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• They cannot be completed without love, passion and mistakes.

• They require hard work, but also allow time for enjoyment.

• They are incredibly interesting.





Abstract

The continuously increasing demands from industry drive research communities
to push the limits in the design of accurate and high performance controllers
for dynamical systems, such as autonomous vehicles, production machines,
etc. Therefore, enhanced controller design procedures are indispensable in this
evolution. Typically, first a mathematical model describing the behavior of a
dynamical system is derived. Then, a controller using real-time measurements is
designed for this model according to the desired performance specifications. For
instance, a fast response should be guaranteed while limiting energy consumption.
In a last step, the controller is validated in closed loop with the dynamical
system.

The complexity of a controller design problem depends on several factors, such as
the dynamics of the system to be controlled, the desired controller structure, and
the number/type of performance specifications. For linear time-invariant (LTI)
dynamics, a wide range of successful controller design approaches have emerged
over the last decades. However, several important control problems, such as the
design of optimal fixed-order controllers (i.e., controllers with an a priori fixed
structure), or optimal controllers satisfying multiple conflicting design objectives,
remain unsolved. At the same time, many applications feature dynamics
which are dominantly linear, but are affected by time-varying and/or uncertain
parameters. In these applications, LTI controllers do not provide the desired
accuracy and performance. Therefore, linear parameter-varying (LPV) dynamics
have been widely considered as a useful extension, characterized by a linear input-
output relation depending on real-time measurable parameters. Accounting for
real-time parameter measurements in a controller design, higher closed-loop
performance can be achieved compared to an LTI controller. Although modern
LPV controller design techniques are very attractive when the system dynamics
are affected by real-time measurable parameters, more involved approaches are
required to cope with uncertain parameters.

To meet the tightening performance and accuracy demands from industry, this
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vi ABSTRACT

thesis presents a versatile approach to design high performance fixed-order
multi-objective controllers for the general class of linear parameter-dependent
(LPD) systems, encompassing LTI, LPV and uncertain linear dynamics. For
each of these subclasses, the effectiveness and practical viability of our approach
is demonstrated by theoretical proofs of stability and performance, numerical
comparisons with existing approaches, and experimental validations. In addition,
a novel model order reduction technique is combined with our approach to design
fixed-order controllers for continuous-time linear time-delay systems. Finally,
a parametric programming approach is presented to design high performance
feedback controllers for LTI systems, while simultaneously optimizing structural
parameters affecting the system dynamics.



Beknopte samenvatting

De constant groeiende vraag vanuit de industrie naar het verhogen van
de efficiëntie van dynamische systemen geeft aanleiding tot het verrichten
van grensverleggend onderzoek op het gebied van regelaarontwerp. Denk
bijvoorbeeld aan het ontwikkelen van alsmaar betere besturingen voor autonome
voertuigen, of het vervaardigen van telkens kleinere computerchips. Daarom zijn
geavanceerde regelaarontwerpmethodes van essentieel belang in deze evolutie.
Typisch wordt eerst een wiskundig model bepaald welke het dynamisch gedrag
van het systeem beschrijft. Vervolgens wordt een regelaar ontworpen welke
gebruik maakt van actuele metingen om het systeem aan te sturen en hierbij
efficiëntie van het gesloten lus model te garanderen. Denk bijvoorbeeld aan het
optimaliseren van de responstijd voor een gegeven beperking op energieverbruik.
In een laatste stap wordt de efficiëntie van de regelaar gevalideerd door deze te
koppelen aan het dynamische systeem.

De complexiteit van een regelaarontwerp hangt af van verschillende factoren,
zoals het dynamisch gedrag van het systeem, de gewenste structuur van de
regelaar en het aantal/type specificaties waar het gesloten lus systeem aan
moet voldoen. Voor lineaire tijdsinvariante (LTI) dynamica is in de afgelopen
decennia een waaier aan regelaarontwerpmethodes ontwikkeld. Verscheidene
belangrijke controleproblemen, zoals het ontwerp van optimale regelaars
met een van tevoren vastgelegde structuur, of optimale regelaars welke aan
meerdere conflicterende specificaties moeten voldoen, blijven echter onopgelost.
Tegelijkertijd zijn er veel toepassingen wiens dynamisch gedrag wordt beïnvloed
door tijdsvariërende en/of onzekere parameters. Bijgevolg verschaffen LTI
regelaars niet de gewenste nauwkeurigheid en efficiëntie. Daarom worden lineaire
parameter variërende (LPV) dynamica veelal beschouwd als aantrekkelijke
uitbreiding op het LTI raamwerk. Een LPV systeem wordt gekenmerkt door
lineaire dynamica welke afhangt van de huidige waarde van tijdsvariërende
parameters. Door in een regelaarontwerp rekening te houden met huidige
parameterwaarden kan hogere efficiëntie behaald worden vergeleken met een LTI
regelaar. Terwijl moderne LPV regelaarontwerpmethodes erg aantrekkelijk zijn
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als huidige parameterwaarden beschikbaar zijn, vereisen onzekere parameters
ingewikkeldere ontwerpprocedures.

Om aan de steeds strengere industriële eisen te voldoen, presenteert deze
thesis een veelzijdige methode om efficiënte regelaars met een vaste structuur
te ontwerpen voor de algemene klasse van lineaire parameter-afhankelijke
(LPD) systemen. Deze klasse omvat zowel LTI, LPV als onzekere lineaire
dynamica. Voor ieder van deze subklasses wordt de doeltreffendheid en
praktische uitvoerbaarheid van onze aanpak aangetoond door middel van
theoretische bewijzen van stabiliteit en efficiëntie, numerieke vergelijkingen met
bestaande aanpakken, en experimentele validaties. Als aanvulling combineren
we een nieuwe model orde reductie techniek met onze methode om regelaars
te ontwerpen voor continue-tijd lineaire tijdvertraagde systemen. Tenslotte
wordt een op parametrisch programmeren gebaseerde aanpak gepresenteerd
om efficiënte regelaars te ontwerpen voor LTI systemen, terwijl tegelijkertijd
structurele parameters worden geoptimaliseerd welke de systeemdynamica
beïnvloeden.
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Chapter 1

Introduction

This first chapter introduces and motivates the research subject considered in
this thesis, by reviewing the current state of the art and identifying shortcomings
and challenges. An overview of the main part of the thesis, describing its specific
contributions, is also provided.

1.1 Motivation

The continuously increasing demands from industry drive research communities
to keep pushing the limits in the design of accurate and high performance
control systems. Typically, first a mathematical model P describing the
behavior of a dynamical system is derived. Subsequently, a controller K is
designed for this model according to some desired performance specifications,
as schematically depicted in Figure 1.1. Based on real-time measurements
y from the dynamical system, the controller K generates a control signal u
which is in turn applied to the dynamical system, such that the influence of
the exogenous (e.g., reference/disturbance) input w on the regulated output z
meets the performance requirements.

Obviously, the complexity of a controller design depends on the nature of the
dynamical system to be controlled. Under the assumption that the dynamics
are linear and time-invariant (LTI), a wide range of successful controller design
approaches have emerged over the last decades. Although control design for this
restricted class of systems constitutes a mature research field, several important
control problems, such as the design of optimal controllers with an a priori fixed

1
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Figure 1.1: General control configuration.

structure, or optimal controllers satisfying multiple conflicting design objectives,
remain unsolved [16, 54, 103, 114].

At the same time, many applications feature dynamics which are dominantly
linear, but affected by time-varying and/or uncertain parameters. Consequently,
LTI techniques are unsatisfactory for providing the desired accuracy and
performance, hence more advanced controller design techniques are required.
To this end, various extensions of the LTI framework to cope with time-varying
and/or uncertain parameters have been developed and applied.

In this context, the framework of linear parameter-varying (LPV) systems has
been widely considered as a fruitful extension of LTI dynamics, as discussed in
the interesting survey papers [55, 71, 95]. LPV systems are characterized by a
linear input-output relation, which is assumed to depend on real-time measurable
parameters. Accounting for real-time parameter values in a controller design,
higher closed-loop performance can be achieved compared to an LTI controller.
The latter is demonstrated in various practical applications, including CD
players [33], wafer stages [121], servo systems [122], active noise and vibration
control [13], active suspension systems [34], vibroacoustic applications [27],
and overhead cranes [52, 127]. In fact, the available LPV controller design
approaches are featured by a clear distinction between so-called classical and
modern techniques.

The classical approaches, see for instance [85, 90, 127], consist of the following
steps. First, the LPV model is evaluated for different fixed parameter values,
resulting in so-called local LTI models. Subsequently, using an available LTI
technique, an LTI controller is designed for each local model. Finally, the local
LTI controllers are interpolated by assuming a specific parameterization (e.g.,
see [29]), such that an LPV controller is obtained. Although application of
these approaches is relatively straightforward, they might be unreliable, since
extensive numerical simulations are required to assess stability and performance
for time-varying parameters.

In the more elaborate modern LPV synthesis approaches, on the other hand,
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an LPV controller is directly designed by solving a sophisticated parameter-
dependent optimization problem, see, amongst others, [28, 52, 99, 100]. The
main benefit of these approaches is that, in contrast to the classical approaches,
they provide a certificate of stability and performance, since they rely on
Lyapunov stability theory [74].

Although modern LPV controller design techniques are very attractive when
the system dynamics are affected by real-time measurable parameters, more
involved approaches are required to cope with uncertain parameters. Fortunately,
Lyapunov based conditions are very appealing for the design of robust controllers
(i.e., controllers guaranteeing stability and performance despite parametric
uncertainty). Specifically for linear systems with parametric (time-varying)
uncertainty, various approaches have been presented [3, 5, 31, 53, 88, 102, 105].

Despite the fact that many interesting controller design approaches have been
presented for linear parameter-dependent (LPD) systems, improved approaches
are indispensable to meet the increasing performance and accuracy demands
from the manufacturing industry. Therefore, a general overview addressing the
main issues in controller design for LPD systems is provided now.

Generally speaking, the complexity of a controller design for an LPD system
depends on several factors, such as the desired controller structure, the
presence (and number of) time-varying/uncertain parameters affecting the
system dynamics, and the number of performance specifications. The notion
of convexity (see, e.g., [19]) plays a crucial role in defining this complexity.
Namely, whenever an optimization problem is convex, it has the attractive
property that every local optimum is a global optimal solution [18, 19, 105].
Moreover, efficient algorithms have been developed to solve convex optimization
problems, such that an optimal controller is readily computed. Although a few
important control problems are convex, the industrially most relevant cases
are intrinsically nonconvex. The fact that nonconvex problems remain hard to
solve motivates the investigation of improvements on available techniques for
solving these complex control problems. In addition, even convex optimization
problems might be challenging depending on the problem size, which is affected
by, amongst others, the number of equations and parameters describing the
dynamical system to be controlled. Figure 1.2 characterizes the complexity of
a controller design problem in terms of convexity/nonconvexity and problem
size. The problem complexity ranges from the design of unstructured controllers
for LTI systems satisfying a single performance objective, to the design of
structured robust controllers for uncertain linear systems satisfying multiple
performance specifications.
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convex large optimization problem

small optimization problem nonconvex

no prefixed controller structure
no robustness

prefixed controller structure
robustness

LTI systems
single performance objective

parameter-dependent
systems

multiple (conflicting)
performance objectives

Figure 1.2: General overview characterizing the complexity of various relevant control
problems.

1.2 Challenges

Based on the above motivation, the following challenges can be recognized:

Provide improved procedures for the design of high performance controllers

• which are structurally simple, allowing the design of intuitive, reliable and
affordable control systems for highly complex industrial applications.

• satisfying multiple (conflicting) design specifications, since it is often
complicated to capture all design specifications in a single objective.

• which are robust against (time-varying) model uncertainties, resulting in
highly reliable controllers.

• for multiple-input multiple-output (MIMO) systems, since many realistic
applications feature multiple inputs and/or multiple outputs.

• for both continuous-time and discrete-time systems. While most
applications feature continuous-time dynamics, controllers are nowadays
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almost always implemented in a digital environment. Depending on the
application, discretization of either the system or the controller might be
preferred.

• in a numerically efficient way. Since reductions of conservatism come at
the expense of an increase of the numerical burden, clever optimization
procedures are indispensable.

• featuring limited conservatism. This is necessary to meet the tightening
performance and accuracy demands from the manufacturing industry.

• whose performance is validated experimentally, to demonstrate practical
viability.

• requiring limited manual intervention from experts. In other words,
the gap between the tuning of simple and highly suboptimal controllers
in industry, and the complex design of high performance controllers in
academia, should be reduced.

1.3 Overview and contributions

This thesis presents a versatile approach to design high performance controllers
for the general class of LPD systems, addressing the challenges listed in
Section 1.2.

First, the class of LPD systems is introduced in Chapter 2, together with the
notions of stability and two widely used performance measures. Furthermore,
mathematical tools from convex optimization are exploited to determine stability
and performance of a given LPD system.

The main theoretical contribution of this thesis is presented in Chapter 3,
providing a novel framework of convex sufficient conditions to design so-called
fixed-order controllers (i.e., controllers described by a fixed number of equations)
for LPD systems. Although the proposed framework is subject to conservatism,
it applies to MIMO systems, unifies continuous-time and discrete-time, allows
multiple performance specifications, and is numerically attractive.

Numerical and experimental validations for several subclasses of LPD systems
confirm the potential of the convex framework presented in Chapter 3. Its
merits for LTI dynamics are demonstrated in Chapter 4, presenting various
numerical comparisons with existing approaches and experimental validations
of multi-objective controllers for a lab-scale overhead crane with fixed cable
length. Allowing a cable with varying length, and considering the cable length
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as measurable parameter, results in an LPV system. For the latter system,
experimental validations of fixed-order multi-objective controllers are provided
in Chapter 5, assessing the practical viability of our controller design approach
for LPV systems. In Chapter 6, the controller design framework presented
in Chapter 3 is extended with an iterative convex procedure, to design high
performance fixed-order robust controllers for LTI systems with parametric
uncertainty.

Chapter 7 presents a combined approach to design fixed-order controllers
for continuous-time linear time-delay (LTD) systems. This approach relies
on the following steps. First, a novel model order reduction technique is
exploited to determine a finite-dimensional LTI approximation of the LTD
system. Subsequently, the framework of Chapter 3 is applied to design fixed-
order controllers for the approximating model. Finally, the controllers are
validated on the original LTD system.

Chapter 8 presents a parametric programming approach to design high
performance feedback controllers for LTI systems, while simultaneously
optimizing structural parameters affecting the system dynamics. The
effectiveness of the approach is validated by simultaneously designing a state
feedback controller and optimizing structural parameters for earthquake isolation
of a civil engineering structure.

Finally, concluding remarks and suggestions for future research are given in
Chapter 9.



Chapter 2

Preliminaries

In this first technical chapter, we define the general class of LPD systems in
state-space form. This class encompasses a broad range of linear systems,
including LPV and uncertain LTI systems. The state-space form is very useful
for analysis and controller design purposes, since it allows us to directly derive
convex conditions for stability and performance based on Lyapunov’s direct
method. We define the concept of exponential stability, and derive parameter-
dependent LMIs that guarantee exponential stability of an LPD system based
on this definition. Subsequently, these parameter-dependent LMIs are extended
to incorporate H∞ and H2 performance specifications. We briefly discuss
some well-known approaches that, starting from the parameter-dependent LMI
conditions for stability and H∞/H2 analysis, allow the derivation of convex
synthesis conditions for full-order LPD controller design. Due to the fact that
the LMI constraints should generally hold for an infinite number of parameter
values, and since the optimization variables are functions, numerically intractable
feasibility or optimization problems result. The latter issue is relieved by imposing
a specific parameterization on the optimization variables, allowing the application
of relaxations to arrive at a tractable set of sufficient LMIs.

2.1 Linear parameter-dependent systems

The class of LPD systems is defined in this section. Defining a generalized time
axis T, which equals R+ in continuous time and N in discrete time, we consider
the class of finite-dimensional MIMO LPD systems in state-space form

H :
{
δx = A(α)x + B(α)w , x(0) = 0,
z = C(α)x + D(α)w , (2.1)

7
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with state x : T → Rnx , exogenous input w : T → Rnw , performance output
z : T → Rnz and exogenous parameter α : T → RN . All system matrices are
real continuous functions of α, bounded for all t ∈ T and have appropriate
dimensions. The operator δ denotes the time derivative δx = dx/dt in continuous
time, and the forward shift operator δx(t) = x(t + 1) in discrete time. The
parameter α takes values in a compact convex polytope Λ ⊂ RN . That is, Λ is
the convex hull of a finite set of points vi ∈ RN , i = 1, . . . ,M :

Λ =
{

M∑
i=1

ξivi

∣∣∣∣∣
M∑
i=1

ξi = 1 , ξi ≥ 0 , i = 1, . . . ,M
}
. (2.2)

Moreover, α is assumed to be continuously differentiable in the continuous-
time case (i.e., α ∈ C1(R+,RN )). Accordingly, the set of possible parameter
trajectories is given by{

α : T→ RN | α(t) ∈ Λ , ∀t ∈ T , and α ∈ C1(T,RN ) if T = R+
}
. (2.3)

Whenever bounds on the rate of parameter variation are a priori known, they
are taken into account by restricting the set (2.3) to

T :=
{
α : T→ RN

∣∣∣∣ [ α(t)
∆α(t)

]
∈ Ω, ∀t ∈ T , and α ∈ C1(T,RN ) if T = R+

}
,

(2.4)
where ∆α = δα in continuous time and ∆α = δα − α in discrete time. The
structure of Λ implies that Ω ⊂ R2N is a compact convex polytope whenever the
rate of parameter variation is bounded, and equals Λ× RN in the unrestricted
case. As a result, taking into account known bounds on the rate of parameter
variation provides less conservative analysis and synthesis conditions. However,
this comes at the expense of an increased number of vertices of the parameter
domain, resulting in a higher numerical burden.

Throughout this work, it is assumed that the parameter α is an exogenous
signal, hence α is independent of the state, input and output of the LPD system
(2.1). Under this assumption, subclasses of LPD systems can be identified based
on properties of α. Making a distinction between constant and time-varying
parameters on the one hand, and a priori known, real-time measurable and
uncertain parameters on the other hand, Table 2.1 shows the types of linear
systems encompassed by the general framework of LPD systems (2.1). See, for
instance, [108] for an interesting comparison of these different types of linear
models. The intention is to cover all linear systems summarized in Table 2.1 in
a general fashion.

When α is allowed to depend on the state, input or output, system (2.1) attains
a so-called quasi-LPV form [55, 70, 71], covering general nonlinear time-varying
systems of the form δx = f(t, x, w), z = g(t, x, w). However, nonlinear systems
are beyond the scope of this thesis.
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Table 2.1: The class of LPD systems encompasses a broad range of linear systems,
subdivided according to properties of the parameter α.

α a priori known real-time measurable uncertain
constant LTI n.a. uncertain LTI

time-varying LTV LPV uncertain LPV

2.2 Stability and performance of LPD systems

Stability of dynamical systems is the most fundamental and probably the
most actively studied concept within systems and control theory. Stability is
characterized by the equilibrium points of a dynamical system, which are the
points in the state space where the system is at rest. As conceptually stated
in [48] (page 135): “An equilibrium point of a dynamical system is said to be
stable if, for sufficiently small values of initial disturbances, the perturbed motion
remains in an arbitrarily prescribed small region of the state space.” Without
doubt, the most important contributions to stability of dynamical systems
are due to the Russian mathematician A. M. Lyapunov, who characterized
stability and proposed a powerful mathematical framework to analyze stability
of (non)linear dynamical systems in his famous publication [74] (see [75] for
the English translation). All the analysis and synthesis conditions that are
presented in this thesis are based on Lyapunov’s so-called direct method.

The notion of dissipativity is closely related to stability, and is the starting point
for characterizing system performance. A classical definition of a dissipative
system is provided in [123]: “A system is dissipative if the increase in storage over
a time interval cannot exceed the supply delivered to the system during this time
interval.” As discussed in, for example, [105, 123], Lyapunov theory provides
a framework to guarantee stability of closed systems (i.e. systems isolated
from their environment), while dissipativity theory is a natural generalization
that allows to study stability and dissipativity of open systems (i.e. systems
interacting with their environment). The amount of stored energy in an open
system is modeled by a so-called storage function, which becomes a Lyapunov
function when the interaction of the system with its environment is neglected.
The interaction of a system with its environment is modeled through inputs
and outputs, and the effect of the inputs on the outputs characterizes system
performance. While system performance can be quantified in several ways, H∞
and H2 performance are amongst the most widely used types of performance
characterizations (see, for instance, [17, 18, 65, 111] and references therein).
The H∞ performance of a system is defined as the worst-case ratio of the RMS
value of the output to the RMS value of the input, where the input signal is
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nonzero and has bounded L2 norm. The H2 norm may be interpreted as the
expected RMS value of the output when the input is a white Gaussian noise
process with zero mean and identity covariance matrix.

As will be demonstrated in the following sections, LMIs arise naturally when
studying stability and performance of LPD systems.

2.2.1 Stability

Consider the LPD system

δx = A(α)x , x(0) = x0 , (2.5)

with state x : T → Rnx and parameter α : T → Λ. Note that x∗ = 0 is an
equilibrium point of the LPD system (2.5), since x = 0 implies δx = 0. The
equilibrium point x∗ = 0 is said to be locally exponentially stable if, for any
initial condition x0 close enough to the origin and for all α ∈ T , the state of
(2.5) converges to zero at an exponential rate. x∗ = 0 is globally exponentially
stable if it is locally exponentially stable for all initial conditions x0 ∈ Rnx .
Since, for linear systems, local and global exponential stability coincide [98],
they are simply referred to as exponential stability. Exponential stability of
x∗ = 0 implies that the origin is the only equilibrium point, therefore we say
that the LPD system (2.5) is exponentially stable whenever the origin is an
exponentially stable equilibrium point. The concept of exponential stability is
formalized in a definition (see, for instance, [48, 61, 98]).

Definition 1 (Exponential stability). The LPD system (2.5) is exponentially
stable if there exist scalars a, b > 0 such that

‖x(t)‖ ≤ a‖x0‖f(t)

where f(t) = e−bt in continuous time, and f(t) = (b+ 1)−t in discrete time, for
all x0 ∈ Rnx and for all parameter trajectories α ∈ T , t ∈ T.

Using Lyapunov’s direct method, exponential stability of the LPD system (2.5)
can be analyzed. Namely, whenever a positive definite scalar function depending
on the system state (with a unique minimum in the origin) can be found, which
strictly decreases along trajectories of the state at an exponential rate, then
the LPD system (2.5) is exponentially stable. Such a positive definite scalar
function is a so-called Lyapunov function for the LPD system (2.5) whenever
it proves stability. This idea is illustrated in Figure 2.1, showing a typical
Lyapunov function. Sufficient conditions for exponential stability of the LPD
system (2.5), based on Lyapunov’s direct method, are presented in the following
theorem.
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x1
x2

V (x1, x2)

Figure 2.1: A typical quadratic Lyapunov function. If V strictly decreases along trajectories
of the state x = [ x1 x2 ]′, then the state converges to zero.

Theorem 1 (Exponential stability, Lyapunov). If there exists a continuously
differentiable/continuous (continuous time/discrete time) function V : RN ×
Rnx → R and scalars a, b, c > 0 and d ≥ 1, such that

a‖x‖d ≤ V (α, x) ≤ b‖x‖d , (2.6a)

∆V (α, x) ≤ −c‖x‖d , (2.6b)

for all α ∈ T and all possible trajectories x : T→ Rnx of (2.5), then the LPD
system (2.5) is exponentially stable. The operator ∆ is defined as ∆V (α, x) :=
δV (α, x) in continuous time and ∆V (α, x) := V (δα, δx)− V (α, x) in discrete
time.

Proof. See Appendix A.1.

By explicitly incorporating the (time-varying) parameter α, Theorem 1 is
a straightforward extension of the theorems presented in [48] for nonlinear
time-varying systems (see page 229 and page 785 for the continuous-time,
respectively, discrete-time case). Theorem 1 is very powerful, since conclusions
about exponential stability of the LPD system (2.5) can be drawn without
explicit computation of state trajectories. Obviously, the main difficulty is to
find a Lyapunov function, and unfortunately no general technique exists to
construct one. However, for LPD systems, a very common approach is to search
for a parameter-dependent Lyapunov function that is quadratic in the state:

V (α, x) = x′P (α)x , (2.7)
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where P (α) is a bounded positive definite matrix for all α ∈ T . Using the
quadratic form (2.7), the conditions of Theorem 1 reduce to a set of parameter-
dependent sufficient LMIs. This is the context of the following theorem, whose
presentation is facilitated by defining the parameter-dependent matrices

Φc(α) :=
[
δP (α) P (α)
P (α) 0

]
, Φd(α) :=

[
−P (α) 0

0 P (δα)

]
.

Theorem 2 (Exponential stability, Lyapunov). If there exists a bounded matrix
P (α(t)) ∈ Snx+ , for all α ∈ T , t ∈ T, such that[

I
A(α(t))

]′
Φ(α(t))

[
I

A(α(t))

]
≺ 0 (2.8)

for all α ∈ T , t ∈ T, where Φ = Φc in continuous time and Φ = Φd in discrete
time, then the LPD system (2.5) is exponentially stable.

Proof. See Appendix A.2.

While the parameter-dependent LMI (2.8) is only a sufficient condition in
general, it is necessary and sufficient when considering time-invariant parameters.
Specifically, a necessary and sufficient condition for exponential stability of LTI
systems results when the parameter-dependency in (2.8) is dropped. Moreover,
the existence of a Lyapunov function (2.7) (without imposing any structure on
P (α)) is necessary and sufficient for stability of an uncertain LTI system [87].

2.2.2 H∞ performance

The H∞ performance is defined similar as in [15] (see also [28]).

Definition 2 (H∞ performance). Let the LPD system (2.1) be exponentially
stable, and assume that w(t) ∈ L2(T,Rnw). Then, the H∞ performance of (2.1)
is defined as

‖H‖∞ := sup
α∈T

sup
w(t) 6=0

‖z(t)‖2
‖w(t)‖2

.

The following theorem provides an LMI characterization for an upper bound on
the H∞ performance of the LPD system (2.1), which is based on the bounded
real lemma (see, for example, [18, 105]).
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Theorem 3 (H∞ performance). If there exists a bounded matrix P (α(t)) ∈ Snx+ ,
for α ∈ T , t ∈ T, and a bounded scalar γ > 0, such that the LMI

I 0
A(α(t)) B(α(t))

0 I
C(α(t)) D(α(t))


′ Φ(α(t)) 0 0

0 −γI 0
0 0 I




I 0
A(α(t)) B(α(t))

0 I
C(α(t)) D(α(t))

 ≺ 0 (2.9)

is feasible for all α ∈ T , t ∈ T, where Φ = Φc in continuous time and Φ = Φd
in discrete time, then the LPD system (2.1) is exponentially stable and satisfies
the H∞ performance bound ‖H‖∞ <

√
γ.

Proof. See Appendix A.3.

2.2.3 H2 performance

The following definition of H2 performance is adopted from [14, 27, 43, 112].

Definition 3 (H2 performance). Let the LPD system (2.1) be exponentially
stable, and assume that D(α) = 0 for all α ∈ T and x(0) = 0. Then, the H2
performance of (2.1) is defined as

‖H‖22 := sup
α∈T

lim sup
T→∞

E
{

1
T
‖z(t)‖22,[0,T ]

}
,

when w(t) is a white Gaussian noise process with zero mean and covariance
matrix

E[w(t)w(s)′] = δtsInw ,

where δts represents the Dirac/Kronecker delta (continuous time/discrete time).

A characterization for H2 performance of the LPD system (2.1) in terms
of its state-space matrices is presented in the following lemma, which is a
straightforward extension of the characterizations presented in [14, 43] for LTV
systems.

Lemma 1 (H2 performance). Let the LPD system (2.1) be exponentially stable,
and assume that D(α) = 0 for all α ∈ T . Then, the H2 performance of (2.1) is
given by

‖H‖22 = sup
α∈T

lim sup
T→∞

1
T
‖C(α)‖2

Q̄(α),[0,T ] ,

with Q̄(α) satisfying

δQ̄(α) = A(α)Q̄(α) + Q̄(α)A(α)′ +B(α)B(α)′ , Q̄(α(0)) = 0 (2.10)
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in continuous time, and

Q̄(δα) = A(α)Q̄(α)A(α)′ +B(α)B(α)′ , Q̄(α(0)) = 0 (2.11)

in discrete time.

LMIs characterizing an upper bound on the H2 performance are obtained
by relaxing the conditions of Lemma 1, which is the context of the next
theorem. It is worth emphasizing that these LMIs rely on the Lyapunov
function VQ(α, x) = x′Q(α)−1x, such that a unified presentation is facilitated
by defining the following matrices

Γc(α) =
[
−δQ(α) Q(α)
Q(α) 0

]
, Γd(α) =

[
−Q(δα) 0

0 Q(α)

]
.

Theorem 4 (H2 performance). Consider the LPD system (2.1), and assume
that D(α) = 0 for all α ∈ T . If there exist bounded matrices Q(α(t)) ∈ Snx+ and
W (α(t)) ∈ Snz+ for α ∈ T , t ∈ T, such that the LMIs[

I A(α(t))
]

Γ(α(t))
[
I A(α(t))

]′ +B(α(t))B(α(t))′ ≺ 0 , (2.12a)

C(α(t))Q(α(t))C(α(t))′ ≺W (α(t)) , (2.12b)
are feasible for all α ∈ T , t ∈ T, where Γ = Γc in continuous time and Γ = Γd
in discrete time, then the LPD system (2.1) is exponentially stable and satisfies
the H2 performance bound

‖H‖22 < sup
α∈T

lim sup
T→∞

1
T
‖Inz‖2W (α),[0,T ] . (2.13)

Proof. See Appendix A.4.

Elaborating on the LMIs (2.12), the following set of equivalent LMIs relying on
the Lyapunov function (2.7) is derived.

Theorem 5 (H2 performance). Consider the LPD system (2.1), and assume
that D(α) = 0 for all α ∈ T . If there exist bounded matrices P (α(t)) ∈ Snx+ and
W (α(t)) ∈ Snz+ for α ∈ T , t ∈ T, such that the LMIs I 0

A(α(t)) B(α(t))
0 I

′ [Φ(α(t)) 0
0 −I

] I 0
A(α(t)) B(α(t))

0 I

 ≺ 0 (2.14a)

and [
W (α(t)) C(α(t))
C(α(t))′ P (α(t))

]
� 0 (2.14b)
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are feasible for all α ∈ T , t ∈ T, where Φ = Φc in continuous time and Φ = Φd
in discrete time, then the LPD system (2.1) is exponentially stable and satisfies
the H2 performance bound (2.13).

Proof. See Appendix A.5.

