basic two-level HLM to analyze the data for the replicated randomized AB 

design with four participants (cf. Table 1) in SAS® 9.3, the estimated average baseline level 

across the participants (θ̂00) was 2.31 (SE = 0.44), t(2.95) = 5.21, p = .014. The estimated 

average treatment effect across the participants (θ̂10) was 3.26 (SE = 0.86), t(3.01) = 3.80, p = 

.032, indicating an increase in self-esteem due to the treatment that is statistically significant 

at an alpha level of .05. Appendix C includes the SAS code for analyzing this dataset. 

Using RTcombiP for testing the intervention effect for the replicated randomized 

AB design with four participants. We used the RT to nonparametrically study the data 

related to the first participant. A nonparametric approach that can be used to test the 

intervention effect for the replicated randomized AB design with four participants is 

combining the p values from the RTs (i.e., RTcombiP; Edgington & Onghena, 2007). We will 

use the additive method for determining the significance of a sum of p values: Because the 

replicated randomized AB designs in our example provided independent tests of the same null 

hypothesis (i.e., the responses of the participant are independent of the condition under which 

they are observed), the p values of the RTs could be combined by first calculating the sum of 

the p values (𝑆𝑜𝑏𝑠) and then comparing this sum to all other sums S that could arise under the 

general null hypothesis (i.e., if the null hypothesis is true, then the p value is just a random 



 

draw from a uniform [0,1] distribution; Onghena & Edgington, 2005). In contrast to HLM, the 

overall null hypothesis of RTcombiP is that there is no treatment effect for any of the cases 

included in the study. The combined p value is the proportion of combinations of p values 

which would give a sum S as small as the observed sum 𝑆𝑜𝑏𝑠: P(S ≤ 𝑆𝑜𝑏𝑠) = 

∑ (−1)𝑘(
𝑛
𝑘

)𝑆̃
𝑘=0

(𝑆𝑜𝑏𝑠−𝑘)𝑛

𝑛!
, with n = the number of p values to be combined, and with k = a 

counter up to the largest integer smaller than the observed sum 𝑆 ̃ = max (k < 𝑆𝑜𝑏𝑠) (Onghena 

& Edgington, 2005).  

The p values for the RTs, calculated based on the observed scores that are included in 

Table 1 (using the R code described in Appendix B), are respectively .04, .04, .04, and .12 for 

the four participants included in our replicated randomized AB design. Applying the formula 

above yields for 𝑆𝑜𝑏𝑠 = .04 + .04 + .04 + .12 = 0.24, and the largest integer smaller than 

0.24, 𝑆 ̃ = 0, a combined p value of: P(S ≤ 0.24) = ∑ (−1)𝑘(
4
𝑘

)0
𝑘=0

(0.24−𝑘)4

4!
 = (

4
0

)(0.24)4

4!
 = 

.00014. Because the combined p value is statistically significant at the .05 level, we reject the 

null hypothesis that there is no treatment effect for any of the cases included in the study. The 

additive combined p value can be calculated using the SCDA package (Bulté & Onghena, 

2013). Appendix D includes the R code for testing the intervention effect. 

 

Objectives of the Monte Carlo simulation study 

Single-case researchers should start their data analysis with visually inspecting the 

SCE data relating to level, trend, variability, immediacy of the effect, overlap between phases, 

and consistency of data patterns across similar phases (see e.g., Bulté & Onghena, 2012; 

Kratochwill et al., 2010). Afterwards, they can statistically test the intervention effect studied 

in their SCED. The aim of our Monte Carlo simulation study is to evaluate the performance of 

two-level HLM and RTcombiP for testing the intervention effect in replicated randomized AB 

designs. Our study hence aims to guide single-case researchers in their choice of an 



 

appropriate method for statistically testing the intervention effect. More specifically, we 

studied the two-level HLM approach of Van den Noortgate and Onghena (2003a, 2003b) and 

the RTcombiP approach of Edgington and Onghena (2007). Although these two approaches 

are different in terms of their background, assumptions, functions, use, and capabilities in 

analyzing SCED data (cf. supra), both can be used to answer the question whether a certain 

intervention has a statistically significant effect on an outcome variable of interest when a 

replicated randomized AB design has been applied. We decided to use the HLM and the 

RTcombiP approach in our simulation study because of two reasons. First, they are currently 

considered two most promising inferential approaches for testing an intervention effect, that 

are often used for analyzing SCED data (see e.g., Huo, Heyvaert, Van Den Noortgate, & 

Onghena, 2014; Jenson, Clark, Kircher, & Kristjansson, 2007; Kratochwill & Levin, 2014; 

Shadish, Rindskopf, & Hedges, 2008). Second, statistical software is readily available for the 

two approaches (see Appendix A to D). This is interesting for us, in order to conduct our 

simulation study, but also to the applied single-case researcher, who can use the software for 

analyzing the collected SCED data. 

Evaluating the performance of HLM and RTcombiP for testing the intervention effect 

in replicated randomized AB designs, we will focus on Type I error rate control and statistical 

power. Knowledge of Type I error rates and statistical power are critical for accurate 

application of any statistical test: A method with low statistical power will often fail to detect 

real effects that exist in the population, whereas a method with Type I error rates that exceed 

nominal rates (e.g., larger than 5% for nominal alpha = .05) does not control the risk of 

finding nonexistent effects (MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002, p. 2). 

