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Abstract 

The paper demonstrates the possibility of a correct (within the experimental scatter) 

calculation of a textile reinforcement permeability based on X-ray micro-computed 

tomography registration of the textile internal architecture, introduces the image 

segmentation procedures to achieve the necessary precision of reconstruction of the 

geometry and studies variability of the geometry and local permeability. The homogenized 

permeability of a non-crimp textile reinforcement is computed using computational fluid 

dynamics with voxel geometrical models. The models are constructed from X-ray 

computed tomography images using a statistical image segmentation method based on a 

Gaussian mixture model. The computed permeability shows a significant variability across 

different unit cells, in the range of (0.5…3.5)×10-4 mm2, which is strongly correlated with 

the solid volume fraction in the unit cell. 

Keywords: A. Carbon fibre; A. Fabrics/textiles; C. Computational modelling; D. Non-

destructive testing. 

1. Introduction 

Fabrication of fibre reinforced composites by (liquid) composite moulding involves 

impregnation of the dry reinforcement with a low viscosity resin, which is injected into the 

mould cavity [1]. In the process of impregnation, the liquid resin flows through the system 

of channels inside the reinforcement, which can be considered as a porous medium. The 

flow of a liquid through a porous medium is described by the Darcy’s law, which states a 

dependence of the flow velocity on the permeability of the medium, viscosity of the liquid 

and the applied pressure gradient. The permeability of the composite reinforcement is 

determined by the size and shape of the flow channels inside it; it is usually anisotropic and 

can be described by a second order tensor. Permeability is an important parameter of the 

technological process, which determines the quality of the impregnation and the duration of 



the production cycle. For the simplest and ideal case of unidirectional arrangement of 

fibres, analytical models have been developed, which allow to calculate the longitudinal 

and transversal permeability as a function of the fibre radius and volume fraction [2, 3]. 

The structure of textile fabrics is more complex and includes two levels – the channel 

network between the yarns, and the intra-yarn channels, where the liquid can flow in the 

space between fibres [4]. The intra-yarn structure can be considered as a unidirectional 

arrangement of fibres; its permeability can be estimated from analytical models with fair 

accuracy. The level of yarns, however, is more complex; its contribution to the permeability 

of the preform is determined by the parameters of the preform: weave type, fibre volume 

fraction, yarn linear density, sett and crimp [5, 6]. Calculation of the permeability of 

composite preforms can be done by numerical methods, through the flow simulations, but it 

requires a detailed description of the geometry of the flow channels. 

A number of architecture-specific approaches to the estimation of permeability of 

composite preforms were developed, which use idealized models of the flow channels in 

the preform [7-12]. Calculation of the permeability on the basis of a constructed model can 

be done through the solution of the Navier-Stokes or Stokes equations with finite element 

[13] or finite difference [14] discretization. More realistic models can take into account 

perturbations of the geometry or the features introduced in manufacturing of the fabric [15-

18]. Stochastic models of the reinforcement, calibrated using X-ray computed tomography 

(μCT) data, allow generating virtual instances of the material [19-21]. Application of μCT 

to the permeability determination involves processing of three-dimensional images of 

composite samples to extract geometrical characteristics of the preform and use these data 

to construct a model directly or to combine them with an ideal model. As the permeability 

of a preform depends on the geometry and the volumetric fraction of flow channels, the 

most important step in the modelling is the image segmentation, which extracts the phase 

boundaries. Usually this is done using grey-value thresholding [22, 23], however this 

method requires re-calibration of the algorithm with experimental data for each image due 

to the fact the threshold is specific for the image acquisition parameters and the type of 

material. Up to now the image segmentation methods were not precise enough to allow 

calculation of the textile permeability (which is extremely sensitive to the details of 

geometrical reconstruction) with the precision with experimental scatter. At least (to the 

best knowledge of the authors) there is no published demonstration of such calculation. In 

the present paper we demonstrate that this goal can be achieved. 

This paper presents the results on the determination of the permeability of a non-crimp 

carbon textile reinforcement based on μCT images. The computation of the permeability is 

done using simulations of the fluid dynamics with voxel models, constructed from the μCT 

images of the material samples. The voxel models are constructed using a statistical 

algorithm for image segmentation, based on the Gaussian mixture model, which belongs to 



the class of supervised classification. This method does not require calibration with 

experimental data due to the fact that it is based on the quantities, extracted from a μCT 

image, which reflect local physical properties of the material. The results are validated with 

experimental data. The validated calculation of permeability allows studying its variability 

for different unit cells of the textile, extracted from an image of the same sample. 

The paper is structured as follows. Section 2 describes the material, the samples and the 

μCT used in the study. Section 3 describes the segmentation algorithm. Section 4 explains 

the computation procedure for the permeability. Section 5 presents the results, including 

comparison with experiment and variability study, and section 6 contains the discussion 

and conclusions. 

