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English summary 

Sediment transport due to fluid motion is a crucial process in many 
environmental and engineered systems. Therefore, understanding 
sediment transport is critical for predicting sediment movements and 
evaluating the short and/or long-term influence to the surface water 
systems. Despite the importance of sediment transport, the fundamental 
aspects involved are far from being completely understood. At the core of 
the problem is the complex interaction between a turbulent flow field and 
sediment particles. In this sense, for sediment transport modelling, how 
to account for as many turbulence generation or destruction mechanisms 
as possible is one of the keys to improving the accuracy of prediction. The 
most widely used and validated model for turbulence is two-equation k-
ε model. However, the traditional k-ε model cannot provide accurate 
predictions when considering the presence of sediment in water due to 
missing the terms in the equations that can account for energy transfer 
between sediments and turbulence, as well as the terms for inter-particle 
interactions. Moreover, the standard k-ε model is only valid for fully 
developed turbulent flow, so it often has difficulties to deal with near-
bottom layer (e.g. low-Reynolds effects and high sediment 
concentrations). Therefore, an alternative approach to overcome these 
difficulties is two-phase flow theory. In the first part of this study, a 
modified two-equation k-ε model with additional turbulence modulation 
terms, accounting for the influence of particles on the turbulent flow field, 
has been proposed. These extra terms are derived using a two-phase flow 
approach. In the numerical tests, the modified two-phase k-ε model 
reproduces the features of turbulence modulation observed in the 
experiments on sediment-laden flow.  

Another important aspect in sediment transport is the treatment of the 
near-bottom layer. It has been hypothesized for more than a decade that 
currently used sediment transport models for morphodynamic studies 
(e.g., harbour siltation, system response to dredging or structures) can be 
improved considerably in their predicting capacity when the near-
bottom high-concentration effects in the last few centimetres above the 
bed can be accounted for with a physics-based model. Indeed, 
experimental observations and theoretical considerations (partially 
based on two-phase micro-scale models) show that the flow and 
suspension capacity of the water column are strongly affected by the 
processes of particle-fluid interactions in the benthic layer. Hence, the 
second part of this study focusses on the efficient modelling of near-
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bottom sediment transport in morphodynamic modelling codes through 
an innovative methodology. In this part, the performance of a few new 
physics-based process models has been investigated by implementation 
into a numerical model for the simulation of the flow and 
morphodynamics in the Western Scheldt estuary. In order to deal with 
the complexity within the research domain, and improve the prediction 
accuracy, a two-dimensional (2D) depth-averaged model has been set up 
as realistic as possible, i.e. including two-way hydrodynamic-sediment 
transport coupling, mixed sand–mud sediment transport (bedload 
transport as well as suspended load in the water column) and a dynamic 
non-uniform bed composition. A newly developed bottom friction law, 
based on a generalised mixing-length (GML) theory, is implemented, with 
which the new bed shear stress closure is constructed as the 
superposition of the turbulent and the laminar contribution. It allows the 
simulation of all turbulence conditions (fully developed turbulence, from 
hydraulic rough to hydraulic smooth, transient and laminar), and the 
drying and wetting of intertidal flats can now be modelled without 
specifying an inundation threshold. Erosion and deposition in these areas 
can now be estimated with much higher accuracy, as well as their 
contribution to the overall net fluxes. Furthermore, Krone’s deposition 
law has been adapted to sand–mud mixtures, and the critical stresses for 
deposition are computed from suspension capacity theory, instead of 
being tuned. The model has been calibrated and the results show 
considerable differences in sediment fluxes, compared to a traditional 
approach and the analysis reveals that the concentration effects play a 
very important role. The new bottom friction law with concentration 
effects can considerably alter the total sediment flux in the estuary, not 
only in terms of magnitude, but also in terms of erosion and deposition 
patterns. 
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Nederlandse samenvatting 

Sedimenttransport door vloeistofbeweging is een cruciaal proces in veel 
milieu- en technische systemen. Daarom is het begrijpen van 
sedimenttransport essentieel voor het voorspellen van 
sedimentbewegingen en het evalueren van de korte en / of lange-termijn 
invloed op oppervlaktewatersystemen. Ondanks het belang van 
sedimenttransport, zijn de betrokken fundamentele aspecten verre van 
volledig begrepen. De kern van het probleem is de complexe 
wisselwerking tussen een turbulent stromingsveld en sedimentdeeltjes. 
Daarom is één van de sleutels tot de nauwkeurige voorspelling van 
sedimenttransport het beschrijven van zoveel mogelijk processen voor 
generatie en destructie van turbulentie. Het meest gebruikte en 
gevalideerde model voor turbulentie is het twee-vergelijkingen k-ε-
model. Echter, het traditionele k-ε-model geeft geen nauwkeurige 
voorspellingen bij de evaluatie van de aanwezigheid van sediment in 
water als gevolg van het ontbreken van de termen in de vergelijkingen 
die rekening houden met de energieoverdracht tussen sedimenten en 
turbulentie  en de interacties tussen de deeltjes onderling. Bovendien is 
het standaard k-ε-model alleen geldig voor volledig ontwikkelde 
turbulente stroming, en geeft het dus –problemen in de onderste laag 
tegen de bodem (met name laag-Reynolds effecten en hoge 
sedimentconcentraties). Daarom biedt twee-fasenstromingstheorie een 
alternatieve benadering om deze problemen te aan te pakken. In het 
eerste deel van deze studie werd een aangepast twee-vergelijkingen k-ε-
model met extra turbulentiemodulatietermen,  die de invloed van 
deeltjes op het turbulente stromingsveld beschrijven, voorgesteld. Deze 
extra termen worden verkregen door een twee-fasenstroombenadering. 
In de numerieke simulaties reproduceert dit gewijzigde tweefasige k-ε-
model de kenmerken van turbulentiemodulatie waargenomen in 
experimenten op een sediment-beladen stroom. 

Een ander belangrijk aspect in sedimenttransport is de behandeling van 
de laag tegen de bodem. Het wordt al meer dan tien jaar gehypothetiseerd 
dat de voorspelling met de huidig gebruikte sedimenttransportmodellen 
voor morfodynamische studies (bijvoorbeeld voor de aanslibbing van 
een haven, of systeemrespons  op baggeren of nieuwe 
waterbouwkundige structuren aanzienlijk verbeterd kunnen worden 
wanneer de hoge-concentratie-effecten in de laatste centimeters boven 
de bodem kunnen worden beschrevenmet een fysisch-gebaseerd model. 
Inderdaad, uit experimentele waarnemingen en theoretische 
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overwegingen (mede op basis van tweefasen-microschaalmodellen) 
blijkt dat de stroming en de suspensiecapaciteit van de waterkolom sterk 
beïnvloed worden door de processen van deeltjes-vloeistofinteractie in 
de benthische laag. Vandaar dat het tweede deel van de studie de nadruk 
legt op de efficiënte studie van benthisch sedimenttransport in 
morfodynamische numerieke modellen  door een innovatieve 
methodologie. In dit deel zijn de prestaties van enkele nieuwe fysisch-
gebaseerde procesmodellen onderzocht door toepassing in een numeriek 
model voor de simulatie van de stroming en morfodynamica in de 
Westerschelde. Om rekening te houden met de complexiteit binnen het 
onderzoeksdomein, en te streven naar het verbeteren van de 
nauwkeurigheid van voorspellingen, is een twee-dimensioneel (2D) 
diepte-gemiddelde model opgezet, dat zo realistisch mogelijk is, waarbij: 
de koppeling tussen hydrodynamica en sedimenttransport in de twee 
richtingen gebeurt, gemengd zand-slibtransport beschouwd wordt 
(zowel bodemtransport als suspensietransport in de waterkolom) en een 
dynamische, niet-uniforme bodemsamenstelling. Een nieuw ontwikkelde 
bodemwrijvingsmodel, gebaseerd op een veralgemeende 
menglengtetheorie, werd geïmplementeerd, waarbij de 
bodemschuifspanning wordt berekend als de superpositie van de 
turbulente en laminaire bijdrage. Het laat de simulatie toe van alle 
turbulente stromingsregimes (van volledig ontwikkelde turbulentie, van 
hydraulische ruw tot hydraulische glad, over transiënte condities naar 
laminaire) en het drogen en nat worden van intergetijdengebieden kan 
nu nauwkeuriger worden gemodelleerd zonder gebruik te moeten maken 
van een overstromingsdrempel. Erosie en depositie op deze gebieden 
kunnen nu worden geschat met een veel hogere nauwkeurigheid, evenals 
hun bijdrage aan de totale netto fluxen. Verder werd Krones empirische 
bezinkingswet aangepast aan zand-slib mengsels en de kritische 
schuifspanning voor depositie wordt nu berekend uit een 
suspensiecapaciteittheorie, in plaats van afgestemd. Het model is 
gekalibreerd en de resultaten vertonen grote verschillen in 
sedimentstromingen, vergeleken met een traditionele aanpak. Uit de 
analyse blijkt dat de concentratie-effecten een zeer belangrijke rol spelen. 
De nieuwe bodemwrijvingswet, die hiermee rekening houdt, kan de 
totale sedimentflux in het estuarium aanzienlijk veranderen, niet alleen 
in termen van grootte, maar ook in termen van erosie- en 
depositiepatronen. 
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Chapter 1 

 

INTRODUCTION 

 

1.1. Problem identification 

Problems involving the erosion, transport and deposition of sediment as 
well as the mixing of those sediments within the active upper layer of the 
sediment column are, fundamentally, problems of the near-bottom layer. 
This near-bottom layer can be characterized as the inner boundary layer 
where turbulence is not fully developed, i.e. where other stresses than the 
shear-flow induced turbulent Reynolds stress cannot be neglected. 

It has been hypothesized for more than a decade that currently used 
sediment transport models for morphodynamic studies (e.g., harbour 
siltation, system response to dredging or structures) can be improved 
considerably in their predicting capacity when the near-bottom high-
concentration effects in the last few centimetres above the bed can be 
accounted for with a physics-based model (Toorman, 2010).  

The traditional sediment transport models cannot provide accurate 
prediction when considering the existence of this high-concentrated 
near-bottom layer, where interactions between sediments and 
turbulence and inter-particle interactions occur at any time and location. 

Indeed, the physics in this high-concentration near-bottom layer is 
complex (Elghobashi, 1994). The interactions between sediment and 
turbulent flow as well as inter-particle collisions become important when 
concentration is high. For very dilute sediment-laden flows, the influence 
of the sediment particles on the fluid can be neglected, which results in a 
one-way coupling, where the sediment motion is entirely driven by the 
continuous carrier flow. With growing volume fraction, the modification 
of the turbulent flow by the dispersed sediment particles has to be taken 
into account by means of a two-way coupling. For the high-concentration 
near-bottom layer, momentum and energy will be transferred between 
sediment particles as well as between particles and fluid, leading to a so-
called four-way coupling approach. Experimental observations and 
theoretical considerations (partially based on two-phase micro-scale 
models) show that the flow and suspension capacity of the water column 
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are strongly affected by the processes of particle-fluid interactions and 
inter-particle collisions in the high-concentration near-bottom layer. This 
is further elaborated in Section 3.2. 

 

Figure 1.1. Types of interactions between fluid and particle phases:  
(a) one-way coupling; (b) two-way coupling; (c) four-way coupling. 

Therefore, this study aims to develop a new numerical model for the 
simulation of near-bottom sediment transport by considering the physics 
of sediment transport processes in the near-bottom high-concentrated 
layer. 

 

1.2. Objective of the research 

The overall objective of this research is to obtain a better understanding 
on the near-bottom sediment transport mechanism. It includes 
investigation of the turbulence modulation due to fluid-particle 
interactions, the low-Reynolds effects in the near bed region, and the 
bottom roughness corrections due to flow conditions and high 
concentration effects in the coastal and estuarine areas, especially in the 
intertidal areas in the transitional period between high water and low 
water. In this context, the following research questions are identified: 

 How does the presence of sediment particles affect the turbulence 
in the flow? In addition, what are the key factors contributing to 
turbulence modulation due to particles especially in the near-
bottom region?  

 Can those extra turbulence modulation terms be described 
mathematically from a two-phase perspective? Moreover, how to 
model those terms numerically based on a two-equation 
turbulence model?  
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 In terms of large-scale hydrodynamic and morphological 
simulations, how can the bottom effects, including high- 
concentration effects in the near-bottom layer, be taken into 
consideration? What can be improved by including these physical 
processes? 

 What can be learnt if applying above findings to the Scheldt 
estuary? How to assess the influence of sediment transport in the 
estuary? 

To answer these research questions, the following activities were 
conducted: 

 Several two-phase fluid-particle experiments were reviewed and 
the impact of the presence of sediment particles on the turbulent 
flow was studied qualitatively. By looking at the behaviour of 
particle-fluid interactions, a better understanding of the physical 
processes of turbulence modulation due to sediments in the flow 
was obtained. 

 Two-phase flow theory was carefully studied. Following 
Toorman’s (2010) ensemble-averaged governing equations for 
two-phase/mixture sediment-laden flow, a modified two-
equation k-ε turbulence model with extra turbulence modulation 
terms was developed. The cause of these extra terms was 
analysed and the closures were proposed for modelling them. 

 For investigating the effects of turbulence modulation terms, a 
one-dimensional horizontally homogeneous (1-DV) finite-
element sediment-turbulence model was developed. The 
experimental data from Muste et al. (2005) was used for model 
validation. The performance of the modified k-ε model with 
different combinations of extra terms was compared and 
evaluated. 

 A new physics-based process model for mixed-sediment 
transport was developed. It consists of a newly developed bottom 
friction law based on a generalized mixing-length (GML) theory 
(Toorman, 2010) for improving the bed shear stress calculation 
under all turbulence conditions, and a new deposition criterion 
for sand–mud mixtures that is derived from suspension capacity 
theory. 

 For the case study, a numerical model for the simulation of the 
flow and morphodynamics in the Western Scheldt estuary was 
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built. In order to deal with the complexity within the research 
domain, and improve the prediction accuracy, a 2D depth-
averaged model has been set up as realistic as possible. Besides 
the implementations of the physics-based process model 
mentioned above, it also includes two-way hydrodynamic-
sediment transport coupling, mixed sand–mud sediment 
transport and a dynamic non-uniform bed composition. 

 The Western Scheldt model was calibrated and validated. The 
results were analysed and the sediment movements and 
distribution patterns were examined. The sediment fluxes at 
several cross-sections were calculated and the sediment balance 
in the estuary was studied. Finally, a preliminary analysis of the 
wave effects on coastal sediment transport was performed. 

 

1.3. Outline of the thesis 

There are seven chapters in this dissertation. Chapter 1 presents the 
motivation, the importance of the research, its objectives and the outline 
of the thesis.  

Chapter 2 describes the current state of the research on sediment 
transport modelling. It has two parts. The first part summarises the state-
of-the-art approaches for numerical modelling of sediment transport 
with a comprehensive literature review. The second part aims to explain 
the theoretical background of hydrodynamic and morphological 
modelling in openTELEMAC (an integrated suite of solvers for use in the 
field of free-surface flow), which was used for the development of the 
Western Scheldt model at a later stage of this study. 

In Chapter 3, the related concepts and definitions are clarified in the 
beginning, followed by the literature review on the two-phase flow 
experiments. The conclusions from those experimental studies and the 
descriptions of the physical processes regarding the sediment-turbulence 
interactions were presented. After that, the two-phase/mixture theory 
and the governing equations proposed by Toorman (2008) is described. 
Based on this, the following sections give the details on the derivation of 
a modified two-phase k-ε turbulence model, together with the discussion 
on the extra turbulence modulation terms. 

Chapter 4 describes the 1-DV model from a mathematical point of view. 
It contains a section about the theoretical background. The discretization 
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procedures with the Finite Element Method (FEM) are discussed as well. 
In the last part, the model was firstly validated against the experimental 
data from Muste et al. (2005) using a standard k-ε turbulence model. 
Then the turbulence modulation terms were added to the model. Their 
influences on the flow field and sediment transport are evaluated through 
the analysis of the results. 

Chapter 5 focuses on the new physics-based process model for mixed-
sediment transport. The generalized mixing length (GML) theory 
(Toorman, 2010) is briefly described in the first section. Then the new 
bottom roughness law based on GML theory is introduced and its 
improvements on the computation of bed shear stress on intertidal flats 
are demonstrated. The second section deals with the erosion and 
deposition of mixed-sediment. A unified way of computing erosion of 
sand-mud mixtures and a new deposition criterion derived from 
suspension capacity condition are presented. 

In Chapter 6, the development of the Western Scheldt model is addressed. 
The research area is firstly introduced. Then the model set-ups are 
described in detail. It also covers the model calibration and validation. 
Finally, the results are processed and analysed. The movements of 
turbidity maximum areas, the sediment fluxes and the wave effects on 
sediment balance in the estuary are discussed. 

The last chapter, Chapter 7 summarizes the findings of the research, 
draws the conclusions and recommends future research areas. 
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Chapter 2 

 

SEDIMENT TRANSPORT MODELLING 

 

2.1. State-of-the-art 

Sediment transport due to fluid motion occurs in rivers, estuaries, seas 
and other bodies of water due to currents and tides. It is a crucial process 
in many environmental and engineered systems (Johnson et al. 1993). 
Many ecosystems benefit from sediment transport, whether directly or 
indirectly. Sediment builds aquatic habitats for spawning and benthic 
organisms. It is also responsible for providing nutrients in nearshore 
ecosystems such as floodplains and marshes. In addition to that, without 
sediment deposition, coastal zones can become eroded or non-existent 
(Czuba et al., 2011). However, too much or too little sediment can easily 
cause ecosystem and safety issues. Whether the concerns are caused by 
scour, erosion, build up, or simply excessive turbidity, the sediment 
transport rate is an important factor (Zaimes & Emanuel, 2006). In 
addition to the problems caused by load quantity, sediment can easily 
introduce pollution and other contaminants into a waterway, spreading 
the pollutants downstream (Palermo et al., 2008).  

For engineering projects involving aquatic systems, an understanding of 
sediment-related issues is usually required before implementing 
important decisions, e.g. regarding construction or restoration. This 
especially includes dredging of shipping channels, construction of piers, 
breakwaters, and harbours, and restoration of eutrophic lakes and 
estuaries (James et al., 2010). Therefore, understanding sediment 
transport is critical for predicting sediment movements and evaluating 
the short and/or long-term influence to surface water systems. 

Numerical simulations are often the most efficient and practical methods 
for understanding and predicting sediment transport in complex 
hydrodynamic systems. Numerical modelling requires descriptions of the 
individual processes involved in sediment transport, specifically erosion, 
deposition, and movement of sediments in the water column. Erosion is 
the flux of particles from a sediment bed into the overlying water column, 
and deposition is the flux of particles back to the sediment bed. The 
movement of sediment particles in a water column is due to advection, 
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turbulent dispersion, and settling. An accurate treatment of the 
interaction between these processes leads to improved predictions of 
sediment transport in aquatic systems. 

From a theoretical perspective, the traditional sediment transport 
modelling usually consists of the following aspects: 

1. Modelling hydrodynamics  

The hydrodynamics is usually modelled with the Reynolds-averaged 
Navier–Stokes equations that describe the motion of viscous fluids. This 
is fundamental to the sediment transport modelling since it solves the 
flow field and sediment movement depends on the flow conditions. 

2. Modelling sediment movements 

 

Figure 2.1. Bedload- and suspended transport (Soulsby, 1997) 

Usually two kinds of sediment movements are considered. One is called 
suspended load, which means that the sediment particles are carried by 
the fluid and kept in suspension by the turbulent flow. In this case, 
turbulence plays an essential role. The suspended load is often modelled 
by the advection-diffusion equation. It describes physical phenomena 
where particles are transported within a physical system due to two 
processes: diffusion and advection. The diffusion is mainly caused by the 
turbulent dispersion and the concentration gradient while the advection 
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describes the process, which is that the concentration changes due to the 
flow motion. 

The other kind of sediment motion is bedload. It describes particles in a 
flowing fluid that are transported along the bed. Bedload moves by 
traction (rolling and sliding), and/or saltation. There are many (semi) 
empirical formulas for solving the bedload transport. The commonly used 
ones are from Meyer-Peter & Müller (1948), Einstein (1950), Engelund & 
Hansen (1967), Van Rijn (1984), etc. 