Four factors will be manipulated in the simulation study: the mean intervention effect, the 

number of cases included in an SCED study, the number of measurement occasions for each 

case within one study, and between-case variance in the baseline level and in the treatment 



 

effect. These factors were selected based on previous simulation studies on HLM and 

RTcombiP (Ferron, & Onghena, 1996; Ferron & Sentovich, 2002; Ferron et al., 2009; Levin, 

Ferron, & Kratochwill, 2012; Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 

2013a, 2013b; Ugille, Moeyaert, Beretvas, Ferron, & Van den Noortgate, 2012). The present 

simulation study is the first that evaluated the performance of HLM alongside RTcombiP. 

Accordingly, we did not a priori hypothesize whether Type I error rate control would be 

better for HLM or RTcombiP, and whether statistical power would be larger for HLM or 

RTcombiP. 

 

Methods of the Monte Carlo simulation study 

In the simulation study, we evaluated: (1) the p value of the estimated intervention 

effect across cases in a two-level HLM (using REML and using the Wald test), and (2) the p 

value obtained by combining RT p values using the additive method (with absolute difference 

between the phase means as the test statistic for the RT). The data were generated and 

analyzed using SAS® 9.3 Software (SAS Institute Inc., 2011-2015). 

We simulated raw data for replicated randomized AB designs. In accordance with the 

Design and Evidence Standards for SCEDs developed by the What Works Clearinghouse 

(Kratochwill et al., 2010), we simulated the data in such a way that each phase at least 

consisted of three data points. The data were sampled from a normal distribution. Two factors 

were kept constant: The mean baseline level was 0 and the within-case variance was 1. Four 

factors were manipulated: (1) The mean intervention effect was 0 (i.e., no effect) or 2; (2) the 

number of cases included in a study was 3, 4, 5, 6, or 7; (3) the number of measurement 

occasions for each case within one study was 10, 20, 30, or 40 (this number was kept constant 

for all the cases included in one study); and (4) the between-case variance in the baseline level 

and in the treatment effect was 0, 0.1, 0.3, 0.5, 2, 4, 6, or 8. These parameter values for the 



 

four factors were based on published meta-analyses of SCEDs (Denis, Van den Noortgate, & 

Maes, 2011; Heyvaert, Maes, Van den Noortgate, Kuppens, & Onghena, 2012; Heyvaert, 

Saenen, Maes, & Onghena, 2014; Kokina & Kern, 2010; Van den Noortgate & Onghena, 

2008; Wang, Cui, & Parrila, 2011) and on analyses of characteristics of 809 published SCED 

studies (Shadish & Sullivan, 2011). We added a condition for zero between-case variance and 

two smaller values (0.1, 0.3) than usually observed in meta-analyses of SCEDs (Moeyaert et 

al., 2013a, 2013b; Ugille et al., 2012) to more closely study the effect of the between-case 

variance on Type I error rate control and statistical power for HLM and RTcombiP. Crossing 

the levels of these four factors led to a 2x5x4x8 factorial design, yielding 320 experimental 

conditions. In order to minimize simulation error, 10,000 data sets were simulated for each 

experimental condition. This resulted in a total of 3,200,000 data sets to analyze. 

Each dataset was analyzed in two ways. First, we applied the two-level HLM approach 

of Van den Noortgate and Onghena (2003a, 2003b; cf. supra). We used the REML approach 

in SAS PROC MIXED to estimate the overall intervention effect (Littell et al., 2006). 

Furthermore, we used the Satterthwaite approach to approximate the degrees of freedom and 

to derive the corresponding p value, because this approach showed to provide accurate 

confidence intervals for the estimates of the average treatment effect for the two-level analysis 

of SCED data (Ferron et al., 2009). For HLM, we were primarily interested in the average 

treatment effect over the included cases. The null hypothesis that was tested by the two-level 

HLM analysis was that the average treatment effect over all cases included in the SCED study 

was zero. 

Second, we applied the RTcombiP approach of Edgington and Onghena (2007; cf. 

supra). For RTcombiP we were interested in the p values of RTs combined using the additive 

method. We used the absolute difference between the condition means as the test statistic for 

the RT (i.e., T=|𝐴̅  − 𝐵̅|). For each case, the RT data analysis included: (1) Calculating the test 



 

statistic for the ‘observed’ data (i.e., following the randomly selected assignment), (2) 

constructing the randomization distribution by looking at all possible assignments and 

calculating the test statistic for each of the assignments, and (3) determining the statistical 

significance of the observed test statistic by examining its position within the randomization 

distribution. Afterwards, the p values of the RT obtained for each case were combined for 

each study using the additive method. The overall null hypothesis that was tested by 

RTcombiP was that there was no treatment effect for any of the cases included in the SCED 

study. All tests were performed at the 5% significance level. 