2. Material, samples and micro-CT imaging 

The material used in the study is a non-crimp carbon/epoxy composite from Saertex (540 

g/m2, +45/-45, franse stitch). The manufactured test plate had a thickness of 4.0 mm and a 

resulting fibre volume fraction of 45.5%. The plate was produced from six layers of the dry 

fabric impregnated by the resin RIM 135 and the hardener RIMH 136.6 from Momentive, 

and cured at a temperature of 25°C. The data on the permeability of the studied NCF 

reinforcement is presented in [24]: at a fibre volume fraction of 50.8% the saturated 

permeability was measured as 0.5×10-4 mm2 (in the 45° direction to the production 

direction). Based on linear fit of the fibre volume fraction – log (permeability) 

dependencies presented in [25] for non-crimp fabrics, similar to the one studied here, the 

permeability at fibre volume fraction of 45.5% can be estimated as (1…2)×10-4 mm2. Three 

samples of different size were cut from the plate and scanned with the Nanotom X-ray 

computed tomography system (General Electrics). The dimensions of the samples, the 

resolution of the image and the number of unit cells (representative volume elements) in 

each sample are given in Table 1. The size of the unit cell was obtained by measuring 

bundle insertion density with ImageJ. Cross-sections of the micro-CT images are shown in 

Fig. 1. 

Table 1. Dimensions of the samples, image resolution and number of unit cells. 

  

Dimensions, mm Resolution of micro-CT image, 

μm 

Number of unit 

cells 

Sample #1 2.45 × 3.78 × 4.00 2.25 1×2 

Sample #2 9.79 × 8.32 × 4.00 6.00 4×4 

Sample #3 6.32 × 5.93 × 4.00 4.20 3×3 

 



 

3. Image segmentation algorithm 

In the context of the present study, segmentation is a problem of finding in the image a set 

of non-overlapping domains, corresponding to the components of the voxel1 model, which 

are solid and fluid phases. The task of segmentation therefore involves classification of 

each voxel of the model into a finite set of classes. This classification was done using two 

feature variables: average grey value and structural anisotropy. Denoting the grey value 

distribution in the image as I(p), the average grey value is calculated as: 

𝑔(𝒑) = ∫ 𝐼(𝒑 + 𝒓)𝑑𝒓
 

𝑊

 

where W is the integration window, and 𝑑𝒓 = 𝑑𝑥1𝑑𝑥2𝑑𝑥3. Structural anisotropy is defined 

as follows: 

𝛽(𝒑) = 1 −
𝜆1

𝜆3
 

where 𝜆1 ≤ 𝜆2 ≤ 𝜆3 are the eigenvalues of structure tensor: 

                                                           
1The term “voxel” in this context refers to an element of a model rather than to a pixel of a 3D image. 



𝑆𝑖𝑗(𝒑) = ∫
𝜕𝐼(𝒑 + 𝒓)

𝜕𝑥𝑖

 

𝑊

𝜕𝐼(𝒑 + 𝒓)

𝜕𝑥𝑗
𝑑𝒓 

Here vector p defines the position of the centre of the integration window in the global 

coordinate system of the image. Vector r is the relative position of a pixel of the image 

inside the integration window (Fig 2). 

 

The segmentation was performed by constructing a statistical model for the 𝑔 and 𝛽 

distributions in the form of a mixture of bivariate Gaussian distributions. In order to 

construct the model, small regions of interest (ROI) were selected in the image, which 

contained a single component of the material. The feature variables 𝑔 and 𝛽 were 

calculated inside the selected ROI on a regular grid, with the density of the grid chosen so 

that the total number of points was sufficiently large (>1000). Fig. 3 shows the ROIs, 

selected in sample #1 and the distribution of the obtained data points in {𝑔, 𝛽} feature 

space. The obtained points in i-th ROI were fitted with a bivariate Gaussian distribution 



N𝑖(𝛍𝑖 , 𝚺𝑖), where 𝛍 and 𝚺 are the mean vector and the covariance matrix of the distribution.  

Parameters of the distributions were calculated using maximum-likelihood estimation: 

𝝁 =
1

𝑁
∑ 𝑿 

𝚺 =
1

𝑁 − 1
∑(𝑿 − 𝝁)(𝑿 − 𝝁)𝑇

 

 



where 𝑿 = [𝑔, 𝛽]𝑇. Note that the mean 𝝁 is defined on the basis of the variable g, which is 

obtained as an average o ver integration window, whereas the 𝝁 itself is an average over a 

selected ROI. In general, orthogonal yarn systems in micro-CT images have slightly 

different distributions of feature variables (evidence for this was found in regard to the 

structural anisotropy [26]). Due to this possible difference, two separate Gaussian 

distributions were created for the 

yarns with orthogonal primary 

orientations. The Gaussian mixture 

model therefore contained three 

components: matrix (fluid phase), and 

two components for the fibre bundles 

(solid phase). Fig. 4 shows probability 

density distribution in the Gaussian 

mixture models of the three samples. 