Remark 1. For continuous-time LPD systems, the H2 performance is finite if
and only if D(α) = 0 (see [43], page 93). However, in case of a discrete-time
LPD system that is not strictly proper (i.e., D(α) 6= 0), the H2 performance
can be finite, and the LMI (2.14b) should be replaced with[

W (α)−D(α)D(α)′ C(α)
C(α)′ P (α)

]
� 0.

Similar as for the stability case (see Theorem 2), Theorem 3 and Theorem 5 are
generally conservative, thus providing upper bounds on the H∞, respectively,
H2 performance of the LPD system (2.1). However, the LMIs (2.9) and (2.14)
become necessary and sufficient when restricted to time-invariant parameters,
theoretically resulting in the optimal (worst-case) H∞ and H2 performance.

The LMI conditions presented in Theorem 5 rely on the so-called controllability
Gramians, which are, for a given parameter trajectory, the unique bounded
solutions Q̄(α) of (2.10) and (2.11) [112]. In a similar fashion, LMI conditions
based on the observability Gramians can be derived, which generally provide a
different H2 performance bound than the LMIs (2.14). The latter conditions
are omitted for reasons of conciseness.

It should be emphasized that the presented LMI characterizations for exponential
stability, H∞ performance, and H2 performance should hold for all parameter
trajectories α ∈ T and for all time instants t ∈ T, implying infinitely many LMI
constraints. Moreover, the fact that the associated optimization variables are
functions results in infinite-dimensional LMI problems. Therefore, the LMIs
(2.8), (2.9) and (2.14) are numerically intractable. However, a finite set of LMIs
that guarantees feasibility of (2.8), (2.9) and (2.14) can be derived by imposing
a parameterization on the optimization variables and subsequently applying
so-called relaxations. Before discussing the latter in Section 2.4, the derivation
of convex conditions for full-order LPD controller synthesis is discussed in the
next section.
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2.3 Full-order controller design for LPD systems

This section reviews the currently available convex approaches to design full-
order H∞ and H2 LPD controllers for the LPD system

P :

 δx = A(α)x + Bw(α)w + Bu(α)u,
z = Cz(α)x + Dzw(α)w + Dzu(α)u,
y = Cy(α)x + Dyw(α)w

with state x : T → Rnx , exogenous input w : T → Rnw , control input u :
T → Rnu , regulated output z : T → Rnz and measured output y : T → Rny .
It is assumed that all system matrices are real continuous functions of the
exogenous parameter α : T→ RN , bounded for all t ∈ T and have appropriate
dimensions. The direct feedthrough matrix from u to y is set to zero without
loss of generality [58]. The aim is to design a full-order LPD controller, which
is a dynamic output feedback controller of the form

K :
{
δxc = Ac(α)xc + Bc(α)y,
u = Cc(α)xc + Dc(α)y, (2.15)

with the same number of states as the plant to be controlled (i.e., xc(t) ∈ Rnx),
such that the closed-loop system

H :
{
δxcl = A(α)xcl + B(α)w,
z = C(α)xcl + D(α)w, (2.16)

with xcl(t) =
[
x(t)′ xc(t)′

]′ ∈ R2nx and system matrices

A(α) =
[
A(α) +Bu(α)Dc(α)Cy(α) Bu(α)Cc(α)

Bc(α)Cy(α) Ac(α)

]
,

B(α) =
[
Bw(α) +Bu(α)Dc(α)Dyw(α)

Bc(α)Dyw(α)

]
,

C(α) =
[
Cz(α) +Dzu(α)Dc(α)Cy(α) Dzu(α)Cc(α)

]
,

D(α) = Dzw(α) +Dzu(α)Dc(α)Dyw(α).

is exponentially stable and meets an H∞ or H2 performance specification for all
α ∈ T . See Figure 2.2 on page 17 for a schematic representation. It is obvious
that the controller matrices should be constant (i.e., independent of α) in case
α is uncertain, while the general form (2.15) applies when α is a priori known
or real-time measurable.
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P

K
H

w z

yu

P

K

Figure 2.2: The objective is to design a controller K that exponentially stabilizes the
system P , such that an H∞ or H2 performance specification from w to z is satisfied.

Using Theorem 2, the closed-loop system (2.16) is exponentially stable if there
exists a bounded matrix P (α(t)) ∈ S2nx

+ , α ∈ T , t ∈ T, such that[
I

A(α(t))

]′
Φ(α(t))

[
I

A(α(t))

]
≺ 0 (2.17)

is feasible for all α ∈ T , t ∈ T. Since the closed-loop matrix A(α) depends on
the controller matrices, it is clear that (2.17) is a nonlinear matrix inequality,
and thus yields a nonconvex problem. A similar reasoning applies to the H∞
and H2 controller synthesis problems (see Theorem 3 on page 13 and Theorem
5 on page 14).

To circumvent this issue, several approaches for full-order H∞ and H2 controller
design have been proposed over the last decades. For LTI systems, the
corresponding nonlinear matrix inequalities can be reformulated into equivalent
LMIs by a nonlinear change of variables [76, 103], elimination of the controller
variables [41, 58], or a combination of the two aforementioned approaches [5].
In other words, the full-order H∞ and H2 control problems for LTI systems are
convex.

The above approaches for LTI systems are extendable to LTV and LPV
dynamics. However, structural constraints need to be imposed on LMI variables
to obtain practical controllers (i.e., controllers independent of derivatives or
future parameter values) [5, 28], introducing conservatism.

The full-order synthesis problem for uncertain linear systems remains a very hard
problem, which is mainly due to structural constraints on the controller. The
nonlinear change of variables can no longer be applied, since the reconstructed
controller depends on the parameter-dependent matrices of the open-loop
system. A possible conservative approach is to reformulate the full-order
synthesis problem as a static output feedback problem, and subsequently apply
a conservative approach for robust static output feedback synthesis. See for
instance [23, 64, 107].
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2.3.1 Multi-objective control

As it is often complicated to capture all design specifications in a single objective,
several extensions to multi-objective controller design have been developed [32,
62, 76, 103, 126], allowing the incorporation of various performance specifications
(i.e., H∞, H2, amongst others). Specifically, the design of full-order multi-
objective LTI controllers gives rise to a nonconvex problem, and conservatism
is introduced to derive convex sufficient conditions.

Applying the nonlinear transformation of controller variables that is presented
in [76, 103], sufficient LMIs result when selecting a single Lyapunov matrix
for all performance specifications. This conservative procedure is named the
Lyapunov shaping paradigm. A less conservative approach is proposed in [32]
for the discrete-time case, relying on the introduction of an additional matrix
variable G. Products between the closed-loop matrices and G appear in the
resulting LMIs, while the closed-loop matrices and the Lyapunov matrices are
decoupled. Selecting a constant matrix G in the latter synthesis method, which
is referred to as the G shaping paradigm, allows the use of a different Lyapunov
matrix for each performance specification while convexity is retained.

Both the Lyapunov and the G shaping paradigm are extendable to LTV and
LPV dynamics [28]. In fact, more general full-order synthesis LMIs (featuring
additional slack variables and scalar parameters) can be derived using the
projection lemma [83, 94], but are out of scope here.

2.4 Relaxations

Since all the previously presented LMI conditions feature infinite-dimensional
optimization variables and infinitely many constraints, they are numerically
intractable. Therefore, this section discusses how tractable convex conditions
are derived whose feasibility implies feasibility of such an intractable LMI.
The latter is incredibly powerful, since it enables to guarantee stability and
performance of an LPD system by solving a numerically tractable optimization
problem. The derivation of numerically tractable conditions is performed in two
steps. First, a parameterization is imposed on the LMI variables, resulting in a
finite number of optimization variables. Subsequently, so-called relaxations are
applied, which boils down to replacing the infinite set of constraints by a more
restrictive finite (i.e., conservative) set of constraints. The following section
provides a brief overview of the most common parameterizations. Subsequently,
it is demonstrated how the structure of these parameterizations is exploited in
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conjunction with positivity of basis functions to derive a finite set of sufficient
LMIs.

2.4.1 Parameterizations

In this section, the most widely used parameterizations for relaxing intractable
LMIs are listed, and ordered according to their generality.

Affine parameterization A matrix A(α) has an affine dependency on an N -
dimensional parameter α if

A(α) = A0 +
N∑
k=1

αkAk ,

where Ak , k = 0, . . . , N are constant matrices.

Multi-affine parameterization A matrix A(α) has a multi-affine dependency
on an N -dimensional parameter α if

A(α) =
1∑

k1=0

1∑
k2=0
· · ·

1∑
kN=0

αk1
1 α

k2
2 · · ·αkNN Ak1,k2,··· ,kN ,

where Ak1,k2,··· ,kN , ki = 0, 1 , i = 1, . . . , N are constant matrices. An affine
parameterization is recovered as a special case, by only allowing (k1, . . . , kN ) = 0
and the combinations ki = 1 and kj = 0 for j 6= i , i = 1, . . . , N .

Univariate polynomial parameterization A matrix A(α) has an polynomial
dependency of degree g on a scalar parameter α if

A(α) =
g∑
k=0

αkAk ,

where Ak , k = 0, . . . , g are constant matrices.

Multivariate polynomial parameterization A matrix A(α) has an polynomial
dependency of degree (g1, g2, · · · , gN ) on an N -dimensional parameter α if

A(α) =
g1∑
k1=0

g2∑
k2=0
· · ·

gN∑
kN=0

αk1
1 α

k2
2 · · ·αkNN Ak1,k2,··· ,kN ,
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where Ak1,k2,··· ,kN , ki = 1, . . . , gi , i = 1, . . . , N are constant matrices. This
parameterization encompasses the multi-affine parameterization, which is seen
by selecting gi = 1 , i = 1, . . . , N .

Example 1. The matrix

A(α) =
[
α3

1(1− α2) π√
2 + α1 5α2

2

]
has a polynomial parameter dependency of degree g = (3, 2) on the 2-dimensional
parameter α = (α1, α2).

Univariate polynomial spline parameterization Consider a scalar parameter
α on a closed and bounded interval [α, α] ⊂ R, and let ξ = (ξ0, . . . , ξl+1) be a
sequence of points satisfying

α = ξ0 < ξ1 < · · · < ξl < ξl+1 = α .

Then, a matrix A(α) is a polynomial spline (i.e. piecewise polynomial) of degree
g with internal break points ξ1, . . . , ξl and continuity conditions ν1, . . . , νl if
there exist polynomial matrices P0(α), . . . , Pl(α) of degree g such that

A(α) = Pi(α) , for α ∈ [ξi, ξi+1) , i = 0, . . . , l − 1 ,

A(α) = Pl(α) , for α ∈ [ξl, ξl+1] ,

and

dj−1Pi−1
dαj−1

∣∣∣∣
α=ξi

= dj−1Pi
dαj−1

∣∣∣∣
α=ξi

, for j = 1, . . . , νi , i = 1, . . . , l .

This parameterization is a generalization of the univariate polynomial
parameterization when restricted to a bounded interval, which is immediate
from selecting l = 0 (i.e., no internal break points).

Tensor product polynomial spline parameterization So-called tensor product
polynomial splines are considered, constituting a particular multivariate
extension of univariate polynomial splines. Consider a N -dimensional parameter
α = (α1, . . . , αN ) defined on the Cartesian product of closed and bounded
intervals:

[α1, α1]× · · · × [αN , αN ] ⊂ RN .

Then, in a similar fashion as multivariate polynomials follow from the univariate
case, tensor product polynomial splines follow as a straightforward extension



RELAXATIONS 21

0 1 2 3 4 5
−2

0

2

4

α

A
(α

)

Figure 2.3: A polynomial spline is a piecewise polynomial with continuity requirements. A
scalar univariate polynomial spline A : [0, 5]→ R of degree 3 with internal break points
(ξ1, ξ2, ξ3) = (1, 2, 4) and continuity requirements (ν1, ν2, ν3) = (2, 1, 2) is shown.

from univariate polynomial splines. Namely, by defining a break point sequence
(ξk,0, ξk,1, . . . , ξk,lk , ξk,lk+1) and continuity conditions vector (νk,1, . . . , νk,lk) for
each αk, k = 1, . . . , N . This parameterization is a generalization of the
multivariate polynomial parameterization when restricted to a Cartesian product
of bounded intervals, which follows from choosing lk = 0, k = 1, . . . , N .

Note that, since α assumes values in a Cartesian product of intervals, α1, . . . , αN
are considered to be mutually independent. If α1, . . . , αN are allowed to
be mutually dependent, a more general spline parameterization is required.
However, a general treatment of multivariate polynomial splines is out of scope
here, and the interested reader is referred to [25, 106].

To simplify terminology, tensor product (polynomial) splines are named
(polynomial) splines in the remainder of this thesis.

2.4.2 Deriving a finite set of sufficient LMIs

Various approaches have been developed to derive a numerically tractable set of
LMIs that guarantee feasibility of a semi-infinite LMI problem. Most of these
approaches rely on expressing a parameter-dependent matrix in terms of positive
basis functions, such that positivity of each coefficient implies positivity of the
parameter-dependent matrix for all parameters in a certain set. For instance,
positive definiteness of a parameter-dependent matrix can be checked using an
extension of Pólya’s theorem to the case of matrix-valued coefficients [87, 88],
or by decomposing it as a sum-of-squares [56, 102]. The former approach is
briefly discussed for polynomially parameter-dependent LMIs. Subsequently,
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using so-called B-splines as basis functions, relaxations are derived for LMIs
with a polynomial spline dependency. It is worth mentioning that specific
rational parameter dependencies can be handled using the descriptor form,
see for instance [21]. The approach presented in [102], see also [100], handles
general rational parameter dependencies.

Polynomials

Consider the parameter-dependent LMI

P (α) � 0,

with a polynomial dependency (of arbitrary finite degree) on the N -dimensional
parameter α ∈ Λ, where Λ ⊂ RN is a compact convex polytope.

First, the parameter α is expressed as a convex combination of the vertices fi,
i = 1, . . . ,M of Λ:

α =
M∑
i=1

fiβi = Fβ, (2.18)

where the ith column of F corresponds to vertex fi, and β takes values in the
unit simplex of dimension M . That is,

∑M
i=1 βi = 1, and βi ≥ 0, i = 1, . . . ,M .

Using the linear relation (2.18), P is expressed as a function of β as follows:

P̂ (β) := P (Fβ) = P (α),

where the polynomial coefficients of P̂ can always be determined for a given set
of vertices.

Next, so-called homogenization is applied to express P̂ in terms of monomial
basis functions having the same degree. The latter is achieved by exploiting
that β takes values in the unit simplex. Consequently, the relaxation step is to
impose positivity on all the coefficients of P̂ , since this implies that P̂ (β) � 0 for
all β in the unit simplex. In turn, P (α) � 0 for all α ∈ Λ, and thus P (α(t)) � 0
for all α : T→ Λ, t ∈ T.

Example 2 (Homogenization). The concept of homogenization is illustrated in
this example. Consider the polynomially parameter-dependent matrix

P̂ (β1, β2) = β3
1 P̂1 + β1β2P̂2 + P̂3,
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where P̂j, j = 1, . . . , 3 are given constant matrices and β is in the unit simplex
of dimension 2. To homogenize P̂ , note that β1 + β2 = 1, such that

P̂ (β1, β2) = β3
1 P̂1 + (β1 + β2)β1β2P̂2 + (β1 + β2)3P̂3

= β3
1(P̂1 + P̂3) + β2

1β2(P̂2 + 3P̂3) + β1β
2
2(P̂2 + 3P̂3) + β3

2 P̂3 .

Starting from a homogeneous polynomially parameter-dependent LMI P̂ (β) � 0,
degree elevation can be applied to obtain less conservative relaxations, relying
on the following relation (see [87]):

P̂ (β) � 0⇔
(

M∑
i=1

βi

)d
P̂ (β) � 0, (2.19)

for any d ∈ N.

Example 3 (Degree elevation). This example, which is borrowed from
[26], illustrates the concept of degree elevation for homogeneous polynomially
parameter-dependent LMIs. Consider the homogeneous polynomially parameter-
dependent matrix

P̂ (β1, β2) = β2
1 P̂1 + β1β2P̂2 + β2

2 P̂3,

where P̂j, j = 1, . . . , 3 are given constant matrices and β is in the unit simplex
of dimension 2. A set of sufficient conditions for positive definiteness of P̂ is

P̂1 � 0, P̂2 � 0, P̂3 � 0. (2.20)

Selecting d = 1 in (2.19),

P̂ (β1, β2) = (β1 + β2)P̂ (β1, β2)

= β3
1 P̂1 + β2

1β2(P̂1 + P̂2) + β1β
2
2(P̂2 + P̂3) + β3

2 P̂3,

such that a corresponding set of sufficient conditions is

P̂1 � 0, P̂1 + P̂2 � 0, P̂2 + P̂3 � 0, P̂3 � 0,

which is less conservative than (2.20). Hence, conservatism is reduced at the
expense of an increase in the number of sufficient LMIs. Generally speaking,
higher values of d correspond to less conservative relaxations and a higher
number of sufficient LMIs.
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It is worth to emphasize that, in fact, for any positive definite polynomial P̂ (β)
depending on β in the unit simplex, there exists a finite value of d ∈ N such
that all the coefficients of (

M∑
i=1

βi

)d
P̂ (β) � 0

are positive (see [87] and references therein). Hence, a tractable necessary and
sufficient condition for positivity results.

The above relaxation technique is extendable to incorporate bounds on the rate
of parameter variation by applying the approaches discussed in [86] (continuous
time) or [28, 88] (discrete time). An extension of these approaches, exploiting
subdivision of the parameter domain, is presented in Chapter 5 (page 65).

Polynomial splines

Consider the parameter-dependent LMI

P (α) � 0,

with a polynomial spline dependency on the scalar parameter α ∈ Λ, where
Λ ⊂ R is a closed and bounded interval.

First, P (α) is expressed in terms of particular normalized (scalar) B-spline basis
functions, defined as in [25] (page 87). This is always possible by virtue of the
Curry-Schoenberg theorem [25], by considering the knot sequence

λ = (ξ0, . . . , ξ0︸ ︷︷ ︸
g+1

, ξ1, . . . , ξ1︸ ︷︷ ︸
g+1−ν1

, . . . , ξl, . . . , ξl︸ ︷︷ ︸
g+1−νl

, ξl+1, . . . , ξl+1︸ ︷︷ ︸
g+1

) ∈ Rnλ .

Denoting the ith normalized B-spline basis function of degree g for the knot
sequence λ by Bi,g,λ(α), the parameter-dependent matrix P (α) is expressed as

P (α) =
nλ−g−1∑
i=1

CiBi,g,λ(α), (2.21)

where Ci, i = 1, . . . , nλ − g − 1 are matrix-valued coefficients.

B-splines are commonly used as basis functions for polynomial splines, since
they possess various useful properties [25, 106]. The following two properties
are exploited to derive relaxations:
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• Positivity:

Bi,g,λ(α) ≥ 0, ∀α ∈ Λ, i = 1, . . . , nλ − g − 1.

• Partition of unity:

nλ−g−1∑
i=1

Bi,g,λ(α) = 1, ∀α ∈ Λ.

Namely, combining these properties reveals that

Ci � 0, i = 1, . . . , nλ − g − 1 ⇒ P (α) � 0, ∀α ∈ Λ.

Hence, imposing positivity on B-spline coefficients of a polynomial spline is a
sufficient condition for positivity of the polynomial spline itself.

In a similar way as for the polynomial case, degree elevation can be applied to
obtain less conservative relaxations.

Degree elevation Increasing the degree of P (α) by one on each subinterval
[ξi, ξi+1) yields an expression of the form

P (α) =
nλ̃+l+1−g∑

i=1
C̃iBi,g+1,λ̃(α),

where λ̃ is the knot sequence

λ̃ = (ξ0, . . . , ξ0︸ ︷︷ ︸
g+2

, ξ1, . . . , ξ1︸ ︷︷ ︸
g+2−ν1

, . . . , ξl, . . . , ξl︸ ︷︷ ︸
g+2−νl

, ξl+1, . . . , ξl+1︸ ︷︷ ︸
g+2

) ∈ Rnλ̃ ,

with nλ̃ = nλ+ l+ 2. Requiring C̃i � 0, i = 1, . . . , nλ̃− g−1 is less conservative
than the conditions Ci � 0, i = 1, . . . , nλ − g − 1, which comes at the expense
of an increased number of sufficient LMIs (similar as in Example 3).

While degree elevation is the only option to reduce conservatism in a
polynomially parameter-dependent LMI, knot insertion provides an alternative
to obtain less conservative relaxations for LMIs with a polynomial spline
dependency. As a matter of fact, applying knot insertion to relax a set of
sufficient LMIs is relatively straightforward.
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Knot insertion Let λ̂ be constructed from λ by inserting a single knot λadd
between λj and λj+1. Then, the B-spline coefficients of

P (α) =
nλ̂−g−1∑
i=1

ĈiBi,g,λ̂(α),

(with nλ̂ = nλ+1) are related to the original coefficients Ci, i = 1, . . . , nλ−g−1
of (2.21) as follows [25]:

Ĉi = (1− βi,g(λadd))Ci−1 + βi,g(λadd)Ci,

where the function βi,g is defined by

βi,g(x) =


0 if x ≤ λi,
x−λi

λi+g−λi if λi < x < λi+g,

1 if λi+g ≤ x.

The extension to tensor product polynomial spline parameterizations is obvious
and therefore omitted.

2.5 Summary

In this chapter, the general class of LPD systems in state space form has
been defined. For this class of systems, sufficient parameter-dependent LMI
characterizations for exponential stability and H∞ and H2 performance were
derived. Subsequently, we discussed how these characterizations can be adapted
to derive full-order (multi-objective) H∞ and H2 synthesis LMIs for particular
subclasses of LPD systems. The corresponding parameter-dependent LMIs are
numerically intractable, since they feature infinite-dimensional optimization
variables and infinitely many constraints. To relieve the latter issue, it was shown
how to derive numerically tractable conditions whose feasibility guarantees
feasibility of a numerically intractable LMI, by imposing a polynomial (spline)
parameterization on the LMI variables and subsequently applying relaxations.
The resulting tractable conditions are incredibly powerful, since they enable us
to guarantee stability and H∞/H2 performance of an LPD system by solving a
numerically tractable optimization problem.

Based on the mathematical notions and techniques discussed in this chapter,
a unifying framework to design fixed-order controllers for LPD systems is
presented next.
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Recapitulation

• The general class of LPD systems encompasses a broad range of linear
systems, including (uncertain) LTI and LPV systems.

• Exponential stability and H∞ and H2 performance of an LPD system are
characterized in terms of parameter-dependent LMIs, featuring
infinite-dimensional optimization variables and infinitely many constraints.

• The full-order H∞ and H2 synthesis problem is convex for LTI dynamics.
• The full-order H∞ and H2 synthesis LMIs for LTI systems are extendable to

LTV and LPV dynamics, but structural constraints need to be imposed on
LMI variables to obtain practical controllers.

• The full-order control problem for uncertain linear systems remains very hard
(nonconvex), which is mainly due to structural constraints on the controller.

• The full-order multi-objective control problem is nonconvex, even for LTI
systems, and conservatism needs to be introduced to derive convex
(sufficient) conditions.

• A tractable set of convex conditions, whose feasibility implies feasibility of a
parameter-dependent LMI with infinite-dimensional optimization variables
and infinitely many constraints, is derived as follows. A polynomial (spline)
parameterization is imposed on the LMI variables, and then relaxations are
applied.





Chapter 3

A unifying framework to
design fixed-order controllers
for LPD systems

This theoretical chapter presents a novel projection lemma based LMI framework
to design fixed-order multi-objective H∞/H2 controllers for LPD systems. This
framework relies on a set of a priori computed full-order LPD controllers that
stabilize the LPD system for all possible parameter trajectories, which are
used as parameters in sufficient LMIs for the fixed-order controller design. In
these sufficient LMIs, continuous-time and discrete-time controller designs are
treated in a unified fashion, and the controller complexity, which is completely
characterized by the number of states and the parameter-dependency of the
controller, is fixed in advance.

3.1 Introduction

The fixed-order controller design problem is amongst the most relevant problems
in control theory, and remains an open problem to date even for LTI systems
[16, 114]. In words, the fixed-order controller design problem for LPD systems
is stated as follows: given an LPD system, find a fixed-order dynamic output
feedback controller (i.e., a controller with an a priori fixed number of states
and parameter dependency) such that the closed-loop system satisfies some
desirable stability and performance specifications, or show that such a feedback
controller does not exist. The fixed-order controller design problem has received

29



30 FIXED-ORDER CONTROLLER DESIGN FOR LPD SYSTEMS

substantial attention in the last decades, since it is of paramount importance
for realistic control applications. Especially for high-order systems, low-order
controllers are desirable due to reliability requirements and implementation
cost constraints. A detailed literature overview related to fixed-order controller
design is provided independently for several considered subclasses of LPD
systems in Chapters 4 to 6.

This chapter presents a unifying convex framework to design fixed-order
multi-objective H∞/H2 controllers for the general class of LPD systems.
Since this class encompasses a broad range of linear systems (as shown in
Table 2.1 on page 9), the proposed controller design framework is suitable for
many different applications. Starting from a high-level mathematical problem
description (Section 3.2), novel extended LMI conditions for closed-loop H∞/H2
performance analysis of a given fixed-order controller are derived in Section 3.3,
by expressing the closed-loop matrices as a function of an arbitrary full-order
controller for the same system. By imposing structural constraints on the
variables in these extended analysis LMIs, sufficient LMIs for fixed-order H∞
and H2 controller synthesis are derived in Section 3.4, which require an a
priori computed stabilizing full-order controller. Since practical applications
often desire multiple design objectives, the fixed-order synthesis conditions are
extended to handle multi-objective control problems in Section 3.4.3, requiring
a full-order controller for each performance specification.

3.2 Problem formulation

Consider the finite-dimensional LPD state-space representation δx = A(α)x + Bw(α)w + Bu(α)u,
z = Cz(α)x + Dzw(α)w + Dzu(α)u,
y = Cy(α)x + Dyw(α)w

(3.1)

with state x : T→ Rnx , exogenous input w : T→ Rnw , control input u : T→
Rnu , regulated output z : T → Rnz and measured output y : T → Rny . It is
assumed that all system matrices are real continuous functions of the exogenous
parameter α : T→ RN , bounded for all t ∈ T, and have appropriate dimensions.

The objective is to design fixed-order dynamic output feedback controllers{
δxc = Ac(α)xc + Bc(α)y,
u = Cc(α)xc + Dc(α)y, (3.2)

with xc(t) ∈ Rq, q ≤ nx, that exponentially stabilize the LPD system (3.1) and
satisfy multiple closed-loop H∞ and/or H2 performance specifications for all
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α ∈ T . Obviously, the state-space matrices of (3.2) are taken constant when α
is uncertain, while the more general form (3.2) is assumed when α is either a
priori known or real-time measurable.

Grouping the controller matrices of (3.2) as

Θ(α) :=
[
Ac(α) Bc(α)
Cc(α) Dc(α)

]
, (3.3)

the closed-loop interconnection of the LPD system (3.1) with the LPD controller
(3.2) is indicated as

HΘ :
{
δxcl = AΘ(α)xcl + BΘ(α)w,
z = CΘ(α)xcl + DΘ(α)w, (3.4)

where xcl(t) =
[
x(t)′ xc(t)′

]′ ∈ Rnx+q is a closed-loop state vector. Moreover,
defining the matrices

 Ã(α) B̃w(α) B̃u(α)
C̃z(α) D̃zw(α) D̃zu(α)
C̃y(α) D̃yw(α) 0

 :=


A(α) 0 Bw(α) 0 Bu(α)

0 0 0 Iq 0
Cz(α) 0 Dzw(α) 0 Dzu(α)

0 Iq 0 0 0
Cy(α) 0 Dyw(α) 0 0

 ,
(3.5)

the affine dependency of the closed-loop matrices in (3.4) on Θ(α) is expressed
as[
AΘ(α) BΘ(α)
CΘ(α) DΘ(α)

]
=
[
Ã(α) B̃w(α)
C̃z(α) D̃zw(α)

]
+
[
B̃u(α)
D̃zu(α)

]
Θ(α)

[
C̃y(α) D̃yw(α)

]
.

(3.6)

Remark 2. In what follows, the matrix Θ(α) defined in (3.3) is often referred
to as a controller, by which a controller of the form (3.2) is meant.

3.3 Extended analysis conditions

This section presents novel extended parameter-dependent LMIs for H∞ and
H2 performance analysis of the LPD system (3.1) in closed loop with a
given controller Θ(α), defined in (3.3). These parameter-dependent LMIs
are constructed by linking Θ(α) to a (possibly unstable/destabilizing) full-order
LPD controller Ψ(α) of dimension (nx + nu)× (nx + ny), which is defined as in
(3.3). The controller Θ(α) is augmented with exponentially stable unobservable
and/or uncontrollable dynamics to form a so-called augmented controller Θa(α)
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Figure 3.1: Novel extended LMI characterizations for H∞ and H2 performance of HΘ are
derived by expressing HΘa in terms of HΨ and the difference Υ = Θa −Ψ.

with the same dimensions as Ψ(α). We assume that the augmented controller
matrix attains a so-called Kalman canonical form [124]:

Θa(α) =

 Ac(α) A12(α) Bc(α)
0 A22(α) 0

Cc(α) C2(α) Dc(α)

 , (3.7)

where A22(α) corresponds to exponentially stable dynamics. Subsequently, since
HΘ and HΘa share the same stability and performance properties, stability
and performance of HΘ is characterized in terms of HΨ. Namely, defining the
difference

Υ(α) := Θa(α)−Ψ(α),

note that (3.6) implies[
AΘa(α) BΘa(α)
CΘa(α) DΘa(α)

]
=
[
AΨ(α) BΨ(α)
CΨ(α) DΨ(α)

]
+
[
B̃u(α)
D̃zu(α)

]
Υ(α)

[
C̃y(α) D̃yw(α)

]
,

(3.8)
which is schematically shown in Figure 3.1.

Based on relation (3.8) and the specific form (3.7), extended parameter-
dependent LMI characterizations for H∞ and H2 performance of the LPD
system (3.4) are presented next. The following parameter-dependent matrices
are defined to facilitate the presentation of these characterizations:

RΨ,∞(α) :=


I 0 0

AΨ(α) BΨ(α) B̃u(α)
0 I 0

CΨ(α) DΨ(α) D̃zu(α)

 ,
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RΨ,2(α) :=

 I 0 0
AΨ(α) BΨ(α) B̃u(α)

0 I 0

 .
3.3.1 H∞ performance

The following theorem provides a novel extended H∞ performance characteriza-
tion for the LPD system (3.1) in closed-loop with a given fixed-order controller
(3.2).