 

Results of the Monte Carlo simulation study 

As a preliminary analysis to explore the most important patterns in the results, we 

studied variation between conditions using analyses of variance (ANOVAs) for HLM and 

RTcombiP with regard to Type I error rate and statistical power. We were especially 

interested in the proportion of variance explained by each of our parameters of interest: 

number of cases, number of measurement occasions, and between-case variance. Type I error 

rate for HLM was particularly explained by the between-case variance (R2 = .727), followed 

by the number of cases included (R2 = .102), and the number of measurement occasions for 

each case (R2 = .035). Likewise, statistical power for HLM was particularly explained by the 

between-case variance (R2 = .850), followed by the number of cases included (R2 = .109), and 

the number of measurement occasions for each case (R2 = .001). 

Type I error rate for RTcombiP was particularly explained by the number of 

measurement occasions for each case (R2 = .924), followed by the number of cases included 

(R2 = .040), and the between-case variance (R2 = .001). Likewise, statistical power for 

RTcombiP was particularly explained by the number of measurement occasions for each case 



 

(R2 = .875), followed by the number of cases included (R2 = .060), and the between-case 

variance (R2 = .039). 

In what follows, the impact of the mean intervention effect, number of cases, number 

of measurement occasions, and between-case variance is described in detail for HLM and 

RTcombiP with regard to Type I error rate and statistical power. The results are presented in 

tabular format (Tables 2 to 5). Some trends for 3, 5, and 7 cases are illustrated in graphical 

format (Figures 3 to 6; trends for 4 and 6 cases are similar).  

When the simulated mean intervention effect is 0 and the significance level is .05, we 

want the Type I error rate not to exceed .05 and to be as close as possible to .05. For HLM the 

Type I error rate was smaller than .05 in most conditions. Only for conditions with three cases 

and small between-case variance the Type I error rate was larger than .05. The Type I error 

rates for HLM are shown in Table 2 and Figure 3. For RTcombiP the Type I error rate was 

smaller than .05 in all conditions. Especially for the 10 data points conditions, the Type I error 

rate was far below .05 (ranging from .002 to .006). Type I error rates for RTcombiP are 

shown in Table 3 and Figure 4. 

When the simulated mean intervention effect is different from zero (i.e., 2), we want 

the statistical power when testing the existence of an effect to be as high as possible. Cohen 

(1988) recommended statistical power values of .80 or higher. Overall, we saw that power for 

HLM was particularly dependent on the between-case variance (with larger between-case 

variance resulting in a substantial reduction of power), while power for RTcombiP was 

particularly dependent on the number of data points for the included cases (with a smaller 

number of data points resulting in smaller power). For HLM as well as RTcombiP, a larger 

number of cases included in the SCED resulted in higher statistical power. 

Statistical power for HLM is depicted in Table 4 and Figure 5. Power was smaller than 

.80 for all conditions with a between-case variance of 4, 6, and 8. For the conditions with a 



 

between-case variance of 2 and with 7 included cases, power was larger than .80. However, 

for all other conditions with a between-case variance of 2 power was smaller than .80. For all 

conditions with a between-case variance of 0.5 and with 5, 6 or 7 included cases, as well as 

for the conditions with a between-case variance of 0.5, with 4 included cases, and at least 20 

data points per case, power was larger than .80. For the conditions with a between-case 

variance of 0.5 and with 3 included cases, as well as for the condition with 4 included cases 

but only 10 data points for each case, power was smaller than .80. For a between-case 

variance of 0.3, power was larger than .80 for all conditions with 4 or more cases, but smaller 

than .80 for the conditions with 3 cases. For a between-case variance of 0.1, power was larger 

than .80 in all conditions except the one with 3 cases and 10 data points for each case. For all 

conditions with a between-case variance of zero, statistical power was larger than .90. 

Statistical power for RTcombiP is depicted in Table 5 and Figure 6. Power was larger 

than .80 for all conditions with 40 data points for the included cases. For the 30 data points 

conditions, power was larger than .80 for all conditions with 4, 5, 6, or 7 cases included. For 

the 30 data points and 3 cases conditions, power was larger than .80 for between-case 

variances of 0, 0.1, 0.3, and 0.5, but smaller than .80 for between-case variances of 2, 4, 6, 

and 8. For the 20 data points conditions, power was larger than .80 for all conditions with 5, 6, 

or 7 cases included. For the 20 data points and 3 or 4 cases conditions, power was larger than 

.80 for between-case variances of 0.5 or lower, but smaller than .80 for between-case 

variances of 2 or higher. We particularly noticed a difference between the statistical power 

results for RTcombiP between the 20 and 10 data points conditions (cf. Figure 6). For all 10 

data points conditions, power was smaller than .60. 

 

Discussion 



 

The present Monte Carlo simulation study evaluated the performance of the two-level 

HLM approach of Van den Noortgate and Onghena (2003a, 2003b) and the RTcombiP 

approach of Edgington and Onghena (2007) for testing the intervention effect in replicated 

randomized AB designs. We examined the performance of the two approaches under various 

conditions relating to the mean intervention effect, the number of cases included in a study, 

the number of measurement occasions for each case within one study, and the between-case 

variance in the baseline level and in the treatment effect. We focused on Type I error rate 

control and statistical power for the two approaches. 

For the two-level HLM approach of Van den Noortgate and Onghena (2003a, 2003b) 

Type I error rate was smaller than .05 in most conditions. For RTcombiP Type I error rate was 

smaller than .05 in all conditions. This is reassuring for the researcher using SCEDs even in 

harsh circumstances with a small number of cases and a small number of data points for each 

case. It means that both HLM and RTcombiP provide a valid test of the overall intervention 

effect. If there is no overall intervention effect then both statistical tests are guaranteed to 

keep the actual error rate below the nominal significance level as determined by the 

researcher.  