Segmentation of the image was done 

by computing for each spatial point in 

the image the probabilities Pi for this 

point to belong to each of the material 

components: 

𝑃𝑖(𝑋) =
1

√(2𝜋)3|𝚺𝑖|
𝑒𝑥𝑝 [−

1

2
(𝑿

− 𝝁𝑖)
𝑇𝚺𝑖

−1(𝑿 − 𝝁𝑖)] 

The decision on how to classify each 

point was made on the basis of 

maximum probability: 



𝐶(𝑿) = argmax
𝑖

𝑃𝑖(𝑿) 

Here 𝐶(𝑿) denotes the classification function, which maps the feature variable values X 

into a finite set of material components, i.e. 𝐶(𝑿) → {𝑚𝑎𝑡𝑟𝑖𝑥, 𝑏𝑢𝑛𝑑𝑙𝑒1, 𝑏𝑢𝑛𝑑𝑙𝑒2}. An 

example of segmentation and its comparison with the original image, in a unit cell from 

sample #2, is shown in Fig. 5. 

3.1. Statistical model assessment 

The Gaussian mixture models created for the purpose of segmentation must contain 

statistical distributions that are well separated from each other, where the reliable 

classification decision is required. In the studied case a sufficient distance is required 

between matrix component and the components of the bundles. Separation between the two 

types of bundles is not required as they both represent the same phase of the model (solid 

phase). In addition, it may be useful to check the stability of the distribution parameters to 

the choice of ROI. In order to make this evaluation, the measure of the distance between 

Gaussian distributions 𝑁1(𝝁1, 𝚺1) and 𝑁2(𝝁2, 𝚺2) known as Bhattacharya distance was 

used, which is defined as follows: 

𝐷 =
1

8
(𝝁1 − 𝝁2)𝑇𝚺−1(𝝁1 − 𝝁2) +

1

2
ln (

|𝚺|

√|𝚺1||𝚺2|
) 

where 

𝚺 =
𝚺1 + 𝚺2

2
 

Table 2 shows the calculated Bhattacharya distances between the Gaussian components in 

the statistical model for sample #2. For the purpose of checking stability to the choice of 

ROI, an additional matrix ROI was selected in the image. The obtained values show that 

the distances between matrix and both bundle components are large enough (22.3…32.5). 

At the same time the distance between the two distributions for the matrix is very small 

(0.026), which indicates a good stability of the distribution parameters to the choice of ROI. 

Table 2. Bhattacharya distance matrix between Gaussian components of the statistical model for 

sample #2. 

  MATRIX #1 MATRIX #2 BUNDLE #1 BUNDLE #2 

MATRIX #1 0.000 0.026 23.472 32.500 

MATRIX #2 0.026 0.000 22.277 31.189 

BUNDLE #1 23.472 22.277 0.000 1.965 

BUNDLE #2 32.500 31.189 1.965 0.000 



 

4. Computation of permeability 

The result of the image segmentation into 

solid and fluid domains is used to create 

the voxel model of a unit cell. The voxel 

model for computation of fluid dynamics 

consists of a rectilinear grid with assigned 

phase indices in each cell of the grid. 

Voxel models of four unit cells in sample 

#2 are shown in Fig. 6. Permeability 

calculations were performed with 

FlowTex software [14, 27, 28], developed 

at KU Leuven in collaboration with the 

Institute for Numerical Simulation at the 

University of Bonn. FlowTex calculations 

were successfully benchmarked against 

finite element CFD ANSYS calculations 

[29]. The FlowTex software implements 

the numerical solution of the Stokes 

equations on a 3D regular grid. The 

periodic boundary conditions were set 

along X and Y coordinates (in-plane 

directions) with wall BC along Z 

(through-thickness direction). This 

simulates flow of the resin in the preform 

during the infusion, where the fluid can propagate in the plane of the preform, bounded by 

the mould. 

5. Results 

Fig. 7 shows the calculated permeability for all unit cells in the three studied samples. The 

permeability varies quite significantly across unit cells, in the range of (0.5…3.5)×10-4 

mm2, which is however in a good agreement with the experimental data (1.0…2.0×10-4 

mm2). Fig. 8 shows average values over the unit cells in the samples. Analysis of the 

correlation of permeability with the solid volume fraction in the unit cell models showed a 

significant negative correlation (Fig. 9), i.e. permeability is lower with a higher solid 

volume fraction. Table 3 provides a summary of the result on permeability calculations and 

correlation with the solid volume fraction in the models. 



Table 3. Average permeability and correlation with solid volume fraction. 