3. Modelling erosion/deposition processes 

Erosion and deposition provide respectively a source or sink flux as the 
bottom boundary conditions for the advection-diffusion equation of 
sediment transport. Moreover, they also provide an important source 
term in the equation for the bed-level elevation for the morphology. 

4. Modelling turbulence 

Turbulence modelling is crucial to sediment transport modelling, not 
only because it can affect the sediment movements in the water column, 
but also because it can be altered by the sediment particles and further 
influence the flow field. The most widely used and validated model for 
wall-bounded turbulence is the two-equation k-ε model. For sediment 
transport modelling, it can be modified in order to account for the two-
way coupling effects between sediment and fluid. 

Because the above governing equations are highly nonlinear and it is 
impossible to solve analytically, numerical methods should be applied in 
order to find the best approximations to the problem. In general, the 
process of obtaining computational solutions consists of two stages: 
conversion of partial differential equations and auxiliary conditions into 
a system of discrete algebraic equations, and then implementation of 
numerical method to solving the system of linear equations. 

In computational fluid dynamics, there are two modern approaches for 
discretization, Finite Volume Method (FVM) and Finite Element Method 
(FEM).  

The FVM uses the integral form of the conservation equations as its 
starting point. The solution domain is subdivided into a finite number of 
contiguous control volumes (CVs), and the conservation equations are 
applied to each CV. At the centroid of each CV lies a computational node 
at which the variable values are to be calculated. Interpolation is used to 
express variable values at the CV surface in terms of the nodal (CV-centre) 
values. Surface and volume integrals are approximated using suitable 
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quadrature formulae. As a result, one obtains an algebraic equation for 
each CV, in which a number of neighbour nodal values appear. The FVM 
can accommodate any type of grid, so it is suitable for complex 
geometries. The grid defines only the control volume boundaries and 
need not be related to a coordinate system. The method is conservative 
by construction, so long as surface integrals (which represent convective 
and diffusive fluxes) are the same for the CVs sharing the boundary. The 
disadvantage of FVM is that methods of order higher than second are 
more difficult to develop in 3D. This is due to the fact that the FV approach 
requires three levels of approximation: interpolation, differentiation, and 
integration (Ferziger & Peric, 2002). 

The FEM is similar to the FV method in many ways. The domain is broken 
into a set of discrete volumes or finite elements that are generally 
unstructured; in 2D, they are usually triangles or quadrilaterals, while in 
3D tetrahedra or hexahedra are most often used. The distinguishing 
feature of FE methods is that the equations are multiplied by a weight 
function before they are integrated over the entire domain. In the 
simplest FE methods, the solution is approximated by a linear shape 
function within each element in a way that guarantees continuity of the 
solution across element boundaries. Such a function can be constructed 
from its values at the corners of the elements. The weight function is 
usually of the same form. This approximation is then substituted into the 
weighted integral of the conservation law and the equations to be solved 
are derived by requiring the derivative of the integral with respect to each 
nodal value to be zero; this corresponds to selecting the best solution 
within the set of allowed functions (the one with minimum residual). The 
result is a set of non-linear algebraic equations. An important advantage 
of finite element methods is the ability to deal with arbitrary geometries; 
there is an extensive literature devoted to the construction of grids for 
finite element methods. The grids are easily refined; each element is 
simply subdivided. Finite element methods are relatively easy to analyse 
mathematically and can be shown to have optimality properties for 
certain types of equations. The principal drawback, which is shared by 
any method that uses unstructured grids, is that the matrices of the 
linearized equations are not as well structured as those for regular grids 
making it more difficult to find efficient solution methods (Ferziger & 
Peric, 2002). The order of accuracy of FEM increases by raising the 
approximation order within elements. The basic steps of solving a 
problem using FEM are as follows: 
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 Discretization of the problem by selection of elements 
interconnected at nodal points. 

 Evaluation of the matrices of the element by applying the 
governing equations. 

 Formulation of the complete matrix of the continuum. 

 Application of the boundary conditions. 

 Solution of the resulting system of equations. 

 Calculations of any other functions based on nodal unknowns. 

For solving the system of linear equations, the commonly used numerical 
methods are Gaussian Elimination, Conjugate Gradient Method and 
Generalised Minimum Residual Method. 

 

2.2. TELEMAC-SISYPHE 

2.2.1.  Overview 

The openTELEMAC system consists of a complete processing chain for 
the calculation of water, solute and sediment motions in the fluvial, 
coastal, estuarine and lacustrine domains. It comprises pre-processors 
for digitizing the data and describing the problem, simulation 
programmes and post-processors for displaying and analysing the 
results. One of the key assets of the system is the use of the finite element 
theory that comprises a rigorous theoretical framework and a flexibility 
for describing complex geometries (Hervouet et al. 2000).  

There are several modules in the openTELEMAC system and the most 
commonly used modules are as follows: 

 TELEMAC-2D is a horizontal depth-averaged hydrodynamics 
solver. It solves the Saint-Venant (or shallow water) equations in 
two dimensions. 

 TELEMAC-3D solves the three-dimensional Navier-Stokes 
equations with a free surface.  

 SYSIPHE uses the results of the TELEMAC-2D and TELEMAC-3D 
to undertake simulation of bedload and suspended sediment 
transport. It offers various sediment transport formulas and 
multi-layer consolidation model. 
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 TOMAWAC models the changes of the power spectrum of wind-
driven waves and wave agitation for applications in the oceanic 
domain, in the intracontinental seas as well as in the coastal zone. 

All the physical phenomena treated by modules in the openTELEMAC 
system generally interact, e.g. the hydrodynamics may generate sediment 
transport, which modifies the topography and hence has an influence on 
the hydrodynamics. This is called two-way coupling. 

 

2.2.2.  TELEMAC-2D 

In TELEMAC-2D, the Navier-Stokes equations for incompressible flow are 
averaged vertically by integration from the bottom to the surface, taking 
into account the impermeability conditions of the bottom and surface. 
They are solved simultaneously using the finite-element method, as well 
as the equation for tracer conservation (Hervouet, 2007).  To be more 
specific, it solves the following equations. 

Continuity equation: 
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Momentum along x: 
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Momentum along y: 
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Tracer conservation: 
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in which: h = water depth [m], u and v = velocity components [m/s], T = 
passive (non-buoyant) tracer, g = the gravity acceleration [m/s2], νt = 
turbulent viscosity [m2/s] and ν = kinematic water viscosity [m2/s], νT = 
the tracer diffusivity coefficient, Zs = free surface elevation (positive 
upwards) [m], t = time [s], x and y = horizontal space coordinates [m], Sx 
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and Sy = source terms representing the wind, Coriolis force, bottom 
friction, a source or a sink of momentum within the domain, ST = the 
tracer source or sink term. 

The turbulent viscosity may be given by the user. In this case, a constant 
viscosity is imposed and it is sufficient when flow is governed by the 
pressure gradient and by advection, for example the tide-driven flow, and 
especially for modelling oceanic circulation on a large scale (Hervouet, 
2007). However, there are also several other approaches provided in 
TELEMAC-2D for modelling turbulent viscosity: zero-equation models, 
such as the Elder model and the Smagorinsky model, and the most 
commonly used two-equation model, k-ε model (vertical averaged in 
TELEMAC-2D). 

As a module in the openTELEMAC system, TELEMAC-2D is able to take 
into account the following phenomena thanks to the integration with 
other modules (TELEMAC-2D software release 7.0 user manual, 2014): 

 Propagation of long waves, including non-linear effects, 

 Friction on the bed, 

 The effect of the Coriolis force, 

 The effects of meteorological phenomena such as atmospheric 
pressure and wind, 

 Turbulence, 

 Supercritical and subcritical flows, 

 Influence of horizontal temperature and salinity gradients on 
density, 

 Cartesian or spherical coordinates for large domains, 

 Dry areas in the computational field: tidal flats and flood-plains, 

 Entrainment and diffusion of a tracer by currents, including 
creation and decay terms, 

 Particle tracking and computation of Lagrangian drifts, 

 Treatment of singularities: weirs, dikes, culverts, etc., 

 Dyke breaching, 

 Drag forces created by vertical structures, 

 Porosity phenomena, 
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 Wave-induced currents, 

 Coupling with sediment transport, 

 Coupling with water quality tools. 

 

2.2.3.  SISYPHE 

SISYPHE is a module of the openTELEMAC system for modelling 
sediment transport and morphodynamics. In SISYPHE, sediment 
transport rates, split into bedload and suspended load, are calculated at 
each node as a function of various flow (velocity, water depth, wave 
height, etc.) and sediment (grain diameter, relative density, settling 
velocity, etc.) parameters.  

The bedload is calculated by using a classical sediment transport formula 
from the literature. SISYPHE provides a variety of bedload transport 
formulas. The commonly used formulas in SISYPHE are listed below. 

 

Table 2.1. Validity range of some of the bedload transport formulas. 

Formula Meyer-
Peter & 
Müller 
(1948) 

Einstein–
Brown 
(1950) 

Engelund-
Hansen 
(1967) 

van Rijn 
(1984) 

Mode of 
transport 

bedload bedload bedload + 
suspended 

load 

bedload 

Validity 
range (d50) 

0.4-29mm 0.25-32mm 0.19-0.93mm 0.2-2.0mm 

 

The suspended load is determined by solving an advection-diffusion 
equation for the depth-averaged suspended sediment concentration. It is 
obtained by integrating the 3D advection-diffusion equation over the 
suspended-load zone. By applying the Leibniz integral rule, adopting 
suitable boundary conditions and assuming that the bedload zone is very 
thin, the depth-integrated suspended-load transport equation is 
obtained: 



15 
 

     
s s

hC hUC hVC C C
h h E D

t x y x x y y
 

        
       

         
 

  (2.5) 

with h = water depth [m], assuming that the bedload layer thickness is 
very thin, U and V = depth-averaged velocity components [m/s], C = 
depth-averaged suspension concentration [kg/m3], E = erosion flux 
[kg∙m-2∙s-1], D = deposition flux [kg∙m-2∙s-1], and εs = diffusivity coefficient 
for sediment particles [m2/s]. 

For the non-cohesive sediment, the net sediment flux E-D is determined 
based on the concept of equilibrium concentration: 

   
ref

s eq refZ
E D w C C      (2.6) 

where ws is the settling velocity of particle [m/s], Ceq is the equilibrium 
near-bed concentration [kg/m3] and Cref is the near-bed reference 
concentration [kg/m3], calculated at the interface between the bed-load 
and the suspended load. The reference elevation Zref [m] corresponds to 
the interface between bedload and suspended load. 

The equilibrium near-bed concentration Ceq can be determined by 
different fomulas, e.g. Zyserman and Fredsøe formula (1994), Bijker 
formula (1992) and van Rijn formula (1984).  

Take the Zyserman and Fredsøe formula for example. The equilibrium 
near-bed concentration Ceq is given by: 
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with θc is the critical Shields parameter, θ’ = μθ, the non-dimensional skin 
friction which is related to the Shields parameter, μ is the dynamic 
viscosity of water. 

The near-bed reference concentration Cref is calculated using the relation 
established between the depth-averaged concentration and the near-bed 
reference concentration Cref: 

refC FC    (2.8) 

In SISYPHE, the ratio F can be approximated by the expression: 
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in which, C is the depth-averaged concentration, Z is the water level, h is 
the water depth, and R is the rouse number. 

For the cohesive sediment, the classical Partheniades formula is applied 
for computing the erosion flux: 
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The deposition flux is calculated as a function of the near bed 
concentration: 
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where u* is the friction velocity, u*e is the critical erosion shear velocity, 
M is the Partheniades coefficient, C is the depth-averaged concentration, 
ws is the settling velocity, and u*d is the critical deposition. For the 
computation of deposition flux, it assumes that the bed concentration is 
approximately equal to the depth-averaged concentration in SISYPHE,  

The bed evolution can be calculated by solving the Exner equation: 
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where nb is the non-cohesive bed porosity, Zf the bottom elevation [m], t 
is the time [s], and Qb the solid volume transport (bedload) per unit width 
[m2/s]. 

SISYPHE is applicable to non-cohesive sediments (uniform or graded), 
cohesive sediments as well as sand-mud mixtures. The sediment 
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composition is represented by a finite number of classes, each 
characterized by its mean diameter, grain density and settling velocity. 
Sediment transport processes can also include the effect of bottom slope, 
rigid beds, secondary currents (bedload movement direction deviates 
from the main flow direction due to helical flow effect) and slope failure. 
For cohesive sediments, the effect of bed consolidation can be accounted 
for. 

SISYPHE can be applied to a large variety of hydrodynamic flow 
conditions including rivers, estuaries and coastal applications. For the 
latter, the effects of waves superimposed to a tidal current can be 
included. The bed shear stress, decomposed into skin friction and form 
drag, can be calculated either by imposing a friction coefficient (Strickler, 
Nikuradse, Manning, Chézy or user defined) or by a bed-roughness 
predictor. 

In SISYPHE, the relevant hydrodynamic variables can be either imposed 
in the model (chaining method) or calculated by a hydrodynamic 
computation (internal two-way coupling) by using one of the 
hydrodynamic modules of the openTELEMAC system (modules 
TELEMAC-2D or TELEMAC -3D) or an external hydrodynamic model. 
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Chapter 3  

 

LESSONS FROM TWO-PHASE FLOW THEORY 

 

3.1. Introduction 

In the last two decades, many numerical models of suspended sediment 
transport in estuaries and coastal zones have been made. Most of the 
existing numerical models, which are single-phase, are based on the 
hypothesis that solid particles move at the same velocity as fluid particles, 
with the exception of their falling velocity. This is known as the ‘‘passive 
scalar” hypothesis. However, there remain a number of flaws regarding 
the physical concept. The impact of particle motion upon fluid flows, for 
example, is ignored. Nor are particle–particle interactions, which can be 
very strong in dense flows, taken into account. Consequently, the single-
phase models are likely to lose predictive capacity. In order to correct the 
flaws mentioned above, another approach, two-phase flow (fluid and 
solid particles), has been developed.  

In a two-phase sediment transport model, the computational domain is 
extended to the ‘‘true” non-erodible bottom (to incorporate bedload 
which is no longer computed separately), while the governing equations 
are the same for both high and low concentration areas of the domain. 
Fluid flows are free surface and considered as non-hydrostatic. The main 
physical processes for sediment transport such as fluid-solid particles, 
particle-particle interactions, particle-wall collision, and fluid-bottom 
exchanges are integrated into the equations of motion and treated as 
momentum exchanges between phases. Fluid mud is handled as a non-
Newtonian fluid. In the physical sense, this approach is more complex, but 
more realistic than the single-phase modelling (Nguyen et al., 2009). 

Models for the flow of a fluid with dispersed particles or flocs can be 
formulated with two kinds of two-phase flow models. In the case of a 
dilute suspension there are only a few particles suspended in the liquid. 
If the interaction between the particles is weak, a Lagrangian model for 
the particulate phase can be used. By solving Newton’s law of motion, 
each particle is kept track of in the flow of the continuous phase. In a high 
concentration benthic suspension, the interactions between the particles 
and between the phases have to be considered. A Lagrangian model 
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would not be practical since the effort to keep track of every particle 
would be computationally expensive. 

To model the behaviour of high concentration benthic suspension 
mathematically an Eulerian two-phase fluid model or two-fluid model 
should be used. The suspension is then treated as a two-constituent 
mixture of solid particles and a fluid. Both phases are described as 
incompressible continua assumed to satisfy averaged equations of 
motion. This means, for each phase, conservation of mass and of 
momentum is formulated as partial differential equations. The phases are 
coupled through the inter-phase momentum transfer. A scalar volume 
fraction field is introduced for the proportion of the total volume 
occupied by particles. 

Because the length scales related to the flow process are much larger than 
the microscopic length scales related to the suspension, e.g. a typical 
particle size, it is sufficient to describe each phase as a continuous 
medium. The local instantaneous conservation equations for mass, 
momentum and energy supplemented with jump conditions at the 
interfaces between the fluid and particles are averaged over each field to 
produce a two-fluid model. 

 

3.2. Concepts and related Work 

Suspended sediment concentration above 0.1% is common near the bed 
in nature and it falls within the range of four-way coupling from 
Elghobashi’s (1994) classification for multiphase flow. Thus, from a 
physical point of view, significant interactions between flow and particles 
are expected, as well as inter-particle interactions. The way to account for 
these effects properly is to implement two-phase flow theory. 

Toorman (2008) made some further interpretations on the multiphase 
processes in the sediment-laden flows from the aspect of momentum 
transfer. For very small volumetric concentrations (ϕ<10-6) the particle 
motion is determined by the fluid, while the momentum transfer from the 
particles to the turbulence has a negligible effect on the flow. This is called 
one-way coupling. For higher concentrations, the momentum transfer 
from the particles is large enough to alter the turbulence. When heavier 
than the fluid, particles will respond slower to sudden accelerations than 
the fluid and energy is dissipated by friction between the two phases 
(inertia effect). Furthermore, gravity opposes upward and favours 
downward fluctuations of the suspended particles (buoyancy or 
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stratification effect). These phenomena are called two-way coupling. The 
effects of mutual hindrance and inter-particle friction and collisions, 
referred to as four-way coupling (i.e., particle fluctuations are affected not 
only by the fluid, but also by the particles themselves, while fluid 
fluctuations are affected by particle movements), become increasingly 
important with higher concentrations (ϕ>10-3). 

 

Figure 3.1. Quantification of momentum coupling approaches in terms of 
entity spacing and volume fraction 

Recent measurements indeed have demonstrated that the turbulent 
fluctuations of solid particles and fluid are not the same (Rashidi et al., 
1990; Best et al., 1997). Furthermore, experiments on turbulent 
suspension flows show that turbulence can be enhanced or damped and 
the maximum suspension capacity is governed by the auto-suspension 
capacity of the high-concentrated near-bed layer where four-way 
particle-fluid interactions are very important. Therefore, for the high-
concentration near-bottom layer, the particle-turbulence interactions as 
well as particle-particle interactions should be considered. 

Many studies have suggested that the existence of sediment particles in 
water can change the turbulence characteristics in suspended sediment-
laden flows. This phenomenon becomes more notable when the sediment 
concentration is high. Tsuji and Morikawa (1982) showed that small 
particles with diameter of about 200 µm attenuated the turbulence 
outside the viscous sublayer, while larger particles with diameter in the 
range of 3-4 mm lead to augmentation of turbulence fluctuations. 
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Gore and Crowe (1989) have first reviewed the earlier research on 
particle-fluid interactions, i.e., the two-way coupling, in particle-laden air 
jets and pipe flows, and proposed a noticeable criterion that smaller size 
particles than the scale of energy-containing eddies suppress the 
turbulence, whereas larger size particles enhance it. Further, Hetsroni 
(1989) re-examined the particle-turbulence interactions on the basis of 
available experimental data of mainly gas-solid flows (some liquid-solid 
and gas-liquid flows were also examined) including data of Gore and 
Crowe (1989) and found that the presence of smaller particles with a low 
particle Reynolds number tended to suppress the turbulence of the 
carrier fluid. In contrast, he concluded that larger particles with high 
particle Reynolds number (based on relative velocity and particle size), 
larger than about 400, tended to enhance the turbulence most likely due 
to vortex shedding by particles. 

Lyn (1991) has first conducted the simultaneous measurements of 
particle phase and fluid phase in sediment-laden open channel flows by 
laser Doppler anemometer (LDA), and pointed out that the fluid velocity 
of sediment-laden flow became slower than that of sediment-free flow 
(i.e., clear-water flow) as the particle concentration increased. Lyn (1992) 
also found that turbulence characteristics in sediment-laden open-
channel flows might be changed significantly by particle-turbulence 
interaction as compared with those in clear-water flows. Yarin and 
Hetsroni (1994) also studied particle-turbulence interactions. They 
showed that finer particles damped the turbulence, while coarser 
particles enhanced it. They found that the level of turbulence modulation 
was affected by four parameters: the particle mass loading, the particle-
fluid density ratio, the particle Reynolds number, and the ratio of the 
particle diameter to the characteristic eddy diameter. Furthermore, Song 
et al. (1994) measured the bed-load flow in the near-bed region by 
acoustic Doppler velocimetry (ADV), and pointed out that the turbulence 
intensity and Reynolds stress became weaker than those of the fixed-bed 
clear-water flow due to the existence of bed-load materials. These earlier 
experimental results of turbulence modulation in sediment-laden open-
channel flows might be similar to those of gas-solid two-phase flows, and 
thus it is further necessary to investigate the mechanism of such particle-
turbulence interaction based on recent turbulence theory. 