Theorem 6 (Extended H∞ performance). Let Ψ(α(t)) ∈ R(nx+nu)×(nx+ny)

be an arbitrary bounded matrix for all α ∈ T , t ∈ T, and let Θa(α(t)) ∈
R(nx+nu)×(nx+ny) be constructed from Θ(α(t)) ∈ R(q+nu)×(q+ny) by adding
exponentially stable uncontrollable and/or unobservable dynamics. Then, the
closed-loop system HΘ, defined as in (3.4), is exponentially stable and ‖HΘ‖∞ <√
γ if there exist bounded matrices

P (α(t)) ∈ S2nx
+ X1(α(t)) ∈ R2nx×(nx+nu)

X2(α(t)) ∈ Rnw×(nx+nu) X3(α(t)) ∈ R(nx+nu)×(nx+nu)

for all α ∈ T , t ∈ T, such that the parameter-dependent LMI

RΨ,∞(α(t))′
Φ(α(t)) 0 0

0 −γI 0
0 0 I

RΨ,∞(α(t)) +

He


X1(α(t))
X2(α(t))
X3(α(t))

 [Υ(α(t))C̃y(α(t)) Υ(α(t))D̃yw(α(t)) −I
] ≺ 0 (3.9)

is feasible for all α ∈ T , t ∈ T, where Φ = Φc in continuous time and Φ = Φd
in discrete time.

Proof. See Appendix A.6.

3.3.2 H2 performance

A novel extended H2 performance characterization for the LPD system (3.1) in
closed-loop with a given fixed-order controller (3.2) is presented now.
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Theorem 7 (Extended H2 performance). Let Ψ(α(t)) ∈ R(nx+nu)×(nx+ny)

be an arbitrary bounded matrix for all α ∈ T , t ∈ T, and let Θa(α(t)) ∈
R(nx+nu)×(nx+ny) be constructed from Θ(α) ∈ R(q+nu)×(q+ny) by adding
exponentially stable uncontrollable and/or unobservable dynamics. Furthermore,
assume that DΘ(α) = 0 for all α ∈ T . Then, the closed-loop system HΘ, defined
as in (3.4), is exponentially stable and

‖HΘ‖22 < sup
α∈T

lim sup
T→∞

1
T
‖Inz‖2W (α),[0,T ] (3.10)

if there exist bounded matrices

P (α(t)) ∈ S2nx
+ W (α(t)) ∈ Snz+

X1(α(t)) ∈ R2nx×(nx+nu) X2(α(t)) ∈ Rnw×(nx+nu)

X3(α(t)) ∈ R(nx+nu)×(nx+nu) X4(α(t)) ∈ Rnz×(nx+nu)

X5(α(t)) ∈ R2nx×(nx+nu) X6(α(t)) ∈ Rnw×(nx+nu)

for all α ∈ T , t ∈ T, such that the parameter-dependent LMIs

RΨ,2(α(t))′
[
Φ(α(t)) 0

0 −I

]
RΨ,2(α(t)) +

He


X1(α(t))
X2(α(t))
X3(α(t))

 [Υ(α(t))C̃y(α(t)) Υ(α(t))D̃yw(α(t)) −I
] ≺ 0 (3.11a)

W (α(t)) CΨ(α(t)) D̃zu(α(t))
? P (α(t)) 0
? ? 0

+

He


X4(α(t))
X5(α(t))
X6(α(t))

 [0 Υ(α(t))C̃y(α(t)) −I
] � 0 (3.11b)

are feasible for all α ∈ T , t ∈ T, where Φ = Φc in continuous time and Φ = Φd
in discrete time.

Proof. See Appendix A.7.
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The following remark provides an extension of Theorem 7, incorporating discrete-
time LPD systems that are not strictly proper (see also Remark 1 on page
15).
Remark 3. In case of a discrete-time LPD system HΘ (see (3.4) on page 31)
that is not strictly proper (i.e., DΘ(α) 6= 0), the LMI (3.11b) should be replaced
with

W (α) CΨ(α) DΨ(α) D̃zu(α)
? P (α) 0 0
? ? I 0
? ? 0 0

+

He



X4(α)
X5(α)
X6(α)
X7(α)

 [0 Υ(α)C̃y(α) Υ(α)D̃yw(α) −I
] � 0 ,

which, after elimination of X4(α), . . . , X7(α) using the projection lemma (see
Appendix B.2), and subsequent application of the Schur complement (see
Appendix B.1), is equivalent to[

W (α)−DΘ(α)DΘ(α)′ CΘ(α)
? P (α)

]
� 0 .

The latter matrix inequality is similar to the LMI presented in Remark 1 on
page 15.

Briefly speaking, Theorem 6 and Theorem 7 provide parameter-dependent
sufficient LMIs for H∞, respectively, H2 performance analysis of the LPD
system (2.1) in closed loop with a given fixed-order LPD controller (3.2). In
fact, these analysis LMIs are equivalent to the analysis conditions presented in
Theorem 3, respectively, Theorem 5, applied to a given closed-loop LPD system
(3.4). This is seen by applying the projection lemma (see Appendix B.2) to
eliminate the slack variables Xj(α) in the LMIs (3.9) and (3.11). It is worth to
emphasize that the choice of Ψ(α) is irrelevant in the analysis LMIs (3.9) and
(3.11). However, the synthesis LMIs that are presented next require a stabilizing
controller Ψ(α), see the discussion below Theorem 9 on page 37.

3.4 Fixed-order synthesis conditions

This section presents a novel framework of parameter-dependent sufficient LMIs
to design fixed-order controllers of the form (3.2) for the LPD system (3.1),
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such that the closed-loop system is exponentially stable and satisfies one or
more H∞ and/or H2 performance specifications for all parameter trajectories
α ∈ T , t ∈ T. This approach is based on the extended H∞ and H2 performance
characterizations derived in the previous section, and requires a set of stabilizing
full-order controllers

Ψj(α(t)) ∈ R(nx+nu)×(nx+ny), α ∈ T , t ∈ T, j ∈ S,

defined as in (3.3), where each index j corresponds to a performance specification
and S ⊂ N+ denotes the set of performance indices. The full-order controllers
Ψj(α) should be computed a priori using, for instance, the convex approaches
discussed in [7, 28, 32, 41, 103] (see Section 2.3 on page 16).

After presenting parameter-dependent sufficient LMIs for single-objective fixed-
order H∞ and H2 synthesis in Section 3.4.1, respectively, Section 3.4.2,
the extension to multi-objective fixed-order control problems is provided in
Section 3.4.3.

3.4.1 H∞ performance

The following theorem presents a parameter-dependent sufficient LMI to design
fixed-order H∞ controllers (3.2) for the LPD system (3.1). Hence, feasibility
of this parameter-dependent LMI guarantees that the closed-loop system (3.4)
is exponentially stable and satisfies an upper bound on the closed-loop H∞
performance for all parameter trajectories α ∈ T , t ∈ T.

Theorem 8 (Fixed-order H∞ synthesis). Let Ψ(α(t)) ∈ R(nx+nu)×(nx+ny),
defined as in (3.3), parameterize a stabilizing full-order controller for the LPD
system (3.1), and let AΨ(α), BΨ(α), CΨ(α) and DΨ(α) denote the corresponding
closed-loop matrices, as in (3.4). For a predefined controller order q (0 ≤ q ≤
nx), let A22(α(t)) ∈ R(nx−q)×(nx−q) correspond to exponentially stable dynamics.
If there exist bounded matrices

P (α(t)) ∈ S2nx
+ ,

Θ̄(α) =

Θ̄11(α) Θ̄12(α) Θ̄13(α)
0 0(nx−q)×(nx−q) 0

Θ̄21(α) Θ̄22(α) Θ̄23(α)

 (3.12)

with Θ̄11(α(t)) ∈ Rq×q, Θ̄12(α(t)) ∈ Rq×(nx−q), and Θ̄23(α(t)) ∈ Rnu×ny , and

Y (α) =

Y11(α) Y12(α) Y13(α)
0 Y22(α) 0

Y31(α) Y32(α) Y33(α)

 (3.13)
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with Y11(α(t)) ∈ Rq×q, Y22(α(t)) ∈ R(nx−q)×(nx−q), and Y33(α(t)) ∈ Rnu×nu ,
for all α ∈ T , t ∈ T, such that the parameter-dependent LMI

RΨ,∞(α(t))′
Φ(α(t)) 0 0

0 −γI 0
0 0 I

RΨ,∞(α(t)) +

He


0

0
I

 [Z(α(t))C̃y(α(t)) Z(α(t))D̃yw(α(t)) −Y (α(t))
] ≺ 0 (3.14)

is feasible for all α ∈ T , t ∈ T, with

Z(α) := Θ̄(α) + Y (α)

0q×q 0 0
0 A22(α) 0
0 0 0nu×ny

−Ψ(α)

 , (3.15)

where Φ = Φc in continuous time and Φ = Φd in discrete time, then the
fixed-order controller parameterized by

Θ(α) =
[
Y11(α) Y13(α)
Y31(α) Y33(α)

]−1 [Θ̄11(α) Θ̄13(α)
Θ̄21(α) Θ̄23(α)

]
(3.16)

stabilizes the LPD system (3.1) with a guaranteed bound ‖HΘ‖∞ <
√
γ on the

closed-loop H∞ performance.

Proof. See Appendix A.8.

3.4.2 H2 performance

Parameter-dependent sufficient LMIs to design fixed-order H2 controllers (3.2)
for the LPD system (3.1) are presented next. Thus, whenever these parameter-
dependent LMIs are feasible, the closed-loop system (3.4) is exponentially
stable and satisfies an upper bound on the closed-loop H2 performance for all
parameter trajectories α ∈ T , t ∈ T.

Theorem 9 (Fixed-order H2 synthesis). Consider the LPD system (3.1), and
assume that Dzw(α) = 0, and that Dzu(α) = 0 or Dyw(α) = 0, for all α ∈ T .
Let Ψ(α(t)) ∈ R(nx+nu)×(nx+ny), defined as in (3.3), parameterize a stabilizing
full-order controller for the LPD system (3.1), and let AΨ(α), BΨ(α), CΨ(α)
and DΨ(α) denote the corresponding closed-loop matrices, as in (3.4). For
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a predefined controller order q (0 ≤ q ≤ nx), let A22(α(t)) ∈ R(nx−q)×(nx−q)

correspond to exponentially stable dynamics. If there exist bounded matrices

P (α(t)) ∈ S2nx
+ W (α(t)) ∈ Snz+

Θ̄(α(t)) ∈ R(q+nu)×(nx+ny) Y (α(t)) ∈ R(nx+nu)×(nx+nu)

for all α ∈ T , t ∈ T, where Θ̄(α) and Y (α) are as in (3.12), respectively, (3.13),
such that the parameter-dependent LMIs

RΨ,2(α(t))′
Φ(α(t)) 0 0

0 −γI 0
0 0 I

RΨ,2(α(t)) +

He


0

0
I

 [Z(α(t))C̃y(α(t)) Z(α(t))D̃yw(α(t)) −Y (α(t))
] ≺ 0 (3.17a)

W (α(t)) CΨ(α(t)) D̃zu(α(t))
? P (α(t)) 0
? ? 0

+

He


0

0
I

 [0 −Z(α(t))C̃y(α(t)) Y (α(t))
] � 0 (3.17b)

are feasible for all α ∈ T , t ∈ T, with Z(α) as in (3.15), where Φ = Φc in
continuous time and Φ = Φd in discrete time, then the fixed-order controller
parameterized by (3.16) stabilizes the LPD system (3.1) with a guaranteed bound

‖HΘ‖22 < sup
α∈T

lim sup
T→∞

1
T
‖Inz‖2W (α),[0,T ]

on the closed-loop H2 performance.

Proof. See Appendix A.9.

The fixed-order H2 synthesis conditions presented in Theorem 9 can be adapted
to take into account nonzero feedthrough matrices, as discussed in the following
remark.
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Remark 4 (Nonzero feedthrough matrices). The assumptions Dzw(α) = 0,
and Dzu(α) = 0 or Dyw(α) = 0, assure a finite H2 norm of the closed-loop
system in the continuous-time case. While, in continuous time, the fixed-order
H2 synthesis LMIs (3.17) require Dzw(α) = 0, the case Dzu(α) 6= 0 and
Dyw(α) 6= 0 is handled as follows:

1. Design a strictly proper stabilizing full-order controller (i.e., Dc(α) = 0),
using, for instance, one of the convex approaches [7, 28, 32, 41, 103].

2. Impose the following constraints on the LMI variables (3.12) and (3.13):

Θ̄23(α) = 0 , Y31(α) = 0 .

To see this, note that according to (3.16) we have

Θ̄23(α) = Y31(α)Bc(α) + Y33(α)Dc(α) .

Consequently, the above constraints imply that Y33(α)Dc(α) = 0. Finally,
positive definiteness of He{Y33(α)} results in Dc(α) = 0 whenever the LMIs
(3.17) are feasible for all α ∈ T , t ∈ T, such that from (3.6) and Dzw(α) = 0
we obtain DΘ(α) = 0.

In the discrete-time case, Dzw(α), Dzu(α) and Dyw(α) are all allowed to be
nonzero. Then, the LMI (3.17b) should be replaced with


W (α) CΨ(α) DΨ(α) D̃zu(α)
? P (α) 0 0
? ? I 0
? ? ? 0

 +

He


0

0
I

 [0 −Z(α)C̃y(α) −Z(α)D̃yw(α) Y (α)
] � 0 .

The synthesis conditions (3.14) and (3.17) feature additional conservatism
compared to the analysis conditions (3.9) and (3.11), respectively. Namely,
structural constraints are imposed on the slack variables Xj(α) in (3.9) and
(3.11) to arrive at convex synthesis conditions, which is made more precise in
the following remark.

Remark 5 (Structural constraints synthesis LMIs). The derivation of the
fixed-order H∞ synthesis LMI (3.14) relies on the specific selections

X1(α) = 0, X2(α) = 0, X3(α) = Y (α)
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in the analysis condition (3.9). Similarly,

X1(α) = 0, X2(α) = 0, X3(α) = Y (α)

X4(α) = 0, X5(α) = 0, X6(α) = −Y (α)

are selected in the analysis conditions (3.11) to arrive at the fixed-order H2
synthesis LMIs (3.17). Using (3.7) and imposing the specific structure (3.13)
on Y (α), these particular choices allow the reconstruction of a fixed-order LPD
controller through the nonlinear transformation (3.16).

By making the specific choices as discussed in Remark 5, feasibility of the
parameter-dependent LMI (3.14) (LMIs (3.17)) for all α ∈ T , t ∈ T, implies
that the closed-loop system HΨ is exponentially stable and satisfies the H∞
performance bound ‖HΨ‖∞ <

√
γ (the H2 performance bound (3.10)). This

is seen by eliminating Y (α) using the projection lemma. Hence, a stabilizing
controller Ψ(α) is required to compute a stabilizing fixed-order LPD controller,
as illustrated in Figure 3.3 on page 43. Furthermore, note that a full-order
controller Ψ(α) with a good closed-loopH∞ (H2) performance should be selected
in the fixed-order synthesis LMI (3.14) (LMIs (3.17)) to obtain a fixed-order
controller with a good H∞ (H2) performance bound. At the same time, it should
be emphasized that the fixed-order synthesis conditions potentially result in
a fixed-order LPD controller with an actual performance which is potentially
better than the performance of Ψ(α), see Section 4.4.2.

Controller parameterization It is remarked that all the optimization variables
in (3.14) and (3.17) are allowed to be parameter-dependent. Therefore, by
imposing a specific parameterization on the LMI variables

Θ̄11(α), Θ̄13(α), Θ̄21(α), Θ̄23(α), (3.18a)

Y11(α), Y13(α), Y31(α), Y33(α), (3.18b)
it is clear from (3.16) that any desired parameterization of the fixed-order
controller can be freely selected. For example, a polynomial parameter
dependency is enforced on the fixed-order LPD controller when the LMI variables
(3.18a) are chosen polynomially parameter-dependent and (3.18b) are taken
constant.

Two extensions of the fixed-order synthesis LMIs are discussed now, demon-
strating their flexibility and generality.

Strictly proper fixed-order controller design The fixed-order H∞ and H2
synthesis LMIs (3.14) and (3.17) allow the design of strictly proper fixed-order



FIXED-ORDER SYNTHESIS CONDITIONS 41

Ψ(α) Θ1(α)

Θ2(α)
Θ3

Figure 3.2: Starting from a stabilizing full-order LPD controller Ψ(α), the fixed-order
synthesis LMIs can be iteratively applied to gradually decrease the controller order. For
example, the figure indicates how a fixed-order robust controller Θ3 can be computed in 3
steps. Namely, by first reducing the number of controller states twice, and subsequently
simplifying the controller parameter dependency once.

controllers (i.e. Dc(α) = 0), by imposing structural constraints on some of the
LMI variables. Namely, imposing the constraints Θ̄23(α) = 0 and Y31(α) = 0
in Theorem 8 and Theorem 9, a strictly proper fixed-order controller results
whenever the corresponding parameter-dependent LMIs are feasible. See also
Remark 4 on page 39.

Iterative controller order reduction Theorem 8 and Theorem 9 can be
generalized in the following way. Given a set of fixed-order controllers

Ψj(α(t)) ∈ R(p+nu)×(p+ny), α ∈ T , t ∈ T, j ∈ S,

where 0 ≤ p ≤ nx, corresponding to controllers of order p, a controller of order q
(0 ≤ q < p) can be designed. The dimensions of the LMI parameters/variables
generalize as follows:

P (α(t)) ∈ Snx+p, Θ̄12(α(t)) ∈ Rq×(p−q), Y22(α(t)) ∈ R(p−q)×(p−q),

and A22(α(t)) ∈ R(p−q)×(p−q). This generalization therefore allows iterative
application of Theorem 8 and Theorem 9 for fixed-order controller design, such
that both the number of controller states and the complexity of the controller
parameterization can be gradually reduced. Figure 3.2 illustrates this concept
of iterative controller order reduction.
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3.4.3 Multi-objective control

For many practical applications, imposing multiple (usually conflicting) control
design objectives is desired. Therefore, this section explains how the synthesis
conditions (3.14) and (3.17) are adapted to handle multi-objective H∞/H2
control problems. Such problems include, for instance, the minimization of an
H∞ performance bound subject to an H2 performance bound, or minimization
of a weighted combination of different performance bounds.

Each performance specification is labeled by an index j ∈ S, where S ⊂ N+ is the
set containing the indices of all performance specifications. Similarly, SH∞ and
SH2 denote the sets of indices associated with H∞, respectively, H2 performance
specifications. Each performance specification j ∈ S is imposed by appropriately
defining selection matrices Lj and Rj and selecting an input-output channel
wj → zj of the LPD system (3.1) as follows δx = A(α)x + Bw(α)wj + Bu(α)u,

zj = LjCz(α)x + LjDw(α)wj + LjDu(α)u,
y = Cy(α)x + Dy(α)wj

where wj := Rjw and zj := Ljz. Denoting the closed-loop system corresponding
to performance channel j ∈ S by

HΘ,j :
{
δxcl = AΘ(α)xcl + BΘ,j(α)wj ,
zj = CΘ,j(α)xcl + DΘ,j(α)wj ,

(3.19)

with BΘ,j(α) = BΘ(α)Rj , CΘ,j(α) = LjCΘ(α), and DΘ,j(α) = LjDΘ(α)Rj ,
the synthesis conditions (3.14) (for j ∈ SH∞) and (3.17) (for j ∈ SH2) are
imposed for each of the LPD systems (3.19), j ∈ S. The performance bounds
are accordingly denoted by γj , j ∈ SH∞ and µj , j ∈ SH2 .

Since the reconstructed multi-objective controller depends on the LMI variables
(3.18) (see (3.16)), these optimization variables are chosen identical for all j ∈ S,
introducing additional conservatism with respect to single-objective synthesis.
However, the remaining variables are chosen differently for each performance
specification. That is, we define the parameter-dependent matrices

Pj(α), Θ̄12,j(α), Θ̄22,j(α), Y12,j(α), Y22,j(α), Y32,j(α)

for j ∈ S, and moreover Wj(α) for j ∈ SH2 , since convexity is then retained
while keeping conservatism to a minimum. It is clear that the presented convex
framework for fixed-order controller synthesis also allows a different initial
controller Ψj(α) for each j ∈ S (see page 36). This concept is illustrated in
Figure 3.3, showing how two full-order LPD controllers are combined to compute
a multi-objective fixed-order LPD controller.
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Ψ1(α)

Θ(α)

Ψ2(α)
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full-order
controller design

fixed-order
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Figure 3.3: The fixed-order synthesis conditions require a stabilizing full-order LPD
controller for each performance specification. For example, to compute a fixed-order
controller with a guaranteed closed-loop H∞/H2 performance, the set of full-order
controllers should be composed of two full-order controllers satisfying an H∞, respectively,
H2 performance.

3.5 Summary

This chapter has presented a projection lemma based framework of sufficient
LMIs to design fixed-order multi-objective controllers for the general class of
LPD systems. Starting from novel extended H∞ and H2 analysis LMIs, that
rely on linking the fixed-order controller to an arbitrary full-order controller for
the same system, sufficient LMIs for fixed-order synthesis were derived. These
synthesis conditions require an a priori computed stabilizing full-order controller
for each performance specification (see Figure 3.3 on page 43), and thus allow
the design of fixed-order multi-objective H∞/H2 controllers. Various extensions
of the synthesis conditions were proposed, such as the design of strictly proper
controllers and an iterative approach to gradually decrease the controller order
(see Figure 3.2 on page 41), demonstrating their generality and flexibility.

The potential of the fixed-order controller design approach for different subclasses
of LPD systems (see Table 2.1 on page 9 for an overview) is confirmed by
numerical and experimental validations in the following chapters.
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Recapitulation

• The fixed-order controller synthesis problem is nonconvex, even for LTI
systems.

• Using the projection lemma, extended LMIs for closed-loop H∞ and H2
performance analysis of a given fixed-order controller are derived, by
expressing the closed-loop matrices as a function of an arbitrary full-order
controller for the same system.

• By imposing structural constraints on the variables in the extended analysis
LMIs, sufficient LMIs are derived to design fixed-order (multi-objective)
H∞/H2 controllers for LPD systems, requiring an a priori computed
stabilizing full-order controller for each performance specification.

• The fixed-order synthesis LMIs allow the design of strictly proper controllers.
• Iterative application of the fixed-order synthesis LMIs is possible, such that

the controller order can be gradually decreased.



Chapter 4

Fixed-order controller design
for LTI systems

Focusing on LTI dynamics, this chapter presents numerical and experimental
validations of the fixed-order controller design approach presented in Chapter 3.
The existence of a convex reformulation of the fixed-order H∞/H2 controller
design problem for LTI systems is unknown, even when only one performance
specification is imposed. Despite this fact, it is demonstrated that our approach
allows the computation of fixed-order H∞ and H2 controllers featuring similar
closed-loop performance as an optimal full-order H∞ or H2 controller. For
the multi-objective case, it is shown how fixed-order H∞/H2 controllers are
computed which are less conservative than full-order designs resulting from well-
known LMI approaches. The latter is achieved by exploiting the freedom to use a
different full-order controller for each performance specification in our fixed-order
LMI framework. Various comparisons with existing fixed-order controller design
approaches illustrate the potential of our framework of sufficient LMIs applied
to LTI systems.

4.1 Introduction

The existence of a convex reformulation of the fixed-order H∞/H2 controller
design problem for LTI systems is unknown, even when only one performance
specification is imposed [97, 103, 116]. Despite the lack of such a convex
condition, several approaches have been developed for reduced-order controller
design [50]. Those include solving the nonconvex problem directly [116], solving

45
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a nonconvex reformulation in terms of an LMI plus a rank constraint [40, 44, 89],
or setting up convex sufficient conditions [3, 51, 77, 118].

The approach presented in Chapter 3 belongs to the last category, and is inspired
by the works [1–3], where an LMI procedure consisting of two stages is proposed
to design fixed-order controllers satisfying one or more closed-loop H∞/H2
performance specifications. In this procedure, a stabilizing state feedback for
an augmented system is designed first, and subsequently used as a parameter
in a sufficient LMI condition for fixed-order controller design. A fixed-order
controller results whenever the LMI optimization problem is feasible. However,
the state feedback design in the first step has infinitely many solutions, and the
particular solution selected strongly affects the subsequent fixed-order controller
design step. In fact, structural constraints need to be imposed on the LMI
variables in the state-feedback design step to avoid synthesis of a fixed-order
controller that is reducible to a static output feedback [3].

As selecting an appropriate state feedback (in the first step) to obtain high
performance fixed-order controllers in the second step is not trivial, we apply
the novel approach presented in Chapter 3, starting from a set of full-order
H2/H∞ controllers (for the original system), and explain how to intuitively
select this set of full-order controllers. Given such a set of feedback controllers,
it is numerically demonstrated how to compute high performance fixed-order
H∞/H2 controllers. As illustrated for a fixed-order H∞ control example in
Section 4.3, the computation of a fixed-order controller can either be performed
in one step or by successive reduction of the controller order (see page 41 and
Figure 3.2 on page 41).

Since the Lyapunov and G shaping paradigms for full-order multi-objective
controller design correspond to sufficient conditions (see Section 2.3.1 on page 18),
a reduction of conservatism for these designs using the proposed fixed-order
synthesis LMIs is investigated in Section 4.4. Numerical comparisons show that,
by exploiting the freedom to use a different full-order controller parameter
for each performance specification, fixed-order multi-objective controllers
are computed which are less conservative than full-order Lyapunov shaping
(continuous time) and G shaping (discrete time) designs.

The practical viability of the fixed-order controller design approach is confirmed
by experimental validations on a lab-scale overhead crane with a fixed cable
length, presented in Section 4.5.
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4.2 Problem formulation

Consider the finite-dimensional LPD state-space model (3.1) (see page 30), and
assume that the parameter α is a priori known and constant. In other words,
the system dynamics are unaffected by parameters. Then, the dynamics under
consideration are LTI (see Table 2.1 on page 9), and hence take the form δx = Ax + Bww + Buu,

z = Czx + Dzww + Dzuu,
y = Cyx + Dyww

(4.1)

with state x : T→ Rnx , exogenous input w : T→ Rnw , control input u : T→
Rnu , regulated output z : T→ Rnz and measured output y : T→ Rny , where
all system matrices are real, constant, and have appropriate dimensions.

The aim is to design fixed-order dynamic output feedback LTI controllers{
δxc = Acxc + Bcy,
u = Ccxc + Dcy,

(4.2)

with xc ∈ Rq, q < nx, exponentially stabilizing the LTI system (4.1) such that
one ore more closed-loop performance specifications are guaranteed. Note that,
in contrast to general LPD controllers (3.2) (see page 30), the controller order
is now completely characterized by the dimension of the state xc.

It is emphasized that, since the system (4.1) is unaffected by parameters, the
corresponding LMIs for fixed-order H∞/H2 controller synthesis simplify to
parameter-independent conditions. Consequently, the latter conditions are no
longer semi-infinite and infinite dimensional, and are thus directly implemented
and solved using available software.

4.3 Fixed-order H∞ control

In this section, the AC7 aircraft model from the COMPleib library [68, 69] is
considered. This 9th order LTI model is discretized using zero-order hold at
a sampling period of 0.01s, which is sufficiently small to capture the system
dynamics. The objective is to design fixed-order controllers for the discretized
LTI system, optimizing the H∞ performance on the input-output channel
w → z.

First an optimal full-order H∞ controller (4.2) is computed with the approach
[103], resulting in the optimal closed-loop H∞ norm 4.0 · 10−2. This full-order
H∞ controller is substituted for Ψ in the LMI (3.14), for q = 0, . . . , 8, which is
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Table 4.1: A comparison between direct/iterative application of Theorem 8 (T8) and the
approaches [3, 8, 47] confirms the potential of our approach. For each approach and each
controller order q, the bound √γ (H∞ performance) multiplied by a factor 102 is shown.
The approach [8, 47] only returns the actual H∞ performance.

q T8 direct T8 iterative [3] [8, 47]
8 4.0 (4.0) 4.0 (4.0) 5.8 (4.3) 4.0
7 4.1 (4.0) 4.1 (4.0) 6.5 (4.7) 4.0
6 4.1 (4.0) 4.1 (4.0) 7.8 (6.5) 4.0
5 5.0 (5.0) 4.1 (4.0) 11.5 (6.5) 4.0
4 5.1 (5.0) 5.0 (5.0) 11.9 (6.5) 4.0
3 5.0 (4.7) 5.5 (5.3) 13.4 (7.4) 5.2
2 11.1 (5.9) 10.4 (6.8) 14.0 (6.7) 4.0
1 8.0 (6.8) 8.7 (6.4) 15.4 (7.1) 6.5
0 43.0 (6.8) 9.6 (6.9) 10.2 (6.6) 6.5

schematically conceptualized in Figure 4.1a on page 49. Subsequently, selecting
A22 = 0 (see Remark 6 on page 53) and minimizing the bound γ yields controllers
of order q = 2, . . . , 8, while the LMI (3.14) is infeasible for q = 0, 1. However, a
feasible solution might be obtained for q = 0, 1 by replacing Ψ with a suboptimal
full-order controller in the LMI (3.14). Therefore, a suboptimal full-order
controller is computed by fixing the H∞ bound √γ in the full-order synthesis
LMI to the suboptimal value 0.3 and solving the corresponding feasibility
problem, resulting in a closed-loop H∞ norm of 6.4 · 10−2. Substituting this
full-order controller for Ψ in the LMI (3.14) for q = 0, 1, feasible solutions are
obtained. The results are summarized in Table 4.1, showing the controller order
in the first column and the bounds √γ (closed-loop H∞ norms) in the second
column. Note that optimal H∞ controllers are obtained for q ≥ 6, since these
controllers yield the same closed-loop performance as the optimal full-order H∞
controller.

Now fixed-order controllers are computed by iterative application of Theorem 8,
see page 41 and Figure 3.2 on page 41. Specifically, starting from a full-order
controller Ψ, controllers of order q are computed by substituting the controller
of order q + 1 in the LMI (3.14) for q = nx − 1, . . . , 0. The latter approach
is visualized in Figure 4.1b. The corresponding results are given in the third
column of Table 4.1. It is remarkable that an optimal controller of order 5 is
computed, and that the bound corresponding to the design of a static output
feedback controller (q = 0) significantly improved compared to direct application
of Theorem 8 (see Figure 4.1a).