As we discussed previously, we operationalized the two-level HLM approach with a 

specific model and with a specific estimation method for the present simulation study (e.g., 

REML approach, Satterthwaite approach). However, other HLM approaches and extensions 

have been developed and used for testing the intervention effect in randomized sequential 

replication designs (cf. supra). We acknowledge that the way we have operationalized the 

two-level HLM approach may have impacted our simulation study’s Type I error rate control 

results. 

The RTcombiP approach of Edgington and Onghena (2007) proved to be very 

conservative for the conditions with a small number of observations. For example, with ten 



 

observations for each case and a nominal significance level of .05, the actual Type I error rate 

was below .01 in all conditions. This means that the researcher who wants to control the Type 

I error rate at 5% is actually much more stringent than intended. Although this is not a 

problem for the validity of the test, there is a trade-off by suppressing the statistical power of 

the test. This result for RTcombiP comes as no surprise because with ten observations and a 

minimum of three observations in each phase, there are only five possible randomizations. 

Because the smallest possible p value is the inverse of the number of possible randomizations, 

this implies that for the condition with ten observations the smallest possible p value for an 

individual RT is .20. So the statistical power of an individual RT at the 5% significance level 

under these circumstances is by definition zero. It is only by combining the smallest p values 

that a combined p value smaller than .05 can be obtained. For example, three p values of .20 

result in a combined p value of .036 using RTcombiP (Edgington & Onghena, 2007; see 

Appendix D). 

In our Introduction, we stated that we used the RTcombiP approach of Edgington and 

Onghena (2007) for the present simulation study, but that other RT approaches have been 

developed for testing the intervention effect in replicated randomized AB designs, such as the 

Marascuilo and Busk (1988) approach that works with the raw data instead of the p values. 

Using other RT approaches would lead to other results for the simulation study. For example, 

if we consider the results from the present simulation study for the condition with four cases 

included in the SCED, ten measurement occasions for each case, and a between-case variance 

equal to zero, the Type I error rate is .006 for the RTcombiP approach of Edgington and 

Onghena (2007) (see Table 3). This is substantially smaller than the Type I error estimate of 

.048, which is reported in the Ferron and Sentovich (2002) simulation study that examined the 

Marascuilo-Busk RT for the same condition (i.e., four cases included in the SCED, ten 

measurement occasions for each case, five potential intervention points per case, zero 



 

between-case variance, and zero autocorrelation), suggesting that the RTcombiP approach is 

much more conservative. 

Statistical power for the two-level HLM approach of Van den Noortgate and Onghena 

(2003a, 2003b) was particularly dependent on the between-case variance: Larger between-

case variance resulted in a substantial reduction of power. HLM tests the null hypothesis that 

the mean treatment effect over all cases included in the study is zero. It is harder for HLM to 

detect a mean treatment effect when the between-case variance is larger: The uncertainty 

about our mean effect estimate is large, because an additional case could show a quite 

different treatment effect and therefore could considerably change our estimate of the mean 

effect. Similar to our remark for Type I error rate control, the way we have operationalized 

the two-level HLM approach may have impacted our simulation study’s statistical power 

results. 

Statistical power for the RTcombiP approach of Edgington and Onghena (2007) was 

particularly dependent on the number of data points for the included cases: Smaller numbers 

of data points resulted in smaller power. As discussed above, statistical power is related to the 

actual significance level. If the actual significance level is low, statistical power of the test is 

suppressed. Because RTcombiP proved to be a very conservative test for the conditions with a 

small number of observations, it is no surprise that statistical power is smaller for these 

conditions. 

Comparing our results for the RTcombiP approach of Edgington and Onghena (2007) 

to the results of Ferron and Sentovich (2002)’s simulation study for the Marascuilo-Busk RT, 

we see that the applied RT approach considerably influences statistical power results. For 

example, if we consider the results from the present simulation study for the condition with 

four cases included in the SCED, ten measurement occasions for each case, and zero between-

case variance, the estimated statistical power is .369 for the RTcombiP approach of Edgington 



 

and Onghena (2007) (see Table 5). However, based on the results of Ferron and Sentovich 

(2002)’s simulation study, the power estimate for the Marascuilo-Busk RT was .866 for the 

same condition. 

The present study has several practical implications for single-case researchers who 

are primarily interested in the question whether a certain intervention has statistically 

significant effects on the outcome variable of interest. When single-case researchers use a 

replicated randomized AB design, they could use HLM as well as RTcombiP in order to 

answer this research question. We see three options for the use of HLM and RTcombiP for 

analyzing the replicated randomized AB design data: (1) Using HLM or RTcombiP for testing 

the intervention effect, (2) applying a sequential approach by using both RTcombiP and 

HLM, and (3) directly combining RTcombiP and HLM for analyzing the data. 