It is well known that the coherent structure of ejections and sweeps 
occurs intermittently and periodically near the wall in boundary layers 
and open-channel flows. This so-called bursting phenomenon is quite 
important in particle entrainment and transport mechanism, as pointed 
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out by Rashidi et al. (1990), Ninõ and García (1998), and others. They 
suggested that the ejections and sweeps in the near-wall region might 
govern the interaction between particles and fluid. The transport 
mechanism of suspended sediment is also one of the most important and 
challenging topics in river engineering, because it has a complicated 
interaction among turbulent flow, particle motion and bed configuration. 
Therefore, many efforts have been devoted to the understanding and 
predictive capability of the closely coupled phenomena of sediment-
laden flow and sediment transport in open-channel flows. Rashidi et al. 
(1990) and Ninõ and Garcia (1998) have measured the suspended 
particle motion in sediment-laden flows by flow-visualization techniques, 
and pointed out that the fluid velocities are faster than those of particles 
in the outer layer of open-channel flow. However, the velocities of 
particles and fluid were not measured simultaneously in their research. 
Yamamoto et al. (2001) studied the interaction between turbulence and 
solid particles in a fully developed channel flow using LES; they also 
considered the inter-particle collisions that were important for flows 
with high mass loading of particles. 

Recently, simultaneous measurements of both fluid velocity and particle 
velocity in sediment-laden open-channel flows have been feasible with 
non-intrusive measurement techniques. Best et al. (1997) and Righetti & 
Romano (2004) have conducted simultaneous velocity measurements of 
water and glass beads using a phase Doppler anemometer (PDA). PDA is 
an epoch-making system for the simultaneous measurements of particle-
laden flows although particles must be exact sphere. They suggested that 
the enhancement and suppression of turbulence intensity due to particles 
were distinguished by the Stokes number of particle-laden flow. Muste 
and Patel (1997) have developed LDA system incorporated with a unit 
for particle-size discrimination and measured the particle velocity Up and 
fluid velocity Uf simultaneously in the outer layer of open-channel flow. 
Kulick et al. (1994) conducted similar measurements in duct flow and 
pointed out an existence of the relative velocity between particles and 
fluid. That is to say, the values of (Up – Uf) did not become equal to zero, 
and thus the particle Reynolds number had a finite value, which inferred 
an occurrence of turbulence modulation on the basis of Hetsroni’s (1989) 
criterion. To reveal the momentum exchanges between particles and fluid, 

Kaftori et al. (1995) have measured the relative velocity by using LDA even 

in the near-wall region although the particle specific density ρp was near-

neutrally buoyant solid particles, i.e., the density ratio of particle to fluid ρp/ρf 

= 1.05. They pointed out that the averaged velocity of particles was larger 
than that of carrier fluid in the near-wall region. This feature of the 
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relative velocity is opposite to that of the outer region. They explained 
then that the result of Up > Uf very near the wall might be caused by the 
following two factors, i.e., one is the deceleration of fluid velocity due to 
viscous effect and the other is due to the high speed particles which 
inrush into the viscous sublayer. These surprising results of Kaftori et al. 
(1995) that the particle velocity might become larger than the carrier 
water velocity very near the wall have recently been verified using 
innovative PIV/PTV measurements by Nezu and Azuma (2004), Muste et 
al. (2009) and others, who all pointed out the importance of simultaneous 
measurements of particles and fluid in open channel flows. 

Such simultaneous measurements of particles and fluid have first been 
conducted by LDA and PDA as mentioned above, although these 
measurement systems have some difficult limitations. For example, the 
size of suspended particles have to be small enough in order to avoid the 
blocking of laser beams due to particles. Only spherical particles are 
feasible in PDA measurements. Moreover, because LDA and PDA are 
point measurement systems, it is rather difficult to examine the relation 
among the coherent structure, particle-fluid interaction and particle 
concentration in sediment-laden open-channel flows. To overcome such 
difficulties, Nezu and Azuma (2004) have measured both the fluid and 
particle velocities simultaneously in sediment-laden open-channel flows 
by using a discriminator Particle Tracking Velocimetry (D-PTV), in which 
sediment particles were separated from fluid tracers by the occupied 
area of particles in camera images. With this technique of PTV, the 
relative velocity between particles and fluid was examined in the inner 
layer as well as in the outer layer. Recently, Bigillon et al. (2006), 
Breugem and Uijttewaal (2006), Le Louvetel-Poilly et al. (2007), Noguchi 
et al. (2008) and Muste et al. (2009) have conducted simultaneous 
measurements of particles and fluid velocities in sediment-laden open-
channel flows by using a combination of PTV and PIV, the techniques of 
which are almost similar to those developed by Nezu and Azuma (2004). 
All of them found an essential importance of particle-turbulence 
interaction as well as significant contributions of ejection and sweep 
motions to suspended sediment transport. 

Noguchi and Nezu (2009) conducted an experiment to investigate the 
particle-turbulence interaction and relation with local particle 
concentration in sediment-laden open-channel flows. The result showed 
that very near the bed, the velocities of sediment-laden flows were faster 
than those of clear-water flow. These tendencies are in good agreement 
with recent data of Muste et al (2009). It is considered that the existence 
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of particles cannot be disregarded in the viscous layer when 
dimensionless distance from the bottom y+ ≤ 10. In the near-wall region 
of y+ ≤ 15, the particle velocity Up is faster than the fluid velocity Uf, 
whereas in the region of 15 ≤ y+ ≤ 100, the particles are transported 
slower than the carrier fluid. In the outer region of y+ ≥ 100, the value of 
Up approaches to the Uf distribution because of the good following of 
suspended particles to the carrier flow. From these tendencies of Up – Uf 
the sediment-laden turbulence structure can be classified into three sub-
regions, (i) the viscous region of y+ ≤ 15, (ii) the inner region of 15 ≤ y+ ≤ 
100, and (iii) the outer region of y+ ≥ 100. The particle-fluid interaction in 
the inner region should be distinguished from that in the outer region. In 
the inner region, the particle concentration is much larger than the 
volume-averaged one. Therefore, the particle-fluid interaction (two-way 
coupling) would be also influenced by the particle-particle interaction 
(four-way coupling) in the inner region. On the other hand, in the outer 
region, the particle concentration is much smaller than the volume-
averaged one, and consequently, the four-way coupling effects may be 
negligibly small. It is also found that the heavier particles of ρp/ρf = 1.5 
have slightly larger relative velocity than the light particles of ρp/ρf = 1.2, 
which infers an effect of particle inertia. The turbulence enhancement 
and suppression by particles in water flows might depend on the particle 
size dp rather than the particle density ρp. The critical diameter dc of 
turbulence modulation, in which turbulence is enhanced at dp > dc 
whereas it is suppressed at dp < dc, was evaluated as dc = 0.44 mm. This 
value of dc was in good agreement with the zone-averaged Kolmogoroff 
microscale. However, this criterion found are only valid for smooth 
bottoms, as found in laboratory flumes, which are not representative for 
non-flat and rough natural sediment beds. Furthermore, one would 
expect also adapted criteria depending on the relative particle size. 

In the study of Noguchi and Nezu (2009), they also investigated the 
properties of turbulent motions. There are four types of turbulent 
motions which can be observed by employing the quadrant analysis 
(Corino and Brodkey, 1969). These motions are identified as low-speed 
fluid moving away from the wall called ejections (u' < 0, v' > 0), high-speed 
fluid moving toward the wall called sweep (u' > 0, v' < 0), high-speed fluid 
from the sweep motion reflected back as outward interaction (u' > 0, v' > 
0), and low-speed fluid being pushed back toward the wall as inward 
interaction (u' < 0, v' < 0). Ejections and sweeps are most energetic and 
together account for about 70% of the turbulent shear stress in boundary 
layers (Bridge, 2009). In Noguchi and Nezu’s (2009) experiment, the 
counted number of ejections and sweeps are not changed significantly by 
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the existence of suspended sediment. The local particle concentration 
increased when the ejections occurred, whereas it decreased when the 
sweeps occurred. The stronger ejections increase the local particle 
concentration, whereas the stronger sweeps decrease it. This suggests 
that the stronger and more violent ejections contribute to sediment 
transport more significantly. The largest contribution to the sediment 
flux is from the ejection events. The second largest contribution is from 
the sweeps. The outward and the inward interactions are negligibly 
small. This means that the ejection and sweep events play an important 
role in sediment transport. 

Zaichik et al. (2008) developed statistical models for predicting the 
transport, dispersion, and deposition of colliding particles in the 
framework of the Eulerian continuum approach. The models start from a 
kinetic equation for the probability density function (PDF) of the particle 
velocity distribution in anisotropic turbulent flow. The particle–
turbulence interaction is modelled by a second-order operator of the 
Fokker–Planck type, while the particle–particle interaction is described 
by an integral operator of the Boltzmann type. The models are able to 
capture the main features of transport, deposition, and preferential 
concentration of non-colliding and colliding particles in turbulent 
channel flows. The main predicted effects of collisions on the particulate 
phase consist of a decrease in the average streamwise velocity, increasing 
the transverse fluctuating velocity, and decreasing the preferential 
accumulation in the near-wall region of the flow as well as in enhancing 
the deposition rate. However, their models are only valid for small 
volume fractions. 

 

3.3. Governing equations for two-phase/mixture model 

In order to describe the physical processes in the two-phase flow, the 
following basic governing equations are employed (Toorman, 2008): 

Conservation of mass 

In the case of non-cohesive sediments (like sand), the solids mass 
conservation is: 
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And fluid mass conservation: 
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Conservation of momentum 

The volume-averaged momentum conservation equation for particle 
phase is written as: 
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or, using mass conservation equation 

piji i i
p p j p iz

j i j

v v fp
v g

t x x x


   



  
     

   
               (3.4) 

For the fluid phase, one can write the equivalent: 
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or, using mass conservation equation 
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In the above equations, ϕ = the volume fraction of the particle phase, t = 
time [s], x = the location of Cartesian coordinate [m], i and j = the indices 
of the coordinate, v = the particle velocity [m/s] and u = the fluid velocity 
[m/s], ρp = the density of particles [kg/m3], ρf = the density of fluid 
[kg/m3], p = the pressure [Pa], g = the gravity constant [m/s2], δ = the 
Kronecker delta, σp = the viscous stress of particle phase [kg∙m-1∙s-2], σf = 
the viscous stress of fluid phase [kg∙m-1∙s-2], f = the interaction forces 
between the two phases. 

The basic governing equations are able to describe the fundamental 
physical processes and interactions in the two-phase flow, however, they 
cannot be directly implemented to engineering applications since they 
require unacceptable small time scale and mesh size. The commonly used 
Reynolds-averaging procedure is also not ideal for these equations 
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because it will add many extra terms that cannot be easily modelled. To 
overcome this issue, a different kind of Reynolds-averaged related 
velocities is introduced. It consists of a Reynolds-averaged part and a so-
called drift velocity in addition to that. The advantage using this form is 
that it can reduce the extra terms in the averaged governing equations 
and thus reduce the complexity. However, its disadvantage is also 
obvious: the drift velocities cannot be directly measured from the 
physical models. 

The most elegant form of equations is obtained in terms of representative 
fluid velocity Ui and solids velocity Vi related to Reynolds-averaged 
properties (Toorman, 2008): 

a d    n
1

i i
i i i Di i i i Di

u v
U u u U V v v V

 

 

   
       


              (3.7) 

where: 𝑢𝑖  and 𝑣𝑖  = the respective Reynolds-averaged fluid and solids 
velocities [m/s], UDi and VDi are the respective fluid and solids drift 

velocities [m/s], 𝜙  = the Reynolds-averaged solids volume fraction, 

−𝑢𝑖
′𝜙′  and 𝑣𝑖

′𝜙′  = the respective Reynolds averaged fluid and solids 
turbulent flux. Substitution of (3.7) into the Reynolds-averaged equations 
leads to the following equations (for the details of the derivation please 
refer to Appendix I).  

The suspension continuity equation reads: 

( )
0

j j

j

U W

x

 



                   (3.8) 

where: xj = the location coordinate [m], and Wj=Vj−Uj = the (Reynolds-
averaged related) slip velocity [m/s]. The exact suspension momentum 
equation becomes: 
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with: 𝜌 = 𝜌𝑝𝜙  + 𝜌𝑓(1 − 𝜙) = the suspension bulk density [kg/m3], p = 

pressure [Pa], g = gravity constant [m/s2], σT = the turbulent Reynolds 
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stress [kg∙m-1∙s-2] and σD = the drift diffusion stress [kg∙m-1∙s-2], 
respectively given by: 

( ) (1 )( )Tij p i j i jfv v u u                          (3.10) 
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The suspension Reynolds stress can be approximated by 𝜎𝑇𝑖𝑗 ≈ −𝜌𝑢𝑖
′𝑢𝑗

′. 

The drift velocities can be closed using a gradient diffusion hypothesis 
(Combest et al., 2011): 
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with: turbulent eddy viscosity νt = cμk2/ε [m2/s], σt = the turbulent 
Schmidt number and the constant cμ = 0.09 . 

The slip velocity Wi can be solved using a so-called drift flux model. Drift 
flux modelling tries to avoid the solution of the particle momentum 
equation, by computing the slip velocity from a steady state force balance, 
which is either obtained from the local relative particle force balance (a 
local approach) (Maxey and Riley, 1983), or by subtracting the 
momentum equations for the two phases (e.g. a macroscopic approach) 
(Brethour, 2009). Inertia terms are assumed to be negligible and usually 
only drag is retained as the dominant interaction force. This results in an 
algebraic equation for the velocity lag. Toorman (2008) has argued that 
different particle time scales have to be applied to the drag from 
respectively the mean particle flow and the particle drift. 

 

3.4. k-ε turbulence model for two-phase/mixture model 

Turbulence is a key element in the flow of fluid-particle mixtures. It is 
responsible for the mixing of suspended sediment and the shear stresses 
(Reynolds stress) in the continuous phase. The influence of the presence 
of particles or a second phase on the turbulence of the continuous phase 
is known as turbulence modulation (Crowe, 2000). 

Therefore, another important perspective on investigating fluid-particle 
interactions is the turbulence modelling. Hence, the next step is to derive 
the corresponding equation for conservation of turbulent kinetic energy 
(TKE), since the k-ε model remains the most popular turbulence closure 
for large-scale applications (at least for the vertical mixing of sediments). 
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This results in the determination of the extra terms resulting from the 
presence of the particle phase.  

The derivation of k-ε turbulence model is based on the two-
phase/mixture flow equations described in the section 3.3. The 
momentum conservation equation for the fluid phase are used in the 
derivation. The detailed derivation is shown in Appendix II.  

The turbulent kinetic energy k [m2/s2] and its dissipation rate ε [m2/s3] 
are defined as: 
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in which 𝑢𝑖
′  is the fluctuating part of the fluid velocity from Reynolds-

averaging procedure, ν is the kinematic viscosity of fluid.  

Then we have the conservation of turbulent kinetic energy (TKE): 

(( ) )i t
f f j ij f k

j j j k j

uk k k
u

t x x x x


    



   
     

    
  (3.14) 

with the extra term which is due to the interaction between two phases: 
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Notice here, instead of using the interaction force fi in the equation (3.6) 
for the derivation, the relation ωi = fi /(1-ϕ) is adopted to reduce the 
complexity.  

The conservation of turbulent dissipation rate (TDR): 
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with the extra term: 
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where τ = the viscous stress tensor of fluid [kg∙m-1∙s-2], μ = fluid dynamic 
viscosity [N∙s/m2], ν = fluid kinematic viscosity [m2/s], μt = turbulent 
eddy viscosity [N∙s/m2], f = the interaction forces between fluid and 
particle phase [N∙m-2∙s-1], ϕ = the volume fraction of particle phase, Cε1, 
Cε2, σk and σε = the closure coefficients as in the standard k-ε model, which 
are usually determined semi-empirically and are commonly taken as σk = 
1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92 and Cμ = 0.09 for turbulent shear flows 
(Rodi, 1980; Chen and Jaw, 1998). 

Analysing the extra terms in Пk and Пε suggests that there are two main 
reasons for these extra terms emerging from the equations: 

 the interactions between fluid and particle phases (including 
forces such as drag force, lift force, virtual mass force and Basset 
force); 

 the presence of the second phases (the quantities such as ∇ ⋅ 𝑢 
and  ∇ ⋅ 𝑣 are no longer zero due to phase replacing in the control 
volume). 

 

3.5. Turbulence modulation due to particle phase 

In this section, we examine the extra terms appearing in the derived two-
phase k-ε model. These extra terms are responsible for the turbulence 
modulation due to the particle phase. Through the analysis of the 
experimental data from Muste et al. (2005), the turbulence is affected 
significantly by the presence of the particles in the lower part of the water 
column near the bottom. 

The extra terms in TKE equation are written as: 
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The standard approximation made to represent turbulent transport of 
scalar quantities in a turbulent flow is that of gradient-diffusion (Wilcox, 
1994). In analogy to molecular transport processes, the diffusion of a 
scalar quantity is expressed as: 
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in which νt is the turbulent eddy viscosity [m2/s], σϕ is the turbulent 
Schmidt number of ϕ, 𝑢′  is the fluctuating velocity [m/s], 𝜙′  is the 

fluctuating part of the quantity ϕ  and 𝜙 is its Reynolds-averaged mean 
value. 

In the derivation of standard k-ε model, the turbulent transport term 
1

2
𝜌𝑓𝑢𝑖

′𝑢𝑖
′𝑢𝑗

′  and the pressure diffusion term 𝑝′𝑢𝑗
′  are usually grouped 

together and the sum assumed to behave as a gradient-transport process 
(Wilcox, 1994). There is no corresponding straightforward analogy for 
the pressure diffusion term. Fortunately, recent DNS results (Mansour, 
Kim and Moin, 1988) indicate that the term is quite small for simple flows. 
Thus, in the standard k-ε model we have: 
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   (3.19) 

where σk is a closure coefficient and normally equals to 1.  The scalar 
quantity in equation (3.19) is considered as the TKE: 

1

2
i ik u u  .  

Comparing to the first two terms in Пk with the turbulent transport term 
and the pressure diffusion term in equation (3.19), the similarity can be 
found, which is that the quantity 𝑢𝑗

′  in the left hand side of (3.19) is 

replaced by its gradient 𝜕𝑢𝑗
′ 𝜕𝑥𝑗⁄ .  

The second term on the right hand side of equation (3.15) can be written 
as: 

( )1 1
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    

    

   (3.20) 

Following the similar procedure in equation (3.19) and applying gradient 
transport theorem to the first term on the right hand side of (3.20) we 
have: 
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   (3.21) 

The second term on right side of equation (3.20) also appears in 
Elghobashi and Abou-Arab’s derivation of two-phase turbulence model 
(1983). They did not present a closure for this term directly. However, 
they grouped several diffusion terms of k together and obtained the total 
contribution without detailed discussion. Through the analysis of his 
derivation, it is evident that he neglected the second term on right side of 
equation (3.20). However, we can investigate this term in the following 
way.  

Firstly, define the term: 
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2
i ik u u      (3.22) 
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Thus, the following relation can be established: 
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 (3.24) 

If considering Δxj is smaller enough and applying the equation (3.18), 
equation (3.24) can be rewritten as: 
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Substituting equations (3.21) and (3.25) into (3.20) gives: 
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Elghobashi and Abou-Arab (1983) argued that the contribution to the 
diffusion of turbulence energy due to the pressure interaction 

𝜕(𝑢𝑖
′𝑝′̅̅ ̅̅ ̅̅ ) 𝜕𝑥𝑖⁄  could be neglected, as it is of relatively small magnitude in 

two-phase flow. Hence,  
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   (3.27) 

If we consider a simple flow driven by the constant pressure gradient, the 
second term in right hand side of (3.27) is also negligible, which means 
that the first term in Пk is of small magnitude too. It is worth mentioning 
that the above Elghobashi’s assumption is also consistent with the 
assumption used in the derivation of standard k-ε model by Wilcox 
(1994).  