The discrete-time counterpart of the approach discussed in [3], see also [1, 2],
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(a) Direct approach
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Θ1

Θn

(b) Iterative approach

Figure 4.1: Direct (Figure 4.1a) versus iterative (Figure 4.1b) application of the fixed-order
synthesis LMI presented in Theorem 8 to compute fixed-order controllers Θ1, . . . ,Θn with
a guaranteed H∞ performance from a full-order H∞ controller Ψ.

is applied now. This approach relies on the computation of a state feedback
controller for an augmented system, which is subsequently used as a parameter
in a sufficient LMI for fixed-order H∞ controller design. It is worth to emphasize
that a different state feedback controller is required for the computation of
controllers of different orders q, whereas our approach allows the use of a
single full-order controller to compute fixed-order controllers of different orders.
Starting from an optimal H∞ state feedback, the approach from [3] returns
infeasibility for all orders q = 0, . . . , 8. Therefore, the bound √γ = 4.0 · 10−2,
corresponding to the performance of an optimal full-order controller, is fixed
in the LMI for state feedback design, resulting in suboptimal state feedback
controllers. The latter controllers are subsequently used for fixed-order controller
design. The results are shown in row 4 of Table 4.1. A comparison reveals that,
except for q = 0, direct and iterative application of Theorem 8 yields controllers
with better H∞ performance.

The last row of Table 4.1 summarizes the results of the HIFOO package [8, 47].
Since HIFOO can only handle continuous-time models, the continuous-time
AC7 model is used. Two randomly generated starting points are used, and the
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Table 4.2: A comparison between computation times (in seconds) corresponding to
Theorem 8 (T8) and HIFOO [8, 47] demonstrates that the former approach is numerically
more attractive.

q : 8 7 6 5 4 3 2 1 0
T8 direct : 1.00 0.72 0.69 0.78 0.75 0.63 0.39 0.48 0.36

T8 iterative : 0.99 0.75 0.46 0.32 0.34 0.26 0.15 0.17 0.14
[8, 47] : 102 73.0 89.1 59.6 47.2 65.9 43.3 1.56 0.72

option to restrict to the BFGS phase is selected. While HIFOO yields better
H∞ performance in some cases, our approach provides better results than
HIFOO for q = 3, and similar results are obtained for q = 1 and q = 5, . . . , 8. It
should be emphasized that our approach is considerably faster than HIFOO, as
Table 4.2 indicates. For each order q specified in the first row, the second row
indicates the computation times corresponding to direct application of Theorem
8 (see Figure 4.1a). Note that the time to compute a full-order controller, which
is 0.55s for the optimal H∞ controller, should be added to obtain the total
computation time. The third row shows the computation times resulting from
iterative application of Theorem 8 (see Figure 4.1b), which are lower for lower
controller orders due to fewer LMI rows and variables. In this case, the total
computation time follows by adding the computation times of all higher order
controllers. It is clear from the last row that, compared to the aforementioned
approaches, the computation times of HIFOO are similar for low order controller
design, but substantially higher for computation of high order controllers.

4.4 Fixed-order H∞/H2 control

Two multi-objective fixed-order control problems (continuous and discrete time)
are considered next, illustrating how fixed-order controllers can be computed
which are less conservative than full-order designs resulting from well-known
LMI approaches.

4.4.1 Continuous time academic example

Consider the AC3 model from the COMPleib library [68, 69]. The aim is to
design a fixed-order multi-objective controller for this 5th order aircraft model.
Denoting the exogenous input and the regulated output of the AC3 model
by w and z, respectively, the following performance channels are considered:



FIXED-ORDER H∞/H2 CONTROL 51

w1 = w2 = w and z1 = z2 = z, with SH∞ = {1} and SH2 = {2}. The H2
performance is minimized subject to a bound on the H∞ performance.

First, the Lyapunov shaping paradigm (see [103]) is applied to design a full-order
controller Ψ, by imposing the H∞ performance bound ‖HΨ,1‖∞ < b = 3.4.
The obtained controller yields a closed-loop H2 performance ‖HΨ,2‖2 = 5.60.
Subsequently, Ψ1 = Ψ2 = Ψ, q = 1 and A22 = −I are selected in the LMIs
(3.14) and (3.17) to design a controller Θ of order 1, by minimizing the H2
bound µ2 subject to the H∞ bound √γ1 < b. The solution is promising, since
the resulting H2 bound is tight, resulting in similar performance compared to
the full-order controller: √µ2 = 5.60 and ‖HΘ,2‖2 = 5.60.

However, by exploiting the freedom of using two different full-order controller
parameters Ψj , j = 1, 2 (see Figure 3.3 on page 43), potentially less conservative
fixed-order controllers can be computed. Therefore, the Lyapunov shaping
design Ψ1 = Ψ is substituted in the LMI (3.14) to guarantee the constraint√
γ1 < b, and a second full-order controller Ψ2 is designed by selecting a higher

value for b in the Lyapunov shaping design step, such that better closed-loop
H2 performance compared to Ψ1 is achieved: ‖HΨ2,2‖2 < ‖HΨ1,2‖2. As a
consequence, substitution of Ψ2 in the H2 synthesis LMIs (3.17) allows a lower
H2 performance bound in the fixed-order controller design step.

The left part of Figure 4.2 shows the H2 bound √µ2 and H2 performance
‖HΘ,2‖2 for different values of ‖HΨ2,2‖2. The rightmost point of the subfigures
corresponds to the choice Ψ2 = Ψ1 = Ψ. Gradually improving the closed-loop
H2 performance of Ψ2 completes the left part of Figure 4.2, revealing that using
a controller Ψ2 with a closed-loop performance ‖HΨ2,2‖2 ≈ 4.9 is optimal in
this case: ‖HΘ,2‖2 = 5.22. This corresponds to an improvement of almost 7%
in performance compared to the full-order Lyapunov shaping design. Selecting,
for example, ‖HΨ2,2‖2 = 5.2 results in an improvement both in terms of the H2
bound and the closed-loop H2 performance: √µ2 = 5.48 and ‖HΘ,2‖2 = 5.27.
As can be inferred from the right part of Figure 4.2, the improvement in H2
performance results in a slight increase of the closed-loop H∞ norm.
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Figure 4.2: Using different Lyapunov shaping controllers Ψj , j ∈ S, allows the design of
fixed-order controllers which are less conservative than a Lyapunov shaping design.

4.4.2 Discrete time academic example

Consider the following LTI system (see Example 4 from [32]):

x(t+ 1) =

2 0 1
1 0.5 0
0 1 −0.5

x(t) +

1 0 0
0 0 1
0 0 0

w(t) +

1
0
0

u(t),

z(t) =


1 0 0
0 1 0
0 0 1
0 0 0

x(t) +


0
0
0
1

u(t),

y(t) =
[
0 1 0

]
x(t) +

[
0 1 0

]
w(t).

(4.3)
with SH∞ = {1, 2, 3}, SH2 = {4}, and input/output selection matrices

R1 =
[
1 0 0

]′
, R2 =

[
1 0 0

]′
, R3 =

[
0 1 0

]′
, R4 =

[
0 0 1
0 1 0

]′
,

L1 =
[
1 0 0 0

]
, L2 =

[
0 0 0 1

]
, L3 =

[
0 1 0 0

]
, L4 = I4.

We are interested in the computation of a fixed-order dynamic output feedback
controller Θ, such that

‖HΘ,j‖∞ < b, j ∈ SH∞ (4.4)

for some predefined fixed value of b > 0, and moreover the closed-loop H2
performance ‖HΘ,4‖2 is minimized. The bound b = 7.4 is selected.
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First a full-order controller Ψ is computed using the G shaping paradigm [32],
where a bound on ‖HΨ,4‖2 is minimized subject to the constraints ‖HΨ,j‖∞ < b,
j ∈ SH∞ . The resulting closed-loop H2 norm equals ‖HΨ,4‖2 = 16.11. Selecting
q = 2, Ψj = Ψ for j ∈ S and A22 = 0 in the LMIs (3.14) and (3.17), minimization
of µ4 subject to the constraints (4.4) yields √µ4 = 16.11 and ‖HΘ,4‖2 = 15.63.
The bound √µ4 is equal to ‖HΨ,4‖2, which is theoretically the best achievable
according to the discussion below Remark 5 on page 39. However, note that
the closed-loop H2 performance corresponding to the fixed-order controller Θ is
better compared to the full-order G shaping design.

However, fixed-order controllers with even better closed-loop H2 performance
might result by selecting different full-order controllers for the different
performance specifications in the fixed-order synthesis LMIs. Therefore, a
different controller Ψ4 is designed using the G shaping paradigm, by imposing
a bound b > 7.4 on the H∞ performances. In this way, the H∞ constraints
are relaxed, such that ‖HΨ4,4‖2 < ‖HΨ,4‖2. Hence, a fixed-order controller
satisfying the constraints (4.4) that achieves a better H2 performance potentially
results when Ψ4 instead of Ψ is substituted in the H2 synthesis LMIs (3.17).

Figure 4.3 shows the bound √µ4 and H2 performance ‖HΘ,4‖2 (left), and the
maximum of the bounds γj and H∞ performances ‖HΘ,j‖∞, j ∈ SH∞ (right),
corresponding to the fixed-order design as a function of ‖HΨ4,4‖2. The rightmost
point of the subfigures corresponds to the choice Ψj = Ψ, j ∈ S, and Figure 4.3
is completed by gradually improving the H2 performance corresponding to Ψ4.
The left part of Figure 4.3 implies that selecting a controller Ψ4 with a slightly
better closed-loop H2 performance than Ψ (i.e., ‖HΨ4,4‖2 < ‖HΨ,4‖2) causes a
decrease of the bound µ4 and a better H2 performance. For example, taking
b = 7.9 yields ‖HΨ4,4‖2 = 15.4, resulting in √µ4 = 15.6 and ‖HΘ,4‖2 = 14.9,
demonstrating an improvement of 7.5% in H2 performance compared to the
G shaping controller Ψ. Selecting b > 8.5 in the G shaping design step, no
feasible solution was obtained. Looking at the right part of Figure 4.3, the H2
performance improves at the expense of a higher H∞ norm, approximating the
H∞ bound for lower values of ‖HΨ4,4‖2.

Remark 6. Although, theoretically speaking, the choice of the A22 matrix
might influence the performance realized by the fixed-order controller, extensive
numerical experiments have shown that selecting A22 different from the suggested
values (i.e., A22 = 0 in discrete-time and A22 = −I in continuous-time) has a
negligible effect on the closed-loop performance.
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Figure 4.3: Using different G shaping controllers Ψj , j ∈ S, allows the design of fixed-order
controllers which are less conservative than a full-order G shaping design.

4.5 Fixed-order multi-H∞ control of a lab-scale
overhead crane

To demonstrate the practical viability of the fixed-order controller design
approach (presented in Chapter 3) for LTI systems, this section provides
experimental results of fixed-order multi-H∞ controllers on a lab-scale overhead
crane.

4.5.1 Model description

The system under consideration (shown in Figure 4.4) consists of a cart on a rail,
to which a load is connected through a cable of fixed length. The horizontal cart
and load position are denoted by xcart [m] and xload [m], respectively, while φ
[rad] is the swing angle. The cable length is denoted by α = 0.45 [m], implying
a resonance frequency of 0.74Hz. A horizontal reference velocity of the cart
defines the control input u [m/s], since an input voltage scales to horizontal
cart velocity through a high bandwidth proportional feedback controller. The
quantities xcart and φ are measured in real time. Then, based on the assumption
that the cable is stiff, xload is expressed as

xload = xcart + α sin(φ).

Consequently, assuming small swing angles (i.e., sin(φ) ≈ φ), perfect velocity
tracking and no friction forces, the following continuous-time transfer function
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Figure 4.4: The overhead crane setup (left) and its schematic representation (right).

from u to xload is derived:
g

s(αs2 + g) , (4.5)

where g [m/s2] denotes the gravitational acceleration. Converting (4.5) to
state-space form allows direct application of our fixed-order controller synthesis
approach.

However, since closed-loop performance is directly affected by the model
accuracy, a more accurate system model than (4.5) is identified. Using multisine
excitation, five frequency response functions (FRFs) are measured and averaged,
and subsequently a 3rd order transfer function is fitted, see Figure 4.5. The
corresponding discrete-time LTI model with a sampling period of 0.02s is given
by

G :


x(t+ 1) =

2.9910 −2.9905 0.9995
1 0 0
0 1 0

x(t) +

1
0
0

u(t),

103 · xload(t) =
[
0.6571 −1.272 0.7173

]
x(t) + 3.408 u(t).

(4.6)

4.5.2 Controller design

The objective is to design fixed-order controllers (4.2) for the lab-scale overhead
crane modeled by (4.6), achieving fast and accurate reference positioning of
the load while avoiding excitation of the resonance frequency. At the same
time, model uncertainty and measurement noise should be taken into account
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Figure 4.5: Averaged FRF (solid gray) and the fitted transfer function (dashed black).

−+ Θ G

WTWS

w y u xload

z1 z2

Figure 4.6: Block diagram of the lab-scale overhead crane model (4.6) interconnected
with a fixed-order controller Θ. Two additional LTI systems WS and WT are incorporated
to model the desired control objectives.

to guarantee the required level of robustness, and thus avoid stability and
performance issues.

We define a reference signal w for the horizontal load position, and a
corresponding error signal y := w − xload. The controller input is selected
as y, such that a nonzero input signal u is generated whenever the load is not
on its desired position. The closed-loop interconnection of the LTI model (4.6)
with a fixed-order controller (4.2) (denoted by Θ) is shown in Figure 4.6. Two
additional discrete-time LTI systems (or, equivalently, transfer functions) WS

and WT are incorporated to guarantee the aforementioned control objectives.
Appropriate selection of WS and WT is briefly explained next.

The required level of robustness is characterized by the relative uncertainty of
the measured FRFs with respect to the fitted FRF. Namely, assuming that the
model (4.6) is subject to multiplicative uncertainty, and following the lines on
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Figure 4.7: Maximum relative uncertainty and upper bound |WT |.

pages 275-276 of [111], the closed-loop uncertain system is robustly stable if

‖WTT‖∞ < 1, (4.7)

where T denotes the so-called complementary sensitivity (i.e., the transfer
function from w to xload), and WT is a weighting function whose magnitude
|WT | is an upper bound for the maximum relative model uncertainty. Figure 4.7
shows the maximum relative uncertainty and the bound |WT |, corresponding
to the selected third order transfer function WT , as a function of frequency.

Closed-loop bandwidth, and thus reference tracking performance, is character-
ized by the so-called sensitivity function S (i.e., the transfer function from w to
y). We consider the continuous-time transfer function

W (s) := s/A∞ + ωc
s+A0ωc

, (4.8)

where ωc is the crossover frequency [rad/s], while lims→0W (s) = 1/A0 and
lims→∞W (s) = 1/A∞. Selecting ωc = 1, A0 = −40dB and A∞ = 20dB, this
transfer function is discretized using the Tustin approximation, resulting in the
first order transfer function WS . Then, optimizing bandwidth is equivalent to
minimizing the positive scalar γ1 subject to

‖WSS‖∞ < γ1.

To achieve perfect reference positioning (i.e., no steady state error), S(1) = 0
is required. However, note that the latter is not enforced by the performance
weight (4.8), since this transfer function has no pole in s = 0. Namely, stable
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weighting functions are required to apply the full-order controller synthesis
approach presented in, amongst others, [103]. Consequently, the low-frequency
pole of WS appears in the full-order controller, together with a zero at z = 1
due to integrating action in the model (4.6). An a posteriori manual pole-zero
cancellation in the controller, corresponding to the low-frequency pole and the
zero at z = 1, results in an open-loop transfer function with integrating action,
and thus fulfills the requirement S(1) = 0. Since the uncontrolled system (i.e.,
the system of the form (4.1) with input

[
w u

]′ and output
[
z y

]
) is of order

7, applying the approach [103] in combination with an a posteriori manual
pole-zero cancellation results in a controller of order 6. It is worth to mention
that, very recently, a more elegant approach that allows the incorporation of
unstable weighting functions has been developed [63].

Adopting the notation of Section 3.4.3 (see page 42), we define the closed-loop
transfer functions HΘ,1 : w → z1 and HΘ,2 : w → z2 (see Figure 4.6), and select
the set of performance channels as S = SH∞ = {1, 2} and the corresponding
set of selection matrices R1 = R2 = 1, L1 =

[
1 0

]
, and L2 =

[
0 1

]
. Then,

the multi-H∞ control problem translates to

minimize
Θ,γ1,γ2

γ1

subject to: ‖HΘ,1‖∞ < γ1, ‖HΘ,2‖∞ < γ2,

γ1 < b1, γ2 < 1.
(4.9)

where an optional bound b1 is incorporated to bound the feasible set associated
with the optimization problem. It is worth to emphasize that this multi-objective
formulation with constraints ‖HΘ,1‖∞ < γ1 and ‖HΘ,2‖∞ < γ2 is always less
conservative than the mixed-sensitivity formulation (see [65])∥∥∥∥ HΘ,1/γ1

HΘ,2/γ2

∥∥∥∥
∞
< 1.

4.5.3 Numerical evaluation

In order to design fixed-order multi-H∞ controllers for the lab-scale overhead
crane, a full-order controller is computed with the approach [103], by solving the
optimization problem (4.9) without imposing a bound b1 and applying a manual
pole-zero cancellation in the controller. This full-order controller is substituted
for Ψ in the fixed-order H∞ synthesis LMIs (3.14) (i.e.: Ψ1 = Ψ2 = Ψ), which
are then sequentially applied to obtain solutions of (4.9) for all orders 0 ≤ q ≤ 5
(see page 41 and Figure 3.2 on page 41).

The numerical results are summarized in Table 4.3, showing the selected bound
b1 and the obtained H∞ bounds and H∞ norms for each controller order
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Table 4.3: Numerical results of multi-H∞ controller synthesis for the lab-scale overhead
crane model (4.6). For each controller order 0 ≤ q ≤ 6, the selected bound b1, bounds γi

and a posteriori calculated norms ‖HΘ,i‖∞, i = 1, 2 corresponding to the optimization
problem (4.9) are shown.

q b1 γ1 ‖HΘ,1‖∞ γ2 ‖HΘ,2‖∞
6 − 0.57 0.57 1.00 0.92
5 0.65 0.60 0.57 0.97 0.94
4 3.1 3.02 0.58 1.00 0.96
3 54 52.5 23.3 0.96 0.91
2 66 64.7 56.7 0.94 0.77
1 53 52.4 49.9 0.91 0.79
0 57 55.9 51.8 0.88 0.86

0 ≤ q ≤ 6. Table 4.3 confirms that the fixed-order H∞ synthesis LMIs yield
stabilizing controllers satisfying the robustness bound ‖HΘ,2‖∞ < 1 for all
orders 0 ≤ q ≤ 6. Although more conservative H∞ bounds result for lower
controller orders, similar closed-loop performance is achieved for 4 ≤ q ≤ 6,
suggesting that a controller of order 4 is sufficient for this application. We
observed that decreasing b1 leads to lower closed-loop H∞ norms. As can be
inferred from the Bode magnitude plot of HΘ,2 and Θ, shown for all controller
orders 0 ≤ q ≤ 6 in Figure 4.8, the high-order controllers invert the resonance
frequency of the system (4.6) (see [119] and references therein). While the latter
may cause undesired closed-loop behavior, in this case it is perfectly legitimate
since the resonance frequency has been reliably identified.

A desired bandwidth can no longer be achieved for the orders q ≤ 3. To clarify
this, note that the resonance frequency can no longer be sufficiently suppressed
by the controller, see Figure 4.8. Therefore, this resonance will appear in the
Bode magnitude plot corresponding to HΘ,2. Consequently, low controller gains
are required to satisfy the robustness bound, implying a low bandwidth. To
obtain feasible solutions of (4.9) for 0 ≤ q ≤ 3, it was necessary to manually
decrease the gain of the controller that was substituted in the fixed-order LMIs.

4.5.4 Experimental validation

To validate the designed fixed-order multi-H∞ controllers, they are experi-
mentally tested on the lab-scale overhead crane. For each controller order
0 ≤ q ≤ 6, the experimental closed-loop response to a smoothed reference step
is determined. Figure 4.9a shows the simulated and experimental closed-loop
responses to a smoothed step of 0.5m for the controllers of order 4 ≤ q ≤ 6. The
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Figure 4.8: Bode magnitude plots of the complementary sensitivity T : w → xload (top)
and the fixed-order controller Θ : y → u (bottom), for all controller orders 0 ≤ q ≤ 6.

experimental responses feature slightly more overshoot than the corresponding
simulations, which we attribute to saturation of the control input u. However,
it should be emphasized that the controllers of order 4 ≤ q ≤ 6 feature similar
performance, confirming that the controllers of order q > 4 are needlessly
complex for this application. At the same time, Figure 4.9b shows that the
closed-loop responses corresponding to the low-order controllers (0 ≤ q ≤ 3)
are clearly below par. Consequently, a controller of order q = 4 is optimal
in terms of simplicity and performance for this specific application. The fact
that the computed fourth order controller achieves similar performance as a
significantly more complicated full-order controller strongly sustains the value
of our fixed-order controller design approach.
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Figure 4.9: Closed-loop simulated (black) and experimental (gray) responses to a smoothed
reference step.

4.6 Summary

This chapter has presented numerical and experimental validations of the fixed-
order controller design approach (presented in Chapter 3) applied to LTI systems.
Despite its conservatism, numerous fixed-order controllers with similar closed-
loop performance as an optimal full-order H∞ or H2 controller were obtained,
either by direct or iterative application of the fixed-order synthesis conditions.
It was moreover shown how, by exploiting the freedom to select a different full-
order controller for each performance specification, multi-objective fixed-order
controllers were computed that outperform full-order controllers resulting from
well-known (conservative) LMI approaches. The practical viability of our LMI
framework for fixed-order controller synthesis was confirmed by experimental
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validations of multi-H∞ controllers on a lab-scale overhead crane.

Recapitulation

• The existence of a convex reformulation of the fixed-order H∞/H2 synthesis
problem for LTI systems is unknown, even when only one performance
specification is imposed.

• Despite the potential conservatism of the LMI framework for fixed-order
H∞/H2 controller design (presented in Chapter 3), it often results in
fixed-order H∞ (H2) controllers with similar performance as (optimal) H∞
(H2) full-order controllers.

• Our LMI framework (presented in Chapter 3) allows the computation of
fixed-order multi-objective controllers that outperform full-order controllers
resulting from the Lyapunov and G shaping paradigm, by exploiting the
freedom to select a different full-order controller for each performance
specification in the fixed-order synthesis LMIs.

• The practical viability of the fixed-order synthesis approach (presented in
Chapter 3) for the class of LTI systems is confirmed by experimental
validations of fixed-order multi-H∞ controllers on a lab-scale overhead crane.



Chapter 5

Fixed-order controller design
for LPV systems

In this chapter, the fixed-order LMI framework from Chapter 3 is applied
to design fixed-order multi-objective H∞/H2 controllers for LPV systems.
Hence, it is assumed that the system is affected by parameters that are a
priori unknown but measurable in real time. Both the number of states and
the parameter dependency of the controller are a priori fixed. By applying a
numerically attractive relaxation technique, tractable sufficient LMIs for fixed-
order synthesis are derived, allowing the design of high performance fixed-order
H∞/H2 controllers. The practical viability of the approach is assessed by
experimental validations on a lab-scale overhead crane with varying cable length.

5.1 Introduction

Bridging the gap between the restricted class of LTI systems and the general
class of nonlinear systems, the modern framework of LPV systems has gained
popularity since the nineties. It has been successful in many applications ranging
from wafer stages [121] to racing motorcycles [22]. See the interesting recent
survey [55] and book [82] for a complete overview.

Full-order dynamic output feedback control, amongst others, received substantial
attention in the field of LPV control [7, 28, 99, 100, 127]. The design of fixed-
order LPV controllers (i.e., with a prefixed order and parameter dependency), on
the other hand, has not yet been extensively studied and applied. For instance,
the approaches presented in [10, 67] solely provide conditions for controller

63
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orders larger or equal to the plant order minus the number of (exact) state
measurements, while the algorithms for fixed-order synthesis presented in [6, 47],
which are very successful for LTI systems, cannot handle LPV dynamics. At
the same time, sequential convex programming methods, e.g. [116], can cope
with LPV dynamics, but are computationally very demanding. Additionally,
the approach [37] relies on the design of numerous random initial controllers,
which are subsequently used for the design of a single LPV controller. This
results in a numerically costly procedure for the computation of a suitable LPV
controller. Moreover, the latter approach does not allow all system matrices to
be parameter-dependent. Although the 2-step approach presented in [3] (using
a stabilizing state feedback for a specific augmented system as a starting point)
is readily extendable to handle LPV dynamics, no guidelines are provided on
how to select an initial state feedback to obtain a high performance fixed-order
controller.

In this chapter, the novel fixed-order synthesis approach from Chapter 3
is applied to design fixed-order LPV controllers with a rational parameter
dependency, where the polynomial degree of the numerator and denominator
as well as the number of states are prefixed. The resulting approach allows
polynomial parameter dependencies of all system matrices, handles multiple
design objectives, and provides intuitive guidelines for the selection of an
initial full-order controller. Moreover, known bounds on the rate of parameter
variation are taken into account to obtain less conservative results compared to
unbounded rates of variation. Namely, as motivated in [28, 88] and references
therein, taking into account bounds on the rate of parameter variation is essential
to reduce conservatism that is inherent in the LPV synthesis approaches based
on quadratic stability [5]. Homogenization and polynomial approximations (see
Section 2.4.2) are used to obtain tractable LMI formulations that guarantee
feasibility of the parameter-dependent synthesis conditions. The combination
of all properties above makes our method attractive, both computationally
and practically, compared to existing approaches. The merits of the proposed
methodology are illustrated by experimental validations on a lab-scale overhead
crane with varying cable length, comparing the experimental performances of a
full-order controller with a significantly simpler fixed-order LPV controller.

5.2 Problem formulation

Consider the finite-dimensional LPD state-space representation (3.1) (see
page 30), and assume that the parameter α is a priori unknown, real-time
measurable and time-varying. Then, the dynamics under consideration are LPV
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(see Table 2.1 on page 9), and thus take the form δx = A(α)x + Bw(α)w + Bu(α)u,
z = Cz(α)x + Dzw(α)w + Dzu(α)u,
y = Cy(α)x + Dyw(α)w

(5.1)

with state x : T→ Rnx , exogenous input w : T→ Rnw , control input u : T→
Rnu , regulated output z : T→ Rnz and measured output y : T→ Rny , where
all system matrices are real continuous functions of α : T→ RN , bounded for
all t ∈ T, and have appropriate dimensions. By considering α ∈ T , see (2.4) on
page 8, a priori known bounds on the rate of parameter variation are taken into
account.

We are interested in the design of fixed-order dynamic output feedback LPV
controllers {

δxc = Ac(α)xc + Bc(α)y,
u = Cc(α)xc + Dc(α)y, (5.2)

with xc ∈ Rq, q < nx, and with an a priori fixed parameter dependency, that
exponentially stabilize the LPV system (5.1) such that one ore more closed-loop
H∞/H2 performance specifications are guaranteed.

Due to the fact that the LPV system (5.1) and the fixed-order controller (5.2)
depend on time-varying parameters, the corresponding H∞ and H2 synthesis
LMIs (3.14) and (3.17) feature infinite-dimensional optimization variables and
infinitely many constraints, and are thus numerically intractable (see Section 2.4
on page 18). To resolve this issue, the next section discusses how the structure
of the compact convex polytope Ω ⊂ R2N (defined as in (2.2) on page 8)
is exploited to derive a finite set of sufficient LMIs for fixed-order H∞/H2
synthesis.

5.3 Relaxations

It is clear that the parameter-dependent synthesis LMIs (3.17) and (3.14), which
should hold for all α ∈ T , give rise to numerically intractable optimization
problems. Therefore, this section presents an approach to derive a finite set of
LMIs whose feasibility guarantees that the parameter-dependent LMIs (3.17)
and (3.14) are feasible for all (α,∆α) ∈ Ω, and hence for all α ∈ T . The
chosen relaxation technique, which is closely related to the approach presented
in [28, 88], exploits the convex polytopic structure of the parameter-domain
Ω (see (2.4)), and relies on polynomial parameter dependencies and Pólya’s
theorem [30, 49, 101]. In contrast to the approach [28, 88], where each point
(α,∆α) ∈ Ω is expressed as a convex combination of all the vertices of Ω,
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we propose to apply a simplicial subdivision of the domain and subsequently
apply homogenization (see Section 2.4.2) to derive a finite set of sufficient LMIs.
Namely, for the application presented in Section 5.4, we noticed that such a
subdivision results in a significant reduction of numerical complexity while the
level of conservatism is maintained.

Considering the discrete-time case (the continuous-time case is analogous), the
relaxation approach consists of the following steps:

1. First, each function value (α,∆α) ∈ Ω is expressed as a convex
combination of (a subset of) the vertices of Ω. We propose to divide
Ω into a finite set of convex polytopes with fewer vertices than Ω, which
are denoted by Ω(i), i = 1, . . . , D, where D ∈ N+ is the number of
polytopes. For (α,∆α) ∈ Ω(i), the linear relation[

α
∆α

]
=
[
F

(i)
1
F

(i)
2

]
β(i) = F (i)β(i), (5.3)

holds, where each column of F (i) corresponds to a vertex of Ω(i), and β(i)

assumes values in a unit simplex of dimension Mi, with Mi the number
of vertices of Ω(i). Relation (5.3) implies that

α+ := α+ ∆α = F
(i)
1 β(i) + F

(i)
2 β(i) = (F (i)

1 + F
(i)
2 )β(i),

for all (α,∆α) ∈ Ω(i), i = 1, . . . , D. Consequently, defining (amongst
others)

P̂ (i)(β(i)) := P (F (i)
1 β(i)) = P (α),

P̃ (i)(β(i)) := P ((F (i)
1 + F

(i)
2 )β(i)) = P (α+),

(α,∆α) ∈ Ω(i), i = 1, . . . , D, the parameter-dependent LMIs (3.14) and
(3.17) are readily expressed in terms of the parameters β(i) : N → RMi ,
i = 1, . . . , D, resulting in the following equivalent parameter-dependent
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LMIs for H∞ synthesis

R̂
(i)
Ψ,∞(β(i))′


−P̂ (i)(β(i)) 0 0 0

0 P̃ (i)(β(i)) 0 0
0 0 −γI 0
0 0 0 I

 R̂(i)
Ψ,∞(β(i))+

He


0

0
I

[Ẑ(i)(β(i)) ̂̃C(i)
y (β(i)) Ẑ(i)(β(i)) ̂̃D(i)

yw(β(i)) −Ŷ (i)(β(i))
]

≺ 0, (5.4)

for i = 1, . . . , D. The parameter-dependent matrix Ẑ(i)(β(i)) is explicitly
given by

Ẑ(i)(β(i)) = U ′ ̂̄Θ(i)
(β(i))+

Ŷ (i)(β(i))


0q×q 0 0

0 Â22
(i)

(β(i)) 0
0 0 0nu×ny

− Ψ̂(i)(β(i))

 .