In the first option, a single-case researcher might decide to use HLM or RTcombiP, 

based on the specific null hypothesis he wishes to test, power differences, and the willingness 

to make the underlying assumptions associated with HLM and RTcombiP. When single-case 

researchers want to test the null hypothesis that the average treatment effect over all cases 

included in the SCED study is zero, they are advised to use the HLM approach. When single-

case researchers want to test the null hypothesis that there is no treatment effect for any of the 

cases included in the SCED study, they are advised to use the RTcombiP approach. When the 

included cases’ data are rather homogeneous (i.e., between-case variance of 0.5) and at least 4 

cases are included, HLM offers sufficient statistical power, at least for the effect sizes used in 

our study. For SCEDs with a between-case variance of 2, HLM only offers sufficient 

statistical power when at least 7 cases are included in the study. When the included cases’ 

data are more heterogeneous (i.e., between-case variance of 4 or more), we discourage using 

HLM based on this simulation study. When there are at least 40 data points for the cases 

included in the SCED, RTcombiP always offers sufficient statistical power. When there are at 



 

least 30 data points for each case, researchers can use RTcombiP for analyzing SCEDs with 4, 

5, 6, or 7 cases included. When there are at least 20 data points for each case, researchers can 

use RTcombiP for analyzing SCEDs with 5, 6, or 7 cases included. We discourage using 

RTcombiP when there are 10 or less data points for each case. For HLM as well as 

RTcombiP, a larger number of cases included in the SCED results in higher statistical power. 

Our simulation study implies that including four cases in a replicated randomized AB 

design may already be sufficient for testing the intervention effect by means of HLM and 

RTcombiP, when the between-case variance is low (i.e., 0.5 or less) for HLM, and when the 

number of data points for the included cases is large (i.e., 30 or more) for RTcombiP. 

Moreover, for RTcombiP a replicated randomized AB design study including three cases may 

already yield sufficient power, when there are at least 40 data points for each included case. 

In the second option, a single-case researcher might decide to use both RTcombiP and 

HLM for analyzing the replicated randomized AB design data, applying a sequential 

approach. The researcher could first use the RTcombiP approach to test the general null 

hypothesis of no treatment effect for any of the cases. The rationale behind selecting the 

RTcombiP approach for the first stage would be that the researcher prefers to use a 

nonparametric test, that relies on less stringent assumptions than parametric procedures, and 

that the RTcombiP approach is rather easy and straightforward to use. After determining that 

the intervention of interest has indeed a statistically significant effect on the outcome variable, 

the researcher could in a second stage use the HLM approach for analyzing the replicated 

randomized AB design data in closer detail, and to obtain the parameter estimate of and 

further model the average treatment effect and individual treatment effects. In this way, the 

Type I error rate is under control, even if the assumptions underlying the HLM are not valid. 

HLM could for instance be used to estimate the following parameters: case-specific intercepts 

and treatment effects, the average baseline level over the included cases, the average 



 

treatment effect over the included cases, and estimates for within- and between-case variance 

in the baseline level and in the treatment effect (cf. supra). Furthermore, the researcher could 

extend the basic two-level model, for instance in order to account for trends (linear and non-

linear; Shadish et al., 2013; Van den Noortgate & Onghena, 2003b), autocorrelation (Van den 

Noorgate & Onghena, 2003a), unequal within-phase variances (Baek & Ferron, 2013), 

external events (Moeyaert et al., 2013b), or non-normal outcomes, such as counts (Shadish et 

al., 2013). These more accurate HLMs in turn may increase the Type I error rate control and 

statistical power of the model. 

A third option could be to directly combine RTcombiP and HLM for analyzing 

replicated randomized AB design data. HLM has the advantage of being a flexible modelling 

approach for all complexities in the data, but has the disadvantage of relying on questionable 

assumptions in many messy single-case circumstances. RTcombiP has the advantage of 

making minimal assumptions, but has the disadvantage of usually relying on simple test 

statistics, such as differences between means. We could combine the advantages of both 

procedures if we use the flexible modelling approach of HLM, but determine the statistical 

significance by RTcombiP, instead of using the conventional statistical distributions of HLM 

to compute the p value. This amounts to performing an RT on iterated HLM analyses for 

repartitioned data, with the HLM parameter estimate of the intervention effect as a test 

statistic. In that way we have an estimate of the magnitude of the intervention effect, taking 

into account all other factors included in the model, combined with valuable information 

relating to the (non)randomness of that intervention effect, without making distributional 

assumptions (cf. Heyvaert & Onghena, 2014). Although this third option is likely to be 

computer-intensive for many realistic data sets and models, applications seem to be 

straightforward using a smart RT wrapper (cf. Cassell, 2002). We think it is an interesting 



 

venue for future research to address the operating characteristics of this kind of combination 

of HLM and RTcombiP. 

There are several strengths related to the set-up of the present simulation study. First, 

the parameter values for the four factors that were manipulated for the simulation study were 

based on published meta-analyses of SCEDs and on analyses of characteristics of published 

SCED studies (cf. supra). Accordingly, the simulation study focused on realistic conditions. 

Second, the simulations were set up such that the modeling assumptions of the two-level 

HLM approach of Van den Noortgate and Onghena (2003a, 2003b) were accurate: The model 

used to simulate the data matched the model used to analyze the data. Third, the simulations 

were set up such that the use of the RTcombiP approach of Edgington and Onghena (2007) 

was statistically valid: The simulated SCEDs used randomization and the probabilities were 

computed based on randomization distributions that reflected the random assignment. 