Finally, we group the first and second terms in Пk together and get: 

1

2

ji t
f i i f

i j k jj

uu
p u u

x x

k

x x




 

   
 

 


   




 
   (3.28) 

In the framework of two-phase flow theory, the fluctuating velocity-
divergence 𝜕𝑢𝑗

′ 𝜕𝑥𝑗⁄  does not vanish (Elghobashi, 1982). The reason is 
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that the mass of fluid phase in a moving control volume does not remain 
the same amount due to the non-uniform distributed particle phase. 
However, the fluctuating velocity-divergence indeed becomes very small 
in the upper water column in the sediment-laden flow since the 
volumetric concentration of particle is very low and its gradient also does 
not change much. This may indicate that the closure coefficient σk is not 
constant over the water column and can be linked with the sediment 
concentration. 

Now the interaction term in Пk in the TKE equation derived in section 3.4 
is examined. Based on the relation 

(1 ) i if      (3.29) 

and performing Reynold decomposition results in: 

(1 )( )i i i if f             (3.30) 

( )i i i i i i i if f                     (3.31) 

Applying Reynolds-averaging to the above equation gives: 

i i i i i if f f             (3.32) 

i i i i i if                     (3.33) 

The following also can be written; 
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 Finally, the interaction term can be interpreted as: 
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   (3.36) 

Analysis of the interaction term in equation (3.15) shows that, the 
complexity is always hidden in this term (given by equation 3.36) 
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although the whole equation appears simpler. An approximation will be 
presented in next chapter. 

The extra terms in TDR equation are written as: 
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       
 

It is usually difficult to model. Comparing to the extra term Пk in the TKE 
equation, the similarity can be observed. Using the similar approach of 
modelling the shear production term in the TDR equation, the extra term 
Пε can be approximated by: 

4 kC
k

 


     (3.37) 

where k = turbulence kinetic energy, ε = turbulence dissipation rate and 
Cε4 is a constant included in the interaction terms for dissipation. It is 
usually determined empirically (Elghobashi and Abou-Arab, 1983) and a 
discussion is presented in Section 4.5.1.  
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Chapter 4  

 

1DV MODEL 

 

4.1. Introduction 

In previous chapter, the two-phase/mixture governing equations and the 
modified k-ε turbulence model derived from the two-phase approach 
were presented. In order to test the assumptions and extra terms in the 
new equations, it is necessary to develop a 1DV model and perform 
validation against experimental data.  

The finite element method is used for the discretization of the governing 
equations. For achieving higher accuracy, the quadratic element is 
adopted in the model. The momentum conservation of fluid, modified k-ε 
model and the advection-diffusion equation are coupled and solved 
iteratively. 

 

4.2. Theoretical background 

4.2.1. Two-phase/mixture theory 

For the sake of convenience, the overbar in the Reynolds-averaged terms 
has been dropped, resulting in the following governing equations: 

The suspension continuity equation: 

 
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j j

j

U

x

W 
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
                   (4.1) 

It can be written as 
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                            (4.2) 

The suspension momentum equation reads: 
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              (4.3) 

in which Uj is the ensemble-averaged velocity of fluid phase [m/s], Wj is 
the slip velocity [m/s], ϕ is the particle volume fraction, p is the pressure 
[Pa], ρ, ρf and ρp are the suspension density, the fluid density and the 

particle density respectively [kg/m3] and 𝜌 = 𝜌𝑝𝜙  + 𝜌𝑓(1 − 𝜙) , σij is 

the viscous shear stress [kg·m-1·s-2], σTij is the turbulent Reynolds stress 
[kg·m-1·s-2] and σDij is the drift diffusion stress [kg·m-1·s-2]. 

The shear stress term σij here represents the viscous stress of the mixture. 
We still consider the mixture as a Newtonian fluid and the viscous stress 
term can be derived as follows. 
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mE u I                (4.4) 

It is noteworthy that the mixture viscosity μm should be variable (i.e. 
concentration dependent) in space. In equation (4.4): 
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mu                 (4.5) 

Defining the phase-averaged mixture velocity umi = ui(1-ϕ)+viϕ, in which 
ui is the fluid velocity and vi is the particle velocity, we obtain from the 
basic governing equations that its divergence ∇ ∙ 𝐮𝐦 = 0 . Hence, the 
viscous stress is obtained: 
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  (4.6) 

The second part can be neglected only if considering μm is assumed 
constant over the water column. By substituting equation (3.10) and 
(3.11) in equation (4.3), the complex suite of equations is written for the 
x direction as 
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The complex suite of equations is written for the y direction as 
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The complex suite of equations is written for the z direction as 
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4.2.2. Advection-diffusion of suspended sediment  

In nature, sediment transport occurs in fluids through the combination of 
advection and diffusion. Conservation of sediment is expressed by the 
sediment transport equation:  
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   (4.10) 

In this equation the following notations are used: U = the mean velocity 
[m/s], t = time [s], xj = the components of the coordinate vector [m], vt = 
the eddy viscosity [m2/s], σt = the turbulent Prandtl-Schmidt number (the 
ratio of vt to the eddy diffusivity of the sediment particles), C = sediment 
concentration, ws = the representative mean settling velocity [m/s], δij= 
the Kronecker delta. 
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In summary, the equation reflects two transport mechanisms: advective 
transport with the mean flow; and diffusive transport due to 
concentrations gradients. Equation (4.10) also considers the molecular 
diffusion, but this is usually negligible compared to the turbulent 
diffusion. 

 

4.2.3. Modified k-ε turbulence model 

The above set of equations requires a turbulence closure. In this study, 
the standard k-ε model is firstly adopted, where the turbulent eddy 
viscosity is defined as: 
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The k-ε model solves the conservation of turbulent kinetic energy k: 
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and its dissipation rate ε: 
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(4.13) 

The turbulence production term due to viscous forces P is modelled as: 

2
3

3

k k

i k

ji i
t t

j j k

UU U U U
P k

x x x x x
 
      

             

            (4.14) 

In case of a vertical density gradient, turbulent kinetic energy k is 
transformed into potential energy when the stratification is weakened by 
turbulence, the so-called buoyancy destruction. The buoyancy term G is 
defined as: 
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with k the turbulent kinetic energy [m2/s2] and its dissipation rate ε 
[m2/s3], g the gravity constant [m/s2] and z the vertical coordinate [m], ρ 
is the bulk fluid density [kg/m3]. ρf and ρs are the water and sediment 
densities respectively [kg/m3], C is the sediment concentration by mass 
[kg/m3]. The remaining coefficients have been determined semi-
empirically and are taken as σt = 0.7, σk = 1.0, σε = 1.3, σρ = 1, Cε1 = 1.44, Cε2 
= 1.92 and Cμ = 0.09 which are commonly used values for turbulent shear 
flows (Rodi, 1980; Chen and Jaw, 1998). The value of Cε3 in stable 
stratified shear flows is generally somewhere in the range 0-0.3 (Rodi, 
1980). Uittenbogaard et al. (1992) argue that the Richardson number 
effect is negligible for the scales where ε is important. Hence, they suggest 
Cε3 = 0, which is chosen here also. It is computationally advantageous and 
seems to perform satisfactorily (Toorman, 2002). The semi-empirical 
constants like Cμ and many others can be dependent on the flow 
properties and sediment concentration in a buoyancy extended k-ε 
model. In many studies, even for the k-ε model with buoyancy term, the 
constant values are used, as well as in this study. 

 

4.3. Discretization using FEM for 1DV steady state 

In the finite element method, continuous models are approximated using 
information at a finite number of discrete locations. Dividing the 
structure into discrete elements is called discretization. Interpolation 
within the elements is achieved through shape functions.  

The finite element technique relies on identifying functions that 
represent, approximately, the exact solution. It does not attempt to make 
this residual equal to zero. Rather, the finite element technique tries to 
make the weighted, average residual equal to zero. 

In this chapter, the Galerkin weighted residual method is employed. The 
weighting functions are the same as the shape functions. 

In order to obtain better approximations, 3-node quadratic line element 
is used in discretization, of which the shape functions are defined as 
follows: 
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                (4.17) 

in which: ξ = the local coordinate ranging from -1 to 1. The shape of the 
three functions is shown in Figure 4.1. 

 

Figure 4.1. Shape functions of quadratic line element 

 

4.3.1. Conservation of momentum of suspension  

The governing equations for the 1DV model in steady state have been 
reduced to (gradient in x and y = 0, Uz = 0, slip velocities Wx = 0): 

The mixture momentum balance in x: 

 
2

2

( )
0m

x
zp

mx x
x zu

u U
u

Wp
W

x z z z
  

   
    
   

             (4.18) 

The Reynolds stress is expressed using the Boussinesq approximation: 
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in which ux and uz are Reynolds-averaged velocity components and the 
gradient of uz in x is zero in the 1DV case. Until now, one of the problems 
occurring in equation (4.18) is that the mixture velocity umx requires an 
additional closure. In order to simplify the model, we assume umx≈ux due 
to the small magnitude of particle fraction (if we consider a near bottom 
concentration of 100 g/l, the corresponding volume fraction is only about 
0.038 and it does not affect the mixture velocity very much). Moreover, 
using the gradient transport theorem, the ensemble averaged velocity Ux 
can be written as: 
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However, in 1DV case, the gradient of ϕ in x direction is zero. Hence, 
equation (4.18) can be rewritten as 

0x
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    
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              (4.21) 

where p is the pressure, ux is the Reynolds-averaged velocity in x 
direction, ρp is the particle density, ϕ is the particle fraction, Wz is the slip 
velocity in vertical and can be considered as the particle settling velocity, 
and the effective viscosity can be written as the superposition of dynamic 
viscosity and eddy viscosity of the mixture: 

e m mt                (4.22) 
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Figure 4.2. Mixture viscosity for various two-phase flow systems  
(Ishii and Chawla, 1979) 

Ishii and Chawla (1979) studied the influence of volumetric 
concentration on the mixture viscosity for various two-phase flow 
systems (Figure 4.2). It can be seen that, for solid particulate flow, even 
in the near bottom region with the volumetric concentration of 0.1 (265 
g/l), the ratio of mixture viscosity to the water viscosity is still less than 
1.1, not to mention the ratio in the rest of the water column. Furthermore, 
the mixture viscosity has a relatively smaller magnitude compared to the 
turbulent eddy viscosity. Thus, we consider the μm as constant here and 
equal to the water dynamic viscosity. 

The last term on the right hand side of equation (4.21) represents the 
momentum transfer to the particle phase from the fluid. It is obvious that 
this term is negligible in the dilute suspension due to the small particle 
fraction. However, it may become complex in the near bottom layer since 
the particle fraction is increased and the gradient of ux in the z direction 
becomes larger, whereas the settling of particles may be hindered, which 
leads to smaller Wz.  

In order to account for the hindered settling (induced by return flow and 
wake formation, viscosity change and particle collisions, etc.), we employ 
the empirical equation proposed by Richardson & Zaki (1954): 

 1
n

z sW w c      (4.23) 
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where ws is the free falling velocity of an individual particle, c is the 
fractional volumetric concentration of particles in the suspension. The 
value of the index n had a constant value of about 4.65 for particle 
Reynolds numbers less than about 0.2 (Stokes' law region), but for high 
Reynolds numbers became progressively less until it reached a second 
constant value of about 2.3 at Reynolds numbers exceeding about 500 
(Newton's law region) (Richardson & Zaki, 1954). 

The hindered settling velocity can be accurately predicted by the 
equation (4.23), provided an appropriate value for the exponent n is 
available for the particular material (Baldock et al., 2003). 

 

 

Figure 4.3. Predicted relationships between n and sieve grain size for 
sands, together with present experimental data and data extracted from 
cited sources: — non-Darcy flow;  –– Darcy flow; –⧠– Richardson and Zaki 
(spherical particles); ∎ natural beach sand (present data); × Wilhelm and 
Kwauk (1948) beach sand; ⧠ filter sand (present data); ○ Cleasby and Fan 
(1981) filter sand; + Cleasby and Woods (1975) filter sand (from Baldock 
et al., 2003). 
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Figure 4.4. Influence of volumetric suspension concentration on particle 
settling velocity according to the equation (4.23). 

 

As indicated in the Figure 4.3, the appropriate value of n for fine sand 
(0.1-0.3mm) can vary between 4.15 and 4.65. Here, we plot the settling 
velocities for different n values based on equation (4.23) in the Figure 4.4. 
It can be seen that the hindered settling only becomes obvious when 
volumetric concentration exceeds 0.01. It can be expected that the 
settling velocity at the high volumetric concentration (with the 
magnitude of 0.1), which usually occurs in the bottom layer, can easily 
have a reduction of 50% - 70% compared with the free falling velocity of 
an individual particle in clear water. Nevertheless, the differences 
between different n values within this range are not significant.  

The mixture momentum balance in the z direction is reduced to: 

       1p Dz Dz
z

z z f Dz Dz p z

W
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z z
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          

 

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                          (4.24) 

which means the drift diffusion stress equals to the turbulent Reynolds 
stress in steady state if the slip velocity gradient in z is negligible (settling 
velocity is constant). 

In this study, the Galerkin weighted residual method is employed to 
discretize the governing equations. In the Galerkin method, the same 
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approximating functions Ni are used for the weighting and trial functions. 
Hence, discretization of momentum equation in x gives: 
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where: zu and zl are the upper bound and lower bound in a line element, 
N is the shape function, the subscript i and j =1, 2, …, n, representing the 
number of different nodes in an element. In this study, a three-node 
quadratic line element is used, therefore, n = 3. 

Using Gauss integration (3 Gauss points) the following matrix form is 
obtained: 
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where: aij is the element at line i column j in the left-hand-side matrix, bi 
is the element at line i in the right-hand-side vector, n is the number of 
Gauss point, J is the Jacobian matrix, and wn is the weighting factor at 
Gauss point n in Gaussian integration. 

Regarding the boundary conditions for solving momentum balance 
equation, a Dirichlet condition (specifying the value of the solution) is 
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imposed at the bottom and a Neumann condition imposed at the free 
surface, which is that the flux across the upper boundary is zero. 

 

4.3.2. Sediment transport in 1DV 

The advection-diffusion equation in 1DV is used to solve the vertical 
concentration profile.  
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              (4.29) 

in which DT is diffusivity coefficient of sediment particles and has the 
following form 

t
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
                  (4.30) 

Discretization of advection-diffusion equations using the Galerkin 
weighted residual method gives: 

1

1

0

u

l

u

l

u u

l l

u u

l l

u

l

z

z

z

z

z z

z z

z

i i s T

t
i

i
i s i T s T

t i
i s

z

z z

z

T

i T

z

s

C C
N N w C D dz

t z z

C C
N dz

t

NC C
N w C N D dz w C D dz

z z z z

C C N C
N dz w C D dz

t z z

C
N w C D

z





     
       






       
              

   
   

   

 
   

 





 

 

        (4.31) 

For the 1DV steady state, equation (4.31) can be simplified as: 
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Using Gauss integration (3 Gauss points), we are able to obtain the 
following matrix form: 

( )( ) ( )3 3
( ) ( ) ( )

1 1

J J

nn n
jn n ni i

s j Tij

n

n

n

n

NN N
a w N w D w

z z z 

 
 

  
             (4.34) 

u

l

i T

z

i s

z

C
b N w C D

z

 
  

 
               (4.35) 

The following boundary conditions must be satisfied both at the free 
surface (Zs) and at the interface (Zref) between the bed-load and the 
suspended load: 
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4.3.3. Turbulence modelling in 1DV 

In the 1DV steady case without buoyancy effect, the k-ε equations reduce 
to: 
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            (4.38) 

Introducing an auxiliary parameter (inverse of the turbulent time scale): 

k


                    (4.39) 

This gives the decoupled equations of the k-ε model (Lew et al., 2001): 
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Discretization of the k equation: 
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Using Gauss integration (3 Gauss points) and the matrix form is obtained: 
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Discretization of the ε equation: 
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Using Gauss integration (3 Gauss points) and the matrix form is obtained: 
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In case of including buoyancy term, equation (4.37) becomes: 
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The influence of the suspended sediment concentration on the bulk fluid 
density is given by the equation of state according to Winterwerp and Van 
Kesteren (2004): 
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Then the discretization of the k equation can be written as: 
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The boundary conditions for the TKE are both Dirichlet type at the free 
surface and the bottom. For the TDR, a Dirichlet condition is imposed at 
the bottom and a zero flux (Neumann boundary condition) imposed at 
the free surface. The details about these boundary conditions will be 
discussed in section 4.4.1. 

 

Numerical schemes for solving the k-ε model 

The standard k-ε model is one of the two-equation turbulence models. 
This model is only valid for the fully-developed turbulent layer; therefore 
a wall function has to be used to bridge the gap between viscous layer and 
turbulent layer.  

Besides, the standard k-ε model usually requires sophisticated numerical 
treatment in order to stabilize and accelerate the speed of convergence. 
Although we only consider the steady state, pseudo time derivatives of k 
and epsilon are still added into equation (4.37) and (4.38). Combined 
with the introduction of (self-eliminating) artificial diffusion in both left- 
and right-hand sides of the equations, the converging speed can be 
reduced from about 15000 iterations to only about 90 iterations.   

Hence, the k-ε equations become: 
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Where t = the pseudo time and the artificial viscosity coefficient 
νa=1.0×10-5. 

Using the Galerkin method and noticing that 
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where kt = k at current step and kt-1 = k at previous step, the discretized 
form of equation (4.54) becomes: 
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Using Gauss integration (3 Gauss points) and the matrix form is obtained: 
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Similarly, the discretized form of equation (4.55) become: 
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Use Gauss integration (3 Gauss points) and we obtain the matrix form: 
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Considering the buoyancy term the equation (4.59) becomes: 
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4.4. Model validation 

The 1DV model is validated against the experimental data from Muste et 
al. (2005). In their experiments, the suspended particles were 
transported in fully developed turbulence open channel flow. The volume 
fraction of particles was small and inter-particle collisions were limited 
except for the particle layer at the solid bottom plate. Hence, the primary 
influence exerted on suspended-particle motion was water motion. The 
velocity of fluid and particle phase was measured separately and 
simultaneously using particle image velocimetry (PIV) and particle-
tracking velocimetry (PTV) systems, and then the images were processed 
in order to get mean and turbulence characteristics of particle and water 
motions in a vertical plane. 

 

 

Figure 4.5. Experimental configuration of Muste et al. [2005]. 

 

Smooth stainless steel is used as the flume’s bed and glass as sidewalls. 
The experiments were conducted using a tilting recirculating flume that 
is 6.0 m long and 0.15 m wide and the channel slope was kept at 
0.0113m/m for all the experiments (Figure 4.5). The resolution of 
measured flow depth was 0.01 mm. 

Two sets of experiments were conducted with natural sand (NS) and a 
neutrally buoyant sediment (NBS) consisting of crushed Nylon particles. 
Here, only the NS set of tests was used for validation of the numerical 
model. The maximum streamwise velocity was approximately 1.0 m/s. 
The other physical parameters were listed in table 4.1 and 4.2. 
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Table 4.1. Experimental conditions for the tests (Muste et al., 2005). 

 

Experiment 

CW1: 
Water 

NS1: 
Natural 

Sand 

NS2: 
Natural 

Sand 

NS3: 
Natural 

Sand 

Depth, m 0.021 0.021 0.021 0.021 

Bed slope 0.0113 0.0113 0.0113 0.0113 

Temperature, °C 22–23 23 22 23–24 

Sediment density, 
kg/m3 

- 2650 2650 2650 

Size range, mm - 0.21–0.25 0.21–0.25 0.21–0.25 

Fall velocity, m/s - 0.024 0.024 0.024 

Volumetric 
concentration, ×103 

0.00 0.46 0.92 1.62 

 

Table 4.2. Parameters of the water-sediment mixture (Muste et al., 2005). 

