
Towards systematic evaluation of multi-agent
systems in large scale and dynamic logistics?

Rinde R.S. van Lon and Tom Holvoet

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium.
Rinde.vanLon@cs.kuleuven.be, Tom.Holvoet@cs.kuleuven.be

Abstract. A common hypothesis in multi-agent systems (MAS) litera-
ture is that decentralized MAS are better at coping with dynamic and
large scale problems compared to centralized algorithms. Existing work
investigates this hypothesis in a limited way, often with no support for
further evaluation, slowing down the advance of more general conclu-
sions. Investigating this hypothesis more systematically is time consum-
ing as it requires four main components: 1) formal metrics for the vari-
ables of interest, 2) a problem instance generator using these metrics, 3)
(de)centralized algorithms and 4) a simulation platform that facilitates
the execution of these algorithms. Present paper describes the construc-
tion of an instance generator based on previously established formal met-
rics and simulation platform with support for (de)centralized algorithms.
Using our instance generator, a benchmark logistics dataset with varying
levels of dynamism and scale is created and we demonstrate how it can
be used for systematically evaluating MAS and centralized algorithms
in our simulator. This benchmark dataset is essential for enabling the
adoption of a more thorough and systematic evaluation methodology,
allowing increased insight in the strengths and weaknesses of both the
MAS paradigm and operational research methods.

1 Introduction

In pickup and delivery problems (PDPs) a fleet of vehicles is tasked with trans-
porting customers or goods from origin to destination [23,27]. In dynamic PDPs
the orders describing the vehicles’ tasks arrive during the operating hours [1],
necessitating online assignment of vehicles to orders. The dynamic nature and
potential large scale of this problem makes exact algorithms often infeasible.

Decentralized multi-agent systems (MASs) are often presented as a good al-
ternative to centralized algorithms [3,6,29], MASs are especially promising for
large scale and dynamic problems due to their ability to make quick local deci-
sions. Previous work has shown that MASs can sometimes outperform centralized
algorithms in specific cases [3,18,19,20]. However, to the best of our knowledge
there has never been a systematic effort to compare centralized algorithms to
decentralized MASs with varying levels of dynamism and scale.

? The final publication is available at Springer via http://dx.doi.org/10.1007/

978-3-319-25524-8_16. This is a postprint version.

http://dx.doi.org/10.1007/978-3-319-25524-8_16
http://dx.doi.org/10.1007/978-3-319-25524-8_16

Although the previously mentioned papers each do a thorough evaluation of
a MAS applied to a logistics problem, it is often hard to do further comparisons
using these papers because of the lack of available problem data, source code or
both. It has been argued before that this is a problem in science in general [8],
and in multi-agent systems literature in particular [16].

In this paper we introduce a dataset generator and a benchmark dataset of
the dynamic pickup and delivery problem with time windows (PDPTW) with
support for varying three variables. The degree of dynamism and urgency of
a dynamic PDPTW are two variables that were introduced before [14]. The
proposed dataset contains an additional variable, scale, that we define in the
context of PDPTW as a multiplier applied to the number of vehicles and orders
in a problem. Using this dataset it will be possible to systematically investigate
the following hypotheses in the context of PDPTW:

– Multi-agent systems perform better when compared to centralized algo-
rithms on very dynamic problem instances

– Multi-agent systems perform better when compared to centralized algo-
rithms on more urgent problem instances

– Multi-agent systems perform better when compared to centralized algo-
rithms on large scale problem instances

Investigating these hypotheses should lead to insight in the performance of both
decentralized MASs and centralized algorithms for PDPTWs. These insights
can then be used to make more informed decisions when designing a system
that needs to cope with dynamic, urgent and large scale problems. Additionally,
the dataset generator, the benchmark dataset instance and the simulator [15]
that we use are open sourced. This improves the reproducibility of the current
paper while presenting an opportunity for other researchers to investigate the
above hypotheses using their own algorithms.

The paper is organized as follows. First, the relevant literature is discussed
(Section 2) and we define dynamic PDPTWs including the measures for dy-
namism, urgency and scale and the measure for algorithm performance (Sec-
tion 3). This is followed by a description of the dataset generator and dataset
benchmark instance (Section 4). It is demonstrated how the hypotheses of dy-
namism, urgency and scale can be investigated using the proposed benchmark
instance (Section 5), leading to the conclusion that the benchmark dataset facili-
tates a systematic and long term research effort into these hypotheses (Section 6).