  

Permeability Ky, 

mm2 Permeability Kx, mm2 

Pearson’s correlation with 

solid volume fraction 

  Mean STD Mean STD Ky Kx 

Sample #1 7.23E-05 - 1.43E-04 - - - 

Sample #2 1.26E-04 4.60E-05 2.08E-04 8.23E-05 -0.70 -0.93 

Sample #3 1.11E-04 2.72E-05 7.06E-05 3.90E-05 -0.39 -0.89 

 

 



6. Discussion 

The computation of the permeability using voxel models depends on a correct definition of 

the phases in the model, which is the result of the segmentation procedure. The presented 

segmentation method is based on the two quantities – average grey value and structural 

anisotropy – which reflect local physical properties of the material. The average grey value 

reflects X-ray attenuation of the material, which is proportional to its density and atomic 

weight (averaged). The structural anisotropy reflects local structural properties of the 

material and allows making a distinction between matrix, which is structurally isotropic, 

and reinforcement, which is structurally anisotropic due to the presence of fibers with a 

particular primary orientation. The construction of a Gaussian mixture model on the basis 

of the selected subset of data is known as supervised classification. In the case of micro-CT 

images of composite materials, application of statistical methods is necessitated by the 

noise, always present in the CT image, and the variability of the material’s microstructure, 

which make all the derived quantities inherently non-deterministic. Compared to the 

existing approaches for the modelling of composite reinforcements on the basis of 

experimental data, the presented method does not require any significant manual effort for 

the data extraction to create a geometrical model. The amount of efforts needed is constant 

for each dataset, and not proportional to the size of the dataset. 

Three samples of the non-crimp carbon epoxy composite were modelled, with the total 

number of unit cells modelled being 27. Th e results showed a good agreement with the 

experimental data. The variability of the permeability across unit cells is quite significant, 

in the range of (0.5…3.5)×10-4 mm2. The observed difference in the standard deviation of 

the predicted permeability between samples #2 and #3 might be a result of a different 

number of unit cells in these samples. 

In the presence of spatial auto-

correlation in the geometry of the 

preform (such as yarn trajectory 

[30]), a larger volume of the material 

will result in a larger dispersion of the 

predicted properties. This 

corresponds to the observed 

difference, as a larger sample #2 

shows a higher standard deviation of 

permeability compared to a smaller 

sample #3. The computed 

permeability shows a significant 

correlation with the solid volume 



fraction in a unit cell. The good agreement of the modelling results with the experimental 

data indicates that the segmentation procedure provides the phase domain boundaries that 

are close to the true ones. 

 

7. Conclusion 

We have demonstrated the possibility of correct (within the experimental scatter) 

calculation of a textile reinforcement permeability based on X-ray micro-computed 

tomography registration of the textile internal architecture. The image segmentation 

procedures, used in the paper, provide accurate representation of internal geometry of the 

textile reinforcement based on images acquired with X-ray micro-computed tomography. 
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List of figures: 

Fig. 1. Micro-CT images of the carbon/epoxy samples, cross-sections orthogonal to the 

sample rotation axis in the micro-CT scanner. The ring-like structures visible in the images 

are ring artefacts, which are common in micro-CT imaging. 

Fig. 2. Zoomed in micro-CT image, illustrating the relation between the integration window 

and the vectors p and r in calculation of the average grey value and structural anisotropy. 

Vector p defines the centre of the current integration window; vector r defines the position 

of a pixel of the image inside the integration window. Actual calculation is performed in 

three dimensions with a cubical integration window. 

Fig. 3. The selected regions of interest (ROI) from the image of sample #1 (top) and the 

distribution of the feature variables (bottom) corresponding to the ROIs (both variables 

have dimensionless units; only the first 500 data points are shown). Bundles #1 and #2 are 

the regions inside the orthogonal fibre bundles in the material.  

Fig. 4. Probability density distributions in the Gaussian mixture models for the three 

samples (a – sample #1, b – sample #2, c – sample #3). The rendered density is the 

maximum value between the components of the mixture. Horizontal axis indicates 

structural anisotropy, vertical axis – average grey value. 

Fig. 5. Comparison of the micro-CT image of a unit cell in sample #2 with the result of 

segmentation. Blue – solid phase, black – liquid phase. 

Fig. 6. Flow channels (fluid cells) in the voxel models of four of the unit cells in sample #2. 

Solid phase voxels are not shown. 

Fig. 7. Permeability of the unit cells in the studied samples. 

Fig. 8. Average permeability of the samples. Error bars indicate one standard deviation over 

the unit cells. The error bars at sample #1 are absent because sample #1 contains only 2 unit 

cells. 

Fig. 9. Distribution of permeability values in unit cells of sample #2 as a function of the 

solid volume fraction in the unit cell model. 