 
Experiment 

CW1 
Experiment 

NS1 
Experiment 

NS2 
Experiment 

NS3 

Re 17,670 17,650 17,420 17,340 

Fr 1.89 1.81 1.76 1.75 

u*, m/s 0.042 0.042 0.043 0.043 

κm 0.402 0.396 0.389 0.367 

Mean bulk 
velocity, 

m/s 
0.839 0.813 0.796 0.792 
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In table 4.2, Re is the Reynolds number, Fr is the Froude number, u* is the 
shear velocity, km is the von Karman constant of water-sediment mixture. 

 

4.4.1. Numerical settings 

The simulations are carried out with a vertical grid that has 101 
horizontal planes. The finite element method is able to deal with 
unstructured grids. However, for this particular case, all the vertical 
nodes are evenly distributed. The bottom of the flume is considered as 
hydraulically smooth and a non-slip condition is adopted at the bottom. 
The initial condition for the velocity is given by the following equations 
according to the classical mixing-length theory: 
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   (4.64) 

For the hydraulically smooth flow, Nikuradse (1933) gives that: 
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The initial condition for the k-ε model is given by:   
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The initial condition for the advection-diffusion of suspended sediment 
consists of two parts: the initial concentration is set to zero in the whole 
water column; the initial values of diffusivity coefficients of sediment 
particles is determined from the initial conditions of the k-ε model, which 
is 𝐷𝑇 = 𝜈𝑡 𝜎𝑡⁄  with 𝜈𝑡 = 𝐶𝜇 𝑘2 𝜖⁄ .  

The standard k-ε model is only applicable to the high-Reynolds number 
fully developed turbulence flow. In this particular case, the last two nodes 
close to the bottom are located in the low-Reynolds region and viscous 
stress is no longer negligible in this very thin layer. Theoretically, the 
standard k-ε model cannot be used in the last two nodes. In addition, from 
a numerical perspective instability will occur if including the last two 
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nodes in the computational domain. Thus, in the current 1DV model, the 
last cell at the bottom is excluded from the computation and boundary 
values computed based on the mixing-length theory (law of the wall) are 
imposed. The boundary conditions are summarized in table 4.3. 

 

Table 4.3. Boundary conditions for solving 1DV model. 

Variable 
The bottom cell 

Free 
surface 

Node 1 Node 2 Node 3 Node 101 

Velocity 

u, m/s 
0 

𝑢∗

𝜅
ln (

𝑧2

𝑧0

) 
𝑢∗

𝜅
ln (

𝑧3

𝑧0

) 
𝜕𝑢

𝜕𝑛
= 0 

TKE 

k, m2/s2 

𝑢∗
2

√𝐶𝜇

 
𝑢∗

2

√𝐶𝜇

(1 −
𝑧2

ℎ
) 

𝑢∗
2

√𝐶𝜇

(1 −
𝑧3

ℎ
) 0 

TDR 

ε, m2/s3 

𝑢∗
3

𝜅𝑧1

 
𝑢∗

3

𝜅𝑧2

(1 −
𝑧2

ℎ
) 

𝑢∗
3

𝜅𝑧3

(1 −
𝑧3

ℎ
) 

𝜕𝜖

𝜕𝑛
= 0 

Sediment 

C 
𝐷𝑇

𝜕𝐶

𝜕𝑛
= −𝐸 - - 0 

 

Notice that the bottom cell is only excluded in solving momentum 
conservation equation and k-ε equations. In the advection-diffusion of 
suspended sediment, the whole water column is included in the 
computational domain since the diffusivity coefficient can be determined 
from the already-known TKE and TDR values. 

 

4.4.2.  Clear water case 

For simulating the clear water case (CW) in Muste et al. (2005), the 
momentum conservation equation of fluid is coupled with the standard 
k-ε model. The steady state results in terms of streamwise velocity and 
turbulent eddy viscosity for the clear water conditions are presented in 
Figures 4.6 and 4.7.  
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Figure 4.6. Comparison of simulated streamwise velocity with 
measurements of Muste et al. (2005) in clear water conditions. 

 

In general, Figure 4.6 shows a good agreement for the streamwise 
velocity with the standard k-ε model although there is a slight 
underestimation especially in the lower part of the water column. The 
simulated eddy viscosity (Figure 4.7) also gives a good agreement with 
the measurements except that it slightly overestimates the eddy viscosity 
in the near-bottom layer.  

The underestimation of streamwise velocity can be explained by the 
slight overestimation of the eddy viscosity in the near-bottom region. The 
numerical tests showed that the accuracy of the predicted turbulent eddy 
viscosity in the near-bottom region affects the velocity profile not only in 
the same near-bottom region but also in the upper part of the water 
column. 
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Figure 4.7. Comparison of simulated turbulent viscosity with 
measurements of Muste et al. (2005) in clear water conditions. 

 

4.4.3. Sediment-laden flow 

The momentum conservation equation coupled with standard k-ε model 
(with sediment-induced buoyancy effects) and advection-diffusion 
equation of suspended-sediment is used to simulate the sediment-laden 
flow in the experiments conducted by Muste et al. (2005). 

In cohesive sediment dynamics, the sediment-induced buoyancy effects 
refer to the turbulent vertical mixing damping due to the suspension 
concentration exceeding the saturation concentration. The damping of 
turbulence starts at the interface between the newly formed fluid mud 
layer on the rigid bed and the fluid layer above the fluid mud layer. The 
turbulence is usually damped strongly, leading to the decrease of the 
sediment carrying capacity in the upper layer of the flow, and finally 
resulting in collapse of the turbulence and vertical sediment 
concentration profile by the snowball effects as shown in Figure 4.8 
(Winterwerp & Van Kesteren, 2004). The suspension capacity (maximum 
amount of sediment that can be carried by the flow without violating 
energy balance) sometimes can be reduced by an order of magnitude due 
to the sediment-induced buoyancy effects. 
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Figure 4.8. Computed time evolution of (a) concentration and (b) eddy 
diffusivity profiles for C0 = 0.024 g/L considering the sediment-induced 
buoyancy effects (Winterwerp, 2001). 

 

However, the above results follow from a numerical experiment where 
the turbulent Schmidt number has been described as an empirical 
function of the gradient Richardson number, following a traditional 
approach taken from atmospheric sciences. No experimental evidence 
exists for this strong turbulence damping. Moreover, Toorman (2008) 
demonstrated that the turbulent Schmidt number in the case of particle 
concentration induced stratification does not depend on the Richardson 
number. 

For non-cohesive sediment too, no full consensus exists on the effects of 
suspended-sediment on the vertical velocity profile and the turbulence 
properties (Winterwerp, 2001). However, the sediment-induced 
buoyancy effects were still observed in the non-cohesive sediment-laden 
flow by Geifenbaum and Smith (1986), Lau and Chu (1987), and Cellino 
and Graf (1999), in which the vertical eddy diffusivity appeared to 
decrease by up to 75% for capacity flow with respect to clear water 
conditions when sediment concentration was beyond a certain point. 
Therefore, it is necessary to include the buoyancy term in the k-ε model 
for simulating the experiments in the study of Muste et al. (2005). 

For solving the advection-diffusion of suspension, proper boundary 
conditions are required. Equation (4.36) indicates that sediment flux 
should be specified as a Neumann type boundary condition at the bottom. 
Considering the steady state, the equilibrium condition is assumed at the 
bottom, which means that, the erosion flux should be equal to the 
deposition flux. Then the equation (4.36) can be reduced to: 
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The erosion rate E is calculated using the formulas from Van Rijn (1984), 
in which a reference level is assumed:  
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where ca is the concentration at reference level, D50 is the characteristic 
diameter of sediment particle, zerf is the reference level. T is the transport 
stage parameter and D* is the particle parameter. 
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in which u* is the shear velocity, u*,cr is the critical shear velocity for 
erosion, ρp is the sediment density, ρf is the water density, g is the gravity 
acceleration, ν is the kinematic viscosity. 

The erosion rate (under equilibrium condition) is given by: 

s aE w c    (4.72) 

Muste et al. (2005) suggested that the reference level can be taken at 
which a distinct peak in sediment concentration occurred.  

The suspension concentration profiles measured by Muste et al. (2005) 
are presented in Figure 4.9. The strange thing in Figure 4.9 is that all the 
concentration profiles have the highest values just above the bed and 
then decrease instead of reaching the peaks at the bottom. This 
phenomenon may be caused by the PTV measuring technique, which does 
not measure particle concentration directly, but rather particle numbers 
(fluxes) and excludes immobile particles. Figure 4.9 shows the three 
different cases (NS1, NS2 and NS3) with different sediment loads 
(NS1<NS2<NS3). It is obvious that, the higher sediment loads given at the 
beginning, the higher the peaks occurring above the bed, and the lower 
the concentration reached at the bottom. This indicates that a bed layer 
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may have formed and the higher the sediment loads, the thicker the bed 
layer is.  

 

 

Figure 4.9. Sediment concentrations of NS tests (Muste et al., 2005) 

 

The simulated results for the NS2 test with standard k-ε model are 
presented in Figures 4.10, 4.11 and 4.12. In this particular case, the 
reference level is chosen as 1.4D50, which is where the peak concentration 
occurs.  

In general, the model gives good predictions of the streamwise velocity 
profile, with slight overestimations in the upper water column. Again, this 
is caused by the underestimation of eddy viscosity in the lower part of 
water column. The predicted volumetric suspension concentration has 
better agreement with the measured data near the bottom, suggesting 
that the reference level assumed as 1.4D50 is appropriate. However, for 
the rest of the water column, the model underestimates the suspension 
concentration. This confirms that the eddy viscosity is underestimated. 
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This can be explained by the lack of including sub-grid scale turbulence 
generated in the wakes of suspended particles. 

 

Figure 4.10. Comparison of simulated streamwise velocity with 
measurements of Muste et al. (2005) in the NS2 experiment. 

 

Figure 4.11. Comparison of simulated turbulent eddy viscosity with 
measurements of Muste et al. (2005) in the NS2 experiment. 
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Figure 4.12. Comparison of simulated volumetric suspension 
concentration with measurements of Muste et al. (2005) in the NS2 
experiment. 

 

4.5. Investigating turbulence modulation 

4.5.1. The terms due to the presence of the second phase 

In this section, the extra terms derived from two-phase flow theory are 
added into the k-ε equations and tested in the 1DV model. The numerical 
tests are carried out systematically. In the beginning, the first two terms 
in equation (3.15) are tested. Therefore, to be more specific, in current 
1DV model, equations (4.37) and (4.38) can be rewritten as: 
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Here, the semi-empirical constants are taken as σk = 1, σε = 1.3, σt = 0.7, 
Cε1 = 1.44, Cε2 = 1.92 (as above), and Cε4 = 0.6. It is worth mentioning here 
the value of the empirical constant Cε4 is determined from numerical tests 
based on the experiments of Muste et al. (2005). 

Using the auxiliary parameter 𝛾 = 𝜖 𝑘⁄ , the above equations can be 
decoupled and their discretized forms are as follows. 

For the modified TKE equation: 
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Using Gauss integration (3 Gauss points) and the matrix form is obtained: 

( ) ( )
( ) ( ) ( )

( )

( )3 3

1 1

( ) ( )3

1

J J

    J

n n
n n nt i

n i j n

n

n

j

ij

n nk

i
t

n

n n

j

n k

N
w w

z z

N
w

a

z z

N
N N

N


 







 






 



 
  

 

 
 

 





 



  (4.76) 

( )3
( ) ( )

1

( )

2

( )

( )3
( )

1

J

J   

u

l

z
n

n n

i t n

n
z

nn
n t

i n

n

t
i

k

t

x
i

n

w
u k

b N N
z z

g
wN

z


 



 

 





    
     

   










  (4.77) 

For the TDR equation: 
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Using Gauss integration (3 Gauss points) and the matrix form is obtained: 
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Figure 4.13. Comparison of simulated streamwise velocity by standard 
and modified k-ε models with measurements of Muste et al. (2005) in the 
NS2 experiment. 

 

Figure 4.14. Comparison of simulated turbulent eddy viscosity by 
standard and modified k-ε models with measurements of Muste et al. 
(2005) in the NS2 experiment. 
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Figure 4.15. Comparison of simulated volumetric suspension 
concentration by standard and modified k-ε models with measurements 
of Muste et al. (2005) in the NS2 experiment. 

 

The simulated results are shown in Figures 4.13 to 4.15 with the 
comparison with the standard k-ε model. The influence of the extra term 
in the equation (4.73) is also revealed. In general, the extra term has 
better performance in the lower part of the water column but gives worse 
predictions in the upper water column compared to the standard k-ε 
model. However, it is worth pointing out that the accuracy of the very low 
concentrations measured near the surface is also very low. 

In the lower water column, the extra term gives better predictions in 
terms of the stream-wise velocity especially in the range of 0 < z/H < 0.3. 
It also increases the turbulence eddy viscosity in the near bottom region 
which matches better with the measured data, and reasonably, improves 
the predicted suspension concentration profile, too. 

However, the extra term seems unnecessary in the upper water column 
because it decreases the turbulence eddy viscosity and makes the results 
deviate from the measurements. Hence, the accuracy of the predicted 
streamwise velocity and suspension concentration become worse. 

Examining the extra term in the right hand side of equation (4.73) we find 
that, the vertical gradient of k is always negative but the vertical gradient 
of νt is positive in the lower water column and negative in the upper part 
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due to their profiles. Therefore, it is expected to enhance the turbulence 
in the near bottom region and show the opposite effects in the upper 
water column, which is confirmed by the numerical tests illustrated in 
Figures 4.13 to 4.15.  

The reason that the extra terms cannot automatically reduce the damping 
when the concentration decreases near the surface is due to using the 
equation (3.29) in the derivation of the modified k-ε model (the details 
are given in Appendix II). In such case, the momentum equations become 
simpler, which makes the derivation process easier and less additional 
terms appearing after Reynolds-averaging. However, the disadvantage is 
obvious, which is that the concentration dependency is implicitly 
contained in one particular term as shown in equation (3.36). 
Unfortunately, equation (3.36) cannot be used directly in the modified k-
ε model. Therefore, it seems that it is possible to introduce a function that 
can restrict the turbulence damping in the upper water column whereas 
maintain the influence of the turbulence enhancement in the near bottom 
region. From a physical perspective, in the upper water column, the 
suspension concentration is normally two or three orders of magnitude 
lower that the near bottom concentration, which means the presence of 
the particle phase is less important and even negligible. It matters when 
the concentration is beyond a certain level. Thus, an auxiliary function fc 
is incorporated into the extra term to limit its influence in the upper 
water column: 
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where, Cs is volumetric suspension concentration and Ccr is the critical  
volumetric suspension concentration above which the influence of the 
presence of the particle phase cannot be neglected. As indicated in the 
Figure 3.1, when the volumetric concentration exceeds 1.0×10-6, the 
momentum transfer from the particles is large enough to alter the 
turbulence. Hence, the two-way coupling becomes important. When the 
volumetric concentration exceeds 1.0×10-3, the four-way coupling effects 
becomes important. In this study, Ccr = 1.0×10-4. This value is based on the 
Figure 3.1 and is obtained from the numerical tests. From another 
perspective, the auxiliary function fc can also be interpreted as the 
affected fraction of the fluid, i.e. the effect of the particle-fluid interaction 
can only be felt by the fluid in the neighbourhood of particles, while the 
k-ε model yields the average effect over all the fluid. By multiplication 
proportional to the concentration, the particle-effect is only applied to the 
affected fraction of the fluid and not to all the fluid. 

With the function fc added in the modified k-ε equations, the 1DV model 
gives overall better predictions as seen in Figures 4.16, 4.17 and 4.18. The 
simulated streamwise velocity profile has better agreement with the 
measured data compared to the other two k-ε models, even in the upper 
water column. The model increases the turbulence eddy viscosity 
especially in the lower and middle part of the water column. Therefore, 
the volumetric suspension concentration profile is also increased, which 
is closer to the measurements. 

As shown in the comparison between the standard k-ε, which is designed 
for the sediment-free flow, and the modified one with turbulence 
modulation based on the two-phase flow theory, the eddy viscosity has 
smaller values in the upper layer with the modified k-ε model. However, 
in the lower water column, the turbulence is enhanced. The modified 
model gives better approximation to the measured data from Muste's 
experiment. The same tendency is also observed in the turbulence kinetic 
energy profiles. This can be explained by the extra turbulence energy 
transfer caused by particles. Unlike the fluid, momentum transfer is 
mainly done by the upwards or downwards turbulent motions, solid 
particles always try to settle down to the bottom. This downwards 
movement, brings the energy acquired in the upper water column to the 
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lower layer. Therefore, we can observe the downwards shift of the eddy 
viscosity profile. 

 

Figure 4.16. Comparison of simulated streamwise velocity by standard 
and modified k-ε models (v2) with measurements of Muste et al. (2005) 
in the NS2 experiment. 

 

Figure 4.17. Comparison of simulated turbulent eddy viscosity by 
standard and modified k-ε models (v2) with measurements of Muste et 
al. (2005) in the NS2 experiment. 
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Figure 4.18. Comparison of simulated volumetric suspension 
concentration by standard and modified k-ε models (v2) with 
measurements of Muste et al. (2005) in the NS2 experiment. 

 

However, the TDR becomes larger and larger, the influence of the 
additional turbulence kinetic energy, therefore, becomes insignificant 
compared to it. So near the bottom, the differences become smaller too. 

 

4.5.2. The term due to the fluid-particle interactions 

The fluid-particle interaction term refers to the last term in the following 
equation: 
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It is called the interaction term because ωi = fi/(1-ϕ), in which fi is defined 
as the interaction forces exerted on the particle by the fluid and ϕ is 
volume fraction of particles. To be explicit, the interaction forces consists 
of drag force, virtual mass force, lift force and Basset history force. 

Jha and Bombardelli (2010) performed numerical simulations using two-
phase flow model and analysed the effects of the interaction forces. Their 
research indicates that, in dilute sediment-laden flow, the ratio between 
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other forces and the drag force are always below 2%, so all forces except 
the drag force can be disregarded. However, for non-dilute sediment-
laden flow, their results show that the lift force is of the order of 3% to 
4% of the drag force close to the wall, while the virtual mass force is of 
the order of 25% of the drag force in the same location. The magnitude of 
the forces gradually decreases in the direction away from the bed and the 
relative magnitude of the virtual mass is much larger than the relative 
magnitude of the lift force at any depth in the flow. However, the Basset 
force is not considered in their investigation. 

The interaction force is usually associated with the lag velocity between 
two phases. In the experiments of Muste et al. (2005), the averaged lag 
velocity was also measured for NS1, NS2 and NS3 cases. It is important to 
distinguish the instantaneous lag velocity from the averaged lag velocity 
because there could not be an actual slip between water and sediment 
particles in their instantaneous interaction, because that would violate 
the no-slip condition acting on local fluid boundaries (the particles) 
(Muste et al., 2005). Therefore, the leading explanation for the average 
velocity lag in the streamwise direction is the tendency of the sediment 
particles to reside in the flow structures moving with lower velocities 
(Sumer & Deigaard, 1981; Kaftori et al., 1995; and Kiger & Pan, 2002). The 
inverse lag near the bed is because sediment particles are not bounded 
by viscous shear as fluid particles. The non-slip condition for water 
movement at the bottom does not apply for the sediment. 

Inspired by Greimann et al. (1999), the following formula is proposed for 
approximating the measured lag velocity: 
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where: ulag is the velocity lag, ws is the particle settling velocity, ρs is the 
sediment density, ρf is the fluid density, z is the vertical coordinate, h is 
the water depth, b1, b2 and b3 are the empirical parameters to be 
determined. Using the non-linear least-squares curve fitting, the 
empirical parameters b1, b2 and b3 for NS1, NS2 and NS3 cases are 
determined (Table 4.4). The fitted lag velocities are plotted in Figure 4.19. 

Increasing particle concentration increases the velocity lag (Muste et al., 
2005) except for the near-bottom region. This can be seen in the 
measurements indicated in Figure 4.19. 
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Table 4.4. The empirical parameters b1, b2 and b3 for NS cases. 