However, relating to the second point, one might question whether this aspect of the 

simulation study is representative for the conduct of ‘real-life’ SCEDs. For the simulation 

study we only modeled an effect of the treatment on the dependent variable. However, single-

case researchers might worry about the possibility of factors other than the treatment 

impacting the time series, such as maturation, a historical effect, a testing effect, or 

instrumentation (cf. Introduction). If any of these effects are operating, regardless of whether 

the AB design has been replicated, it would suggest (unless specifically modeled, such as in 

Moeyaert et al., 2013b) some violation of the HLM assumptions. For instance, a recent study 

of Ferron, Moeyaert, Van den Noortgate, and Beretvas (2014) has shown that when an HLM 

is used in a context where there are other effects at play (like history or maturation), the Type 

I error rates can stray from the nominal value. 

Relating to the third point as well, one might question whether this aspect of the 

simulation study is representative for the conduct of ‘real-life’ SCEDs: It might not always be 



 

possible or desirable to include randomization in SCEDs (e.g., Kazdin, 1980). Past research 

has shown that when RTs are used in the absence of randomization, Type I error rates can 

stray from their nominal levels (e.g., Ferron, Foster-Johnson, & Kromrey, 2003; Levin et al., 

2012; Manolov, Solanas, Bulté, & Onghena, 2010; Solanas, Sierra, Quera, & Manolov, 2008). 

However, stating that RTs and RTcombiP can never validly be used for nonrandomized 

SCEDs would be too restrictive too. The simulation studies of Ferron et al. (2003), Levin et 

al. (2012), Manolov et al. (2010), and Solanas et al. (2008) showed that there are non-

randomized conditions where RTs maintained control of the Type I error rate. Furthermore, 

procedures have been developed that guarantee statistically valid RTs for SCED studies 

where randomizing is done after the study has begun (e.g., Edgington, 1975; Ferron & Jones, 

2006; Ferron & Levin, 2014; Ferron & Ware, 1994; Koehler & Levin, 1998; Kratochwill & 

Levin, 2010), instead of doing it a priori (cf. Introduction). For instance, a single-case 

researcher can decide to make the manipulation of the conditions only partially dependent on 

the data: By using such a restricted random assignment, valid significance determination by 

the RT and RTcombiP approach is possible (Edgington, 1980). An example is a researcher 

conducting an AB design who a priori decides not to introduce the experimental treatment 

until the baseline data show stability (cf. response-guided experimentation), but to supplement 

this procedure with the random selection of the moment when the intervention phase starts, 

after baseline stability has been attained, thereby allowing for the valid use of an RT 

(Edgington, 1975). 

The conclusions of this study are limited to the conditions that were simulated: The 

data were sampled from a normal distribution, there was no trend in the data, and the data 

were not autocorrelated. We also kept the number of measurement occasions constant for all 

the cases included in one study (i.e., 10, 20, 30, or 40 measurement occasions). However, 

these conditions may not be true for all ‘real-life’ SCEDs. For instance, it is possible that the 



 

length of the data series differs between the cases included in one SCED study. Furthermore, 

it is possible that data in an SCED study are not normally distributed, that they are count data, 

binary data, or highly discrete data, or that there is trend in the data. 

The present simulation study focused on testing the intervention effect for changes in 

level between the baseline and intervention conditions. When there are other effects of 

interest to the single-case researcher (e.g., changes in trend, changes in variance), HLM 

provides the opportunity to flexibly model these effects (cf. supra). Because we were for this 

simulation study interested in changes in level, we used the absolute difference between the 

phase means as the test statistic for the RT. When a single-case researcher expects or predicts 

other effects than changes in level, for instance changes in trend, another test statistic has to 

be chosen for the RT that corresponds to the expected effects. In our Introduction, we said 

that for the RTcombiP approach it is generally advised to select the test statistic in accordance 

with the kind of effects expected or predicted a priori to conducting the single-case 

experiment. However, if appropriate masking procedures are used (e.g., Ferron & Foster-

Johnson, 1998; Ferron & Jones, 2006; Ferron & Levin, 2014) it is possible to guarantee a 

statistically valid RT when choosing a test statistic after the data have been collected. 

Building on the present simulation study, future research can focus on conditions that 

might be more challenging for HLM and RTcombiP, such as a (linear) trend and 

autocorrelated data, and assess the impact of these conditions on Type I error rate control and 

statistical power for both approaches. 
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Table 1  