To guarantee feasibility of (3.14), the parameter-dependent LMIs (5.4)
should hold for all trajectories β(i) : N→ RMi , i = 1, . . . , D corresponding
to α ∈ T . It is emphasized that, due to a coupling between α and ∆α, the
trajectories β(i), i = 1, . . . , D are constrained. (The parameter-dependent
H2 synthesis LMIs in terms of β(i), i = 1, . . . , D are derived in a similar
fashion.)

2. The next step is to get rid of the time-dependency of the parameter-
dependent LMIs (5.4), which is achieved by ignoring the implicit coupling
between the trajectories of α and ∆α. Namely, then β(i) is allowed to be
any function varying in the unit simplex of dimension Mi, i = 1, . . . , D,
such that the dependency of β(i) on time becomes irrelevant. Hence,
imposing the parameter-dependent LMIs (5.4) for all points β(i) in the
unit simplex of dimension Mi, i = 1, . . . , D yields sufficient conditions for
the LMI (3.14) to hold for all α ∈ T .

3. Since the resulting set of LMI conditions, that should hold for all β(i) in
the unit simplex of dimension Mi, i = 1, . . . , D, are standard parameter-
dependent LMIs, well-known techniques can be applied to derive a finite set
of sufficient LMIs, see for instance [66, 87, 102, 104]. In this work, we apply
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the approach of [87], relying on homogeneous polynomial dependencies of
all LMI variables on parameters that lie in a unit simplex. Since all the
LMI variables are assumed to have a polynomial parameter dependency on
α ∈ T , the parameter-dependent LMIs (5.4) are rewritten as homogeneous
polynomially parameter-dependent LMIs without loss of generality. To
this end, we define the set of M -dimensional sequences whose elements
sum to p as

KM (p) :=

l = (l1, . . . , lM )

∣∣∣∣∣∣
M∑
j=1

lj = p

 ,

with cardinality
JM (p) = (M + p− 1)!

p!(M − 1)! .

Consequently, assuming that the LMI variables P (α) and P (α+) have
a polynomial parameter dependency of degree p, they are expressed in
terms of β(i), i = 1, . . . , D as follows

P (α) = P̂ (i)(β(i)) =
∑

l∈KMi (p)
(β(i))lP̂ (i)

l ,

P (α+) = P̃ (i)(β(i)) =
∑

l∈KMi (p)
(β(i))lP̃ (i)

l ,

for (α,∆α) ∈ Ω(i), i = 1, . . . , D, where (β(i))l =
∏Mi

j=1(β(i)
j )lj . The

number of coefficients P̂ (i)
l (and P̃

(i)
l ) equals JMi

(p). Substituting all
polynomially parameter-dependent variables in (5.4), homogenization
of all terms results in parameter-dependent LMIs with a homogeneous
polynomial dependency on β(i), i = 1, . . . , D. Since β(i) takes values in a
unit simplex, i = 1, . . . , D, imposing negative definiteness on the matrix
coefficients of the homogeneous polynomially parameter-dependent LMIs
(5.4) results in a finite set of sufficient conditions.

The numerical complexity of the resulting LMI problem is affected by the
polynomial degree of the homogeneous polynomially parameter-dependent LMIs
(i.e. the polynomial degree of the LMI variables), the number D of subdomains
and the number of verticesMi of each subdomain Ω(i), i = 1, . . . , D. Specifically,
to derive a finite set of sufficient LMIs for P (α) � 0 to hold, where P (α) has
a polynomial parameter dependency of degree p on α, results in the following
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Figure 5.1: The overhead crane setup (left) and its schematic representation (right).

number of LMI blocks1

D∑
i=1
JMi(p) =

D∑
i=1

(Mi + p− 1)!
p!(Mi − 1)! .

The practical benefits of subdividing the parameter domain Ω for complicated
control problems are illustrated below.

5.4 Fixed-order LPV control of an overhead crane

This section considers the design of fixed-order multi-objective H2/H∞ LPV
controllers for a lab-scale overhead crane with varying cable length. First, a
description of the overhead crane LPV model and the control objective are
provided. Then, exploiting subdivision of the parameter domain, the approach
from Chapter 3 is applied to design fixed-order LPV controllers for the overhead
crane model, followed by experimental validations. The LMIs are implemented
and solved in MATLAB using the software packages Yalmip [72] and SeDuMi
[113].

5.4.1 Model description

The system under consideration (shown in Figure 5.1) consists of a velocity
controlled cart on a rail, to which a load is attached through a cable with

1Imposing positive/negative definiteness on a coefficient of a homogeneous polynomially
parameter-dependent LMI results in a so-called LMI block.
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varying length. The horizontal cart and load position are denoted by xcart [m]
and xload [m], respectively, while α ∈ [0.35, 0.75] [m] defines the cable length
and φ [rad] is the swing angle. The system input is a voltage u ∈ [−10, 10]
[V], which scales to cart velocity through a high bandwidth velocity controller.
The quantities xcart and φ, as well as the varying cable length α, are measured
in real-time. To account for disturbance rejection in the control objective, an
additional input dφ is defined, modeling the effect of an initial swing angle
disturbance. Specifically, selecting dφ as the unit impulse function corresponds
to an initial swing angle of 0.1rad and a horizontal load velocity of 0m/s. A
multiple-input multiple-output 4th order LPV model with an affine dependency
on α and a sampling period of 0.01s is identified using the SMILE technique
[29, 127], and represented in state-space form as

G :


x(t+ 1) = A(α(t))x(t) + B(α(t))

[
u(t)
dφ(t)

]
,[

xcart(t)
φ(t)

]
= C(α(t))x(t) + D

[
u(t)
dφ(t)

]
.

(5.5)

Figure 5.2 depicts Bode magnitude plots corresponding to each input-output
channel of the LPV model (5.5), evaluated for 5 equidistant fixed cable lengths
α ∈ [0.35, 0.75]m. Note that, since u scales to cart velocity through a high
bandwidth velocity controller, the transfer function u→ xcart corresponds to an
integrator multiplied by a constant gain. Additionally, it is worth mentioning
that a swing angle disturbance has no effect on the cart position, which is due
to high friction between the cart and the rail.

Taking into account bounds on the rate of parameter variation, we select the set
of admissible parameter trajectories as in (2.4) where Ω is the compact convex
polytope with the following set of vertices:{[

αL
0

]
,

[
αL
b

]
,

[
αU − b
b

]
,

[
αU
0

]
,

[
αU
−b

]
,

[
αL + b
−b

]}
(5.6)

where αL = 0.35, αU = 0.75, and b = 0.004, corresponding to a cable length
varying between 0.35m and 0.75m, and a maximum cable hoisting velocity of
0.4m/s. The convex polytopic domain Ω, together with a possible simplicial
subdivision, is depicted in Figure 5.3.

5.4.2 Control objective

The aim is to design fixed-order LPV controllers of the form (3.2) for the
identified LPV model (5.5), achieving a good trade-off between reference tracking
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Figure 5.2: Bode magnitude plots for each input-output channel of the LPV system (5.5),
evaluated for 5 equidistant cable lengths α ∈ [0.35, 0.75].
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Figure 5.3: Left: visual representation of the set Ω, being the convex hull of (5.6). For a
given bound b, (α,∆α) assumes values in the gray region. Right: a possible subdivision
of Ω in four triangular subdomains Ω(i), i = 1, . . . , 4, for the case 0 < b < αU − αL.
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r e u xcart

φdφ

α

z1

Figure 5.4: Block diagram of the overhead crane model (5.5) interconnected with a
dynamic output feedback LPV controller (3.2). An LTI system WS is incorporated to
optimize bandwidth.

of the load position and rejection of swing angle disturbances under the influence
of a varying cable length.

We define a reference signal r for the horizontal cart position, and a
corresponding error signal e := r − xcart. Note that xload ≈ r whenever
xcart ≈ r and φ ≈ 0. The controller input is selected as y :=

[
e φ

]′. To assure
a high bandwidth and good reference tracking, we consider a weight function
described by the continuous-time transfer function

W (s) := s/A∞ + ωc
s+A0ωc

, (5.7)

where ωc is the crossover frequency [rad/s], while lims→0W (s) = 1/A0 and
lims→∞W (s) = 1/A∞. Selecting ωc = 0.2, A0 = −60dB and A∞ = 100dB in
(5.7), this transfer function is discretized using zero-order hold, resulting in a
discrete-time LTI model WS : e→ z1. Figure 5.4 provides a schematic overview
of the interconnected system. An H∞ performance specification is selected
for the channel r → z1 to assure a high bandwidth, while an H2 performance
specification is imposed on the channel dφ → φ to account for the rejection of
swing angle disturbances. Our choice for H2 performance stems from the fact
that, in this case, minimization of the H2 norm relates to minimization of the
energy in the autonomous response to an initial swing angle deviation.

5.4.3 Full-order H∞/H2 controller design

The aim of this section is to design strictly proper full-order LPV controllers
for the LPV model (5.5). Hence, controllers of the form xc(k + 1) = Ac(α(k))x(k) +Bc(α(k))

[
e(k)
φ(k)

]
,

u(k) = Cc(α(k))x(k),
(5.8)
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Table 5.1: H∞ performance bounds γ for full-order LPV control design and associated
details on numerical complexity, for different values of µ and different degrees p of the
Lyapunov matrix, using subdivision into four convex polytopes (D = 4) or no subdivision
(D = 1) of the parameter domain Ω. The provided H∞ bound, the number of LMI
variables V and LMI blocks B (max. size = 22), and the computation times tc (in seconds)
illustrate the merits of simplicial subdivision as the polynomial degree p increases.

µ 0.25 0.6 1
p 1 2 3 1 2 3 1 2 3

γ
D = 4 1.62 1.53 1.51 0.12 0.12 0.12 0.09 0.09 0.09
D = 1 1.62 1.53 1.51 0.12 0.12 0.12 0.09 0.09 0.09

V 403 554 705 403 554 705 403 554 705

B
D = 4 72 120 180 72 120 180 72 120 180
D = 1 63 168 378 63 168 378 63 168 378

tc
D = 4 17.5 47.7 53.7 15.7 28.6 45.5 14.9 26.9 45.3
D = 1 17.9 56.2 138 14.3 43.9 119 14.2 42.6 120

with xc ∈ Rnx (nx = 5). Following the lines in [28] (see also [32]), parameter-
dependent sufficient LMIs for the design of a controller (5.8) satisfying multiple
H∞/H2 performance objectives result, relying on a well-known nonlinear change
of controller variables [103]. For these parameter-dependent LMIs, a finite set
of sufficient LMIs is derived using the approach discussed in Section 5.3. The
following two cases are distinguished:

• D = 1: No subdivision of the parameter domain Ω. In this case, the LMI
relaxation approach is identical to the approach proposed in [28].

• D = 4: Subdivision of Ω into four convex polytopes. In the remainder of
this chapter, we consider the specific subdivision shown in the right part
of Figure 5.3 on page 71.

The H∞ performance bound γ is minimized subject to a prefixed bound µ
on the H2 performance. A lower value of µ guarantees better swing angle
disturbance rejection at the expense of a lower bandwidth and a higher γ value,
and vice-versa. Table 5.1 gives an overview of the obtained bounds γ for different
prefixed bounds µ and different polynomial degrees p of the Lyapunov matrix,
distinguishing between the cases D = 1 and D = 4. In addition, the provided
number of scalar LMI variables, LMI blocks and computation times give insight
into the numerical complexity.
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Figure 5.5: The trade-off between the prefixed H2 bound µ and the guaranteed H∞
bound γ. The gray dot corresponds to the desired trade-off.

First of all, note that D = 1 and D = 4 yield the same bounds γ (up to two
decimal digits) for each of the considered cases. In other words, subdivision
of the parameter domain does not affect the closed-loop performance (for
this specific example). However, the number of LMI blocks, and hence the
computation times, are clearly influenced by subdivision. Table 5.1 indicates
that the selected subdivision becomes more attractive as complexity of the
associated LMI problem grows. On the other hand, no subdivision is preferable
for simple LMI problems. Obviously, the number of LMI variables is independent
of the selected subdivision.

Since increasing p does not result in significantly lower bounds γ, we select
p = 1 (and D = 4) to compute a full-order controller as a starting point for the
fixed-order LPV synthesis. An important consequence of selecting a low degree
p is a full-order controller with simple polynomial parameter dependency (of
degree 2 in this case), which is necessary to keep the fixed-order synthesis LMIs
numerically attractive. For different prefixed values of µ, a bound γ is computed,
resulting in the trade-off curve depicted in Figure 5.5. Controllers with different
trade-offs have been implemented and tested experimentally. Based on the
experimental responses on a reference step r and an impulse disturbance dφ,
we select the full-order controller corresponding to µ = 0.6 with a H∞ bound
γ = 0.123, which is indicated by the gray dot in Figure 5.5. The state-space
model (5.2) of this controller is characterized by 105 scalars.

5.4.4 Fixed-order H∞/H2 controller design

Now we apply the approach proposed in Chapter 3 to design fixed-order LPV
controllers for the practical LPV model (5.5), starting from the full-order
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H∞/H2 LPV controller with the optimal performance trade-off computed in
Section 5.4.3. The closed-loop performances corresponding to different controller
structures are compared.

In the parameter-dependent LMIs (3.14) and (3.17), we exploit the freedom
to select different optimization variables for each performance specification, as
explained in Section 3.4.3 on page 42. An affine Lyapunov matrix is selected
for both the H∞ and H2 performance, and the matrix A22(α) is set to zero.
Furthermore, the matrix Ψ(α) ∈ R(nx+nu)×(nx+ny) is constructed from the
computed full-order LPV controller with the desired performance trade-off
(corresponding to the gray dot in Figure 5.5).

For the design of fixed-order LPV controllers, the state dimension q = 2 is
selected and the following parameterizations are considered:

• Affine (24 scalars): We choose Y11(α), Y13(α), Y31(α), Y33(α) constant,
and select Θ̄(α) to have an affine dependency on α.

• Polynomial (degree 2, 36 scalars): Y11(α), Y13(α), Y31(α), Y33(α) are
set constant, while a polynomial dependency on α of degree 2 is selected
for Θ̄(α).

• Rational (affine/affine, 48 scalars): Y11(α), Y13(α), Y31(α), Y33(α)
and Θ̄(α) are all chosen affinely dependent on α.

For each controller parameterization, the bandwidth is optimized while the
same H2 performance bound as for the full-order design (µ = 0.6) is maintained.
Numerical issues occur when solving the synthesis LMIs, resulting in unreliable
closed-loop performance bounds. Therefore, guaranteed performance bounds γ
are computed a posteriori by solving analysis LMIs.

Feasible solutions are obtained for all the considered cases. Table 5.2 provides
an overview of the obtained H∞ upper bounds γ, the computation times
tc (in seconds) and the number of scalar LMI variables associated with the
computation of each fixed-order LPV controller. The number of full LMI blocks
equals 180 for each case, with a maximum size of 28. As expected, an affine
controller parameterization corresponds to a more conservative H∞ bound than
polynomial and rational parameterizations, while the numerical complexity of
the associated synthesis problems is comparable.

The H∞ upper bounds corresponding to the fixed-order LPV controller design
are considerably higher compared to the full-order design. However, despite these
conservative performance bounds, the polynomially and rationally parameter-
dependent fixed-order LPV controllers have similar closed-loop performance (for
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(a) Fixed-order LPV controller with affine parameter dependency.
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(b) Fixed-order LPV controller with polynomial (degree 2) parameter dependency.
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(c) Fixed-order LPV controller with rational (affine/affine) parameter dependency.

Figure 5.6: Bode magnitude plots of the closed-loop system corresponding to the fixed-
order LPV controllers (dotted black) versus the full-order LPV controller (solid gray),
evaluated for 5 equidistant cable lengths α ∈ [0.35, 0.75].
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Table 5.2: The H∞ bounds γ, computation times tc (in seconds), and the number of scalar
LMI variables corresponding to affine, polynomial, and rational controller parameterizations
for q = 2. The number and maximum size of LMI blocks equals 180, respectively, 28 for
each case.

affine polynomial rational
γ 63.1 29.1 28.5
tc 34.7 38.1 34.2

LMI variables 345 366 354

fixed cable lengths), and moreover clearly resemble the performance of the full-
order controller. The latter is indicated in Figure 5.6 on page 76, showing Bode
magnitude plots of the closed-loop system corresponding to the fixed-order LPV
controllers versus the full-order LPV controller, evaluated for 5 equidistant fixed
cable lengths α in the interval [0.35, 0.75]m. In the next section, we compare the
experimental performances of the polynomially parameter-dependent fixed-order
LPV controller and the full-order LPV controller for varying cable lengths.

5.4.5 Experimental results

Now we discuss the experimental validation of the fixed-order LPV controller
design approach from Chapter 3 on the lab-scale overhead crane described in
Section 5.4.1. The closed-loop performance of the full-order and the fixed-order
LPV controllers, computed in Section 5.4.3 and Section 5.4.4, respectively, is
investigated under the influence of a varying cable length. To this end, the
following two experiments are performed:

• Reference tracking: A reference trajectory corresponding to a back
and forth motion with a displacement of 0.4m is applied for the horizontal
cart position in closed loop. This reference trajectory consists of piecewise
9th order polynomials (instead of discontinuous step functions) to avoid
actuator saturation. Whenever a change in reference occurs, the cable is
hoisted linearly at a rate of 0.4m/s as depicted in Figure 5.7, which is the
maximum rate of parameter variation that the system can handle.

• Disturbance rejection: This experiment consists of three phases (see
Figure 5.8):

1. Starting from a system that is initially at rest, the horizontal cart
position is changed rapidly without activating the controller, causing
a freely swinging load.
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Figure 5.7: Reference for the cart position (left, dashed) and the cable length trajectory
(right, solid) corresponding to the reference tracking experiment.
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Figure 5.8: Reference for the cart position (left, dashed) and the cable length trajectory
(right, solid) corresponding to the disturbance rejection experiment. The controller is
activated at time t = 1 second, indicated by the thin vertical black line.

2. The load is freely swinging, while the horizontal cart position is
constant.

3. When the deviation of the load reaches a maximum amplitude, and
hence the load velocity is zero, the controller is activated. A fixed
reference for the cart position is set, while the load is hoisted linearly.

We observed that the experimental performance of the full-order LPV controller
is as desired. However, even for fixed cable lengths, undesired high-frequency
chattering occurs when the affinely parameter-dependent fixed-order LPV
controller is activated, implying that this controller is unsuitable for practical
implementation. We attribute this undesired behavior to the high gain for the
channels r → xcart and dφ → φ for frequencies around 3Hz, see Figure 5.6a. At
the same time, the polynomially and rationally parameter-dependent fixed-order
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LPV controllers have similar closed-loop performance as the full-order controller,
as expected from Figure 5.6b and Figure 5.6c.

The results in Figure 5.9 (on page 80) and Figure 5.10 (on page 81) confirm that
the polynomially parameter-dependent fixed-order LPV controller yields desired
closed-loop behavior. Figure 5.9a and Figure 5.9b show the experimental (dotted
black) and the simulated (solid gray) responses of the fixed-order, respectively,
full-order LPV controller to a smooth reference trajectory (dashed gray) for the
horizontal cart position and a cable length trajectory as in Figure 5.7. Similarly,
the responses to an initial swing angle disturbance are shown in Figure 5.10a
and Figure 5.10b. In the latter figures, the controller is activated at time t = 1
second, and the corresponding cable length trajectory is given in Figure 5.8.
Note that, compared to the responses of the full-order LPV controller, the
fixed-order LPV controller exhibits slightly more overshoot and a slightly slower
response. However, realizing that the fixed-order LPV controller is described
with only 36 scalars compared to 105 scalars for the full-order LPV controller,
this modest difference in performance is impressive.

The fixed-order LPV controller with a rational parameter dependency features
similar closed-loop behavior as the fixed-order LPV controller with a polynomial
parameter dependency, both in simulations and experiments, as expected from
Figure 5.6c.

5.5 Summary

This chapter has demonstrated the practical applicability of the fixed-order
LMI framework (see Chapter 3) for LPV systems. For this class of systems,
a numerically attractive relaxation technique was applied to derive tractable
sufficient LMIs for fixed-order synthesis, resulting in an intuitive approach for
fixed-order multi-objective H∞/H2 LPV controller design. The viability of the
proposed fixed-order LPV controller design approach for realistic engineering
problems was confirmed by experimental validations of high performance fixed-
order H∞/H2 feedback controllers on a lab-scale overhead crane with varying
cable length, which is accurately modeled as an LPV system. Namely, despite
conservative performance bounds, fixed-order LPV controllers were designed
that clearly resemble the performance of a high performance full-order controller.
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(a) Fixed-order LPV controller (2 states,
polynomial degree 2).

0 5 10 15

0

0.2

0.4

0.6

Time [s]

L
oa

d
P
os
it
io
n
[m

]

0 5 10 15

−0.1

0

0.1

Time [s]

S
w
in
g
A
n
gl
e
[r
a
d
]

0 5 10 15
−10

−5

0

5

10

Time [s]

C
on

tr
ol

S
ig
n
al

[V
]

(b) Full-order LPV controller (5 states,
polynomial degree 2).

Figure 5.9: Reference tracking performance of the fixed-order (Figure 5.9a) and the
full-order (Figure 5.9b) LPV controller. The experimental (dotted black) and simulated
(solid gray) responses to a smooth reference trajectory (dashed gray) for the horizontal
cart position are shown. Although the fixed-order LPV controller (36 scalars) yields slightly
more overshoot and a slightly slower response compared to the full-order LPV controller
(105 scalars), the overall performance is similar.
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(a) Fixed-order LPV controller (2 states,
polynomial degree 2).
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(b) Full-order LPV controller (5 states,
polynomial degree 2).

Figure 5.10: Disturbance rejection performance of the fixed-order (Figure 5.10a) and the
full-order (Figure 5.10b) LPV controller. The experimental (dotted black) and simulated
(solid gray) responses to an initial swing angle disturbance are shown. The controller is
activated at time t = 1 second. Although the fixed-order LPV controller (36 scalars) yields
slightly more overshoot and a slightly slower response compared to the full-order LPV
controller (105 scalars), the overall performance is similar.
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Recapitulation

• Applying the LMI framework to LPV systems results in an intuitive controller
design approach, where the number of states and the parameter dependency
of the controller are a priori fixed.

• To succesfully apply the fixed-order controller design approach from
Chapter 3 to realistic LPV systems, a clever relaxation technique is necessary
to obtain a numerically attractive optimization problem. Especially for
complicated systems, subdivision of the polytopic domain into polytopes
with fewer vertices seems promising, since this considerably reduces the
number of sufficient LMIs.

• Taking into account bounded rates of parameter variation is essential to
reduce conservatism that is inherent in the LPV synthesis approaches based
on quadratic stability.

• Despite the conservatism of the fixed-order synthesis LMIs, high performance
fixed-order multi-objective H∞/H2 LPV controllers were obtained for a
realistic engineering application.



Chapter 6

Fixed-order robust control of
uncertain LTI systems

This chapter presents a convex approach to design fixed-order robust H2/H∞
controllers for LTI systems affected by parametric uncertainty. Starting from
an a priori computed stabilizing full-order parameter-dependent controller for
the same system, which is designed under the assumption that the parameter is
exactly known, the fixed-order LMI framework from Chapter 3 is exploited to
compute fixed-order robust controllers with a guaranteed closed-loop H∞/H2
performance for all parameter values. The result is a novel LMI procedure
to iteratively compute less conservative robust controllers, utilizing a feasible
solution of the fixed-order synthesis conditions as a starting point. Numerical
comparisons with existing methods confirm the potential of the proposed robust
controller design approach.

6.1 Introduction

The general fixed-order controller design problem for linear time-invariant (LTI)
systems is challenging, even in the case of a single performance objective and
without parametric uncertainty [50, 97, 103, 116]. This problem has already
attracted many researchers since decades, and it still constitutes a field of active
research to date due to its complexity.

As motivated in the introduction of Chapter 4 (see page 45), even for accurately
known LTI systems the existence of a convex necessary and sufficient condition
for fixed-order controller design is unknown. Although for the latter problem

83
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several successful conservative convex approaches have been developed, the
extension of these approaches to cope with parametric uncertainty is not evident
[93].

Recently, an iterative LMI approach for robust static output feedback design is
presented for continuous-time LTI systems subject to parametric uncertainty
in [3], relying on an a priori computed parameter-dependent state feedback
controller for a specific augmented system. This approach is readily extendable
to design fixed-order robust controllers, and is based on the idea proposed in
[92] for accurately known LTI systems. Additionally, sufficient LMIs for robust
static output feedback design are proposed in [64, 107], incorporating scalar
parameters in the LMIs to reduce conservatism at the expense of a higher
numerical burden. In [96], an iterative LMI approach is presented to gradually
compute fixed-order robust controllers with better performance for discrete-time
polytopic systems.

In this chapter, the LMI framework presented in Chapter 3 is extended with
an iterative LMI procedure to allow the design of high performance robust
H∞/H2 controllers for LTI systems with parametric uncertainty. In contrast
to the aforementioned approaches, the resulting design approach handles any
prefixed controller order, allows polynomial parameter dependencies of all system
matrices, considers multiple performance objectives, and allows significant
reductions of conservatism by iterative computation of robust controllers with
better performance. The benefits of our approach are illustrated by numerical
comparisons with existing methods.

6.2 Problem formulation

We consider the finite-dimensional LPD state-space representation (3.1) (see
page 30), and assume that the parameter α is unknown but constant. The
corresponding dynamics are uncertain LTI (see Table 2.1 on page 9), and hence
take the form δx = A(α)x + Bw(α)w + Bu(α)u,

z = Cz(α)x + Dzw(α)w + Dzu(α)u,
y = Cy(α)x + Dyw(α)w

(6.1)

with state x : T → Rnx , exogenous input w : T → Rnw , control input u :
T → Rnu , regulated output z : T → Rnz and measured output y : T → Rny .
All system matrices are assumed to have a polynomial dependency on the
time-invariant parameter α ∈ Λ, where Λ ∈ RN is a bounded convex polytope.
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The aim is to design robust dynamic output feedback controllers{
δxc = Acxc + Bcy,
u = Ccxc + Dcy,

(6.2)

with a preselected fixed order q (0 ≤ q ≤ nx) that stabilize the uncertain
system (6.1) and satisfy one or more closed-loop H2 and/or H∞ performance
specifications for all α ∈ Λ. Hence, we consider optimization of the worst-case
performance.

For any fixed value of α ∈ Λ, let HΘ(α) denote the closed-loop system
defined as in (3.4) on page 31. Then, for a fixed α ∈ Λ, the H∞ and H2
norm of HΘ(α) are indicated by ‖HΘ(α)‖∞, respectively, ‖HΘ(α)‖2. The
corresponding worst-case H∞ and H2 performances of HΘ(α) are respectively
given by maxα∈Λ ‖HΘ(α)‖∞ and maxα∈Λ ‖HΘ(α)‖2.

6.3 Iterative LMI procedure

Relying on the LMI framework presented in Chapter 3, a convex procedure to
iteratively reduce conservatism in a fixed-order robust H2/H∞ control design
is presented now. For the sake of clarity, we consider the single-objective fixed-
order robustH∞ control problem. The extension to handleH2 or multi-objective
controller designs is straightforward.

A flowchart explaining the iterative LMI procedure for fixed-order robust H∞
synthesis is shown in Figure 6.1. First a stabilizing parameter-dependent full-
order controller is computed for the uncertain system (6.1) using, for instance,
the convex approaches presented in [7, 28]. Subsequently, the LMI framework
presented in Section 3.4 can be applied to design fixed-order robust controllers.
It should be remarked that, compared to the LTI and LPV case, the selection
of an initial full-order controller for fixed-order robust controller synthesis is
complicated, since a high performance initial controller often leads to infeasibility
of the fixed-order synthesis LMIs. To circumvent the latter issue, we propose
the following approach: first, using a parameter-dependent full-order controller
with good H∞ performance, try to compute a fixed-order robust controller
using (3.14) (see page 37). Whenever the latter LMI is infeasible, gradually
relax the H∞ bound that was used in the full-order controller design step by
fixing it to a suboptimal value, solve the corresponding feasibility problem to
obtain a suboptimal parameter-dependent full-order controller, and use this
suboptimal full-order controller in the robust fixed-order synthesis step.

Suppose that the convex synthesis condition (3.14) provides a feasible solution.
Then, as visualized in Figure 6.1, robust controllers with improved (not
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Compute a stabilizing full-order
parameter-dependent controller sat-
isfying an H∞ performance bound

Compute a fixed-order robust controller
satisfying an H∞ performance bound

feasible solution
obtained?

Solve extended H∞ analysis LMI in
Lyapunov matrix and slack variables

to obtain an improved H∞ bound

Solve extended H∞ analysis LMI in
Lyapunov matrix and controller vari-
ables to obtain an improved controller

sufficient decrease
H∞ bound?

Stop

Relax H∞
bound

yes

no

no

yes

Figure 6.1: Flowchart of the iterative LMI procedure for fixed-order robust H∞ control
design.
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necessarily strictly) worst-case H∞ performance are obtained by alternately
solving the analysis condition (3.9) (see page 33) in the optimization variables
P (α), X1(α), X2(α), X3(α), respectively, P (α), Θa(α). The matrix Ψ(α) is
fixed in the analysis LMI (3.14), since it does not influence the solution.

Specifically, the following LMI procedure is applied to iteratively compute robust
controllers (of the same order) with improved worst-case H∞ performance:

1. Using the convex synthesis condition (3.14), compute a robust controller
Θ(0) with a preselected fixed order q and a guaranteed worst-case H∞
performance γ(0).

2. Set k := 1.

3. Substitute the solution variable Θ(k−1) in the analysis condition (3.9), and
optimize over the Lyapunov matrix P (α) and the slack variables Xj(α),
j = 1, 2, 3, such that the performance bound γ

(k)
a is minimized. Since

substitution of the solution corresponding to the previous step implies that
the constraint (3.9) is satisfied for γ(k)

a = γ(k−1), we obtain γ(k)
a ≤ γ(k−1).

4. Substitute the solution variables Xj(α) (of the previous step) in the
analysis condition (3.9), and optimize the performance bound γ(k) over
the Lyapunov matrix P (α) and the controller variables Θ(k), A12(α),
A22(α) and C2(α) (see (3.7) on page 32). Since Θ(k−1) is a solution, we
get that γ(k) ≤ γ(k)

a .

5. If |γ(k) − γ(k−1)|/γ(k−1) < ε, with ε a predefined tolerance, stop. Else, set
k := k + 1 and return to step 3.

It is remarked that, since the choice of Ψ(α) is irrelevant in the H∞ analysis
condition (3.9), theoretically speaking any value of Ψ(α) can be used in Step 3
and Step 4 without affecting the solution.