Tests b1 b2 b3 

NS1 0.3704 0.8956 -0.8505 

NS2 0.3290 0.8331 -0.9397 

NS3 0.2926 0.6550 -0.8578 

 

 

Figure 4.19. The measured and fitted lag velocities for NS cases. 

 

The reason behind this phenomenon is that, above the bed, the particles 
tend to collide with each other more often when the concentration is 
higher and the collisions will consume more energy, resulting in larger 
lag velocity. However, in the near-bottom region, more particles that are 
non-moving will stay on the bed when the concentration becomes higher. 
These particles will hinder other moving particles and slow them down. 
In this sense, close to the bottom, a lower lag velocity is expected when 
the concentration is higher. Besides, the velocity is also associated with 
the particle inertia, which means the heavier sediment particle, the larger 
velocity lag will occur. It is worth mentioning that, the particle size used 
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in the experiment is 0.21-0.25 mm and the water depth is 2.1 cm. It 
implies that the measured data in Fig.4.19 is more difficult to be 
interpreted when z/H is smaller then 0.01, which is about the same as the 
particle diameter.  

In the experiments of Muste et al. (2005), the total volumetric sediment 
concentrations for NS1, NS2 and NS3 are 0.46×10-3, 0.92×10-3 and 
1.62×10-3 respectively. Table 4.4 reveals that the empirical parameters b1 
and b2 seem proportional to the suspension concentration. Thus, through 
the numerical analysis, b1, b2 and b3 can be approximated using the 
following formulas: 
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in which, Ctotal is mass concentration of total suspended sediment. 
Therefore, the equation (4.84) can be rewritten as: 
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  (4.88) 

The fitted results given by equation (4.88) together with the measured 
data are shown in Figure 4.20. The curves calculated from equation (4.88) 
are labelled with “v2”. It can be seen that, for the same particle inertia, the 
lag velocity becomes larger when the suspension concentration 
increases, which is in agreement with the experimental observations 
(Muste et al., 2005).  

As mentioned before, the drag force is the dominant force among other 
interaction forces between particle and fluid phases. Then we deduce the 
interaction term in equation (3.15). Because of the relation ωi = fi/(1-ϕ), 
using the slip velocity wi = vi-ui (the slip velocity = - lag velocity according 
to the definition) and considering the force balance on a particle gives: 
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where vi is the particle velocity, ui is the fluid velocity, fi represents the 
forces exerted on a particle, ϕ is the volume fraction of the particle phase, 
ρf is the fluid density, CD is the particle drag coefficient, AP is the surface 
area of a spherical particle and VP is its volume, rd is the correction 
constant which represents the ratio of other forces, e.g. virtual mass force, 
lift force and Basset history force, to the drag force.  

 

 

Figure 4.20. The measured and fitted (v2) lag velocities for NS cases. 

 

For the purpose of evaluating the interaction term, it is assumed that ωi 
can be seen as a function of wi2. Hence,  

22 2 2( ) 2i i i i i i i iw w w w w w w            (4.90) 

22 2 2( )i i i i i iw w w w w          (4.91) 

2 22i i i i iw w w w         (4.92) 

Therefore, the following relation can be established: 
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22i i i i i i iu w u w u w          (4.93) 

Because the slip velocity fluctuations wi’ are considerably small and 
negligible for suspended sediment transport according to the study of 
Breugem (2012), the interaction term can be neglected. It is also logical 
from numerical perspective since the 1DV model has already given good 
agreement with the measured data even without the interaction term. 
This is no surprise because of the low suspended loads in this particular 
set of experiments. 

 

4.5.3. Testing the modified k-ε model 

Here, the extra terms deduced from previous sections are tested and 
compared with the experimental data from Cellino (1998). In his 
experiments, the measurements have been made in a recirculating tilting 
channel, 16.8m long and 0.60m wide. Sediments were added slowly to the 
uniform flow until the suspension capacity was achieved. The capacity 
condition of the flow was verified when a layer of sediment, composed of 
the same sediment as in the suspension, is always present on the bed 
(Cellino, 1998).  

 

Table 4.5. Summary of experimental data (Q55S015_Sand_I). 

Q h hδ uc B/h U Sb 

[m3/s] [m] [m] [m/s] [--] [m/s] [%] 

0.062 0.120 0.099 1.008 5.0 0.858 0.150 

Fr u*τ u*S f ks d50 ρs 

[--] [m/s] [m/s] [--] [mm] [mm] [kg/m3] 

0.79 0.043 0.042 0.020 0.222 0.135 2650 

Csm csam ρm Ri Re vss Rep 

[kg/m3] [kg/m3] [kg/m3] [--] [--] [mm/s] [--] 

4.41 46.05 1002.75 18.120 293800 12.0 9.5 
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In Table 4.5, Q is the flow discharge, h is the flow depth, hδ is the height 
where the maximum velocity uc has been measured, B is the channel 
width, U is the depth-averaged longitudinal velocity, Re is the Reynolds 
number, ρw and ρs are water and sediment densities, ρm is the depth-
averaged mixture density, Sb is the bed slope, Fr is the Froude number, 
Csm is the depth-averaged concentration, csam is the reference 
concentration, u*τ is the shear velocity obtained by extrapolating the 
measured Reynolds-stress profile towards the bed, u*S is the shear 
velocity obtained by the energy method, f is the friction factor, ks is the 
equivalent roughness, Rep is the particle Reynolds number, and Ri is the 
bulk Richardson number according to Coleman (1981). 

The measurements started after 4 hours of flow recirculation in capacity 
condition and all measurements were taken at the centreline of the cross 
section located 13m from the entrance of the channel (Cellino, 1998). 

The 1DV model is again used to compare with the test case 
Q55S015_Sand_I whose hydraulic characteristics are summarized in 
Table 4.5. The flow was steady and uniform, carrying natural sand 
particles at capacity over a plane bed where a layer of the same sediment 
was available. In addition, the experiment Q55S015_Sand_I was repeated 
several times by Cellino, and a series of measured velocity profiles have 
been used to study the spatial evolution of the flow and its turbulence 
characteristics. 

The modified k-ε equations (4.81) to (4.83) is applied in the 1DV model 
for simulating Cellino’s test case Q55S015_Sand_I. Notice that the 
concentrated layer (5mm) on the bottom has been excluded in the 
simulation because the actual bed level is not given in the experimental 
data. The measured velocity and concentration at about 5mm above the 
bed are used as boundary conditions.  

The numerical settings and boundary conditions are similar as described 
in section 4.43, except the reference concentration is already given in 
Table 4.5. The results are shown in Figures 4.21, 4.22 and 4.23. 
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Figure 4.21. Comparison of simulated stream-wise velocity by standard 
and modified k-ε models (v2) with measurements of Cellino (1998) in the 
Q55S015_Sand_I experiment. 

 

 

Figure 4.22. Comparison of simulated eddy viscosity by standard and 
modified k-ε models (v2) with measurements of Cellino (1998) in the 
Q55S015_Sand_I experiment. 
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Figure 4.23. Comparison of simulated volumetric suspension 
concentration by standard and modified k-ε models (v2) with 
measurements of Cellino (1998) in the Q55S015_Sand_I experiment. 

 

As expected, the modified k-ε model (v2) with the extra terms derived 
from two-phase flow theory shows the similar behaviour as seen in 
section 4.5.1 while simulating the NS test from Muste’s experiments. The 
extra terms correct the eddy viscosity in the upper water column and give 
better predictions on the streamwise velocity profile, which are closer to 
the experimental data. However, the volumetric suspension predicted by 
the modified k-ε model (v2) deviates further than the standard model. 
This is because the turbulence is enhanced by the extra terms near the 
bottom and it demonstrates that the accuracy of the predicated eddy 
viscosity near the bottom has influence on the suspension capacity in the 
whole water column.  

Unlike the Muste’s experiments that can be considered as fully developed 
turbulent flow over the water column, Cellino’s Q55S015_Sand_I case has 
a high-concentrated low-Reynolds layer near the bottom and the actual 
bed level is unknown from the data. This explains the errors being seen 
in the Figures 4.21 to 4.23. It indicates that the low-Reynolds effects 
should be included in the model to get right turbulence budget near the 
bottom and the extra terms in the modified k-ε model (v2) will correct 
the profile in the upper water column. Moreover, the underestimation of 
suspension concentration in the near bottom region may be caused by 



83 
 

missing the four-way coupling effects (particle-particle collisions) in the 
1DV model. This has been pointed out by Hsu (2003), in which he 
suggested at the bottom region within, perhaps, 10-grain diameters from 
the bed, the fluid turbulence is small and the dominant mechanism of 
sediment suspension is particle collisions. 

Toorman (in prep.) developed a new two-layer turbulence model which 
combines a new low-Reynolds two-equation turbulence model (with DNS 
based damping functions) for the outer layer with the boundary 
treatment method similar as for high Reynolds k-ε modelling, using a 
modified mixing-length model for modelling the possible turbulence in 
the layer on the bed. This will be implemented in the modified k-ε model 
in future research. 
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Chapter 5  

 

NEW PROCESS MODELS 

 

5.1. Bottom roughness 

Part of the energy from currents and waves is dissipated by friction with 
the bottom and becomes more and more important with decreasing 
water depth. In theoretical and numerical models to quantify water 
and/or sediment movement, this energy loss is described by an empirical 
or semi-empirical roughness closure (van Rijn, 1993). In practice, it 
introduces a single roughness parameter (sometimes related to the grain 
size of the bottom sediment or to bed form dimensions) which is 
calibrated by comparison of predicted and measured water levels. 

Research, supported by laboratory and numerical experiments, has 
demonstrated that, in the presence of suspended sediments, the 
traditional approach is not able to predict the correct velocity fields, 
especially near the bottom (Toorman & Bi, 2013). This has serious 
implications for flows over shallow areas (i.e. near-shore and intertidal 
areas) and for the estimation of sediment budgets in particular. 
Therefore, hydrodynamic models for coastal and estuarine areas, in 
particular when applied to the nearshore and intertidal areas, should be 
improved by implementation of a more physically based bottom-friction 
model. 

For this purpose, a new modelling strategy developed by Toorman & Bi 
(2012, 2013) has been implemented in the model for analysing the 
Western Scheldt estuary. It consists of a new generic friction model which 
accounts not only for the energy dissipation caused by the flow over the 
bottom roughness structures, but also for the dissipation induced by the 
inertia of the suspended particles (Toorman, 2011). The latter is no 
longer negligible above the bed where high concentrations of suspended 
matter are encountered. This process explains the drag modulation by 
suspended matter reported in the literature (Toorman & Bi, 2013, and 
references therein). 
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5.1.1. Generalized mixing length theory 

The new generic friction model is based on a generalized mixing-length 
(GML) theory, proposed by Toorman (in prep.) and inspired by the idea 
of van Driest (1956). By extending the validity of a turbulence model into 
the low-Reynolds layer, where viscous dissipation (and possibly other 
dissipation mechanisms, for example, particle collisions) can no longer be 
neglected, down to the wall with a carefully calibrated damping function 
fA, and accounting for the viscous stress in the laminar wall layer, the GML 
theory allows transient conditions being included in the model. In the 
case of a rough bottom, the introduction of a subgrid scale viscosity can 
account for the additional sub-grid scale energy dissipation in the eddies 
generated between roughness elements. Similarly, turbulence generation 
in the wake of sediment particles, as already suggested by Elgobashi 
(1994), can also be taken into account. 

The steady state vertical stress balance at a distance z above the bed in 
open-channel flow of sediment-laden water can be written as:  

   1SGS t b

U

z
     


   


                (5.1) 

where: U = the local flow velocity [m/s], τb = ρu*2 = the bed shear stress 
[kg·m-1·s-2] with u* the shear velocity [m/s], η = z/h, with h = the water 
depth [m], ρ = the density of the sediment-laden water [kg/m3], ν = the 
kinematic viscosity of the sediment-laden water [m2/s] (including 
concentration effects, such as intergranular friction), νt = turbulent eddy 
viscosity [m2/s], νSGS = the subgrid-scale turbulence [m2/s] generated by 
vortex shedding in the wake of bed roughness elements and/or of 
suspended particles. The eddy viscosity in the fully developed outer layer 
is computed with the well-known parabolic profile, following Prandtl’s 
mixing length theory (Prandtl, 1925) applied to steady open-channel flow 
(equation 5.1) with neglect of ν and νSGS). In the inner layer, comprising 
the intermediate transient layer and the viscous sublayer at the bottom, 
this eddy viscosity has to be corrected with an empirically determined 
damping function (fA). 

Rearrangement and non-dimensionalization of equation (5.1) yields: 

 

 

1

1 1A
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z B f z



 


  




   
                  (5.2) 

in which, U+ = U/u* = the velocity U non-dimensionalized by the shear 
velocity u*, z+ = zu*/ν = the distance from the bottom z non-
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dimensionalized by the length-scale ν/u*, B+ = νSGS/ν = a roughness 
parameter representing the subgrid-scale (SGS) dissipation mechanisms 
(expressed by the viscosity νSGS), empirically found to be proportional to 
the sediment concentration (cf. Figure 5.1),  κ = the von Karman 
coefficient (which may have a lower value than the original constant 0.41 
due to sediments in suspension). This new GML model has been 
calibrated against large eddy simulation (LES) data for open-channel flow 
over a wavy bottom from Widera et al. (2009) and the experimental flume 
data for sand suspensions from Cellino (1998) (Figure 5.1). 

 

 

Figure 5.1. Velocity profile for sand-laden turbulent open-channel flow. 
Flume data for a sand suspension from Cellino (1998) with increasing 
sediment load, matched with the Generalized Mixing-Length model. 
Symbols = measurements, full lines = calculations, dashed line = velocity 
profile for clear water (CW). For this set of experiments κ = 0.27 
(Toorman, 2003). 

 

5.1.2. Physics based roughness model 

For engineering applications, the above theory has been converted into a 
2DH friction model. In principle, this is obtained by computing the depth-
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averaged velocity by integration over depth of the theoretical velocity 
profile and solving the equation for the shear velocity u*.  In order to allow 
both transient conditions (i.e. 5 < h+ < 100 – see equation 5.7) and the 
transition during drying/wetting of tidal flats, it is necessary to combine 
the laminar and turbulent contributions. However, since equation (5.2) 
does not allow an analytical solution to be derived, the procedure is first 
applied separately to the theoretical parabolic profile for laminar flow 
and the logarithmic profile for fully developed turbulent flow (integrated 
from the roughness height to the surface). The final bed shear stress is 
then obtained by superposition of the laminar and the turbulent stress, 
applying a damping function to the turbulent stress towards the bottom 
(confirming observations, and simultaneously avoiding numerical 
problems). Therefore, the bed shear stress can be directly computed as 
follows (Toorman & Bi, 2012):  
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           (5.3) 

where: τb = the bed shear stress [kg·m-1·s-2], ρ = the density of water 
[kg/m3], u* = the shear velocity [m/s], u*turb = the shear velocity for fully-
developed turbulent open-channel flow [m/s], u*lam = the shear velocity 
for laminar open-channel flow [m/s], κ = the von Karman coefficient 
(which decreases from the clear water value 0.41 to lower values 
depending on the sediment load), U = the local depth-averaged flow 
velocity [m/s], h = the local water depth [m], β = the suspension friction 
(or apparent roughness) coefficient which is 0.045 (found using data 
fitting for Figure 5.1), νw = the water viscosity [m2/s], ϕ = the volumetric 
suspended particle concentration, and z0 = the effective roughness length 
scale [m].  

Unlike other models, which assume hydraulic rough conditions, z0 is 
computed from the relation in the equation (5.4), which covers the entire 
range from hydraulic smooth (first term on the right) to hydraulic rough 
(second term) by the following empirical fit (Toorman, in prep.): 
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where: z0 and ks (the equivalent Nikuradse roughness length scale) are 
non-dimensionalized with ν/u* to z0+ and ks+, B0 = 5.5 and B∞ = 8.5, 
respectively the smooth and rough values of the constant in the non-
dimensional logarithmic velocity profiles (u/u* = κ-1 ln(z/ks) + B) 
(Nikuradse, 1933), and with an empirical damping function: 

    1 exp exps sf k k B                        (5.5) 

which matches the entire Nikuradse (1933) data set. In the present 
simulation, ks = 0.03 m, considering small bedforms. Extension to 
hydraulic smooth conditions is necessary to include the physics of 
transition to laminar thin film flow on intertidal areas when the water 
depth goes to zero. 

The turbulence damping factor fA has the following form (similar to the 
damping function in equation 5.2): 

  
2

1 exp /Af h A                      (5.6) 

with A+ = 17, an empirical value, and with the water depth non-
dimensionalized as: 

3 /h Uh                       (5.7) 

Finally, the suspension viscosity ν(ϕ) is a function of the suspension 
concentration and can be expressed empirically as: 
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                  (5.8) 

The empirical parameters (Cref = 0.222 g/l and href = 0.12 m) in equation 
(5.8) have also been obtained from calibration with the experimental 
data from Cellino (1998), shown in Figure 5.1.  

In summary: the dissipative effect of suspended sediment is incorporated 
into the closures for the effective roughness (which actually is a length 
scale related to the turbulent eddies generated by vortex shedding over 
roughness elements and in the wake of particles) and the suspension 
viscosity (e.g. including steric hindrance and granular friction of dense 
sand suspension or non-Newtonian behaviour of fluid mud). 
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Unlike in traditional hydrodynamic models (e.g. Hervouet, 2007; 
Amoudry, 2008), this new bottom-friction model accounts for the water 
depth and remains valid in turbulent, transient and laminar flows until an 
intertidal area falls dry. Due to the fact that the classical friction law in 
traditional models is only valid for fully-developed turbulent flow 
conditions, an inundation threshold has to be imposed, which keeps the 
water level at a minimum height, to avoid numerical problems. When two 
neighbouring nodes with a different bottom level are in that state, a 
gravity driven flow will be induced from the node at higher elevation to 
the one at lower elevation. This artificial flow may become too strong and 
cause erosion, which does not occur in reality. The problem can be 
reduced by taking a high enough threshold value and/or by temporarily 
removing grid cells from the computational domain (“masking”). In 
practice, it turns out that there often remain nodes where the problem 
persists. The new friction law avoids this problem by increasing the 
roughness with decreasing water depth and the friction tends to infinity 
as soon as the inundation threshold, taken equal to the equivalent 
roughness height z0, is reached, preventing flow. Masking is no longer 
necessary and mass conservation is much better guaranteed. 
Subsequently, the model allows a more accurate (and numerically stable) 
prediction of hydrodynamics over intertidal flats, since no inundation 
threshold needs to be specified any longer. Furthermore, for studying 
morphodynamics of the channel system in the estuary (e.g. the Scheldt 
estuary), a correct  representation of residual flow circulations related to 
ebb and flood channels requires spatial and tidal phase dependent 
roughness values (Fokkink 1998) , which makes this new bottom-friction 
model important for the coastal and estuarine studies.  

 

5.2. Erosion & deposition of mixed sediments 

The cohesive sediments contain usually a varying amount of sand and the 
sandy sediments a varying amount of mud. The mud and sand content of 
a seabed influences the transition between cohesive and non-cohesive 
sediments (Van den Eynde et al., 2009). This has a major influence on the 
erosion and deposition behaviour.  

For sandy, non-cohesive sediments, it is possible to calculate reasonably 
well the critical erosion stress and the erosion rate when only grain-size 
and sorting is known. For cohesive sediments, the erodibility depends 
mainly upon the degree of cohesion, consolidation, aggregation and 
compaction, the biological community structure, the sand content of the 
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sediment and the layering. Mixed sediments may behave as cohesive or 
non-cohesive sediments, depending on the mud content, e.g. the addition 
of mud increases the sediment shear strength and thus the erosion 
threshold of a sandy bed (Mitchener & Torfs, 1996). 

Furthermore, these mixed sediments do not necessarily occur as well 
mixed. Frequent alternation of sand and mud layers are observed. These 
alternations are interpreted as tidal or storm/calm weather influences. 
Fan et al. (2004) describe storm waves as random destructive factors of 
the sediment bed and highlight them as effective agents of sediment 
transport and deposition of the sand-dominated layers. This type of 
segregation can only occur if the cohesive suspended sediment 
concentration is low. 