Selected assignments and collected data for a randomized sequential replication design, 

including four participants: For each participant a randomized AB phase design was used, 

with minimally three observations per phase 

Participant 1 Participant 2 Participant 3 Participant 4 

Phase         Data Phase         Data Phase         Data Phase         Data 

A 1 

A 2 

A 1 

A 1 

A 2 

A 2 

A 2 

A 1 

A 1 

A 2 

A 2 

B 6 

B 5 

B 6 

B 5 

B 6 

B 6 

B 5 

B 5 

B 6 

B 6 

B 5 

B 6 

B 6 

B 5 

B 6 

B 5 

B 5 

B 6 

B 6 

A 4 

A 3 

A 4 

A 3 

A 3 

A 4 

A 3 

B 6 

B 7 

B 7 

B 6 

B 7 

B 7 

B 6 

B 7 

B 7 

B 6 

B 7 

B 6 

B 7 

B 6 

B 6 

B 7 

B 7 

B 7 

B 7 

B 6 

B 7 

B 7 

B 7 

A 3 

A 2 

A 3 

A 2 

A 3 

A 3 

A 3 

A 2 

A 3 

A 2 

A 5 

A 3 

A 2 

A 2 

A 2 

A 2 

A 3 

A 3 

A 2 

A 3 

B 7 

B 7 

B 7 

B 8 

B 8 

B 7 

B 8 

B 8 

B 7 

B 8 

A 1 

A 2 

A 1 

A 1 

A 2 

A 2 

A 1 

A 2 

A 1 

A 2 

A 2 

A 2 

A 2 

A 2 

A 1 

A 2 

A 2 

B 2 

B 3 

B 3 

B 2 

B 3 

B 2 

B 3 

B 3 

B 2 

B 2 

B 2 

B 3 

B 3 

  



 

Table 2  

Type I error rate for the HLM approach 

Number of 

data points 

Between-

case 

variance 

Number of cases included 

3 cases 4 cases 5 cases 6 cases 7 cases 

10 0 .034 .031 .032 .031 .031 

 0.1 .050 .040 .042 .045 .045 

 0.3 .055 .048 .047 .046 .043 

 0.5 .054 .047 .043 .043 .042 

 2 .041 .043 .035 .035 .034 

 4 .036 .032 .033 .032 .033 

 6 .038 .033 .032 .033 .032 

 8 .036 .033 .035 .032 .032 

20 0 .034 .029 .031 .028 .029 

 0.1 .047 .049 .043 .043 .046 

 0.3 .051 .046 .043 .039 .041 

 0.5 .049 .044 .041 .038 .039 

 2 .038 .036 .035 .030 .032 

 4 .039 .033 .035 .029 .032 

 6 .036 .030 .032 .032 .032 

 8 .035 .028 .030 .029 .033 

30 0 .030 .026 .028 .029 .028 

 0.1 .055 .045 .048 .042 .042 

 0.3 .048 .040 .041 .043 .038 

 0.5 .046 .040 .038 .036 .037 

 2 .035 .030 .032 .031 .032 

 4 .031 .033 .032 .031 .037 

 6 .031 .027 .029 .035 .032 

 8 .035 .033 .031 .035 .032 

40 0 .030 .028 .029 .032 .027 

 0.1 .055 .044 .045 .039 .040 

 0.3 .045 .043 .038 .037 .039 

 0.5 .045 .037 .037 .036 .038 

 2 .035 .033 .032 .032 .035 

 4 .035 .031 .032 .035 .030 

 6 .036 .035 .032 .029 .031 

 8 .036 .030 .031 .029 .028 

 

  



 

Table 3  

Type I error rate for the RTcombiP approach 

Number of 

data points 

Between-

case 

variance 

Number of cases included 

3 cases 4 cases 5 cases 6 cases 7 cases 

10 0 .005 .006 .005 .003 .003 

 0.1 .005 .006 .005 .004 .003 

 0.3 .006 .005 .004 .004 .002 

 0.5 .006 .005 .004 .003 .002 

 2 .004 .005 .004 .004 .002 

 4 .005 .006 .004 .004 .002 

 6 .005 .005 .004 .003 .003 

 8 .006 .006 .004 .004 .002 

20 0 .028 .020 .020 .019 .015 

 0.1 .028 .020 .019 .018 .018 

 0.3 .025 .021 .018 .017 .018 

 0.5 .028 .021 .021 .018 .016 

 2 .027 .020 .019 .016 .016 

 4 .030 .021 .017 .019 .016 

 6 .029 .022 .019 .015 .016 

 8 .028 .020 .019 .017 .015 

30 0 .029 .033 .024 .026 .025 

 0.1 .029 .031 .025 .024 .026 

 0.3 .031 .028 .026 .025 .027 

 0.5 .029 .030 .026 .025 .023 

 2 .029 .032 .026 .025 .031 

 4 .030 .031 .021 .023 .024 

 6 .029 .031 .026 .024 .025 

 8 .028 .031 .023 .028 .026 

40 0 .036 .033 .030 .031 .030 

 0.1 .032 .035 .035 .031 .032 

 0.3 .036 .030 .032 .030 .026 

 0.5 .038 .031 .034 .031 .030 

 2 .034 .032 .033 .029 .031 

 4 .031 .031 .029 .030 .029 

 6 .036 .031 .034 .035 .031 

 8 .037 .032 .032 .026 .030 

 

 

  



 