6.4 Numerical validation

This section considers two numerical examples to validate the iterative fixed-
order robust H2/H∞ controller design approach presented in Section 6.3, by
means of comparisons with existing approaches. The LMIs are implemented
and solved in MATLAB using the software packages Yalmip [72] and SeDuMi
[113].
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6.4.1 Robust H∞ control

Consider the discretized mass-spring-damper system from Example II in [1],
consisting of two masses m1 = 2 [kg] and m2 = 1 [kg], two springs with
coefficients k1 ∈ [1, 4] [N/m] and k2 = 0.5 [N/m], and a damper with uncertain
damping constant d ∈ [1, 4] [Ns/m]. The dynamics are expressed in the form
(6.1) as follows

A(α) =


1 0 0.1 0
0 1 0 0.1

− 0.1(k1+k2)
m1

0.1k2
m1

1− 0.1d
m1

0
0.1k2
m2

− 0.1k2
m2

0 1− 0.1d
m2

 ,

Bw =


0

0.1
0.1
0

 , Bu =


0
0

0.1
m1
0

 , Cz =


0
1
0
0


′

, Cy =


0 0
0 0
1 0
0 1


′

,

Dzw = 0, Dzu = 0 and Dyw = 0, where only the A-matrix is uncertain and
affinely dependends on the two-dimensional parameter

α :=
[
k1 d

]′ ∈ [1, 4]× [1, 4] = Λ.

The aim is to compute fixed-order robust controllers with optimal worst-case
closed-loop H∞ performance. As a starting point, a stabilizing full-order
controller Ψ(α) with an affine dependency on α is computed with the approach
[28]. Minimization of the H∞ bound yields a parameter-dependent controller
Ψ(α) for which the LMI (3.14) is infeasible. Therefore, we compute a suboptimal
parameter-dependentH∞ controller by fixing theH∞ performance bound γ = 12
in the associated H∞ synthesis LMIs and solving the corresponding feasibility
problem, resulting in a suboptimal parameter-dependent controller with a
guaranteedH∞ performance of 7.66. Subsequently, fixed-order robust controllers
of all orders q = 0, . . . , 4 are computed by substituting Ψ(α) and A22(α) = 0 in
the synthesis condition (3.14), and selecting an affine parameterization for the
parameter-dependent LMI variables. The resulting worst-case H∞ bounds are
shown in the second row of Table 6.1, and are subject to conservatism (especially
for q = 0). Therefore, the corresponding fixed-order robust controllers are used
as a starting point in the iterative procedure proposed in Section 6.3 to compute
less conservative robust controllers, taking all pameter-dependent LMI variables
affine in α, and defining a tolerance ε = 10−3. For all controller orders, Figure 6.2
shows the worst-case H∞ bound as a function of iterations, where the results
of Step 3 and Step 4 corresponding to an iteration are indicated in black,
respectively, gray. The third row of Table 6.1 shows the H∞ bound γ(k) that is
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Table 6.1: Worst-case H∞ performance bounds for each order q = 0, . . . , 4, resulting from
Theorem 8 (γ(0)) and subsequent application of the iterative procedure (γ(k), with k the
number of iterations).

q 4 3 2 1 0
γ(0) 9.39 15.5 10.3 14.0 4.39× 104

γ(k) (k) 6.60 (15) 6.60 (40) 6.85 (34) 7.55 (8) 7.55 (20)

obtained after k iterations (when the LMI procedure terminated), and reveals
a significant reduction of conservatism for all orders. Compared to the robust
static output feedback design approach [1], which provided an H∞ performance
bound of 8.54 (i.e., for the case q = 0), we achieved a relative improvement of
12%. Moreover, no feasible solution was obtained with the robust static output
feedback design approaches [32, 35, 36].

6.4.2 Robust multi-objective H∞/H2 control

We consider a slightly modified version of the 3rd order discrete-time LTI model
used in Example 4 of [32]:

δx =

2 0 1
1 0.5 0
0 1 −α1

x+

0 0
1 0
0 0

w2 +

1
0
0

w∞ +

1
0
0

u,
with exogenous outputs

z2 =
[
x
u

]
, z∞ =

[
1 0 0

]
x,

and measurement equation

y =
[
0 1 0

]
x+

[
0 α2

]
w2,

where α =
[
α1 α2

]′ ∈ [0.45, 0.55]× [0.9, 1.1] = Λ.

The goal is to compute a robust full-order controller minimizing a bound µ on
the worst-case H2 performance from w2 to z2, while an a priori imposed bound
γ = 3.5 on the worst-case H∞ performance from w∞ to z∞ is satisfied. Note
that, due to an uncertain matrix relating w2 to y, the approach [96] cannot
be applied. First, a multi-objective parameter-dependent controller with an
affine dependency on α is computed with the approach [28], resulting in the
H2 bound µ = 19.04, as shown in Table 6.2. A tighter bound µana = 16.35 is
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Figure 6.2: The iterative LMI procedure from Section 6.3 outperforms the approaches
[1, 32, 35, 36], by computing high performance fixed-order robust H∞ controllers. For
each controller order, step 3 and step 4 of the iterative LMI procedure (see page 87) are
indicated in gray, respectively, black.

computed by a posteriori solving an analysis LMI. Substituting the parameter-
dependent controller for Ψ(α) (and A22(α) = 0) in the synthesis conditions
of Theorem 8 and Theorem 9, a full-order robust controller guaranteeing a
closed-loop H∞ performance of 17.90 is computed, and a corresponding tighter
bound µana = 16.38. Applying the iterative procedure with ε = 10−4, a robust
controller with a H∞ bound µ = 16.33 and µana = 16.31 is computed in 10
iterations, outperforming the parameter-dependent controller.

6.5 Summary

This chapter has presented an iterative LMI procedure to design fixed-
order robust H2/H∞ controllers for LTI systems with parametric uncertainty,
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Table 6.2: Comparison of the worst-case H2 performance bounds resulting from synthesis
(µ) and a posteriori analysis (µana), and the prefixed (a posteriori computed) H∞ bounds γ
(γana), corresponding to the parameter-dependent, robust, and improved robust controller.

µ µana γ γana

Parameter dependent [28] 19.04 16.35 3.5 3.08
Robust (Theorems 8 and 9) 17.90 16.38 3.5 3.37

Improved robust (10 iterations) 16.33 16.31 3.5 3.35

extending the LMI framework for fixed-order controller design of Chapter 3.
Starting from an a priori computed parameter-dependent full-order controller
stabilizing the uncertain system for all parameter values, the sufficient LMIs
from Chapter 3 were exploited to compute an initial fixed-order robust controller
satisfying a closed-loop H∞ and/or H2 performance specification. By iteratively
applying the extended analysis LMIs presented in Section 3.3, alternating
between optimization of different LMI variables, conservatism in this initial
robust controller design was significantly reduced. The numerical example in
Section 6.4.1 confirmed that, despite the potential conservatism of an initial
robust H∞ controller, application of the iterative LMI procedure resulted in
high performance controllers, outperforming modern approaches available in the
literature. In addition, the design of a robust controller with similar performance
as a parameter-dependent controller (see Section 6.4.2) showed the potential of
our approach for multi-objective robust control problems.

Recapitulation

• To obtain high performance fixed-order robust controllers, the fixed-order
LMI framework is applied in conjunction with an iterative LMI procedure.

• The proposed iterative LMI procedure is an essential extension for robust
control design. Namely, compared to the LTI and LPV case, the selection of
an initial full-order controller (in the fixed-order synthesis LMIs) to obtain
high performance fixed-order robust controllers is complicated, often
implying conservative results.

• Conservatism in a fixed-order robust H∞/H2 control design is significantly
reduced by iteratively solving the extended analysis LMIs (3.9) and (3.11)
(see page 33, respectively, page 34) in different optimization variables.

• The effectiveness of our approach is demonstrated by numerical comparisons
with existing robust controller design approaches.





Chapter 7

Fixed-order controller design
for LTD systems

This chapter presents a combined approach to design fixed-order multi-objective
H∞/H2 controllers for continuous-time linear time-delay (LTD) systems with
delays in the state, input and/or output. This combined approach relies on the
following steps. First, a novel Krylov based model order reduction technique is
applied to obtain an accurate low-order LTI approximation of the original LTD
system. Subsequently, exploiting the LMI framework for fixed-order controller
design presented in Chapter 3, a fixed-order controller is designed for the delay-
free approximation. Finally, the controller is validated on the original LTD
system. The successful design of a fixed-order multi-H2 controller for a realistic
LTD model of an experimental heat transfer setup confirms the potential of our
approach for realistic industrial applications.

7.1 Introduction

The design of fixed-order (i.e., practical) controllers for LTD systems is
challenging. Namely, this problem is equivalent to the design of a fixed-order
controller for an infinite-dimensional LTI system [24], which is known to be
nonconvex (see Section 4.1). To alleviate this issue, we propose a novel approach
to reduce the infinite-dimensional system to a finite-dimensional LTI system,
subsequently apply the approach of Chapter 3 to design a fixed-order controller
for this reduced system, and validate the fixed-order controller in closed-loop
with the original LTD system.

93
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While results related to the reduction of LTD systems to finite-dimensional
LTI systems are rare, and many problems related to the latter are generally
considered to be unsolved [91], the availability of accurate delay-free models
is favorable for many purposes. Namely, amongst others, such models make
numerical simulation of large-scale systems computationally feasible and provide
tractable models for control design.

In the proposed model order reduction approach (see Section 7.3), the presence
of state delays is addressed by rewriting the original LTD system as an equivalent
infinite-dimensional LTI system, as in [24]. Discretization of this system
leads to a standard finite-dimensional LTI model, which is suitable for model
reduction purposes. The followed discretization approach is based on a spectral
approximation, inspired by [20]. Since the accuracy of the discretization depends
on the choice of the interpolation points, we select the points such that the
accuracy of the eigenvalues is optimized and, at the same time, structure and
sparsity is introduced in the system matrices. Furthermore, we prove that
the transfer function of the discretized system matches several moments with
the transfer function of the original LTD system. Since the discretized LTI
system usually features a large state dimension, we project it on a subspace
using a Padé via Krylov like model reduction method, such that preservation
of the moment matching properties is guaranteed. In addition, by exploiting
the structure of the problem during the construction of the Krylov space, as in
[59], the process is made dynamic in the sense that the number of discretization
points in the spectral approximation does not need to be chosen beforehand,
hence the model reduction process can always be resumed if the accuracy of the
reduced model is insufficient. Finally, delays in input and output are replaced
by Padé approximations, which also satisfy the property of matching multiple
moments at zero.

For model reduction of linear systems based on moment matching, the Padé-
via-Lanczos method and its variations are probably best known [11, 38, 42, 46].
These methods build a two-sided Krylov subspace with the system matrix and
the input and output vectors as starting vectors. The advantage of two-sided
methods is that both the input and the output are taken into account in the
reduced models, which leads to matching twice as many moments for a given
dimension of the reduced model compared to the case where only the input is
taken into account. Despite this advantage, the proposed model order reduction
approach relies on a one-sided Krylov-Padé method, since this allows us to
fully exploit problem structure. Moreover, the proposed approach leads to an
accurate approximation of the smallest characteristic roots of the time-delay
system. Since the rightmost characteristic roots are typically among the smallest
ones [80], this makes the reduced model suitable for control design purposes.

Section 7.4 discusses how the above model reduction technique is combined with
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the controller design approach of Chapter 3 to successfully design fixed-order
controllers for a realistic LTD model of an experimental heat transfer setup.

7.2 Problem formulation

We consider a continuous-time LTD system of the form{
ẋ(t) = A0x(t) +

∑mx
i=1Aix(t− τi) +

∑mu
i=1Biui(t− µi),

yi(t) = Cix(t− νi) +
∑mu
j=1Dij uj(t− νi − µj), i = 1, . . . ,my,

(7.1)
where x(t) ∈ Rnx is the state, ui(t), i = 1, . . . ,mu are the (multidimensional)
inputs, and yi(t), i = 1, . . . ,my correspond to the (multidimensional) outputs at
time t. The quantities τi, i = 1, . . . ,mx, µi, i = 1, . . . ,mu and νi, i = 1, . . . ,my

represent time-delays in the system states, inputs and outputs, respectively,
where the largest state delay is denoted by τmax = maxi∈{1,...,mx} τi.

The inputs ui and outputs yi are grouped in vectors as follows:

u =
[
u′1 · · · u′mu

]′ : T→ Rnu , y =
[
y′1 · · · y′my

]′ : T→ Rny ,

where we assume that the number of scalar inputs does not exceed the dimension
of the system state, i.e., nu ≤ nx. Without loss of generality, the input u and
output y are subdivided as

u =
[
u1
u2

]
, y =

[
y1
y2

]
,

to distinguish between exogenous inputs u1 and control inputs u2 on the one
hand, and regulated outputs y1 and measured outputs y2 on the other hand.
Then, the main objective is to design a fixed-order dynamic output feedback
LTI controller

K :
{
δxc = Acxc + Bcy2,
u2 = Ccxc + Dcy2,

(7.2)

with xc ∈ Rq, q ∈ N, exponentially stabilizing the LTD system (7.1) and
guaranteeing one or more closed-loop H∞/H2 performance specifications from
(parts of) u1 to (parts of) y1.

Defining the block matrices

B =
[
B1 · · · Bmu

]
, C =

 C1
...

Cmy

 , D =

 D11 · · · D1mu
...

...
Dmy1 · · · Dmymu

 .
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Figure 7.1: The objective is to design a fixed-order LTI controller (7.2) for the LTD system
(7.1), such that the closed-loop system is exponentially stable and satisfies one or more
H∞/H2 performance specifications from (parts of) u1 to (parts of) y1.

and the transfer functions

Γx(s) = C
(
sI −A0 −

mx∑
i=1

Aie
−sτi

)−1

B + D, (7.3)

Γy(s) = diag
(
e−sν1I, . . . , e−sνmy I

)
,

Γu(s) = diag
(
e−sµ1I, . . . , e−sµmu I

)
,

the transfer function of (7.1) is expressed as

Γ(s) := Γy(s)Γx(s)Γu(s). (7.4)

It should be emphasized that the transfer function Γx corresponds to an
LTD system with only state delays, while Γy and Γu characterize the output,
respectively, input delays of the LTD system (7.1). Namely, the decomposition
(7.4) is exploited to efficiently compute an LTI approximation of the LTD system
(7.1), which is the context of the following section. Subsequently, the approach
of Chapter 3 can be applied to design fixed-order H∞/H2 controllers for the
approximating LTI system, and hence for the original LTD system when this
approximation is sufficiently accurate. Figure 7.1 schematically visualizes the
main control objective.

7.3 Krylov based model order reduction

This section presents a Krylov based model order reduction approach for
LTD systems of the form (7.1). In fact, relying on the decomposition



KRYLOV BASED MODEL ORDER REDUCTION 97

(7.4), this approach consists of two steps. First, Section 7.3.1 presents a
numerically attractive Krylov based technique to obtain a finite-dimensional
LTI approximation of the transfer function Γx, corresponding to an LTD system
with only state delays. Then, Section 7.3.2 discusses how Padé approximations
are used to obtain approximating LTI models of the transfer functions Γu and
Γy, characterizing input and output delays, respectively.

7.3.1 Approximation of LTD systems with only state delays

To obtain a finite-dimensional LTI approximation of an LPD system with
only state delays, the approach of [79] is adopted and extended to the MIMO
case. Specifically, we consider the transfer function Γx, corresponding to the
time-domain representation{

ẋ(t) = A0x(t) +
∑mx
i=1Aix(t− τi) + Bu(t),

y(t) = Cx(t) + Du(t).
(7.5)

Finite-dimensional approximation

An approach to analyze the time-delay system (7.5) is to rewrite it as an
ordinary differential equation on a function space. Discretizing the corresponding
operators yields an approximation of (7.5) in the form of a finite-dimensional LTI
system, involving large matrices and no delays. The latter is briefly summarized
next, followed by a discussion on several useful properties of the discretized
system. As a main result, we show that the specific discretization fulfills a
moment matching property, playing an important role in the derivation of the
reduced model.

A spectral discretization To obtain an infinite-dimensional LTI representation
of (7.5), we define a new state variable z1 which, at time t, equals the trajectory
of the state x on the interval [t − τmax, t], see Figure 7.2, and consider the
space X := Rnx × L2([t− τmax, t],Rnx). Then, defining the derivative operator
A : X → X as

D(A) =
{
z = (z0, z1) ∈ X : z1(t) ∈ C1([t− τmax, t],Rnx), z0(t) = x(t)

}
,

Az(t) =
(
A0z0(t) +

mx∑
i=1

Aiz1(t− τi), ż1(t)
)
, z ∈ D(A),
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Figure 7.2: An infinite-dimensional LTI representation of the LTD system (7.5) is derived
by defining a state z1(t) as the evolution of the trajectory of state x on the interval
[t− τmax, t]. Subsequently, discretizing z(t) into a finite set of states x1, . . . , xN yields a
finite-dimensional LTI approximation.

and the operators B : Rnu → X and C : X → Rny as

Bu = (Bu, 0) , u ∈ Rnu ,
Cz = Cz0, z = (z0, z1) ∈ X.

the LTD system (7.5) can be rewritten as the infinite-dimensional LTI system{
ż = Az + Bu,
y = Cz + Du, (7.6)

where z(t) ∈ D(A) ⊂ X. Note that, in the definition of A, the system dynamics
of (7.5) are used to determine the derivative at the boundary (i.e., at time t).

System (7.6) can be discretized using a spectral method (see, e.g. [20, 117]).
Given a positive integer N and t ∈ R+, we consider a mesh ΩN of N distinct
points in the interval [t− τmax, t]:

ΩN = {θN,i, i = 1, . . . , N} , (7.7)

where
t− τmax ≤ θN,1 < . . . < θN,N−1 < θN,N = t.

This allows us to replace the continuous space X with the space XN of discrete
functions defined over the mesh ΩN . That is, any state trajectory z ∈ X is
discretized into a block vector x =

[
x′1 · · · x′N

]′ ∈ XN with components

xi = z(θN,i) ∈ Rnx , i = 1, . . . , N,
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which is also indicated in Figure 7.2. We let PNx, x ∈ XN , be the unique
Rnx valued interpolating polynomial of degree smaller than or equal to N − 1,
satisfying

PNx(θN,i) = xi, i = 1, . . . , N.

In this way we can approximate the operator A over X with the matrix
AN : XN → XN , defined as{

(ANx)i = dPNx
dt (θN,i), i = 1, . . . , N − 1,

(ANx)N = A0PNx(t) +
∑mx
i=1AiPNx(t− τi).

(7.8)

Using the Lagrange representation of PNx,

PNx =
∑N
k=1 lN−1,kxk,

where the Lagrange polynomials lN−1,k are real valued polynomials of degree
N − 1 satisfying

lN−1,k(θN,i) =
{

1 if i = k,
0 if i 6= k,

we get an explicit form for the matrix AN ,

AN =


d1,1 . . . d1,N
...

...
dN−1,1 . . . dN−1,N
a1 . . . aN

 ∈ RNnx×Nnx , (7.9)

where {
di,k = l̇N−1,k(θN,i)Inx ,
ak = A0lN−1,k(t) +

∑mx
i=1AilN−1,k(t− τi).

In a similar fashion, B and C are approximated by

BN =
[
0 · · · 0 1

]′ ⊗B, CN =
[
0 · · · 0 1

]
⊗C,

respectively, resulting in the following finite-dimensional approximation of the
LTD system (7.5): {

ż = ANz + BNu,
y = CNz + Du, (7.10)

with z : T→ RNnx . In the frequency domain this approximation is described
by the transfer function

ΓNx (s) := CN (sI −AN )−1
BN + D. (7.11)
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Properties The discretized system (7.10) has the favorable property that
several moments (i.e., the function and its derivatives) of the original transfer
function (7.3) and its approximation (7.11) coincide at zero and infinity.
Specifically, at the origin the first N moments coincide, while at infinity the
function value and the first derivative coincide. This is formalized in the
following theorem (see [79], Theorem 2.1).

Theorem 10 (Matching moments). The transfer functions (7.3) and (7.11)
satisfy

diΓNx (s)
dsi

∣∣∣∣
s=0

= diΓx(s)
dsi

∣∣∣∣
s=0

, i = 0, . . . , N − 1, (7.12)

and
diΓNx (s−1)

dsi

∣∣∣∣
s=0

= lim
s→0
<(s)=0

diΓx(s−1)
dsi

, i = 0, 1. (7.13)

That is, the moments of ΓNx (s) and ΓNx (s) at zero match up to the (N − 1)th
moment, and the moments at infinity match up to the first moment1.

The properties described by Theorem 10 are independent of the choice of the
grid points. Hence, other desired properties can be imposed by an optimal
choice of the distribution of the grid points. Therefore, the grid points are
specified as

θN,i = τmax
2 (αN,i − 1), αN,i = − cos

(
πi

N

)
, i = 1, . . . , N, (7.14)

corresponding to scaled and shifted zeros of the so-called Chebyshev polynomial
of the second kind and order N − 1. With the choice of the Chebyshev grid
(7.14), the convergence of the individual eigenvalues of AN to corresponding
characteristic roots is fast. More specifically, in [20] it is proven that spectral
accuracy (approximation error O(N−N )) is obtained. An additional property of
using a Chebyshev grid, observed in extensive numerical simulations, is that the
eigenvalues of AN which have not yet converged to corresponding characteristic
roots, are located to the left of the eigenvalues that have already converged (see,
for instance, the plots in [20]). Additionally, this choice of grid points allows a
sparse system representation characterized by the transfer function

ΓNx (s) = FN (sGN − I)−1
HN + D. (7.15)

Appendix C.1 provides the explicit derivation of the sparse system matrices FN ,
GN and HN from the approximation (7.10) (see [79], Lemma 3.1).

1In the right hand side of (7.13) we consider the limit along the imaginary axis. When
dropping this restriction, the limit does not exist since s =∞ is an essential singularity of
both Γx and Γ.
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As a matter of fact, an adaptive construction of the sparse approximation (7.15)
is possible, in the sense that an increase of the number of grid points N can
be dealt with by extending the corresponding matrices. This is formalized in
Appendix C.2.

Constructing a reduced-order model

As discussed in the previous section, the discretized system (7.10) features
attractive approximation properties. However, a major drawback is that the
order (Nnx) of (7.10) is considerably larger than the order (nx) of the original
time-delay system (7.5). On the other hand, (7.10) attains a standard LTI form,
thus conceptually allowing an order reduction by applying a standard Krylov
based technique. While the latter usually involves an explicit construction of the
large matrices in (7.10), we will show that this can be avoided by exploiting the
sparse structure of (7.15), hence allowing an efficient implementation. Moreover,
the construction is dynamic in the sense that the value of N in (7.11) does not
need to be fixed a priori.

Dynamic construction of a Krylov space The model reduction is achieved
by projecting the large and sparse matrices FN , GN and HN from (7.15) on
an appropriately defined subspace. Instrumental to this we use the dynamic
construction of a Krylov space of GN , presented in [59]. This construction
is in turn inspired by methods for polynomial eigenvalue problems that
exploit structure to reduce the storage cost of the Krylov vectors [12, 39, 78].
Appendix C.3 summarizes the construction of a Krylov space (in a slightly
adapted form), allowing the derivation of reduced models based on a projection.

Reduced model by projection, moment matching properties We now arrive
at the derivation of an approximation of ΓNx , defined by (7.11) or, equivalently,
(7.15), having a prescribed order k. A possible approach is to construct the
Krylov space Kk(GN , x0) with Algorithm 1 (see Appendix C.3) and project the
matrices FN , GN and HN , corresponding to the sparse system representation
(7.15), on this Krylov space. Assuming N ≥ k, an orthogonal projection on the
Krylov space yields a kth order approximation of ΓNx (s):

Γ(k)
x (s) = F (k)(sG(k) − I)−1H(k) + D, (7.16)

where
F (k) = FkVk, G(k) = Hk, H(k) = V ′kHk, (7.17)

and the matrices
Vk ∈ Rknx×knu , Hk ∈ Rknu×knu
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refer to the output of Algorithm 1 presented in Appendix C.3. It is important
to note that the matrices F (k−1) and H(k−1) are submatrices of F (k) and H(k).
Therefore, they can be constructed in a dynamic way during the iterations of
Algorithm 1, as is the case with the so-called Hessenberg matrix Hk.
With a particular choice of block vector x0, transfer function (7.16) satisfies the
following moment matching property with the (original) transfer function Γx of
LTD system (7.5).

Theorem 11 (Matching moments reduced model). Let k ∈ N sastisfy k ≥ 2
and let Vk ∈ Rknx×knu . Assume that the columns of Vk form an orthogonal
basis of Kk(Gk, R−1

0 B). Then the transfer function (7.16) satisfies

diΓ(k)
x (s)
dsi

∣∣∣∣∣
s=0

= diΓx(s)
dsi

∣∣∣∣
s=0

, i = 0, . . . , k − 2, (7.18)

and
diΓ(k)

x (s−1)
dsi

∣∣∣∣∣
s=0

= lim
s→0
<(s)=0

diΓx(s−1)
dsi

, i = 0, 1. (7.19)

Proof. See Appendix C.4.

Figure 7.3 provides a complete schematic overview of the Krylov based model
order reduction approach applied to the LTD system (7.5). The overall
approximation of Γx by the rational transfer function Γ(k)

x is described in
Appendix C.5.

7.3.2 Taking into account input-output delays

The approximation of Γx by Γ(k)
x exhibits a good spectral approximation, in

the sense that the smallest characteristic roots are accurately approximated
and moments at zero and at infinity are preserved. In addition, the application
of the Krylov method to GN ∼ A−1

N leads to non-converged eigenvalues of the
reduced model having a favorable location, see [79].

Based on the decomposition (7.4), the overall transfer function Γ can be
approximated by

Γ(k) = Γ(k)
y Γ(k)

x Γ(k)
u , (7.20)
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TDS with only state delays:
A0, . . . , Amx , B, C, D

Infinite-dimensional LTI system:
A, B, C, D

LTI system of dimension Nnx:
AN , BN , CN , D

Sparse representation:
FN , GN , HN , D

Reduced LTI model of order k:
F (k), G(k), H(k), D

finite-dimensional
approximation

N moments at 0
2 moments at ∞

Krylov based
projection

k − 1 moments at 0
2 moments at ∞

k − 1 moments at 0
2 moments at ∞

Figure 7.3: Schematic overview of the numerically efficient Krylov based model order
reduction approach.
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where Γ(k)
y and Γ(k)

u are obtained from Γy and Γu using a (`, `)-Padé
approximation of e−sµi , i = 1, . . . ,mu, and e−sνi , i = 1, . . . ,my, with

` =
⌈
k

2

⌉
− 1. (7.21)

Inherent to a Padé approximation, the introduced characteristic roots are in
the open left half plane.

Due to the choice of order of Padé approximant (7.21) and the chain rule,
moments of Γ are preserved at zero, in the sense that

diΓ(k)(s)
dsi

∣∣∣∣
s=0

= diΓ(s)
dsi

∣∣∣∣
s=0

, i = 0, . . . , k − 2.

In the presence of input and output delays, moments at infinity of Γ are in
general not well defined since

lim
s→0
<(s)=0

diΓ(s−1)
dsi

, i ∈ {0, 1},

does not exists, except for i = 0 and Γ strictly proper. However, since the
moment matching property holds between Γx and Γ(k)

x and a Padé approximation
is characterized by a feedtrough at infinity equal to ±1, the modulus of the
feedthrough term of Γ as well as the asymptotic decay rate of the amplitude of
the transfer function (up to -40dB/decade) carry over.

Finally, transfer function (7.20) can be realized by a LTI system of the form{
ξ̇(t) = A(k)ξ(t) +B(k)u(t),
y(t) = C(k)ξ(t) + Du(t). (7.22)

The order of (7.22) is equal to knu + `(my +mu) in case all input and output
channels are subject to delays. Note that, as a property inherited from a spectral
discretization, the dimension of the LTI approximation does not depend on the
number of state delays mx.
Remark 7. In case Γ has less outputs than inputs, it is favorable to approximate
Γ′x, corresponding to{

ẋ(t) = A′0x(t) +
∑mx
i=1A

′
ix(t− τi) + C′y(t),

u(t) = B′x(t) + D′y(t),

in the first place, and use the transposed system of the resulting LTI
approximation subsequently, without losing the properties mentioned above.
This switch, which has been implemented in the software, leads to a dimension
of the reduced model equal to kmin(nu, ny) + `(my +mu).
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7.4 Fixed-order control of an experimental heat
transfer setup

This section considers the design of fixed-order multi-objective controllers (7.2)
for a realistic LTD model (7.1) of an experimental heat transfer setup. To
compute a fixed-order controller for the LTD system, we apply the model
order reduction technique from Section 7.3 to obtain a sufficiently accurate
LTI approximation of the LTD model, and subsequently use the approach
from Chapter 3 to design a fixed-order controller for this approximation. The
effectiveness of this combined approach is assessed by a numerical validation of
the performance of the closed-loop time-delay model. The LMIs are implemented
and solved in MATLAB using the software packages Yalmip [72] and MOSEK
[84].

7.4.1 Model description

The experimental setup, shown in Figure 7.4, consists of two closed and
independent heating circuits with water as heat transfer medium. The main
components of the system are a heater and a cooler for each circuit, which are
connected with pipelines of extendable length, and a heat exchanger. The delays
in the system, characterized by the ratios between the lengths of pipelines and
the flow velocities, play a crucial role in the system dynamics.

We consider the realistic model from [81] (see also [120]). This LTD model
of the form (7.1) has a state vector of dimension nx = 10, corresponding to
temperatures [◦C] at different places of the setup. The measured output, denoted
by y2, as in Figure 7.1, is equal to the state vector (i.e., all temperatures are
measured). The control input u2 (see Figure 7.1) is the set-point value of the
slave PI control loop (included in the model) that controls the performance of
the left heater. An exogenous input d adjusts the performance of the left cooler
and is considered here as a disturbance, while the controlled variable Tc (the
last element of the state vector) is the temperature measured at the output of
the left cooler. Furthermore, the system has 5 state delays (τ1 = 3s, τ2 = 5s,
τ3 = 15s, τ4 = 23s, τ5 = 29s), 2 input delays (µ1 = 6s, µ2 = 7s) and no output
delays.

7.4.2 Derivation of a reduced delay-free model

In this section, an LTI approximation of the realistic LTD model (see Section
7.4.1) is determined by applying the Krylov based model order reduction
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Figure 7.4: The experimental heat transfer setup and its schematic representation.

technique presented in Section 7.3.