Recently, some studies have been published that take into account mutual 
interactions between cohesive and non-cohesive sediments (Van Ledden, 
2002; van Ledden et al., 2004; Waeles, 2005; Waeles et al., 2007; Sanford, 
2008). It is clear that better predictions of sediment transport are 
possible if the mutual influence of sand-mud mixtures is incorporated in 
the model. 

 

5.2.1. Sediment regimes 

According to the study of Panagiotopoulos et al. (1997), a sand-mud 
mixture can be categorized as non-cohesive, mixed or cohesive, 
depending on its sand-mud composition. Each category has its unique 
characteristics and behaviour. For the application in the general coastal 
and estuarine systems, the lower bound of the critical mud mass fraction 
is proposed to be set to 30% (mass fraction relative to total saturated soil, 
i.e. including pore water mass) and the upper bound is 50%.  

The mixture that contains mud less than 30% is in the non-cohesive 
regime and is considered as sand; those having mud more than 50% is in 
the cohesive regime and is treated as mud; the rest is in the mixed-
sediment regime. The lower and upper bounds of critical mud fractions is 
suggested by the study of Panagiotopoulos et al. (1997) and Mitchener & 
Torfs (1996), although the values of the limits may differ. As the mud 
fraction increases, the available space between the sand grains decreases. 
When the mass fraction of mud is lower than about 30%, the sand grains 
remain in contact with each other. When the mud fraction exceeds 30%, 
the mud particles in the spaces between sand particles can form a 
continuous matrix, and, in this case, pivoting is no longer the main 
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mechanism responsible for resuspension of sand grains. Consequently, 
the whole mixture does not behave like a non-cohesive sediment any 
more. In Mitchener and Torfs’ study (1997), the critical shear stress 
increases significantly, when mud is added to different sand samples with 
0% to 30% mud contents (Figure 6.9).  

 

Figure 5.2. Conceptual model showing the mechanism for the initiation of 
sediment motion for: (a) pure sand particles; (b) sand and mud mixtures 
with mud content M < 30%; and (c) sand and mud mixtures with mud 
content M > 30%. (Key: ϕ0 = angle of internal friction; Fg = weight of the 
particle; FL = lift force; FD = drag force; and FR = resistance force; after 
Wiberg and Smith, 1987). 

There is an optimal ratio of sand content in a mixed bed at which the 
critical erosion shear stress is a maximum. The optimal sand fraction 
appears to be between 50% and 70% by weight of sand (Mitchener & 
Torfs, 1996). Therefore, the lower and upper bounds of critical mud 
fractions were set at 30% and 50%. These values are also used in the 
study of Waeles (2005) and Waeles et al. (2007). 

 

5.2.2. Erosion of mixed sediment 

Coastal beds are usually composed of heterogeneous particles often 
consisting of sand and mud mixtures. The erosion of mixed sediment is 
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mainly controlled by the bottom shear stress in coastal and estuarine 
areas, and often affected by the composition of bed material.  

The transport of sand adjusts very quickly to hydrodynamic variations 
due to the relatively high settling velocities of sand particles. Coarse sand 
is transported as bed load, whereas for fine sand transport sometimes 
also occurs in suspension.  

Cohesive sediments usually are considered to be transported as 
suspended load and are calculated by solving an advection-diffusion 
equation for which erosion and deposition fluxes constitute the boundary 
conditions at the bed. Erosion of cohesive sediments occurs in different 
ways, depending on the degree of consolidation (Mehta et al., 1989a, 
1989b):  

 For freshly deposited mud or fluid mud, the erosion is formulated 
as an entrainment of mud by the overlying water. 

 The erosion of consolidating mud (soft mud) is described by 
Parchure and Mehta (1985) by an expression to account for a 
rapid limitation of erosion when the critical shear stress for 
erosion τce increases with depth; τce is in the range of 0.1-1 Pa. 

 The erosion of consolidated bed is described by the Ariathurai-
Partheniades law (Ariathurai, 1974). The critical shear stress for 
erosion, τce, usually is in the range of 1-10 Pa. 

It is noteworthy that soft mud has a similar magnitude of  critical shear 
stress for erosion as medium sand, while consolidated mud is as difficult 
to mobilise as pebbles are. 

Following the study of Waeles (2005), the critical shear stress for erosion 
can be computed as function of the mud fraction (fm) in each sediment 
regime: 

Non-cohesive regime (fm < 30%): 

, 1ce ce s mx f                       (5.9) 

Mixture regime (30% < fm <50%): 
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Cohesive regime (fm >50%): 
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,ce ce m                   (5.11) 

where: τce, τce,s and τce,m = the critical shear stresses [kg·m-1·s-2] for erosion 
of mixture, sand and mud respectively,  x1 = a calibration constant, fm,crit 
and fm,crit* = the lower and upper bounds of critical mud fraction, 
respectively. The detailed discussion on these parameters is presented in 
section 6.24 in Chapter 6. 

Hence, when the bottom shear stress exceeds the critical shear stress for 
erosion, the bed material starts to be eroded. The erosion rate can be 
determined depending on the regime of the mixed sediment following the 
same procedure of Waeles (2005): 
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Mixture regime (30% < fm <50%): 
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Cohesive regime (fm >50%): 

  01s m mE f E T                    (5.16) 

0m mmE f E T                   (5.17) 

in which, Es and Em = the erosion rate [kg·m-2·s-1] for sand and mud 

respectively, E0s and E0m = the erosion constant [kg·m-2·s-1] for non-cohesive 

regime and cohesive regime respectively, T = (τb-τce)/τce, τb = the bed shear 

stress [kg·m-1·s-2], τce = the critical shear stress [kg·m-1·s-2] for erosion, a = 

0.5, a constant suggested in the study of Waeles et al. (2007) which is suitable 

for most cases. 
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5.2.3. Deposition criterion based on suspension capacity 

A new deposition criterion, which has been derived from a suspension 
capacity condition proposed by Toorman (2000 & 2002), has been 
introduced in this study, which allows estimating the critical stress for 
deposition in each node and no longer needs calibration. Since shear flow 
produces turbulence, the critical “shear stress” for deposition can be 
related to the total amount of turbulent energy that is required to keep a 
number of sediment particles in suspension. When the bed shear cannot 
provide the fluid with enough turbulent energy that is needed to maintain 
all the suspended particles in the water column, deposition begins. The 
excessive sediment settles down to the bottom until the energy balance 
is restored.  

The critical shear stress for deposition, obtained by inversion of 
Toorman’s suspension capacity criterion, has been split into two parts in 
order to deal with sand-mud mixtures. In this case, the total required 
turbulent energy is also divided over both sediment fractions: part of it is 
used to keep non-cohesive particles in suspension and the rest is used to 
keep cohesive particles in suspension. The corresponding “critical 
stresses” are given in the following equations: 
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where: τcd,s and τcd,m = the critical shear stress [kg·m-1·s-2]  for sand and 
mud deposition respectively, ρw is the fluid density [kg/m3], ρs = the sand 
density [kg/m3], ρm = the mud density [kg/m3], Rfs and Rfm = the flux 
Richardson number for sand and mud at suspension capacity which 
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expresses the ratio of suspension potential to turbulent kinetic energy 
(its value is usually < 0.1, based on the analysis of various experimental 
data sets from field and laboratory measurements; Toorman, 2003), u* = 
the shear velocity [m/s], g = the gravity acceleration [m/s2], ws and wm = 
the settling velocities [m/s] of sand and mud respectively, wa = the 
averaged settling velocity [m/s] of mixture, Cs and Cm = the depth-
averaged suspension mass concentration [kg/m3] of sand and mud 
respectively, U = the magnitude of velocity [m/s]. 

Krone’s deposition law (1962) subsequently is adapted to be used for 
calculating the deposition flux of each fraction, without violating the 
energy balance:  
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 s s s sD w C p                  (5.24) 

 m m mmD w C p                  (5.25) 

where: ps and pm are deposition probabilities of sand and mud 
respectively, Ds is the deposition flux [kg·m-2·s-1] of sand and Dm is the 
deposition flux of mud [kg·m-2·s-1]. 
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Chapter 6  

 

APPLICATION TO SCHELDT & BELGIAN COAST 

 

6.1. Overview of the study area 

The Scheldt emerges in northern France, on a plateau at Saint-Quentin. In 
its first kilometres it is just a stream that reaches the Belgian border 
through French villages and grows to a narrow river there. Fed by 
tributaries, the Scheldt evolves into a broader river along its way to the 
North Sea. It is about 350 kilometres long from the source to the mouth, 
where it becomes a mighty stream flowing into the North Sea. The water 
level difference between source and mouth is only 100 m, making it a 
typical lowland river system with low current velocities and thus 
meanders (Vlaams-Nederlandse Scheldecommissie, 2015). 

The Scheldt basin comprises an area of approximately 21,863 km2 and is 
situated in the northeast of France, the west of Belgium and the 
southwest of the Netherlands, where it is inhabited by about 10 million 
people (477 inhabitants per km2). Over the years, the Scheldt basin has 
been divided into three sections. The Upper Scheldt is the part from the 
source to Ghent, where the Scheldt joins the Lys (Leie). The river has 
already a length of 185 kilometres. In Ghent, the Scheldt begins to 
undergo the tidal influences. The part of Ghent which runs through 
Antwerp to the Dutch border, called the Sea Scheldt (Zeeschelde). Beyond 
the Belgian-Dutch border begins the broad estuary of the Western 
Scheldt (Westerschelde). In this part, the Scheldt flows into the North Sea 
via Terneuzen, Breskens and Vlissingen. Zeeschelde and Westerschelde 
together form the Scheldt estuary, which is under the influence of the tide.  

The Scheldt estuary is defined as the part of the river basin with a tidal 
influence. It is open to the southern North Sea and extends 160 km in 
length from the mouth at Vlissingen to Ghent, where sluices stop the tidal 
wave in the Upper Scheldt. The tidal wave also penetrates most of the 
upstream areas, entering the major tributaries Rupel and Durme, 
resulting in approximately 235 km of tidal river in the estuary. In the 
Scheldt estuary at Vlissingen, the difference between high and low water 
about four meters. Further inland, the tidal range increases. The farther 
upstream, the narrower the riverbed and the more the incoming 
floodwater is pushed up. Near Hamme, where the Durme flows into the 
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Scheldt, the river reaches its highest water level. Then the impoundment 
of the water decreases again. The locks around Ghent blocks the tide 
completely and ensure that the river further upstream is no longer 
influenced by the sea (Vlaams-Nederlandse Scheldecommissie, 2015). 

The Scheldt estuary is one of the youngest and most natural estuaries in 
Western Europe. It is categorized as the main transition zone or ecotone 
between the riverine and marine habitats. It consists of an approximately 
60 km long fresh water tidal zone stretching from near the mouth of 
Rupelmonde to Ghent, representing one of the largest freshwater tidal 
areas in Western Europe. It also has a mixing zone between Rupelmonde 
and Vlissingen/Breskens. The subtidal delta, seaward of Vlissingen and 
Breskens, forms the transition between the Western Scheldt and the 
North Sea. (Fettweis et al., 1998; Kuijper et al., 2004; Meire et al., 2005; 
van Kessel et al., 2011). 

The Scheldt estuary can also be divided into two major parts, the 
Zeeschelde (105 km), which is the Belgian part from Ghent to the 
Dutch/Belgian boarder, and the Westerschelde (58 km), known as the 
Dutch part, covering the middle and lower estuary. The Zeeschelde is 
mainly a single ebb/flood channel and has a total surface of 44 km2. 
Mudflats and marshes in this area are relatively small and approximately 
account for 28% of total surface. The Zeeschelde hosts one of the largest 
harbours in Europe – the Port of Antwerp. Therefore, human activities 
are very active in this region and industrial developments are 
concentrated along the riverbanks. The intertidal zone is often missing or 
very narrow. The estuary is almost completely canalized upstream of 
Dendermonde (Hoffmann & Meire, 1997). The Westerschelde is a well-
mixed region. Due to the influences of tidal waves and land changes, the 
Westerschelde has a complex and dynamic morphology. The flood and 
ebb channels are interconnected, bordered by several large intertidal 
flats and salt marshes. The surface of the Westerschelde amounts to 310 
km2, in which 35% of the area is covered by intertidal flats. The average 
channel depth is approximately 15–20 m (Meire et al., 2005).  

In a meso-tidal estuary, where the tidal range is about 2–4 m, tidal action 
and wave activity both tend to be important in such areas (Allaby, 1999), 
like the Western Scheldt, where both in- and outflow discharges are large, 
the net sediment budget is the sum of a large positive and a large negative 
number. 
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Figure 6.1. The Scheldt Estuary. The mixing zone consists of the upper 
estuary and the lower estuary or Western Scheldt. Upstream of 
Rupelmonde the water is entirely fresh while the water movement is still 
dominated by the tide. The area between Rupelmonde and Gent is 
therefore called the freshwater estuary (from Verlaan et al., 1997). 

 

A good knowledge of the sediment budget and transport path is not only 
essential for longer term planning of maintenance dredging activities, it 
is also of crucial importance for the impact assessment on and the long 
term prediction of the ecosystem services. However, sediment fluxes are 
very difficult to measure. It requires simultaneous flow and sediment 
concentration measurements across different cross-sections of the river, 
in both horizontal and vertical directions. Sediment concentration and 
flow measurements close to the bottom, where the largest sediment 
concentrations occur, are particularly difficult and therefore very rare or 
non-existent. The estimates of the net sediment balance are therefore 
largely uncertain. Numerical models can help to look at the sediment 
processes, such as areas of erosion and deposition, but are in need of 
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quantitative measurements for calibration and verification. The bottom 
friction parameter in these models often, if not always, is the main 
parameter to calibrate or ‘tune’ the hydrodynamic model, but this also 
has consequences on the behaviour of the sediment transport model. An 
additional complication is the fact that sediments are not homogeneous, 
neither in space nor in time. Transport models that incorporate the 
possibility to deal with more than one sediment type or class are 
necessary and available, but the composition of the actual bed is not, or,  
at most only partially known. Another important aspect is that the 
geometry of an estuary is usually complex due to its geomorphological 
features or water circulation patterns. It may also include tidal flats, 
harbours or navigation channels, which are much smaller, compared to 
the rest of the domain, thus it requires a more flexible numerical 
approach to be capable of dealing with all the geometrical complexities. 

It is worth mentioning that biogeochemical processes in the Scheldt 
estuary is also an important topic. Four additional aspects make the 
Scheldt estuary very particular and different from other estuaries: (1) the 
Scheldt is a tide-governed estuary, which means greater residence times; 
(2) the upper estuary received large inputs of biodegradable organic 
matter which leads to oxygen depletion in winter and anoxic conditions 
in summer; (3) inputs of toxic pollutants from the industrial zone of 
Antwerp occur in the upper estuary; (4) the anoxic zone, the zone of 
pollutant input and the zone of the turbidity maximum coincide 
geographically (Baeyens, 1998). It is found that pollution by toxic metals 
is one of the major threats to the estuarine ecosystem. Concentrations of 
dissolved Pb, Hg, Zn, Cu and Cd in the coastal estuarine water mass are 
about 2 times higher than in the marine water mass of the Belgian coastal 
zone (Baeyens et al., 1987). In the estuary itself, the heavy metal 
concentrations are still significantly higher than in the coastal estuarine 
water mass (Baeyens et al., 1998). Therefore, a better understanding of 
the respective biogeochemical cycles of heavy metals in the Scheldt 
estuary with emphasis on the basic governing processes is essential.  

Many numerical studies have been conducted for understanding 
hydrodynamics, morphological and biogeochemical processes in Scheldt 
estuary. One of the earliest numerical models for the Scheldt estuary was 
devised by Baeyens et al. (1981) in order to simulate the physical 
behaviour, including instantaneous water levels and mean velocities over 
depth, salinity and turbidity in the water column and the sedimentary 
budget at the bottom. It was a two-dimensional (2D) depth-averaged 
model with a structured grid based on a multi-operational finite 
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difference scheme. Later, more efforts were put into the numerical 
modelling by other researchers and many 2D applications in the Scheldt 
estuary for simulating sediment transport can be found in studies of 
Portela & Neves (1994), Verbeek & Jansen (1998), Dam et al. (2007), 
Vanderborght et al.  (2007), Bolle et al. (2010), de Brye et al. (2010), 
Mulder et al. (2011), Gourgue et al. (2013). Most of them only focus on 
cohesive sediment or mud transport under different hydrodynamic and 
salinity conditions. However, one of the trends is that the finite element 
method has been used more and more in the numerical modelling since 
it is capable of dealing with complex geometry of the estuaries like the 
Scheldt with a more flexible unstructured mesh. The first 3D numerical 
sediment transport model of the Scheldt estuary seems introduced by 
Cancino & Neves (1994, 1999a, 1999b). It was a fully 3D finite difference 
baroclinic model system for hydrodynamics and fine suspended 
sediment transport with the effects of flocculation, deposition and 
erosion taken into account. Their approach provided a useful basis for a 
good understanding of the physical processes involved in sediment 
transport. Another 3D mud transport model was established by Van 
Kessel et al. (2011). Their model showed realistic values for water levels, 
salinities and residual currents in the major part of the model domain. 
However, the propagation of the tidal wave was modelled less accurately 
upstream of Antwerp. One of the advantages of a 3D model is that it can 
reproduce many complex hydrodynamic processes in the estuary under 
tidal waves. Therefore, it is also a useful tool for studying the effects of 
secondary currents in the estuary (Verbeek et al., 1999). Also due to its 
complexities, the computational cost for a 3D large-scale model is much 
higher than a 2D model. 

The purpose of this study was to test and demonstrate a new modelling 
methodology that was developed to deal with the complexities of large-
scale domains like the Scheldt estuary by taking sub-grid scale physical 
processes or effects into account, while still trying to maintain the 
computational efficiency. By including new empirical parameters into 
physics based laws or criteria, the model can adapt to different situations 
or scenarios by its own and achieve higher prediction accuracy. Another 
objective of this study was to make a more realistic model that not only 
focuses on the cohesive particles, but also has non-cohesive sediment in 
the system. The reason for considering more than one sediment class in 
the system is that in real world, the bed material consists of both cohesive 
and non-cohesive sediments and its composition differs from one 
location to another. For example, according to the measurement carried 
out in Western Scheldt, one can find the mud fraction in the upstream is 
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generally larger than the values found in the downstream. For each type 
of sediment, the transport mechanism is different and both transport 
progresses consume energy. From this perspective, the availability of 
energy to transport sediments in the system is likely to be overestimated 
when only considering one type of sediment, or, stated differently, the 
same energy is used twice. The corresponding error is compensated by 
tuning the model. 

 

6.2. Model set-up 

6.2.1. General 

The Scheldt model consists of a coupled two-dimensional depth-averaged 
hydrodynamic and sediment transport model developed using the 
OpenTELEMAC-MASCARET modelling system with customizations in the 
source code. The year 2009 has been selected as the simulation period. 
According to the study of De Ruijter et al. (1987), the water column in the 
Belgian coastal zone is well mixed throughout the entire year. Therefore, 
a 2D depth-averaged model is appropriate. 

 

6.2.2. Mesh and bathymetry 

The model implementation focuses on the Scheldt estuary, which has 
been extended with a limited part of the Belgian coastal area, including 
necessary mesh refinements to model in detail the tide-affected docks of 
the Ports of Antwerp and Zeebrugge.  

 

 

Figure 6.2. Bottom slope of the middle section of the Scheldt estuary 
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The bathymetry data is taken from the NEVLA model (Hartsuiker, 2004, 
van Kessel et al., 2011, Maximova et al., 2009b). It covers the whole 
Western Scheldt, starting from the upstream river and its tributaries in 
Belgium, extending all the way to the Belgian coast and the southwest 
coast of the Netherlands, including part of the North Sea. In 2009, a new 
survey was conducted and subsequently the bathymetric data of the 
Western Scheldt was updated (Maximova et al., 2009a). The mesh used 
in the simulations is unstructured and non-uniform. It has 67689 
elements and 37527 nodes. In order to reduce the computational cost but 
maintain the accuracy as much as possible, a space varying resolution is 
adopted in the mesh.  