Table 4  

Statistical power for the HLM approach 

Number of 

data points 

Between-

case 

variance 

Number of cases included 

3 cases 4 cases 5 cases 6 cases 7 cases 

10 0 .929 .994 .999 1 1 

 0.1 .793 .974 .997 .999 1 

 0.3 .616 .880 .977 .997 1 

 0.5 .524 .791 .940 .984 .995 

 2 .264 .424 .577 .707 .813 

 4 .171 .274 .373 .467 .565 

 6 .135 .204 .263 .345 .428 

 8 .117 .161 .223 .281 .337 

20 0 .955 .995 .999 1 1 

 0.1 .839 .989 .999 1 1 

 0.3 .666 .940 .994 1 1 

 0.5 .552 .856 .966 .996 .999 

 2 .269 .453 .622 .743 .840 

 4 .176 .284 .389 .490 .581 

 6 .134 .203 .282 .350 .432 

 8 .114 .167 .235 .290 .341 

30 0 .956 .996 .999 1 1 

 0.1 .866 .993 .999 1 1 

 0.3 .692 .958 .997 1 1 

 0.5 .576 .880 .979 .997 1 

 2 .270 .457 .627 .756 .852 

 4 .168 .281 .386 .491 .575 

 6 .138 .205 .290 .357 .423 

 8 .113 .167 .227 .291 .333 

40 0 .962 .997 1 1 1 

 0.1 .889 .994 .999 1 1 

 0.3 .715 .966 .998 1 1 

 0.5 .588 .896 .983 .998 1 

 2 .268 .469 .631 .763 .854 

 4 .176 .285 .384 .497 .580 

 6 .139 .200 .283 .363 .431 

 8 .120 .163 .223 .289 .347 

Note: Values equal to or larger than .80 are tabulated in bold. 

 

 

  



 

Table 5 

Statistical power for the RTcombiP approach 

Number of 

data points 

Between-

case 

variance 

Number of cases included 

3 cases 4 cases 5 cases 6 cases 7 cases 

10 0 .235 .369 .468 .542 .600 

 0.1 .225 .355 .451 .519 .586 

 0.3 .221 .342 .423 .482 .544 

 0.5 .213 .319 .395 .452 .501 

 2 .207 .280 .325 .370 .414 

 4 .224 .294 .347 .394 .424 

 6 .250 .333 .372 .425 .472 

 8 .279 .356 .416 .461 .507 

20 0 .921 .967 .989 .997 .999 

 0.1 .908 .953 .984 .994 .998 

 0.3 .856 .915 .962 .985 .993 

 0.5 .813 .872 .932 .967 .981 

 2 .677 .722 .826 .876 .911 

 4 .660 .728 .811 .868 .903 

 6 .679 .737 .832 .879 .923 

 8 .708 .755 .858 .904 .928 

30 0 .981 .998 1 1 1 

 0.1 .973 .995 .999 1 1 

 0.3 .939 .979 .994 .998 1 

 0.5 .900 .954 .981 .993 .998 

 2 .756 .848 .905 .946 .969 

 4 .740 .837 .896 .929 .963 

 6 .751 .840 .905 .939 .969 

 8 .768 .852 .919 .949 .975 

40 0 .997 1 1 1 1 

 0.1 .994 .999 1 1 1 

 0.3 .970 .990 .999 1 1 

 0.5 .940 .976 .993 .998 .999 

 2 .803 .880 .942 .968 .981 

 4 .792 .871 .930 .959 .978 

 6 .805 .880 .940 .969 .982 

 8 .816 .895 .949 .970 .984 

Note: Values equal to or larger than .80 are tabulated in bold.  

 

 

 

 

  

 



 

 
 

Figure 1. Example of a randomized AB phase design.  

 

  



 

  
 

Participant 1                                                       Participant 2 
 
 
 

  
 

Participant 3                                                       Participant 4 

 

Figure 2. Example of a randomized sequential replication design including four participants. 

 

 

 

 



 

   

Figure 3. Type I error rates for the HLM approach for 3, 5, and 7 cases. 

  



 

   

Figure 4. Type I error rates for the RTcombiP approach for 3, 5, and 7 cases. 

 

  



 

   

Figure 5. Statistical power for the HLM approach for 3, 5, and 7 cases. 

  



 

   

Figure 6. Statistical power for the RTcombiP approach for 3, 5, and 7 cases. 
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Appendix A: SAS code for analyzing the data from one participant within a randomized 

AB phase design using the parametric OLS approach 

proc reg data= EXAMPLE; 

model Y = Phase; 

by case; 

run; 

 

Appendix B: R code for analyzing the data from one participant within a randomized 

AB phase design using the nonparametric RT approach included in the SCDA package 

(Bulté & Onghena, 2008, 2009, 2013) 

library("SCRT") 

quantity(design="AB",MT=30,limit=3) 

observed(design="AB",statistic="|A-B|",data = read.table(EXAMPLE)) 

distribution.systematic(design="AB",statistic="|A-B|",save="no",limit=3,data = 

read.table(EXAMPLE)) 

pvalue.systematic(design="AB",statistic="|A-B|",save="no",limit=3,data = 

read.table(EXAMPLE)) 

 

Appendix C: SAS code for analyzing the data from multiple participants within a 

randomized sequential replication design using the parametric HLM approach 

proc mixed data= EXAMPLE method=REML; 

class case;  

model Y = Phase / solution ddfm=sat;  

random Intercept Phase / sub=Case;  

run; 

 

Appendix D: R code for analyzing the data from multiple participants within a 

randomized sequential replication design using the nonparametric RTcombiP approach 

included in the SCDA package (Bulté & Onghena, 2008, 2009, 2013) 

library("SCMA") 

combine("+", pvalues = read.table(EXAMPLE)) 

 