2 Related work

Several literature surveys discuss the dynamic vehicle routing problem (VRP)
and its special case, dynamic PDPTW [1,5,24,26]. The dynamic PDPTW is
often treated as a stochastic problem where some a priori information is known
about the orders. This section only discusses papers that do not use a priori
information but view the problem from a completely dynamic perspective.

2.1 Centralized algorithms

Madsen et al. [17] developed an insertion heuristic for the dynamic dial-a-ride-
problem (DARP) with time windows for moving elderly and disabled people.
Potvin et al. [25] presented a learning system based on linear programming
that can learn an optimal policy taking into account decisions of an expert in
past scenarios. Mitrović-Minić et al. [22] presented an approach based on two
time horizons: a short time horizon aimed at achieving the short-term goal of
minimization of distance traveled, and a longer time horizon aimed at achieving
the long-term goal of facilitating the insertion of future requests. Gendreau et
al. [4] introduced a dynamic version of tabu search with a neighboring structure
based on ejection chains. When new requests arrive, the algorithm reacts by
insertion and ejection moves and with local search.

2.2 Multi-agent systems

An alternative approach to the dynamic PDPTW is using a decentralized MAS
instead of a centralized planner. Fischer et al. [3] used a MAS with the extended
contract net protocol for cooperative transportation scheduling and they showed
that its performance was comparable to existing operational research (OR) tech-
niques. Mes et al. [20] compared traditional heuristics with a distributed MAS
that uses a Vickrey auction to bid for new pickup and delivery requests when they
appear, showing that the MAS approach performs often better than traditional
heuristics. In subsequent work Mes and Van der Heijden [21] further improved
the performance of the MAS by introducing a look-ahead mechanism in which
bidding uses value functions to estimate the expected future revenue of inserting
a new order in an agent plan. Máhr et al. [19] thoroughly evaluated a MAS with
auctions and a mixed-integer program on real world data of a PDPTW. Their
results show that both approaches have comparable performance. Glaschenko
et al. [6] discussed the deployment of a MAS for a taxi company in London,
adopting the MAS led to an increase of taxi fleet utilization by 5 - 7 %.

3 Dynamic pickup-and-delivery problems

We base our definition of dynamic PDPs on [14] which is an adaptation of the
definition of [4]. In PDPs there is a fleet of vehicles responsible for the pickup-
and-delivery of items. The dynamic PDP is an online problem, the customer
transportation requests are revealed over time during the fleet’s operating hours.
It is further assumed that the fleet of vehicles has no prior knowledge about the
total number of requests nor about their locations or time windows.

3.1 Formal definition

For describing the dynamic PDP we adopt the formal definition of [14]. A sce-
nario, which describes the unfolding of a dynamic PDP, is defined as a tuple:

〈T , E ,V〉 := scenario,

where

[0, T) := time frame of the scenario, T > 0

E := list of events, |E| ≥ 2

V := set of vehicles, |V| ≥ 1

[0, T) is the period in which the fleet of vehicles V has to handle all customer
requests. The events represent customer transportation requests. Since we con-
sider the purely dynamic PDPTW, all events are revealed between time 0 and
time T . Each event ei ∈ E is defined by the following variables:

ai := announce time

pi := [pLi , p
R
i) = pickup time window, pLi < pRi

di := [dLi , d
R
i) = delivery time window, dLi < dRi

pst i := pickup service time span

dst i := delivery service time span

ploci := pickup location

dloci := delivery location

tt i := travel time from pickup location to delivery location

Reaction time is defined as:

ri := pRi − ai = reaction time (1)

The time window related variables of a transportation request are visualized in
Figure 1.

time0 T
ri

order i

ai pLi pRi dLi dRi
pickup time window

pi

delivery time window

di

Fig. 1: Visualization of the time related variables of a single order event ei ∈ E .

Furthermore we assume that:

– vehicles start at a depot and have to return after all orders are handled;
– the fleet of vehicles V is homogeneous;
– the cargo capacity of vehicles is infinite (e.g. courier service);
– the vehicle is either stationary or driving at a constant speed;
– vehicle diversion is allowed, this means that a vehicle is allowed to divert

from its destination at any time;

– vehicle fuel is infinite and driver fatigue is not an issue;
– the scenario is completed when all pickup and deliveries have been made and

all vehicles have returned to the depot; and,
– each location can be reached from any other location.