It is important to realize that, while an accurate LTI approximation is desired,
a low order approximation is attractive for control design. To satisfy these
conflicting specifications, we select k = 10, corresponding to k − 1 matching
momtents at zero and 2 at infinity (see Theorem 11). Since the input
delay corresponding to the disturbance input d (µ1 = 6s) does not influence
performance, it is set to zero without loss of generality. This results in an LTI
system (7.22) of order 25. To assess the accuracy of this delay-free approximation,
the relevant (single-input single-output) transfer functions of the original LTD
system (7.1) and its LTI approximation (7.22) are compared. The corresponding
Bode magnitude plots are shown in Figure 7.5, revealing a maximum error of
approximately −40dB, which is satisfactory for this application. Note that,
since 2 moments are matched at infinity, the asymptotic decay rates of the
original time-delay system and its delay-free approximation correspond up to a
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Figure 7.5: Bode magnitude plots corresponding to relevant input-output channels of the
LTD model (solid black), its delay-free approximation (dashed gray), and the (maximum)
error (solid gray). Left: d → Tc, where Tc is the temperature at the output of the left
cooler. Right: u2 to each measured temperature (i.e., each element of output vector y2).

decay rate of -40dB/decade.

7.4.3 Controller design

This section considers the design of a high performance fixed-order controller
for the delay-free approximation (7.22) of the realistic heat transfer model (7.1),
using the approach of Chapter 3. The aim is to achieve a fast response to a
constant reference for the temperature Tc at the output of the left cooler, while
limiting the energy consumed by the system.

To this end, a reference signal r is defined such that, in accordance with
Figure 7.1, the exogenous input is composed as u1 =

[
d r

]′. To counteract
the effect of a disturbance d on the temperature Tc, an integrator is added to
the LTI approximation by defining the error e := r − Tc and introducing an
additional state variable

z(t) :=
∫ t

0
e(v)dv, (7.23)
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corresponding to an extra state equation ż = r−Tc. Subsequently, the regulated
output y1 is constructed as y1 =

[
z y′2

]′. The resulting LTI system, with
input u =

[
u′1 u′2

]′ and output y =
[
y′1 y′2

]′, has a state, input and output
dimension of, respectively, 26, 3 and 21.

Considering the closed-loop interconnection of this LTI system with a controller
(7.2) (and grouping the controller variables as in (3.3) on page 31), a bound
γ1 on the H2 norm is minimized for the closed-loop channel HΘ,1 : r → z to
optimize performance, subject to a bound γ2 on the H2 norm for the channel
HΘ,2 : d → y2 to limit energy consumption. Specifically, the optimization
problem for the design of a fixed-order controller (7.2) attains the following
form:

minimize
Θ,γ1,γ2

γ1

subject to: ‖HΘ,1‖2 < γ1, ‖HΘ,2‖2 < γ2,

γ1 < b1, γ2 < b2,

(7.24)

where the (optional) prefixed bounds b1 ∈ R+ and b2 ∈ R+ are incorporated
to bound the feasible set associated with the optimization, and thus avoid
numerical issues. We select the bounds b1 = 8 and b2 = 2.5× 10−2.

First, a (conservative) full-order multi-H2 controller, denoted by Ψ, is computed
with the Lyapunov shaping paradigm [103], with closed-loop H2 performances
‖HΨ,1‖2 = 7.73 and ‖HΨ,2‖2 = 1.61 × 10−2. This controller is obtained by
solving the LMI feasibility problem corresponding to (7.24) (i.e., instead of
optimizing γ1). Namely, while minimization of γ1 results in slightly better H2
performance of the closed-loop LTI system, the associated closed-loop LTD
system is unstable. We attribute this to the fact that, in the latter case,
the delay-free approximation of the closed-loop LTD system is not sufficiently
accurate.

Substituting the obtained full-order controller Ψ in the fixed-order H2 synthesis
LMIs (3.17), and selecting A22 = −I26−q, controllers with a state dimension of
15 ≤ q ≤ 25 are computed. (No feasible solutions were obtained for q ≤ 14 with
the selected bounds b1 and b2.) Initially γ1 is optimized, and a feasibility problem
is solved instead whenever numerical issues occur. The results are summarized
in Table 7.1, showing the obtained H2 bounds γi, H2 norms ‖HΘ,i‖2, i = 1, 2,
number of scalar LMI variables and computation times associated with the
LMI optimization problem for each state dimension q. It is clear that, for
18 ≤ q ≤ 25, the same closed-loop performance as the initial full-order controller
is achieved, while for the cases q = 17 and q = 16 the performance is only
slightly affected. At the same time, it should be emphasized that for q = 15 a
significant improvement of performance is achieved compared to the full-order
controller, see the discussion below Remark 5 on page 39.
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Table 7.1: For each controller order 15 ≤ q ≤ 25, the H2 bounds µi, a posteriori calculated
H2 norms ‖HΘ,i‖2, i = 1, 2, number of scalar LMI variables and computation times tc
(in seconds) corresponding to the optimization problem (7.24) are shown. The controller
of order q = 15 outperforms the initial full-order controller, confirming the merits of the
fixed-order LMI framework presented in Chapter 3 for multi-objective control design.

q µ1 ‖HΘ,1‖2 µ2 ‖HΘ,2‖2 × 102 LMI
variables tc

25 7.73 7.73 2.45 1.61 4506 76.8
24 7.73 7.73 2.45 1.61 4472 83.2
23 7.73 7.73 2.45 1.61 4440 77.8
22 7.73 7.73 2.45 1.61 4410 85.0
21 7.95 7.73 2.44 1.61 4382 44.1
20 7.95 7.73 2.44 1.61 4356 49.0
19 7.95 7.72 2.44 1.61 4332 42.7
18 7.95 7.74 2.44 1.61 4310 34.9
17 7.88 7.81 2.46 1.58 4290 31.6
16 7.95 7.83 2.44 1.57 4272 27.3
15 7.96 7.13 2.45 1.92 4256 51.1

Remark 8 (Exact state measurements). In the LTD model (7.1) of the
heat transfer setup, 10 exact state measurements are considered (i.e., it is
assumed that no noise affects the measurements). Therefore, in the delay-free
approximation (7.22) of (7.1), these same 10 states are, at least approximately,
measured (as a linear combination of 26 states). As discussed in [9], this implies
that a controller (7.2) with q = 26− 10 = 16 states exists that achieves the same
performance as an (optimal) full-order controller for the LTI system (7.22).

Remark 8 clarifies that, for 16 ≤ q ≤ 25, controllers with similar performance
as the initial full-order controller Ψ are obtained, see Table 7.1. It is important
to stress that, despite the potential conservatism of the approach of Chapter 3,
the amount of introduced conservatism is negligible. As a matter of fact, a
reduction of conservatism is achieved for q = 15, confirming the merits of our
fixed-order LMI framework for multi-objective control design.

7.4.4 Validation

This section validates the performance of the controllers (7.2) with q = 26 and
q = 15 states, designed in the previous section, in closed-loop with the original
LTD model (7.1) of the experimental heat transfer setup and its delay-free
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approximation (7.22). Comparisons are provided between the closed-loop LTD
system and its delay-free approximation on the one hand, and between the
performance of the full-order (q = 26) and fixed-order (q = 15) controller on
the other hand.

Figure 7.6 shows several important transfer functions corresponding to the LTD
system and its delay-free approximation, interconnected with the full-order
(q = 26), respectively, fixed-order (q = 15) controller. These transfer functions
show that, for both controllers, the delay-free model accurately approximates
the closed-loop LTD system. Furthermore, it is clear that the performance of
both controllers is similar. The controller with q = 15 states has a slightly
higher bandwidth, suggesting a faster response as indicated by the left part of
Figure 7.7. The added integrator (7.23) enforces the transfer functions r → e to
be zero at zero frequency, implying that constant disturbances d are completely
attenuated, see the right part of Figure 7.7. Note that the fixed-order controller
yields a more agressive input response, see also Figure 7.8 on page 113, clarifying
more overshoot in the responses shown in Figure 7.7b compared to Figure 7.7a.

7.5 Summary

This chapter has presented a combined approach to design fixed-order multi-
objective H∞/H2 controllers for LTD systems featuring delays in the state,
input and/or output. In this combined approach, first a novel Krylov based
model order reduction technique was applied in conjunction with standard
Padé approximations to obtain an accurate low-order LTI approximation of
the original LTD system. Subsequently, a fixed-order controller was designed
for this approximating LTI model with the approach presented in Chapter 3.
In a final step, the controller was validated on the original LTD system. This
approach was applied to design fixed-order multi-H2 controllers for a realistic
LTD model of an experimental heat transfer setup. For this LTD model with
10 states, 2 inputs, 10 outputs, and 7 delays, a delay-free approximation with
25 states was obtained. Both full-order (q = 26) and fixed-order (q = 15)
controllers were designed for the approximation, and successfully validated on
the original LTD model, confirming the potential of our combined approach for
industrial engineering applications.
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(a) Controller with q = 26 states
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(b) Controller with q = 15 states

Figure 7.6: Bode magnitude plots corresponding to the LTD system (solid black) and its
delay-free approximation (gray) in closed-loop with a controller of order q = 26 (top) and
q = 15 (bottom). Left: the transfer functions r → Tc (dashed), r → e (dashdotted) and
r → u2 (dotted). Right: the transfer function d→ Tc.



112 FIXED-ORDER CONTROLLER DESIGN FOR LTD SYSTEMS

0 100 200 300

0

0.5

1

1.5

2

Time [s]

T
em

p
er
at
u
re

ch
a
n
ge
s
[◦
C
]

0 100 200 300

−8

−6

−4

−2

0

2

4
·10−2

Time [s]

T
em

p
er
at
u
re

ch
a
n
ge
s
[◦
C
]

(a) Controller with q = 26 states
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(b) Controller with q = 15 states

Figure 7.7: Reference tracking and disturbance rejection performance of the controllers
with q = 26 states (top) and q = 15 states (bottom). The response of the regulated
temperature Tc (thick) and the other measured temperatures (thin) to a reference step
(left) and disturbance step (right) is shown for the closed-loop LTD system (black) and
its delay-free approximation (dashed gray).
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Figure 7.8: Response of the control input u2 to a reference step of the LTD system (solid
black) and its delay-free approximation (dashed gray) in closed-loop with the full-order
controller (q = 26, left) and the fixed-order controller (q = 15, right).

Recapitulation

• By combining a novel Krylov based model order reduction technique with
the LMI framework for fixed-order controller design of Chapter 3, fixed-order
H∞/H2 controllers are designed for LTD systems.

• To obtain a delay-free approximation of an LTD system, the system is
rewritten as an equivalent infinite-dimensional LTI system. Subsequently, a
specific spectral discretization is applied, having the favorable property that
several moments of the transfer function are preserved at zero and infinity.
Additionally, proper selection of the set of grid points allows a sparse system
representation.

• A Krylov based model order reduction approach is applied to systematically
reduce the number of states of the delay-free approximation, exploiting
sparsity and moreover satisfying attractive moment matching properties with
the original LTD system.

• The practical viability of the combined fixed-order controller design approach
for LTD systems is assessed by designing a high performance fixed-order
multi-H2 controller for a realistic LTD model of an experimental heat
transfer setup.





Chapter 8

Combined structure and
control design

This chapter presents a parametric programming approach to design H∞/H2
feedback controllers for LTI systems, while simultaneously optimizing structural
parameters affecting the system dynamics. In this approach, closed-loop
performance is optimized in function of these parameters by relying on well-
known convex LPV synthesis approaches. By solving the corresponding primal
and dual optimization problems, performance upper and lower bounds in function
of the structural parameters are obtained, providing insight in the conservatism
of the solution. Exploiting polynomial spline parameterizations, conservatism is
reduced in a systematic and numerically efficient way. The effectiveness of the
approach is validated by simultaneously designing a state feedback controller and
optimizing structural parameters for earthquake isolation of a civil engineering
structure.

8.1 Introduction

Generally speaking, combined structure and control design considers the
simultaneous optimization of structural parameters and an active controller for
a given system, with respect to predefined performance specifications. Since
the design of structural parameters and a controller are not independent,
simultaneous optimization allows superior performance and/or reduced actuator
effort compared to controller design for a model with a priori fixed structural
parameters [57, 109, 110]. However, it is well known that such a simultaneous
design gives rise to intractable nonconvex optimization problems.

115
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Several algorithms for combined structure and control design have been proposed
(see [60, 125], amongst others), but are computationally demanding and do not
guarantee convergence to a local optimum. Improved approaches using iterative
LMI procedures have been presented in [45, 73], and more recently in [21].

This chapter presents an elegant and numerically attractive approach to
simultaneously design structural parameters and an H∞/H2 feedback controller
for a given LTI system, relying on well-known convex LPV controller design
approaches. By optimizing performance in function of the structural parameters
and exploiting polynomial spline parameterizations, approximate performance
bounds in function of the structural parameters are obtained. In contrast to the
aforementioned approaches, this requires solving only one convex optimization
problem. Moreover, while the approach presented [21] is restricted to affine
parameterizations, our approach allows polynomial spline dependencies for
all system matrices. The use of such general parameterizations is motivated
by the following fact: when increasing the degree and the number of knots
of the B-spline parameterizations, the solution converges to the optimal (i.e.,
gridded) solution. The effectiveness of our approach is validated by simultaneous
optimization of structural parameters and a state feedback controller for
earthquake isolation of a civil engineering structure.

8.2 Problem formulation

Consider the finite-dimensional LPD state-space model δx = A(α)x + Bw(α)w + Bu(α)u,
z = Cz(α)x + Dzw(α)w + Dzu(α)u,
y = Cy(α)x + Dyw(α)w

(8.1)

with state x : T→ Rnx , exogenous input w : T→ Rnw , control input u : T→
Rnu , regulated output z : T → Rnz and measured output y : T → Rny . It is
assumed that all system matrices have a polynomial spline dependency on the
time-invariant parameter α ∈ Λ, where Λ ⊂ RN is the Cartesian product of N
bounded intervals:

Λ = [α1, α1]× [α2, α2]× · · · × [αN , αN ].

The aim is to design a feedback controller

K :
{
δxc = Acxc + Bcy,
u = Ccxc + Dcy,

(8.2)
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with xc ∈ Rq (0 ≤ q ≤ nx) for the system (8.1), such that one or more closed-
loop H∞/H2 performance specifications and the structural parameter α ∈ Λ
are simultaneously optimized.

8.3 Approach

This section briefly discusses a parametric programming approach for
simultaneous optimization of a H∞/H2 feedback controller and structural
model parameters. The proposed approach relies on parameter-dependent LMIs
for LPV synthesis, see Chapter 5 and references therein, considering the specific
case of a time-invariant parameter. It is emphasized that, independent of the
considered synthesis LMIs (i.e., ranging from state feedback to fixed-order
dynamic output feedback), the approach can be straightforwardly applied.

The approach consists of the following two steps:

1. Using an available LPV controller synthesis approach, we design a
parameter-dependent controller K(α) achieving a high closed-loop
performance for each parameter value α ∈ Λ by solving only one convex
optimization problem. This is achieved by optimizing a desired closed-loop
performance bound p(α) > 0 as a function of the time-invariant parameter
α ∈ Λ as follows:

minimize
K(·),p(·)

∫
Λ p(α)dα

subject to: LPV synthesis LMIs depending on K(α), p(α)
(8.3)

2. Minimize the obtained performance bound p(α) over α ∈ Λ, and select the
controller corresponding to the optimal value of α. Specifically, compute

αopt := arg min
α∈Λ

p(α)

and select K := K(αopt).

Note that, in Step 1, performance is optimized as a function of the structural
parameter α, in contrast to typical LPV synthesis approaches in which worst-
case performance is usually optimized. Subsequently, in Step 2, the performance
bound p(α) is minimized over α ∈ Λ. It is emphasized that optimization of the
performance bound for each parameter value in conjunction with a sufficiently
accurate parameterization of optimization variables is indispensable for optimal
selection of the structural parameter.
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Remark 9 (L1 norm optimization). Mathematically speaking, the L1 norm of
the strictly positive function p(α), defined as

‖p‖1 :=
∫

Λ
p(α)dα,

is optimized in the optimization problem (8.3), as opposed to the L∞ norm
‖p‖∞ := max

α∈Λ
p(α)

in typical LPV controller design problems. The optimization of different norms
(i.e., convex functions), such as the Lp norms with 1 < p < ∞, might be
considered. However, the latter is beyond the scope of this thesis.

In the ideal case of a perfect parameterization of the optimization variables, the
optimal solution of (8.3) is attained, and thus the lowest achievable performance
bound p(α) is achieved for each α ∈ Λ. This implies that, whenever (8.3) is a
necessary and sufficient synthesis condition (e.g., H∞ state feedback design),
the above approach yields the optimal structural parameter and corresponding
optimal controller if the parameterization is sufficiently accurate.

Due to the generality of polynomial spline parameterizations (see Section 2.4.1
on page 19), they allow accurate approximations of the optimal solution of
(8.3). Compared to polynomial parameterizations, considerably less conservative
approximations might be obtained, which is due to the extra degree of freedom
to select internal break points to locally influence LMI variables. Although the
optimal placement of internal break points is a difficult problem, it is shown
in the next section that systematic selection of break points might already be
more attractive than selecting a higher polynomial degree, both in terms of
conservatism and numerical complexity.

As a possible extension of the above approach, the so-called dual problem (see,
for instance, [19]) associated with (8.3) can be derived, providing a lower bound
d(α) on the solution of (8.3). A measure of conservatism is obtained by studying
the so-called duality gap, which is quantified by the difference p(α) − d(α),
α ∈ Λ. Obviously, a smaller duality gap corresponds to a more accurate
approximation of the optimal solution. The next section demonstrates how
B-spline parameterizations are exploited to systematically reduce the duality
gap.

8.4 Earthquake isolation of a 3-store building

This section validates the proposed combined structure and control design
approach, by simultaneously designing a state feedback controller and optimizing
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Figure 8.1: Schematic representation of the 3-store building model.

structural parameters for earthquake isolation of a 3-store building. A
description of the considered model and the control objectives is provided
in Section 8.4.1, respectively, Section 8.4.2. Subsequently, the numerical results
discussed in Section 8.4.3 demonstrate the generality, flexibility and practical
viability of our approach.

8.4.1 Model description

A schematic representation of the considered model of a 3-store building, which
is borrowed from [21], is shown in Figure 8.1. The corresponding nominal
structural parameters are given in Table 8.1. Each floor is modeled as a mass,
while the building dynamics are captured by interconnecting two consecutive
floors by a spring and a damper. The control inputs ui, i = 1, 2, 3, are forces
applied independently to each floor. An earthquake is modeled by a disturbance
input w, representing ground acceleration.



120 COMBINED STRUCTURE AND CONTROL DESIGN

Table 8.1: Nominal structural parameters of the 3-store model.

Floor masses
[kg]

Stiffness coefficients
[kN/m]

Damping coefficients
[kN s/m]

m1 = 5897 k1 = 33, 732 d1 = 67
m2 = 5897 k2 = 29, 093 d2 = 116
m3 = 5897 k3 = 28, 621 d3 = 57

Defining the structural parameter

α =
[
m1 m2 m3 k1 k2 k3 d1 d2 d3

]′
,

and mass, stiffness and damping matrices M(α) = diag{m1,m2,m3},

S(α) =

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

 , D(α) =

d1 + d2 −d2 0
−d2 d2 + d3 −d3

0 −d3 d3

 ,
respectively, the model dynamics are conveniently expressed in the state-space
form (8.1) with

A(α) =
[

0 I3
−M(α)−1K(α) −M(α)−1D(α)

]
,

Bw(α) =


03×1

1
1
1

 , Bu(α) =
[

0
M(α)−1

]
.

The associated system state is composed of the horizontal floor positions yi,
i = 1, 2, 3 with respect to the ground, and their velocities. To limit the interstory
displacements yi−yi−1, i = 1, 2, 3 (with y0 := 0), the regulated output is defined
by

Cz(α) =

 1 0 0
−1 1 0 03×3
0 −1 1

 , Dzw(α) = 0, Dzu(α) = 0.

Furthermore, assuming that all states are available for feedback, Cy(α) = I6
and Dyw(α) = 0.

8.4.2 Control objective

We consider the simultaneous design of a state feedback control law u = Fx
(i.e., q = 0 in (8.2)) and optimization of one or more structural parameters for
the 3-store model from Section 8.4.1. The control objective of [21] is adopted.
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Suppose that w is a stochastic white Gaussian noise process with identity
covariance matrix. Then, for a given prefixed bound on the energy (variance)
of the regulated output z, we are interested in minimizing the control effort u
(quantified by its standard deviation). It is clear from Definition 3 (on page 13)
that the imposed objectives correspond to a multi-H2 state feedback control
problem.

As discussed in [21], the corresponding optimization problem (8.3) is explicitly
given by

minimize
Q(·),L(·),Z(·)

∫
Λ Tr{Z(α)}dα

subject to:
(8.4)

[
Q(α)A(α)′ +A(α)Q(α) +Bu(α)L(α) + L(α)′Bu(α)′ Bw(α)

Bw(α)′ −I

]
≺ 0,

Cz(α)Q(α)Cz(α)′ ≺ µI,[
Q(α) L(α)′
L(α) Z(α)

]
� 0, ∀α ∈ Λ,

with Q(α) ∈ S6
+, L(α) ∈ R3×6 and Z(α) ∈ S3

+, α ∈ Λ, and where µ = 15 is
selected to bound the variance of the regulated output z. Λ is constructed from
known lower and upper bounds on each structural parameter. The parameter-
dependent state feedback controller is reconstructed as F (α) = L(α)Q(α)−1.

The associated dual problem (see, e.g., [19]) is given by

maximize
U(·),V (·)

∫
Λ Tr{U12(α)Bw(α)′}+ Tr{U12(α)′Bw(α)} −

Tr{U22(α)} − µTr{V (α)}dα
subject to:

(8.5)

U(α) :=
[
U11(α) U12(α)
U12(α)′ U22(α)

]
� 0,

V (α) � 0,[
A(α)′U11(α) + U11(α)A(α) + Cz(α)′V (α)Cz(α) U11(α)Bu(α)

Bu(α)′U11(α) I

]
� 0,

where the constraints should hold for all α ∈ Λ. The function

d(α) = Tr{U12(α)Bw(α)′}+ Tr{U12(α)′Bw(α)} − Tr{U22(α)} − µTr{V (α)}

is a lower bound on the optimal value function p(α) = Tr{Z(α)} of the primal
problem (8.4).
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As explained in Section 2.4 on page 18, tractable LMI formulations are obtained
by imposing a parameterization on the LMI variables and applying a relaxation.
When a solution of (8.4) is obtained, the corresponding optimal structural
parameter and state feedback controller are determined as

αopt = arg min
α∈Λ

Tr{Z(α)},

respectively, F := F (αopt).

8.4.3 Numerical results

Starting from the primal and dual optimization problems (8.4) and (8.5),
respectively, B-spline parameterizations are exploited to derive tractable LMI
conditions for simultaneous optimization of a multi-H2 state feedback controller
and structural parameters for the 3-store model. First, only the stiffness
coefficient k2 is optimized, while the nominal values of the remaining structural
parameters (see Table 8.1 on page 120) are selected. In a second case, the
damping coefficient d3 is optimized in addition to k2. The LMIs are implemented
and solved in MATLAB using the software packages Yalmip [72] and SDPT3
[115].

Case 1: optimization of k2

We are interested in simultaneous optimization of the state feedback control
gain F and the structural parameter k2 over the interval [k2, k2], where k2 and
k2 represent half, respectively, double the nominal value of k2. Note that, in
this case, the system matrices of (8.1) affinely depend on k2, such that selecting
all LMI variables as polynomial splines results in parameter-dependent LMIs
with a polynomial spline dependency.

Using 100 equidistant grid points on the interval [k2, k2], multi-H2 state feedback
controllers are computed by solving the parameter-independent version of
optimization problem (8.4) for each grid point. The resulting tradeoff curve
is shown in Figure 8.2, revealing an optimal value k2 ≈ 4.9 · 107. It should be
emphasized that, since the parameterization of LMI variables is a source of
conservatism, only an approximation of the gridded solution can be obtained
with parametric programming. On the other hand, parametric programming is
more elegant in the sense that it only requires solving one convex optimization
problem, while gridding procedures are numerically very demanding. For
instance, in this case, gridding already requires solving 100 convex optimization
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Figure 8.2: H2 performance as a function of the structural parameter k2, obtained using
100 equidistant grid points on the interval [k2, k2]. The gray cross indicates the optimal
value of k2.

Table 8.2: Selected polynomial degrees of the LMI variables.

LMI variable degree
Q(α), U(α), V (α) g

F (α), L(α) g + 1

problems. When N structural parameters are simultaneously optimized, this
generalizes to 100N convex problems.

To assess the benefits of our parametric programming approach, various
possibilities to obtain approximate solutions of the H2 bound from Figure 8.2
are compared.

First, using polynomial parameterizations for all LMI variables, a degree
elevation (of degree d) is compared with knot insertion (using m midpoint
refinements, such that the number of inserted knots equals 2m − 1). According
to the polynomial degrees in Table 8.2, a polynomial parameter dependency is
selected for all LMI variables. Setting g = 2, the results in Table 8.3 are obtained,
revealing that applying knot insertion instead of degree elevation yields better
approximations of the gridded solution with a comparable numerical burden.
The latter is further illustrated in Figure 8.3, comparing the primal and dual
solutions corresponding to the cases (d,m) = (4, 0) and (d,m) = (0, 3).

Now we consider more general polynomial spline parameterizations for the LMI
variables, allowing a comparison between increased polynomial degree g and
more internal knots k. Table 8.4 shows the results for different values of (g, k),
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Table 8.3: Degree elevation (of degree d) versus knot insertion (using m midpoint
refinements) for polynomial LMI variables (g = 2).

degree d (m = 0) 0 1 2 4 8
primal objective 560.8 554.2 549.6 541.7 536.6

computation time [sec] 1.09 1.18 1.21 1.41 1.68
dual objective 445.9 451.4 460.0 464.7 469.4

computation time [sec] 1.62 1.16 1.02 1.10 1.24
midpoint refinements m (d = 0) 0 1 2 3 4

primal objective 560.8 550.3 532.2 529.2 528.0
computation time [sec] 1.04 1.21 1.24 1.50 1.93

dual objective 445.9 467.8 472.0 474.8 475.8
computation time [sec] 1.54 1.00 1.16 1.14 1.41
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Figure 8.3: A comparison between the primal (black) and dual (gray) solutions
corresponding to the cases (d,m) = (4, 0) (dashed) and (d,m) = (0, 3) (dotted) shows
that a better approximation of the gridded solution is obtained using knot insertion. The
thick solid black line and the thin vertical black lines correspond to the gridded solution,
respectively, the positions of inserted knots for the case (d,m) = (0, 3).
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Table 8.4: Higher polynomial degree vs. more knots of LMI variables. (Without degree
elevation or knot insertion.)

degree g (k = 0) 2 3 4 5
primal objective 560.8 536.2 530.2 526.5

computation time [sec] 2.24 0.95 0.94 1.00
dual objective 445.9 481.1 495.4 501.0

computation time [sec] 1.31 0.78 0.84 1.02
number of knots k (g = 2) 0 1 2 3

primal objective 560.8 532.0 522.6 518.4
computation time [sec] 2.13 0.88 0.96 1.13

dual objective 445.9 487.2 497.7 503.5
computation time [sec] 1.34 0.83 0.93 1.06
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Figure 8.4: A comparison between the primal (black) and dual (gray) solutions
corresponding to the cases (g, k) = (4, 0) (dashed) and (g, k) = (2, 2) (dotted) illustrates
the benefit of B-spline LMI variables with internal knots. The thick solid black line and
thin vertical black lines correspond to the gridded solution, respectively, the internal knot
positions for the case (g, k) = (2, 2).

without degree elevation and knot insertion (i.e., (d,m) = (0, 0)). It is clear that
internal knots are more attractive than higher degrees of LMI variables, since
this leads to better approximations of the gridded solution with a comparable
numerical burden. Figure 8.4 confirms this by comparing the case (g, k) = (4, 0)
and (g, k) = (2, 2).
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Table 8.5: A comparison of the primal and dual solution with the gridded solution reveals
a very accurate approximation and a drastic decrease of numerical complexity.

30x30 grid primal dual
objective function (times 10−14) 6.46 6.49 6.37

computation time [sec] ≈ 1100 15.3 11.1

Case 2: optimization of (k2, d3)

The simultaneous design of a state feedback control gain F and the multi-
dimensional structural parameter (k2, d3) ∈ [k2, k2]× [d3, d3] = Λ is considered
now. The interval boundaries k2 and k2 are half, respectively, double the
nominal value of k2, while d3 and d3 are selected as half, respectively, exactly
the nominal value of d3. Using a 30× 30 equidistant grid of Λ, a state feedback
controller and a corresponding closed-loop H2 bound as a function of (k2, d3)
are computed by solving 900 convex optimization problems (i.e., the parameter-
independent version of (8.4)), where it takes approximately 1.25s to solve each
convex optimization problem, implying a total time of almost 20 minutes to
obtain an accurate gridded solution.

Subsequently, all LMI variables are chosen to have a polynomial spline
dependency on (k2, d3) (see Section 2.4.1 on page 19). With g = 2, the degrees
of Table (8.2) and k = 4 knots are selected in both k2 and d3, and the associated
optimization problems (8.4) and (8.5) are solved. The corresponding objective
functions and computation times are compared with the gridded solution in
Table 8.5, resembling a very accurate approximation of the objective function for
each parameter value and a drastic decrease of the computation time. Figure 8.5
illustrates how well the primal solution (transparent) approximates the gridded
solution (opaque) of (8.4). The fact that the minimum of the primal solution
(indicated by the black circle) is very close to the optimal value of the structural
parameter (k2, d3) (indicated by the black square) clearly confirms the merits
of our approach for combined structure and control design.

Remark 10 (Rational dependency on mass). In the used state-space form, the
dependency on mass is rational, such that polynomial spline parameterizations
would fail when considering the masses as structural parameters. However,
using the so-called descriptor form, the dependency of the system on all
parameters is rendered polynomial. As discussed in [21], the LMIs are
straightforwardly adapted to handle parameter-dependent descriptor systems,
see also Section 2.4.2.
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Figure 8.5: The gridded (opaque) and primal (transparent) solution. The fact that the
minimum of the primal solution (indicated by the black circle) is very close to the optimal
value of the structural parameter (indicated by the black square) clearly confirms the
merits of B-spline parameterizations for structure and control design.