Vehicle schedules are subject to both hard and soft constraints. The opening
of time windows is a hard constraint, hence vehicles need to adhere to these:

spij ≥ pLi (2)

sdij ≥ dLi (3)

Here, spij is the start of the pickup operation of order event ei by vehicle vj ;
similarly, sdij is the start of the delivery operation of order event ei by vehicle
vj . The time window closing (pRi and dRi) is a soft constraint incorporated into
the objective function, it is defined similarly to [4] and needs to be minimized:

min :=
∑
j∈V

(vttj + td {bdj , T }) +
∑
i∈E

(
td
{
spij , p

R
i

}
+ td

{
sdij , d

R
i

})
(4)

where
td {α, β} := max {0, α− β} = tardiness (5)

Here, vttj is the total travel time of vehicle vj ; bdj is the time at which vehicle
vj is back at the depot. In summary, the objective function computes the total
vehicle travel time, the tardiness of vehicles returning to the depot and the total
pickup and delivery tardiness.

We further impose the following hard constraints on the construction of sce-
narios to ensure consistency and feasibility of individual orders:

ri ≥ 0 (6)

dRi ≥ pRi + pst i + tt i (7)

dLi ≥ pLi + pst i + tt i (8)

These constraints are visualized in Figure 2. The reaction time constraint (eq. 6)

pi
psti tti

psti tti
di≥ 0, eq. 8

≥ 0, eq. 7

ai ≥ 0, eq. 6

order i

time0 T

Fig. 2: Visualization of the time window constraints of an order event ei ∈ E .

ensures that an order is always announced before its due date. The time window
constraints (eq. 7 and eq. 8) ensure that pickup and delivery time windows are
compatible with each other. Hence, a pickup operation started at any time within
pi guarantees feasibility of a delivery within di given that a vehicle is available
and respecting vehicle capacity, service time and travel time constraints.

3.2 Dynamism

In this section we describe the measure for the degree of dynamism first defined
in [14]. Informally, a scenario that changes continuously is said to be dynamic
while a scenario that changes occasionally is said to be less dynamic. In the
context of PDPTWs a change is an event that introduces additional information
to the problem, such as the events in E . More formally, the degree of dynamism,
or the continuity of change, is defined as:

dynamism := 1−

|∆|∑
i=0

σi

|∆|∑
i=0

σ̄i

(9)

where

∆ := {δ0, δ1, . . . , δ|E|−2} = {aj − ai|j = i+ 1 ∧ ∀ai, aj ∈ E} (10)

θ := perfect interarrival time =
T
|E|

(11)

σi :=


θ − δi if i = 0 and δi < θ

θ − δi +
θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise

(12)

σ̄i := θ +


θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise
(13)

This measure can compute the degree of dynamism of any scenario.

3.3 Urgency

In [14] urgency is defined as the maximum reaction time available to the fleet of
vehicles in order to respond to an incoming order. Or more formally:

urgency (ei) := pRi − ai = ri (14)

To obtain the urgency of an entire scenario the mean and standard deviation of
the urgency of all orders can be computed.

3.4 Scale

Assigning a scale level to a PDP instance allows to conduct a scalability exper-
iment to investigate the existence of a correlation between the scale of a PDP
and the computation time and solution quality of an algorithm.

In the context of computer systems scaling up is defined as maintaining a
fixed execution time per task while scaling the workload up in proportion to
the number of processors applied to it [7]. Analogously, scaling in the context of
PDPs can be defined as maintaining a fixed computation time per order while
scaling the workload (number of orders) up in proportion to the number of
vehicles in the fleet.

However, there are three factors that limit the usefulness of this definition.
First, it is known that PDPTWs are NP-hard [27], therefore an exact algorithm
for a PDPTW requires time that is superpolynomial in the input size. Therefore,
maintaining a fixed computation time per order when using an exact algorithm is
infeasible. When using an anytime algorithm (an algorithm that can be stopped
at any moment during its execution to return a valid solution) such as a heuristic,
maintaining a fixed computation time per order is trivial, but will likely have an
influence on the solution quality.

Second, the previously mentioned notion of urgency influences the amount
of available computation time. Within an order’s urgency period three activities
need to be performed, first a vehicle needs to be selected, then the selected vehicle
needs to drive towards the pickup location and it needs to perform the actual
pickup operation. The longer the computation of the vehicle selection takes, the
less time remains for the driving and picking up.

Third, depending on the degree of dynamism there may be many orders with
a small interarrival time. Each order that arrives while a computation takes
place forces a premature halt and subsequent restart of the algorithm. Therefore,
maintaining a fixed computation time per order is nonsensical for PDPTWs.

For these reasons, we define scaling in PDPTWs as maintaining a fixed ob-
jective value per order while scaling the number of orders up in proportion to
the number of vehicles in the fleet. Using this definition, scaling up a scenario
〈T , E ,V〉 with a factor α will create a new scenario 〈T , E ′,V ′〉 where |V ′| = |V| ·α
and |E ′| = |E| ·α. To compute the objective value per order, the global objective
value needs to be divided by the number of orders.

4 Dataset

This section describes the construction of the scenario generator that creates
scenarios with specific levels of dynamism, urgency and scale. Using the scenario
generator a benchmark dataset is constructed.

4.1 Scenario generator

To create a scenario generator capable of generating scenarios with specific levels
of scale, dynamism and urgency we adapted the generator developed in [14].

Controlling dynamism of time series Based on [14] we assigned a time
series generator method to a specific range of dynamism levels such that the
entire range [0, 1] is covered (Table 1).

Table 1: Overview of dynamism ranges and the corresponding time series gen-
erator used for generating scenarios in that range.

Dynamism range Time series generator

[0, .475) non-homogeneous Poisson process
[.475, .575) homogeneous Poisson process
[.575, .675) Normal distribution
[.675, 1] Uniform distribution

The non-homogeneous Poisson process that is used for [0, .475) has an inten-
sity function based on a sine wave with the following parameters:

λ(t) = a · sin(t · f · 2π − π · p) + h (15)

a = 1 amplitude (16)

f = 1 frequency (17)

p ∼ U(0, 1) phase shift (18)

h ∼ U(−.99, 1.5) height (19)

In order to keep the total number of events constant with different levels of
dynamism, the amplitude and height parameters are rescaled such that the total
area under the intensity function equals |E|.

For the [.475, .575) range we used the homogeneous Poisson process, with the
(constant) intensity function defined as:

λ(t) =
|E|
T

= 30 (20)

The normal distribution for the [.575, .676) range is the truncated normal

distribution N
(
T
|E| , 0.04

)
with a lower bound of 0 and a standard deviation of

0.04. If a value x was drawn such that x < 0, a new number was drawn from the
distribution. Truncating a normal distribution actually shifts the mean, hence
the mean was rescaled to make sure the effective mean was equal to T

|E| .

In the [.675, 1] range a uniform distribution with mean T
|E| and a maximum

deviation from the mean, σ, is used. The σ value is (for each scenario again)
drawn from the truncated normal distribution N (1, 1) with bounds [0, 15]. If a
value σ is obtained from the distribution such that σ > 15 or σ < 0 a new value
is drawn. Since the mean is not scaled, the effective mean of σ is higher than 1.

Generating comparable scenarios with different dynamism, urgency
and scale levels The generator should be able to generate a set of scenarios
where all settings are the same except for dynamism, urgency and scale levels.
Also, any interactions between variables should be minimized, e.g. dynamism
should not correlate with time window intervals. This ensures that any effect
measured is solely caused by the difference in dynamism, urgency and or scale.

Because the dataset generator is stochastic, the number of events |E| and the
degree of dynamism of a scenario can not be directly controlled. To construct a
consistent dataset, scenarios that do not have exactly |E| events are rejected. For
each desired dynamism level a bin with an acceptable deviation is defined, only
generated scenarios with a dynamism value that lies within a bin are accepted.

We further define the concept of office hours as the period [0,O) in which
new orders are accepted. To ensure feasibility of individual orders we need to
take into account the travel time, service time durations and urgency:

O = T − pstmax − dstmax −

2 · ttmax if u < 1
2 · ttmax

1
1

2
· ttmax − u otherwise

(21)

Here, pstmax and dstmax are the maximum pickup and delivery service times
respectively, ttmax is the maximum travel time between a pickup and delivery
location, and u is urgency.