8.5 Summary

This chapter has presented a parametric programming approach for combined
structure and control design, simultaneously optimizing an H∞/H2 feedback
controller and structural parameters affecting the system dynamics. The
latter was achieved by rewriting the problem as a specific LPV synthesis
problem (i.e., with time-invariant parameters), and optimizing a parameterized
performance bound in function of the structural parameter. The approach
was validated on a 3-store building model, by designing an active feedback
controller while optimizing structural parameters for earthquake isolation. It
was shown that polynomial spline parameterizations are very effective to obtain
approximate solutions of combined structure and control design problems,
especially compared to exhaustive gridding procedures. Namely, internal knots
locally affect the solution, and thus might lead to considerable reductions
of conservatism compared to polynomial parameterizations featuring similar
numerical complexity. A lower bound on the closed-loop performance in function
of the parameter was obtained by solving the dual of the considered (primal)
optimization problem, providing insight in the conservatism of the solution.
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Recapitulation

• Polynomial spline parameterizations are very effective to obtain approximate
solutions of combined structure and control design problems.

• Convex LPV synthesis approaches allow simultaneous optimization of a
controller and structural parameters, by optimizing closed-loop performance
in function of the parameter (instead of worst-case performance).

• By solving the dual of the considered (primal) optimization problem, a lower
bound on the closed-loop performance in function of the parameter is
obtained, providing insight in the conservatism of the solution.

• Considering polynomial spline variables with internal knots, locally affecting
the solution, might lead to considerable reductions of conservatism compared
to polynomial parameterizations featuring similar numerical complexity. In
addition, knot insertion is an attractive alternative to degree elevation.

• The merits of our approach are demonstrated by simultaneously designing a
state feedback controller and optimizing structural parameters for earthquake
isolation of a civil engineering structure.



Chapter 9

Concluding remarks

This thesis has presented a unifying convex framework to design fixed-order
controllers for the broad class of LPD systems, including extensive numerical
and experimental validations. This last chapter provides concluding remarks and
suggestions for future research.

9.1 Conclusions

Since both accuracy and simplicity of a dynamical model are of utmost
importance for a successful control design, the general class of LPD systems
has been considered in this thesis. LPD systems exhibit a linear input-output
relation, while the system dynamics are affected by parameters which are
potentially time-varying and uncertain, thus bridging the gap between the
restrictive class of LTI systems and general nonlinear systems. For some
dynamical systems, LPD models provide the desired accuracy to guarantee
stability and performance, while standard LTI techniques fail. On the other
hand, stability and performance is incredibly hard to prove for the general class
nonlinear systems. The constantly increasing demands from the manufacturing
industry are the main incentive for the research and development communities
to push the limits of accuracy and performance. In light of this, the following
contributions to the design of practical and intuitive controllers for LPD systems
have been presented.

129
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9.1.1 Fixed-order controller design for LPD systems

The need for more accurate dynamical models complicates the design of practical
and intuitive controllers. In this context, this thesis has presented an advanced
methodology to design feedback controllers for LPD systems with guaranteed
closed-loop stability and performance. The practicality of these controllers is due
to their structural simplicity, which is enforced by a priori fixing the number of
states and the parameter dependency. At the same time, the resulting controller
designs are intuitive, since the imposed performance measures directly relate
to bandwidth, actuator effort, robustness, overshoot, disturbance rejection,
etc. Since the design of fixed-order controllers is intrinsically a very hard
(i.e., nonconvex) problem, a novel framework of sufficient LMIs is presented
in Chapter 3 to alleviate this issue. This framework relies on a set of a priori
computed full-order LPD controllers that stabilize the LPD system for all
possible parameter trajectories, which are used as parameters in sufficient LMIs
for the fixed-order controller design. In these LMIs, continuous-time and discrete-
time controller designs are unified, and multiple performance specifications can
be taken into account.

For different subclasses of LPD systems, the main benefits of the fixed-order
controller design approach are highlighted below.

LTI systems In Chapter 4, the fixed-order controller design approach is applied
to LTI systems. For single-objective H∞ or H2 synthesis, intuitive guidelines
are provided for the selection of an initial full-order controller, often resulting
in optimal fixed-order controllers despite the conservatism inherent in the
approach. Additionally, for multi-objective control the selection of a different
initial full-order controller for each performance specification is motivated,
since this potentially yields fixed-order controllers that outperform full-order
controllers resulting from well-known (conservative) LMI approaches. Numerical
comparisons with existing approaches, and experimental validations on a lab-
scale overhead crane with fixed cable length, clearly illustrate the potential of
the LMI framework for fixed-order LTI controller synthesis.

LPV systems Exploiting a numerically efficient relaxation approach, the
LMI framework for fixed-order controller design is applied to design practical
controllers for LPV systems in Chapter 5. Taking into account bounds on
the rate of parameter variation, high performance fixed-order multi-objective
H∞/H2 LPV controllers are designed for a lab-scale overhead crane with varying
cable length, which is accurately modeled as an LPV system. The practical
viability of the approach is assessed through successful experimental validations.
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Uncertain LTI systems By imposing structural constraints on certain
optimization variables, the LMI framework is applied to design robust fixed-
order controllers for uncertain LTI systems in Chapter 6. To obtain high
performance robust controllers, the extension of the fixed-order LMI framework
with an iterative LMI procedure is essential. In this procedure, which requires an
initial stabilizing robust controller, novel extended analysis LMIs are alternately
solved in different optimization variables to gradually obtain less conservative
fixed-order robust controllers.

9.1.2 Fixed-order controller design for LTD systems

Chapter 7 presents a combined approach to design fixed-order LTI controllers
for LTD systems with delays in the state, input and output. In this approach,
first a novel efficient Krylov based model order reduction technique is applied in
conjunction with standard Padé approximations to obtain an accurate low-order
LTI approximation of the original LTD system. Subsequently, a fixed-order
controller is designed for this approximating model, using the approach presented
in Chapter 3. Finally, the closed-loop performance of the resulting fixed-order
controller is validated on the original LTD system. The successful design of
fixed-order multi-H2 controllers for a realistic LTD model of an experimental
heat transfer setup confirm the potential of the combined approach for industrial
engineering applications.

9.1.3 Combined structure and control design

A parametric programming approach for combined structure and control design
is presented in Chapter 8. In this approach, a feedback controller and structural
parameters affecting the system dynamics are simultaneously optimized. This
is achieved by rewriting the problem as a convex LPV synthesis problem
with time-invariant parameters, and optimizing a parameterized performance
bound in function of the structural parameter. Exploiting polynomial spline
parameterizations, an accurate approximation of the optimal performance bound
in function of the structural parameter is obtained. The effectiveness of the
approach is validated by simultaneously designing a state feedback controller and
optimizing structural parameters for earthquake isolation of a civil engineering
structure.
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9.2 Recommendations for future research

This section briefly discusses potential directions for future research.

Robust multi-objective control In the iterative LMI procedure, proposed
in Chapter 6, extended analysis LMIs are alternately solved in different
optimization variables to gradually obtain less conservative fixed-order
controllers. Since, in the case of multiple performance objectives, the use
of a different full-order controller for each performance specification might be
favorable, it is worthwhile to extend the iterative LMI procedure by updating
these controller variables in an additional step.

Efficiency iterative LMI procedure The main benefit of the iterative LMI
procedure (see Chapter 6) is featured by significant reductions of conservatism
compared to an initial fixed-order robust controller. However, convergence
might be slow, and convergence to a local optimum of the underlying nonconvex
problem is not guaranteed. Convex-concave decompositions (see [116]) provide
an elegant alternative, since they yield an iterative LMI procedure with
guaranteed convergence to a local optimum. It is remarked that the iterative
LMI procedure can be straightforwardly applied to the LTI and LPV case.

Combined structure and control design The combined structure and control
design approach (see Chapter 8) provides a performance upper/lower bound
by solving only one convex (primal/dual) optimization problem. However,
obtaining a good solution requires sufficiently accurate parameterizations of the
optimization variables, usually involving several manual steps. By combining
information from the primal and the dual solution, automated procedures could
be derived to gradually obtain more accurate solutions.

More general parameterizations For, amongst others, LPV and robust control
design, it would be beneficial to consider polynomial spline parameterizations
instead of more restrictive polynomial parameterizations.

LMIs with scalar parameters For analysis and control of LPD systems,
less conservative parameter-dependent LMI conditions can be derived by
incorporating scalar parameters. However, this comes at the expense of an
increased numerical burden, since such scalar parameters appear in products
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with LMI variables. Gridding or a smart search procedure is required, and
deserves further investigation.

Parameter domain modeling In addition to bounds on the rate of parameter
variation, known bounds on the rate of parameter acceleration (and, more
general, higher order derivatives/differences) could be taken into account to
further reduce conservatism in LPD analysis and synthesis approaches.

Experimental validations The fixed-order controller design approach is
successfully validated experimentally for LTI and LPV systems. However,
experimental validations of fixed-order controllers for LTD systems (i.e., the
experimental heat exhanger setup) and uncertain LTI systems would completely
show its versatility and practical viability.

Gap between industry and academia There is a strong industrial demand for
software to design high performance controllers for complex dynamical systems.
Namely, the current industrial decoupled PID-controller design standards are
inadequate to cope with the complex, often uncertain and/or time-varying
dynamics of these systems, leading to suboptimal performance, unreliable
behavior and even instability. In addition, the tuning of PID-controllers is
often very cumbersome and time consuming. The development of reliable,
efficient and user-friendly software to support non-experts in the design of
optimal controllers, yielding the best performance and robustness for a given
implementation cost, constitutes an important direction for future research.
Validations on experimental development cases and models of industrial cases
would demonstrate the potential of this software for company applications.





Appendix A

Proofs

This appendix presents theoretical proofs of the theorems presented in Chapter
2 and Chapter 3.

A.1 Proof of Theorem 1

Suppose that there exist scalars a, b, c > 0 and d ≥ 1 such that the conditions
(2.6) hold for all α ∈ T and all trajectories x : T → Rnx of (2.5). Combining
(2.6a) and (2.6b), we get

∆V (α, x) ≤ −c‖x‖d ≤ −c
b
V (α, x),

for all α ∈ T and all trajectories x : T→ Rnx . Using the definition of ∆V leads
to

V (α(t), x(t)) ≤ V (α(0), x(0))f(t),

where f(t) = e−ct/b in continuous time, and f(t) = (1 − c
b )t in discrete time.

Now it follows from (2.6a) that

a‖x(t)‖d ≤ V (α(t), x(t)) ≤ V (α(0), x(0))f(t) ≤ b‖x(0)‖df(t),

for all α ∈ T , all trajectories x : T→ Rnx and all t ∈ T, and thus

‖x(t)‖d ≤ b

a
‖x(0)‖df(t), ∀α ∈ T , t ∈ T.

Exponential stability follows by taking c < b without loss of generality.
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A.2 Proof of Theorem 2

Assume that there exists a bounded matrix P (α(t)) ∈ Snx+ , for α ∈ T , t ∈ T,
such that (2.8) holds for all α ∈ T , t ∈ T. Since P (α(t)) is positive definite and
bounded, there exist constants a, b > 0 such that

aInx ≺ P (α(t)) ≺ bInx , ∀α ∈ T , t ∈ T,

or, similarly,

a‖x‖22 < x′P (α)x = V (α, x) < b‖x‖22, ∀α ∈ T , x ∈ Rnx\{0}.

Furthermore, (2.8) implies that there exists a scalar c > 0 and a bounded matrix
Q(α(t)) ∈ Snx+ , for α ∈ T , t ∈ T, such that[

I
A(α(t))

]′
Φ(α(t))

[
I

A(α(t))

]
= −Q(α(t)) � −cInx , ∀α ∈ T , t ∈ T.

Noting that ∆V (α, x) along trajectories of the LPD system (2.5) is given by

∆V (α, x) = x′
[

I
A(α)

]′
Φ(α)

[
I

A(α)

]
x,

we obtain ∆V (α, x) ≤ −c‖x‖22, for all α ∈ T and all trajectories x : T→ Rnx
of (2.5), hence the conditions of Theorem 1 (see page 11) are satisfied.

A.3 Proof of Theorem 3

Suppose that, for some bounded scalar γ > 0, there exists a matrix P (α(t)) ∈
Snx , α ∈ T , t ∈ T, such that the LMI (2.9) is feasible for all α ∈ T , t ∈ T.
Then, since (2.9) implies that[

I
A(α(t))

]′
Φ(α(t))

[
I

A(α(t))

]
+ C(α(t))′C(α(t)) ≺ 0,

for all α ∈ T , t ∈ T, exponential stability follows from C(α)′C(α) � 0 and
Theorem 2. Moreover, using the storage function V (α, x) = x′P (α)x, we obtain

∆V (α, x) =
[
x
w

]′ [
I 0

A(α) B(α)

]′
Φ(α)

[
I 0

A(α) B(α)

] [
x
w

]
,
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such that (2.9) can be rewritten as

∆V (α, x) < −
[
x
w

]′ [ 0 I
C(α) D(α)

]′ [−γI 0
0 I

] [
0 I

C(α) D(α)

] [
x
w

]
= γw′w − z′z,

which should hold for all α ∈ T . Integration/summation (continuous
time/discrete time) yields the inequality

V (α(T ), x(T ))− V (α(0), x(0)) < γ‖w(t)‖22,[0,T ] − ‖z(t)‖22,[0,T ] (A.1)
for all α ∈ T , T ∈ T. Consequently, using x(0) = 0 and positive definiteness of
V , (A.1) implies that

0 < γ‖w(t)‖22 − ‖z(t)‖22
for all α ∈ T , which is equivalent to

sup
α∈T

sup
w(t)6=0

‖z(t)‖2
‖w(t)‖2

<
√
γ,

proving that ‖H‖∞ <
√
γ.

A.4 Proof of Theorem 4

The proof for the discrete-time case, which is a straightforward extension of
the proof presented in [27] to the case of LPD systems, is presented. For the
continuous-time case, we refer to [112].

Let the LPD system (2.1) be exponentially stable, and assume that D(α) = 0
for all α ∈ T . Then, according to Lemma 1, there exists a bounded matrix
Q̄(α(t)), for α ∈ T , t ∈ T, such that, for any α ∈ T ,

Q̄(δα) = A(α)Q̄(α)A(α)′ +B(α)B(α)′, Q̄(α(0)) = 0. (A.2)
Suppose that there exists a bounded parameter-dependent matrix Q(α(t)) ∈ Snx+
for α ∈ T , t ∈ T, such that the parameter-dependent LMIs (2.12) hold for all
α ∈ T , t ∈ T. Then, there exists a parameter-dependent matrix M(α) � 0, for
α ∈ T , such that

Q(δα) � A(α)Q(α)A(α)′ +B(α)B(α)′ +M(α) (A.3)
for all α ∈ T . Consequently, combining (A.2) and (A.3) implies that Q(α) �
Q̄(α) for all α ∈ T . In turn, (2.12b) gives

W (α) � C(α)Q(α)C(α)′ � C(α)Q̄(α)C(α)′, ∀α ∈ T ,
proving that the inequality (2.13) holds.
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A.5 Proof of Theorem 5

For technical reasons, a separate proof is provided for the continuous-time,
respectively, the discrete-time case.

Continuous-time case: Suppose that there exist bounded matrices P (α(t)) ∈
Snx+ and W (α(t)) ∈ Snz+ for α ∈ T , t ∈ T, such that the LMIs (2.14) are feasible
for all α ∈ T , t ∈ T. In continuous time, the parameter-dependent LMI (2.14a)
is explicitly given by[

P (α)A(α) +A(α)′P (α) + δP (α) P (α)B(α)
B(α)′P (α) −I

]
≺ 0,

which, using the Schur complement (see Appendix B.1), is equivalent to

P (α)A(α) +A(α)′P (α) + δP (α) + P (α)B(α)B(α)′P (α) ≺ 0. (A.4)

Now define Q(α) := P (α)−1, such that δQ(α) = −P (α)−1δP (α)P (α)−1. Hence,
pre- and postmultiplying (A.4) by Q(α) := P (α)−1 results in the equivalent
condition (2.12a), where we use the fact that P (α)−1 exists, since P (α(t)) is
positive definite for all α ∈ T , t ∈ T. Furthermore, pre- and postmultiplying
the parameter-dependent LMI (2.14b) by[

I 0
0 Q(α)

]
,

the following equivalent LMI in terms of Q(α) is obtained:[
W (α) C(α)Q(α)

Q(α)C(α)′ Q(α)

]
. (A.5)

Applying the Schur complement on (A.5) results in the equivalent condition
(2.12b). Therefore, the conditions of Theorem 4 (see page 14) are fulfilled for
all α ∈ T , t ∈ T, finishing the proof.

Discrete-time case: Assume that there exist bounded matrices P (α(t)) ∈ Snx+
and W (α(t)) ∈ Snz+ for α ∈ T , t ∈ T, such that the LMIs (2.14) are feasible for
all α ∈ T , t ∈ T. In discrete time, the parameter-dependent LMI (2.14a) equals[

A(α)′P (δα)A(α)− P (α) A(α)′P (δα)B(α)
B(α)′P (δα)A(α) B(α)′P (δα)B(α)− I

]
≺ 0,
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which is, using the Schur complement (see Appendix B.1), equivalent to P (δα) P (δα)A(α) P (δα)B(α)
A(α)′P (δα) P (α) 0
B(α)′P (δα) 0 I

 � 0.

Applying the Schur complement again gives the equivalent condition[
P (δα)− P (δα)B(α)B(α)′P (δα) P (δα)A(α)

A(α)′P (δα) P (α)

]
� 0. (A.6)

Defining Q(α) := P (α)−1, such that Q(δα) = P (δα)−1, pre- and postmultipli-
cation of (A.6) by [

Q(δα) 0
0 Q(α)

]
yields the following equivalent LMI in terms of Q(α):[

Q(δα)−B(α)B(α)′ A(α)Q(δα)
Q(δα)A(α)′ Q(α)

]
� 0. (A.7)

Note that P (α)−1 exists, since P (α(t)) is positive definite for all α ∈ T , t ∈ T. A
third application of the Schur complement reveals that (A.7) is equivalent to the
parameter-dependent LMI (2.12a). The fact that the LMIs (2.14b) and (2.12b)
are equivalent, as is shown in the proof corresponding to the continuous-time
case, implies that the conditions of Theorem 4 (see page 14) are fulfilled for all
α ∈ T , t ∈ T, finishing the proof.

A.6 Proof of Theorem 6

Suppose that there exist bounded matrices P (α(t)) ∈ S2nx
+ , X1(α(t)) ∈

R2nx×(nx+nu), X2(α(t)) ∈ Rnw×(nx+nu), and X3(α(t)) ∈ R(nx+nu)×(nx+nu),
and a bounded scalar γ > 0 such that the parameter-dependent LMI (3.9) is
feasible for all α ∈ T , t ∈ T. Then, deriving the matrix

[
Υ(α)C̃y(α) Υ(α)D̃yw(α) −I

]
⊥ =

 I 0
0 I

Υ(α)C̃y(α) Υ(α)D̃yw(α)

 , (A.8)

noting that (3.8) implies

QΨ,∞(α)

 I 0
0 I

Υ(α)C̃y(α) Υ(α)D̃yw(α)

 =


I 0

AΘa(α) BΘa(α)
0 I

CΘa(α) DΘa(α)

 ,
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and applying the projection lemma (see Appendix B.2) on the parameter-
dependent LMI (3.9), the following equivalent condition is obtained:

I 0
AΘa(α(t)) BΘa(α(t))

0 I
CΘa(α(t)) DΘa(α(t))


′ Φ(α(t)) 0 0

0 −γI 0
0 0 I




I 0
AΘa(α(t)) BΘa(α(t))

0 I
CΘa(α(t)) DΘa(α(t))

 ≺ 0

(A.9)
for all α ∈ T , t ∈ T. Since P (α(t)) � 0 for all α ∈ T , t ∈ T, Theorem 3
(see page 13) implies that HΘa is exponentially stable and satisfies the H∞
performance bound ‖HΘa‖∞ <

√
γ. Observing that Θ(α) has the same stability

and performance properties as Θa(α), it is clear that HΘ is exponentially stable
and ‖HΘ‖∞ <

√
γ, finishing the proof.

A.7 Proof of Theorem 7

Suppose that there exist bounded matrices P (α(t)) ∈ S2nx
+ , W (α(t)) ∈

Snz+ , X1(α(t)) ∈ R2nx×(nx+nu), X2(α(t)) ∈ Rnw×(nx+nu), X3(α(t)) ∈
R(nx+nu)×(nx+nu), X4(α(t)) ∈ Rnz×(nx+nu), X5(α(t)) ∈ R2nx×(nx+nu), and
X6(α(t)) ∈ Rnw×(nx+nu), such that the parameter-dependent LMIs (3.11) are
feasible for all α ∈ T , t ∈ T. Then, since (A.8) implies that

QΨ,2(α)

 I 0
0 I

Υ(α)C̃y(α) Υ(α)D̃yw(α)

 =

 I 0
AΘa(α) BΘa(α)

0 I

 ,
application of the projection lemma results in the equivalent condition I 0

AΘa(α(t)) BΘa(α(t))
0 I

′ [Φ(α(t)) 0
0 −I

] I 0
AΘa(α(t)) BΘa(α(t))

0 I

 ≺ 0

for all α ∈ T , t ∈ T. Furthermore, deriving the matrix

[
0 Υ(α)C̃y(α) −I

]
⊥ =

I 0
0 I
0 Υ(α)C̃y(α)

 ,
and noting that (3.8) implies

[
W (α) CΨ(α) D̃zu(α)

] I 0
0 I
0 Υ(α)C̃y(α)

 =
[
W (α) CΘa(α)

]
,
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application of the projection lemma shows the equivalence between (3.11b) and[
W (α(t)) CΘa(α(t))
CΘa(α(t))′ P (α(t))

]
� 0,

for all α ∈ T , t ∈ T. Therefore, Theorem 5 (see page 14) implies that HΘa is
exponentially stable and satisfies the H2 performance bound (3.10). Observing
that Θ(α) has the same stability and performance properties as Θa(α), it is clear
that HΘ is exponentially stable and satisfies (3.10), finishing the proof.

A.8 Proof of Theorem 8

Suppose that, for a given stabilizing controller Ψ(α(t)) ∈ R(nx+nu)×(nx+ny)

(defined as in (3.2)), a prefixed controller order q (0 ≤ q ≤ nx), and a given
bounded matrix A22(α(t)) ∈ R(nx−q)×(nx−q) corresponding to exponentially
stable dynamics, there exist bounded matrices P (α(t)) ∈ S2nx

+ , Θ̄(α(t)) ∈
R(q+nu)×(nx+ny) as in (3.12), and Y (α(t)) ∈ R(nx+nu)×(nx+nu) as in (3.13),
and a bounded scalar γ > 0 such that the parameter-dependent LMI (3.14)
is feasible for all α ∈ T , t ∈ T. According to the parameterizations (3.3) and
(3.12), the nonlinear transformation (3.16) yields the following structure for
Θ̄(α):

Θ̄(α) =
[
Y11(α) Y13(α)
Y31(α) Y33(α)

] [
Ac(α) A12(α) Bc(α)
Cc(α) C2(α) Dc(α)

]
. (A.10)

Note that the nonlinear transformation (3.16) is well-defined, since feasibility
of (3.14) implies that the inverse[

Y11(α) Y13(α)
Y31(α) Y33(α)

]−1

exists for all α ∈ T . Combining (A.10) and (3.15), and using the specific
structure (3.7) of the lifted controller Θa(α), we obtain

Z(α) = Y (α)(Θa(α)−Ψ(α)) = Y (α)Υ(α). (A.11)

Substituting (A.11) in the parameter-dependent LMI (3.14) reveals that the
conditions (3.9) subject to the structural constraints

X1(α) = 0, X2(α) = 0, X3(α) = Y (α)

are feasible for all α ∈ T , t ∈ T. Therefore, applying Theorem 6 (see page 33)
finishes the proof.
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A.9 Proof of Theorem 9

Suppose that, for a given stabilizing controller Ψ(α(t)) ∈ R(nx+nu)×(nx+ny)

(defined as in (3.2)), a prefixed controller order q (0 ≤ q ≤ nx), and a given
bounded matrix A22(α(t)) ∈ R(nx−q)×(nx−q) corresponding to exponentially
stable dynamics, there exist bounded matrices P (α(t)) ∈ S2nx

+ , Θ̄(α(t)) ∈
R(q+nu)×(nx+ny) as in (3.12), and Y (α(t)) ∈ R(nx+nu)×(nx+nu) as in (3.13),
such that the parameter-dependent LMIs (3.17) are feasible for all α ∈ T , t ∈ T.
Then, by following the steps of the proof presented in Appendix A.8 and using
relation (A.11), it is clear that the matrix inequalities (3.17) subject to the
structural constraints

X1(α) = 0, X2(α) = 0, X3(α) = Y (α),

X4(α) = 0, X5(α) = 0, X6(α) = −Y (α),

are feasible for all α ∈ T , t ∈ T. Consequently, application of Theorem 7 (see
page 34) finishes the proof.



Appendix B

Mathematical tools

Two very useful tools which are used troughout this thesis, namely the Schur
complement [18, 19] and the projection lemma [41], are included for the sake of
completeness.

B.1 Schur complement

Let Q ∈ Sm, S ∈ Sn and R ∈ Rm×n. Then, the nonlinear matrix inequality

Q ≺ 0, S −R′Q−1R ≺ 0

holds if, and only if, the LMI [
S R′

R Q

]
≺ 0

is feasible.

B.2 Projection lemma

Given a matrix Z ∈ Sn and two matrices U and V of column dimension n, the
following are equivalent:

• There exists an unstructured matrix X such that

U ′XV + V ′X ′U + Z ≺ 0.
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• The projection inequalities with respect to X hold:

U ′⊥ZU⊥ ≺ 0,

V ′⊥ZV⊥ ≺ 0,

where U⊥ and V⊥ are arbitrary matrices whose columns form a basis for
the null space of U and V , respectively.



Appendix C

Model order reduction for
LTD systems

This appendix presents a technical addenda to the model order reduction approach
of Chapter 7.

C.1 Sparse system representation

If the grid points in the spectral discretization of (7.6) are chosen as (7.14),
then we can express the transfer function (7.11) as

ΓNx (s) = FN (sGN − I)−1
HN + D,

where
FN =

[
CR0 CR1 · · · CRN−1

]
,

GN = Σ−1
N ΠN ,

and

HN =


R−1

0
(
I − τmax

2 R1
)
R−1

0 B
τmax

2 R−1
0 B

0
...
0


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with ΣN and ΠN defined by

ΣN =


R0 R1 · · · RN−1

Inx
. . .

Inx

 ,
and

ΠN = τmax
4



4
τmax

4
τmax

4
τmax

· · · · · · 4
τmax

2 0 −1
1
2 0 − 1

2
1
3 0 . . .

1
4

. . . − 1
N−3

. . . 0 − 1
N−2

1
N−1 0


⊗ I

with

Ri = A0Ti(1) +
mx∑
k=1

AkTi

(
−2 τk

τmax
+ 1
)
, i = 0, . . . , N − 1.

C.2 Adaptive construction

Assume that N1, N2 ∈ N with N1 < N2. Then the matrices ΣN1 ,ΠN1 , FN1 , HN1 ,
as in Appendix C.1, are submatrices of ΣN2 ,ΠN2 , FN2 , HN2 .

C.3 Dynamic construction of a Krylov space

Fix an integer k, assume that 1 ≤ k ≤ N , and consider the Krylov space

Kk(GN , b) := span{b,GNb, . . . , Gk−1
N b}, (C.1)

where b is a block vector of size Nnx × nu. The block Arnoldi algorithm
builds the Krylov sequence, block vector by block vector, while the vectors are
additionally orthogonalized. Assuming that the block vector b in (C.1) has the
special structure

b =
[
x′0 0 · · · 0

]′
, x0 ∈ Rnx×nu , (C.2)
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only the first 2nx, 3nx, . . . , knx block rows of the block vectors GNb, . . . , Gk−1
N b

are nonzero. Moreover, computation of the matrix vector products only requires
sub-matrices of GN . Hence, in the computation of the Krylov space, we can
restrict to storing only the nonzero part of the block vectors and using the
relevant part of GN . Incorporating this in the block Arnoldi algorithm, we arrive
at Algorithm 1. In the description we use notation common for Arnoldi iterations:
we let Hi ∈ R(i+1)nu×inu denote the dynamically constructed rectangular block
Hessenberg matrix and Hi ∈ Rinu×inu the corresponding i × i upper blocks.
To simplify the notation, the Krylov space (C.1) with starting vector (C.2) is
denoted by Kk(GN , x0).

Algorithm 1 (Dynamic construction of a Krylov space).
Require: x0 ∈ Rnx×nu .

1: Let x0 = Q0R0 be the reduced QR factorization of x0. Set V1 = Q0 and let
H0 be the empty matrix.

2: for i = 1, 2, . . . , k do
3: Let Wi = Gi+1

[
Qi−1

0

]
.

4: Orthogonalization: compute Hi =
[
V ′i 0

]
Wi and Ŵi = Wi −

[
Vi
0

]
Hi.

5: Normalization: compute the reduced QR factorization Ŵi = QiRi of Ŵi.

6: Let Hi =
[
Hi−1 Hi

0 Ri

]
∈ R(i+1)nu×inu .

7: Expand Vi into Vi+1 =
[

Vi
0 Qi

]
.

8: end for

Output: Vk, Hk and Hk, where the columns of Vk form an orthogonal basis for
Kk(Gk, x0), and Hk = V ′kGkVk.

Note that, due to the special structure of the starting block vector and matrix
GN , [

V ′k 0 · · · 0
]′ ∈ RNnx×nu

is a basis for Kk(GN , x0) for any N ≥ k and, correspondingly,

Hk =
[
V ′k 0 · · · 0

]
GN


Vk
0
...
0

 .
That is, Hk can be considered as an orthogonal projection of GN on a Krylov
subspace, for any N ≥ k.
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C.4 Proof of Theorem 11

The proof is obtained by adapting the corresponding result in [79] to the MIMO
setting.

Take any N ≥ k. By Theorem 10, Γx and ΓNx match (at least) k − 1 moments
at zero and 2 moments at infinity. Hence, it remains to show that ΓNx and Γ(k)

x

satisfy this moment matching property.

We know that
[
V ′k 0 · · · 0

]′ is a basis for Kk(GN , R−1
0 B), and that Γ(k)

x is
obtained from ΓNx by projecting on this space. A simple computation shows
that

HN = GN


R−1

0 B
0
...
0

 .
Therefore, we have

Kk(GN , R−1
0 B) = span

{
G−1
N HN , HN , GNHN , . . . , G

k−2
N HN

}
.

This is what we need to have k − 1 moments at zero and 2 at infinity carried
over in the projection [4].

C.5 Construction of a reduced delay-free model

Algorithm 2 (Construction of a reduced delay-free model).

1: Apply Algorithm 1 with x0 = R−1
0 B and construct G(k) = Hk.

2: At the same time dynamically construct F (k) and H(k), defined in (7.17).

Output: Matrices F (k), G(k) and H(k) of the reduced model of order knu, and
the corresponding transfer function Γ(k)

x (s) = F (k)(sG(k) − I)−1H(k) + D.
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