The pickup and delivery time windows have to be randomly chosen while
respecting the constraints as set out by the urgency level and the announce
time. The pRi is defined as the sum of ai and u, hence it follows that pLi needs
to be between ai and the sum of ai and u:

pLi =

{
∼ U

(
ai, p

R
i − 10

)
if u > 10

ai otherwise
(22)

Here, 10 is the minimum pickup time window length unless urgency is less than
10, in that case the urgency level equals the pickup time window length. The
upper bound of dRi can be defined as:

ubdRi = T − tt(dloci, depotloc)− dsti (23)

This translates as the latest possible time to start the delivery operation such
that the delivery time window constraints are met and the vehicle can still be
back at the depot on time. The lower bound of dLi was already defined in eq. 8:

lbdLi = pLi + psti + tti (24)

We define a minimum delivery time window length of 10, which then results in
an upper bound of dLi :

ubdLi = ubdRi − 10 (25)

Based on these bounds we draw the opening of the delivery time window from
the following uniform distribution:

dLi ∼ U
(
lbdLi ,max

(
lbdLi , ubd

L
i

))
(26)

To find dRi we need to redefine the lower bound (from eq. 7) by using the actual
value of dLi :

lbdRi = min
(
max

(
pRi + psti + tti, d

L
i + 10

)
, ubdRi

)
(27)

Finally, the closing of the delivery time window is defined as:

dRi ∼ U
(
lbdRi , ubd

R
i

)
(28)

For the pickup and delivery service times we choose psti = dsti = 5 minutes.
All locations in a scenario are points on the Euclidean plane. It has a size of

10 by 10 kilometer with a depot at the center of this square. Vehicles start at
the depot and have a constant travel speed of 50 km/h. All pickup and delivery
locations are drawn from a two dimensional uniform distribution U2(0, 10).

4.2 Benchmark dataset

The benchmark dataset that we created for this paper has three levels for each of
the dimensions of interest resulting in a total of 3 · 3 · 3 = 27 scenario categories.
The dimensions of interest are dynamism, urgency and scale, the used values
are listed in Table 2a, the other parameters are listed in Table 2b. Since the

Table 2: Overview of the parameters used to generate the benchmark dataset.

(a) Dimensions

Dimension Values

Dynamism .2 .5 .8

Urgency 5 20 35

Scale 1 5 10

(b) Settings

Parameter Value

T 8 hours

|E| scale · 240

|V| scale · 10

generation of the order arrival times is a stochastic process the exact degree of
dynamism can not be controlled. Therefore, we define a dynamism bin using
a radius of 1% around each dynamism value. For this dataset, we consider a
scenario with dynamism d where b − .01 < d < b + .01 to have dynamism b,
where b is one of the dynamism bins listed in Table 2a.

For each scenario category 50 instances are generated, resulting in a total
of 50 · 27 = 1350 scenarios. Each scenario is written to a separate file with
the following name format: dynamism-urgency-scale-id.scen, for example
0.20-5-1.00-0.scen depicts a scenario with 20% dynamism, an urgency level
of 5 minutes, a scale of 1 and id 0. This format allows easy selection of a subset
of the dataset. The scenario file contains the entire scenario in JavaScript Ob-
ject Notation (JSON). Time in a scenario is expressed in milliseconds, distance
in kilometer and speed in kilometer per hour. A scenario is considered to be
finished when all vehicles are back at the depot and the current time is ≥ T .

The open source discrete time simulator RinSim [15] version 4.0.0 [13] has
native support for the scenario format. With RinSim it is easy to run the scenario
with centralized algorithms and multi-agent systems, allowing researchers to only
have to focus on their algorithms. For reproducibility, the code of the dataset
generator is released [11] as well as the dataset scenarios [10] and all other code
and results [9].

5 Demonstration

As a demonstration a centralized algorithm is compared with a decentralized
multi-agent system on 10 instances of each category in the benchmark dataset,
resulting in a total of 270 experiments per approach. For reproducibility, the code
and results of this experiment are published on an accompanying web page [9]

5.1 Heuristics

Just as in [14] two well known heuristics are used, the cheapest insertion heuris-
tic (Algorithm 1) and the 2-opt optimization procedure (Algorithm 2). Since
the 2-opt procedure requires a complete schedule as input, it uses the cheapest
insertion heuristic to construct a complete schedule first. Both these algorithms
have been used in earlier work for vehicle routing problems [2,28].

Input: 〈T , E,V〉; /* A scenario as input */
Data: S; /* the current schedule or ∅ */
Sbest = ∅
foreach e ∈ E, e /∈ S do

/* generate all PDP insertion points in the current schedule: */
insertions = generate insertion points(S)
for i ∈ insertions do

/* construct a new schedule by inserting e at insertion i */
Snew = construct(S,e,i)
if cost(Snew) < cost(Sbest) then
Sbest = Snew

end

end

end

Algorithm 1: Cheapest insertion heuristic, source code available in [12].

Input: S
Sbest = S
swaps = generate swaps(S)
foreach e ∈ swaps do
Snew = swap(S,e)
if cost(Snew) < cost(Sbest) then
Sbest = Snew

end

end
/* If a better schedule has been found, we start another iteration */
if Sbest 6= S then

2-opt(Sbest)
end

Algorithm 2: 2-opt procedure, source code available in [12].

5.2 Centralized algorithm

Each time a new order is announced the cheapest insertion heuristic is executed
to produce a new schedule for the fleet of vehicles. It is assumed that execution of
the algorithm is instantaneous with respect to the dynamics of the simulations.

5.3 Contract net protocol multi-agent system

The multi-agent system implementation is based on the contract net protocol
(CNP) as described by Fischer et al. [3]. For each incoming order an auction
is organized, when the auction is finished the order will be assigned to exactly
one vehicle. All vehicles always bid on each order, the bid contains an estimate
of the additional cost that including the new order in the vehicles assignment
would incur. This estimate is computed using the cheapest insertion heuristic as
described in Algorithm 1. The vehicle with the lowest bid will win the auction
and receive the order. Each vehicle computes a route to visit all its pickup and
delivery sites using the 2-opt procedure described in Algorithm 2.

5.4 Results and analysis

The results1 of the experiments are plotted along the dynamism, urgency and
scale dimension in Figures 3, 4 and 5 respectively. Although all results indicate
that the MAS performs better than the centralized algorithm, the current ex-
periment is too limited to verify the hypotheses posed in this paper. Instead,
we discuss the behavior of both algorithms with respect to the dimensions of
interest.

Dynamism Figure 3 shows that the level of dynamism has very little influence
on the performance of both the MAS and the centralized algorithm. This lack
of effect is very consistent among all urgency and scale settings.

Urgency In Figure 4 a clear trend can be observed for both algorithms, the
less urgent orders are, the lower the average cost per order is. This effect can be
explained by the fact that when orders are less urgent, vehicles have more time
to handle other nearby orders first while still respecting the time windows.

Scale Contrary to what one would expect, Figure 5 shows that the larger scale
the problem is the lower the average cost of an order. This surprising result can
be explained by the fact that computation time is ignored in our current setup,
this means that the algorithms have enough time to deal with greater complexity
of larger scale problems. The lower average cost per order can be explained by
the fact that with more vehicles the average distance of a new order to the closest
vehicle is smaller, resulting in reduced average travel times and tardiness.

1 In [9] the raw results are published.

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(a) Scale = 1, urg = 5

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(b) Scale = 1, urg = 20

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(c) Scale = 1, urg = 35

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(d) Scale = 5, urg = 5

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(e) Scale = 5, urg = 20

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(f) Scale = 5, urg = 35

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(g) Scale = 10, urg = 5

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(h) Scale = 10, urg = 20

20

25

30

35

40

20 50 80

Dynamism (%)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(i) Scale = 10, urg = 35

Fig. 3: Comparison with mean relative cost versus dynamism for all levels of scale
and urgency. The error bars indicate one standard deviation around the mean.

6 Conclusion

In this paper we present an open source dataset generator and benchmark dataset
instance of dynamic PDPTW with support for varying levels of dynamism, ur-
gency and scale. We demonstrate how to use the benchmark instance to compare
a decentralized MAS with a centralized algorithm. Although both algorithms are
too basic to generalize upon the results, this demonstration can form a baseline
to which future work can compare to. Using the work presented in this paper,
other researchers in the MAS and OR domains are empowered to conduct thor-
ough and systematic evaluations of their work. In our next paper we plan to
reap the benefits of this work by extending the comparison demonstration with
a state of the art centralized algorithm and an advanced MAS.

Acknowledgements

This research is partially funded by the Research Fund KU Leuven.

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(a) Scale = 1, dyn = 20

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(b) Scale = 1, dyn = 50

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(c) Scale = 1, dyn = 80

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(d) Scale = 5, dyn = 20

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(e) Scale = 5, dyn = 50

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(f) Scale = 5, dyn = 80

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(g) Scale = 10, dyn = 20

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(h) Scale = 10, dyn = 50

20

25

30

35

40

5 20 35

Urgency (min)

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(i) Scale = 10, dyn = 80

Fig. 4: Comparison with mean relative cost versus urgency for all levels of scale
and dynamism. The error bars indicate one standard deviation around the mean.

References

1. Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic pickup and delivery
problems. European Journal of Operational Research 202(1), 8–15 (2010),
doi:10.1016/j.ejor.2009.04.024

2. Coslovich, L., Pesenti, R., Ukovich, W.: A two-phase insertion technique of unex-
pected customers for a dynamic dial-a-ride problem. European Journal of Opera-
tional Research 175(3), 1605 – 1615 (2006), doi:10.1016/j.ejor.2005.02.038

3. Fischer, K., Müller, J.P., Pischel, M.: A model for cooperative transportation
scheduling. In: Proc. of the 1st Int. Conf. on Multiagent Systems (ICMAS’95).
pp. 109–116. San Francisco (1995)

4. Gendreau, M., Guertin, F., Potvin, J.Y., Séguin, R.: Neighborhood search heuris-
tics for a dynamic vehicle dispatching problem with pick-ups and deliveries.
Transportation Research Part C: Emerging Technologies 14(3), 157–174 (2006),
doi:10.1016/j.trc.2006.03.002

5. Gendreau, M., Potvin, J.Y.: Dynamic vehicle routing and dispatching. In: Crainic,
T., Laporte, G. (eds.) Fleet Management and Logistics, pp. 115–126. Centre for
Research on Transportation, Springer US (1998), doi:10.1007/978-1-4615-5755-5 5

http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1016/j.ejor.2005.02.038
http://dx.doi.org/10.1016/j.trc.2006.03.002
http://dx.doi.org/10.1007/978-1-4615-5755-5_5

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(a) urg = 5, dyn = 20

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(b) urg = 5, dyn = 50

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(c) urg = 5, dyn = 80

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(d) urg = 20, dyn = 20

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(e) urg = 20, dyn = 50

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(f) urg = 20, dyn = 80

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(g) urg = 35, dyn = 20

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(h) urg = 35, dyn = 50

20

25

30

35

40

1 5 10

Scale

A
v
e
ra

g
e
c
o
st

p
e
r
o
rd

e
r

Algorithm

Central

MAS

(i) urg = 35, dyn = 80

Fig. 5: Comparison with mean relative cost versus scale for all levels of urgency
and dynamism. The error bars indicate one standard deviation around the mean.

6. Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-agent real time
scheduling system for taxi companies. In: Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS). pp. 29–36 (2009)

7. Gunther, N.J.: Guerrilla Capacity Planning: A Tactical Approach to Planning
for Highly Scalable Applications and Services. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA (2006), doi:10.1007/978-3-540-31010-5

8. Ince, D.C., Hatton, L., Graham-Cumming, J.: The case for open computer pro-
grams. Nature 482(7386), 485–8 (2012), doi:10.1038/nature10836

9. van Lon, R.R.S.: Code and results, PRIMA 2015 (Aug 2015),
doi:10.5281/zenodo.27365

10. van Lon, R.R.S.: Dynamism, urgency and scale dataset (Aug 2015),
doi:10.5281/zenodo.27364

11. van Lon, R.R.S.: PDPTW dataset generator: v1.0.0 (Aug 2015),
doi:10.5281/zenodo.27362

12. van Lon, R.R.S.: RinLog: v2.0.0 (Aug 2015), doi:10.5281/zenodo.27361

13. van Lon, R.R.S.: RinSim: v4.0.0 (Aug 2015), doi:10.5281/zenodo.27360

http://dx.doi.org/10.1007/978-3-540-31010-5
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.5281/zenodo.27365
http://dx.doi.org/10.5281/zenodo.27364
http://dx.doi.org/10.5281/zenodo.27362
http://dx.doi.org/10.5281/zenodo.27361
http://dx.doi.org/10.5281/zenodo.27360

14. van Lon, R.R.S., Ferrante, E., Turgut, A.E., Wenseleers, T., Vanden Berghe, G.,
Holvoet, T.: Measures for dynamism and urgency in logistics. In: CW Reports, vol.
CW686. Department of Computer Science, KU Leuven (August 2015)

15. van Lon, R.R.S., Holvoet, T.: RinSim: A simulator for collective adaptive systems
in transportation and logistics. In: Proceedings of the 6th IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO 2012). pp. 231–232.
Lyon, France (2012), doi:10.1109/SASO.2012.41

16. van Lon, R.R.S., Holvoet, T.: Evolved multi-agent systems and thorough evalu-
ation are necessary for scalable logistics. In: 2013 IEEE Workshop on Computa-
tional Intelligence In Production And Logistics Systems (CIPLS), pp. 48–53 (2013),
doi:10.1109/CIPLS.2013.6595199

17. Madsen, O.B.G., Ravn, H.F., Rygaard, J.M.: A heuristic algorithm for a dial-a-ride
problem with time windows, multiple capacities, and multiple objectives. Annals
of Operations Research 60(1), 193–208 (1995), doi:10.1007/BF02031946

18. Máhr, T., Srour, J.F., de Weerdt, M., Zuidwijk, R.: Agent performance in vehicle
routing when the only thing certain is uncertainty. In: Proc. of 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS). Estorial, Portugal (2008)

19. Máhr, T., Srour, J.F., de Weerdt, M., Zuidwijk, R.: Can agents measure up? A com-
parative study of an agent-based and on-line optimization approach for a drayage
problem with uncertainty. Transportation Research: Part C 18(1), 99–119 (2010),
doi:10.1016/j.trc.2009.04.018

20. Mes, M., van der Heijden, M., van Harten, A.: Comparison of agent-based schedul-
ing to look-ahead heuristics for real-time transportation problems. European Jour-
nal of Operational Research 181(1), 59–75 (2007), doi:10.1016/j.ejor.2006.02.051

21. Mes, M., van der Heijden, M., Schuur, P.: Look-ahead strategies for dynamic pickup
and delivery problems. OR Spectrum 32(2), 395–421 (2010), doi:10.1007/s00291-
008-0146-3

22. Mitrović-Minić, S., Krishnamurti, R., Laporte, G.: Double-horizon based heuris-
tics for the dynamic pickup and delivery problem with time windows.
Transportation Research Part B - Methodological 38(8), 669–685 (2004),
doi:10.1016/j.trb.2003.09.001

23. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery prob-
lems. Part II: Transportation between pickup and delivery locations. 58(2), 81–117
(2008)

24. Pillac, V., Gendreau, M., Gueret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. European Journal of Operational Research 225(1), 1–11 (2013),
doi:10.1016/j.ejor.2012.08.015

25. Potvin, J., Dufour, G., Rousseau, J.: Learning Vehicle Dispatching with Linear-
Programming Models. Computers & Operations Research 20(4), 371–380 (1993),
doi:10.1016/0305-0548(93)90081-S

26. Psaraftis, H.: Dynamic vehicle routing: Status and prospects. Annals of Operations
Research 61, 143–164 (1995), doi:10.1007/BF02098286

27. Savelsbergh, M.W.P., Sol, M.: The General Pickup and Delivery Problem. Trans-
portation Science 29(1), 17–29 (1995), doi:10.1287/trsc.29.1.17

28. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research 35(2), 254–265 (1987),
doi:10.1287/opre.35.2.254

29. Weyns, D., Boucké, N., Holvoet, T.: Gradient field-based task assignment in an
agv transportation system. In: Proc. of 5th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS). pp. 842–849 (2006), doi:10.1145/1160633.1160785

http://dx.doi.org/10.1109/SASO.2012.41
http://dx.doi.org/10.1109/CIPLS.2013.6595199
http://dx.doi.org/10.1007/BF02031946
http://dx.doi.org/10.1016/j.trc.2009.04.018
http://dx.doi.org/10.1016/j.ejor.2006.02.051
http://dx.doi.org/10.1007/s00291-008-0146-3
http://dx.doi.org/10.1007/s00291-008-0146-3
http://dx.doi.org/10.1016/j.trb.2003.09.001
http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://dx.doi.org/10.1016/0305-0548(93)90081-S
http://dx.doi.org/10.1007/BF02098286
http://dx.doi.org/10.1287/trsc.29.1.17
http://dx.doi.org/10.1287/opre.35.2.254
http://dx.doi.org/10.1145/1160633.1160785

	Towards systematic evaluation of multi-agent systems in large scale and dynamic logistics