 

 

 

Figure 6.3. Bathymetry (m) and mesh of the Scheldt Estuary (top) with a 
close-up view (bottom). 
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For the North Sea, the grid size is from 1,000 to 2,000 meters because the 
bottom elevation does not change rapidly in this part of the domain and 
it is not necessary to have every detail in the North Sea. Approaching the 
coast, the mesh resolution becomes finer and finer. After entering the 
river mouth, the grid size is optimized in order to be better aligned along 
iso-depth lines. Figure 6.2 shows the bottom slope of the Scheldt estuary. 
In the areas with mild slope, the grid size is about 100-200 meters. In the 
steep areas, the grid size decreases to 50-100 meters. This is due to the 
complex topography in those relatively shallow areas. There are many 
tidal flats in this region and the slopes often reach very high values, 
especially at those nodes close to the tidal flats and banks. Therefore, in 
such cases a higher resolution could make the computation more stable. 
It is also necessary to provide sufficient detail when investigating the flow 
field and sedimentology in the estuary. 

 

6.2.3. Hydrodynamic model 

The development of the hydrodynamic model is based on TELEMAC-2D 
(http://www.opentelemac.org/), which is a finite element solver for use 
in the field of 2D free-surface flows. It has been used in many studies and 
research cases (Hervouet et al. 2000). The Navier-Stokes equations for 
incompressible flow are averaged vertically by integration from the 
bottom to the surface and solved simultaneously in TELEMAC-2D code 
using the finite-element method, as well as the equation for tracer 
conservation (equations 2.1 – 2.4) (Hervouet, 2007).  

 

6.2.3.1.  Boundary conditions 

There are eight open (i.e. liquid) boundaries in the model, one 
downstream (the “sea boundary”) and seven upstream (one for each 
tributary). The rest are closed boundaries. All of the water boundaries 
have prescribed boundary conditions. The upstream boundaries are 
modelled as freshwater inflows. The annual-averaged river discharge of 
the Scheldt River near Schelle, at the confluence of the Rupel and the 
Scheldt, amounts to 110 m3/s with approximately equal contributions 
from both tributaries (Kuijper et al., 2004). Therefore, in this study, a 
constant discharge is given to the upstream boundaries. The total amount 
of discharge is divided into two parts. The contribution from the three 
tributaries in the southwest is split evenly and accounts for half the 
amount of discharge to the mainstream. Similarly, the rest of the 
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tributaries in the southeast contribute another half. Numerical tests 
confirm that the upstream inflow has little influence on the simulated 
results in most of the domain since the upstream discharge is negligible 
compared with the inflow from the downstream boundary (the 
percentage of water flux passing through the upstream boundaries only 
ranges from 0.01% to 0.03% compared to the amount from the sea 
boundary). The freshwater inflow normally has a salinity level of 0.5 ppt 
(Flanders Hydraulics Research, personal communication) and this has 
been assigned as the value for the salinity tracer as the upstream 
boundary condition. The downstream boundary is the same as in the 
NEVLA model, which includes part of the North Sea. The tidal elevation 
and salinity data are imposed at the downstream boundary. The nodes 
along the boundary have been adjusted to the same positions as those in 
the NEVLA model so that tidal elevation along the boundary nodes can be 
taken identical to the ones that drive the NEVLA model. The original data 
of tidal elevation along the boundary has a time interval of 10 minutes. 
Therefore, a numerical interpolation is performed in order to match the 
model time step (5 seconds). To obtain smooth transitions in the data, a 
spline interpolation is used. This also enhances the model stability. At the 
downstream boundary, the salinity data from the NEVLA model are 
prescribed. The same spline interpolation is used to process the salinity 
data. 

 

Figure 6.4. Boundary condition locations of the hydrodynamic model. 
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6.2.3.2.  Turbulence modelling 

For modelling the turbulent stress, a sub-grid turbulence model 
developed by Smagorinsky (1963) is adopted in this study. In principle, if 
the size of finite elements were small enough to allow the reproduction 
of all mechanisms including the viscous dissipation of very small vortices, 
turbulence would naturally appear in the solution of the Navier-Stokes 
equations. This requires the mesh size no larger than the Kolmogorov 
microscales. The Smagorinsky model adds a turbulent viscosity deduced 
from a mixing-length model to the molecular viscosity, which 
compensates for the subgrid-scale turbulent vortices which modelling is 
inhibited by the size of elements (Hervouet 2007). This method assumes 
that the energy production and dissipation of the small scales are in 
equilibrium. The Smagorinsky model can be summarized as: 
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The turbulent viscosity is modelled by 
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where τij = the Reynolds stress tensor [kg·m-1·s-2], δij = the Kronecker 
delta, ρ = the water density [kg/m3], Cs = the dimensionless coefficient 
which ranges from 0.1 (channel flow) to 0.2 (isotropic turbulence), Δ = 
the mesh size [m] derived in 2D from the surface of the elements, and Sij 
= the strain rate tensor of average motion [s-1], the subscripts i and j are 
the indices of the Cartesian coordinates.  

 

6.2.3.3.  Drying and wetting of tidal flats 

Dealing with tidal flats has always been a problematic part of 
hydrodynamics models. As seen in the bathymetric data, tidal flats are 
quite extensive all along the Scheldt Estuary, but especially in the lower 
estuary. Large amounts of saline, brackish or fresh water flow across 
these tidal flats within each tidal cycle. Therefore, the tidal flats are 
constantly in transition between wet and dry conditions. Moreover, the 
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slopes are usually quite steep around the tidal flats and may cause serious 
numerical problems if an inappropriate drying/flooding scheme is 
chosen.  

Bates and Hervouet (1999) utilized the finite element model TELEMAC-
2D and began the wetting/drying process by characterizing all elements 
as one of four types: fully wet, fully dry, partly wet (dam-break type), and 
partly wet (flooding type). This categorization allowed them to apply an 
appropriate mass and momentum correction scheme. Once the element 
subtype was established, all partially wet elements were included in the 
computations and steps were taken to correct the mass and momentum 
discrepancies. In the case of momentum, the authors applied the scheme 
of Hervouet and Janin (1994), which assumed that the change in velocity 
with respect to time is equal to the water surface slope times the 
acceleration because of gravity. In some cases, this resulted in spurious 
results when the water surface slope was nearly flat, such as in the case 
of an element flooding from the bottom up. In terms of mass conservation, 
Bates and Hervouet (1999) applied the scheme of Defina et al. (1994). 
This scheme utilizes the bottom topography and water surface elevation 
to calculate a scaling factor that is applied to the continuity equation. This 
scaling factor allows for a true representation of the volume of water 
present on the element (Medeiros and Hagen 2013). 

The above wetting/drying scheme is provided as an option of treatment 
for tidal flats in TELEMAC-2D. In the present model, this option is 
adopted, so in this case, all the finite elements are kept within the 
computational domain. Mass-conservation is guaranteed with this 
option. Moreover, the new friction law, presented in Section 5.1, also 
takes into account the wetting and drying on the tidal flats. Contrary to 
traditional models, the new friction law ensures that the flow resistance 
becomes infinite when the water depth goes to zero. As demonstrated 
below, the present model does not require a threshold for the 
drying/flooding algorithm. This makes the model more robust. 

 

6.2.3.4.  Physics based roughness 

The Chézy coefficient is used to describe the bottom roughness in the 
model.  
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Figure 6.5. Comparison of bed shear stress in the central part of the 
Western Scheldt estuary for a traditional constant roughness parameter 
model (top) and the new friction law (bottom), in the case of a very small 
inundation threshold (1 mm). Without the improved roughness model, 
excessive erosion is predicted in the intertidal areas, because of the 
incorrect prediction of the bed shear stress. 

 

The different model behaviour for computation of bed shear stress is 
clearly demonstrated in Figure 6.5. Figure 6.6 shows the spatial 
variations in Chézy coefficients obtained from the new bottom friction 
law described in Section 5.1. The Chézy coefficients at all the nodes are 
updated at each time step based on the changes of flow field and other 
influence factors, e.g. suspended sediment concentration. 
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Figure 6.6. Chézy coefficients (at a certain time step) obtained from the 
new bottom friction law with concentration effects. 

 

6.2.3.5.  Salinity 

Because of the availability of salinity measurements in the Sea Scheldt, 
the year 2005 is selected to define the initial conditions of salinity for 
both winter and summer conditions. Initial conditions of salinity are 
based on measurements of 16th of February (winter conditions) and on 
27th of April (summer conditions). Salinity measurements are available 
for stations Vlakte van de Raan, Hoofdplaat, Baalhoek, Lillo, 
Boerenschans, Oosterweel and Hoboken. For the last three measurement 
points, the dataset of the Oosterweel tunnel project is used (TV SAM) 
(Van Kessel et. al., 2006). 

As mentioned in Section 6.2.3.1, the same salinity data from NEVLA in 
year 2009 is prescribed at the downstream (sea) boundary. 

In order to transform the scattered salinity data into the initial conditions 
for the hydrodynamic model, the following procedures were applied: the 
whole domain was divided into eight regions and each one has been 
assigned a constant salinity level based on the averaged values in Table 
6.1; then the hydrodynamic model was started with this initial salinity 
data. The different regions with different salinity levels began to mix. 
After three-month simulation period, the salinity was reasonably 
distributed over the entire domain and the salinity map generated at this 
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stage by the hydrodynamic model is used as the final initial salinity 
conditions (Figure 6.7). 

 

Table 6.1. Salinity data in the Scheldt estuary in 2005. 

Location Salinity – 
winter (ppt) 

Salinity – 
summer (ppt) 

Salinity – 
average (ppt) 

Vlakte vd Raan 35 32 33.5 

Hoofdplaat 27 27 27 

Baalhoek 12 15 13.5 

Lillo 1.1 7 4.05 

Boerenschans 1 / 2 

Oosterweel 0.7 2 1.35 

Hoboken 0.3 0.5 0.4 

 

 

Figure 6.7. Initial salinity distribution map in the Scheldt Estuary. 
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6.2.4. Sediment model 

The sediment transport is modelled using SISYPHE, which is a sediment 
transport module inside OpenTELEMAC-MASCARET system. SISYPHE 
can be dynamically coupled with the TELEMAC-2D hydrodynamic model. 
At each time step, TELEMAC-2D exports the flow conditions to SISYPHE, 
allowing it to compute the variables related to sediment transport, such 
as bedload and suspended concentration by mass (g/L). The bed 
evolution, i.e. the changes in bottom elevation, is sent back to TELEMAC-
2D. The dynamic two-way coupling keeps the information in the separate 
modules up to date. When coupled, SISYPHE also shares the same 
boundary conditions with TELEMAC-2D. In order to fit the purpose of this 
study, the original code of SISYPHE has been customized. 

The main customized subroutines in SISYPHE are as follows: 

 BORD has been modified for prescribing the time- and space-
dependent boundary conditions; 

 CONDIN has been modified in order to initialise the salinity for the 
entire domain; 

 CORSTR contains the new bottom friction law described in 
Section 5.1.2; 

 INIT_COMPO_COH has been modified for initialising the bed 
material composition using the sand fraction data; 

 SUSPENSION_FLUX_MIXTE has been modified for calculating the 
erosion flux of mixed-sediment using the equations described in 
Section 6.2.4.5; 

 SUSPENSION_DEPOT has been modified for calculating the 
deposition flux of mixed-sediment using the equations described 
in Section 6.2.4.5 as well. 

 

6.2.4.1.  Boundary conditions 

For the boundary conditions, there is no data set suitable for specifying 
the sediment concentration at both upstream and downstream 
boundaries in the simulation period. For the non-cohesive sediment, the 
depth-averaged equilibrium concentration is calculated assuming 
equilibrium concentration at a reference height above the bed using the 
formula from Zyserman and Fredsøe (1994) and a Rouse profile 
correction is then applied. For the cohesive sediment, sediment 
concentration at boundary nodes is calculated based on the erosion flux 
at those nodes. No solid discharge is prescribed at open boundaries, but 
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the sediments are allowed to move freely throughout the computational 
domain and through all its open boundaries. Compared to the large 
domain of the estuary, the background concentrations from incoming 
sediment loads at both upstream and downstream boundaries have 
limited influence to the coastal area and the main navigation channels in 
Scheldt. This confirms what has been known for years that most 
sediments recirculate within the Belgian coastal area (Malherbe, 1991). 

 

6.2.4.2.  The composition of bed material 

The bed composition in the Western Scheldt is dominated by sand while 
in certain locations along the Belgian coast as well as far away in the 
upstream near the Port of Antwerp, high percentages of mud can be 
observed. Figure 6.8 shows the sand distribution map in the domain, 
which is used as initial bed composition in the model. Due to the lack of 
data in the upstream river tributaries (upstream of Schelle), a default 
sand fraction is assigned to the bottom. The applied value was 
determined to be 90%, which allows smooth transition from upstream to 
downstream.  

 

 

Figure 6.8. Sand fraction by volume (%) distribution map in the Scheldt 
Estuary (combined data from Rijkswaterstaat, the Netherlands, and 
RBINS-MUMM, Belgium). 
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6.2.4.3.  Two-layer bed model 

The sediment bottom shows varying properties with depth as a result of 
alternating erosion and deposition events and of self-weight compaction 
(consolidation). In the top layer, sediment particles are usually freshly 
deposited to the bed. They are loosely packed and a relatively low shear 
velocity can bring them back into the water column. The older layers 
underneath have had time to consolidate. The sediment volume has 
compacted, the density increased, and the physical properties have 
changed since deposition due to the effective stress from the gravitational 
compaction. Therefore, the sediment particles in the lower layer(s) can 
be much more resistant to the flow and require more energy to be eroded. 
These insights are translated into a rather simple two-layer bed model: a 
first layer, which is easily erodible with a thickness of 0.5m and a second 
layer, which is much more difficult to erode and with a thickness of 1.5m. 
Although this model is a rather simplistic approximation of the real 
situation, it contains some essential characteristics such as the limited 
availability of erodible sediment for resuspension from the bottom. 

 

6.2.4.4.  Two types of sediments 

The current study considers two types of bed material, non-cohesive 
(sand) and cohesive (mud) sediment. The properties of bed material used 
in the model are given in Table 6.2.  

In the Scheldt estuary, the effective settling velocity can be affected by 
many factors, e.g. initial suspension concentration, flow unsteadiness, 
waves and tidal phase effects, which may cause a delayed settling of 
sediment particles (da Silva et al., 2006). For the cohesive sediment, the 
commonly used settling velocity in the Scheldt estuary is about 0.001 
m/s, which is generally larger than the settling velocity based on the 
individual particle size, thus, it implicitly accounts for the aggregation of 
cohesive particles into flocs (Fettweis et al., 2003; van Kessel et al., 2011; 
Dam and Bliek, 2013). The settling velocity of sand in the Scheldt estuary 
is set to 0.01 m/s, following the study of Hoogduin et al. (2009). Dam et 
al. (2007) used a slightly higher value 0.015 cm/s as the fall velocity of 
sand in their morphological model of the Western Scheldt Estuary. 
However, one should realize that the latter value also compensates for 
the fact that resuspension by waves, which is known to play an important 
role in the coastal zone, is not accounted for in the present model.  
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Fettweis and Van den Eynde (2003) suggest that the bulk density of mud 
found near Zeebrugge is about 1500-1600 kg/m3 and the critical shear 
stress for erosion varies between 0.5 Pa (freshly deposited mud) and 0.8 
Pa (after 48 h). Due to the existence of two types of sediment particles, 
the critical shear stress for erosion of a mixture is the combination of the 
values of sand and mud. The commonly used values for pure sand (0.2 – 
0.35 Pa) cannot represent the mixture properties and lead to excessive 
erosion of the fine fraction in the current mixed-sediment model. 
Therefore, the numerical tests suggest a higher value (0.6 Pa) for the 
critical shear stress for erosion. The most significant effect on erosion 
resistance occurs on the addition of small percentages by weight of mud 
to sand. This is confirmed by the study of Mitchener and Torfs (1996) 
(Figure 6.9), in which the critical shear stress for erosion can be easily 
above 0.5 Pa with just a small fraction (4% - 5%) of cohesive mud added 
in. In this sense, the commonly used values for pure sand (0.2 – 0.35 Pa) 
is not suitable as a starting value in the mixed-sediment model for 
determination of the critical shear stress for mixtures. 

 

 

Figure 6.9. Critical shear stress for erosion against % fines (by weight) for 
different types of cohesive material (from Mitchener and Torfs, 1996). 

 

Because the bed composition data shows that a fraction of mud is 
observed almost everywhere in the domain, the higher value of critical 
shear stress for erosion of sand is considered as appropriate in this study. 
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6.2.4.5.  New scheme for erosion & deposition of mixed-sediment 

For each type of sediment, the transport mechanism is different. Sand is 
mainly transported as bedload, cohesive sediment mainly as suspended 
load, but both modes of transport consume energy. From this perspective, 
the available energy in the system is likely to be overestimated if only 
considering cohesive or non-cohesive sediments. Thus, a new scheme 
accounting for mixed-sediment transport has been developed (Figure. 
6.10). 

 

 

Figure 6.10. Schemes of modelling mixed-sediment transport. 

 

During the erosion phase, the methodology for modelling mixed-
sediment from Waeles (2005) is employed. According to his study, the 
sand-mud mixture can be categorized as non-cohesive, mixed and 
cohesive, based on its sand-mud composition. Each category has its 
unique characteristics and behaviour. For the application in the Scheldt 
Estuary, the lower bound of the critical mud fraction is set to 30% and the 
upper bound is 50%. The mixture that contains mud less than 30% is in 
the non-cohesive regime and is considered as sand; those having mud 
more than 50% is in the cohesive regime and is treated as mud; the rest 
is in the mixed-sediment regime. The lower and upper bounds of critical 
mud fractions is suggested by the study of Panagiotopoulos et al. (1997) 
and Mitchener & Torfs (1996). As the mud fraction increases, the 
available space between the sand grains decreases. When the mass 
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fraction of mud is lower than about 30% (by weight), the sand grains 
remain in contact with each other. When the mud fraction exceeds 30%, 
spaces between sand particles are filled by mud particles, which can form 
a matrix, and, in this case, pivoting is no longer the main mechanism 
responsible for resuspension of sand grains. Consequently, the whole 
mixture does not behave like a non-cohesive sediment any more. In 
Mitchener and Torfs’ study, the critical shear increases significantly, 
when mud is added to sand (0% to 30% mud). There is an optimal ratio 
of sand content in a mixed bed at which the critical erosion shear stress 
is a maximum. The optimal sand fraction appears to be between 50% and 
70% by weight of sand (Mitchener & Torfs, 1996). Therefore, the lower 
and upper bounds of critical mud fractions were set at 30% and 50%. 
These values are also used in the study of Waeles et al. (2007).The critical 
shear stress for erosion is calculated as a function of the mud fraction (fm) 
using the equations (5.9) – (5.11) (Waeles, 2005). 

The calibration constant x1 is 0.5 in the current study, which is considered 
suitable for the Scheldt estuary according to the studies of Mitchener and 
Torfs (1996) and Fettweis et al. (2003). Figure 6.11 shows the critical 
shear stress for erosion as a function of the mud fraction in two bed 
layers. In the non-cohesive regime, sediment particles behave like sand, 
so the consolidation process is ignored. The critical shear stress for 
erosion increases when the mud is added to sand. When the mud fraction 
exceeds 30%, the transitional regime is reached where different 
behaviour in the upper and lower bed layers is expected. In the upper 
layer, the excessive mud particles will accumulate and due to the loose 
form, the critical shear stress for erosion begins to decrease; in the lower 
layer, the consolidation process will give extra erosion resistance to the 
bed material. When the mud fraction exceeds 50%, the maximum critical 
shear stress for erosion is reached in the lower layer, which is 0.8 Pa, the 
same as for mud consolidated for over 48 hours; while in the upper layer, 
the sediment behaves like freshly deposited mud, so the same value of 0.5 
Pa is assigned. The calibration constant x1 is set to 0.5 to ensure the 
critical shear stress for erosion does not exceed the maximum value 
before the mud fraction exceeding 50%, to preserve the characteristics of 
the sand-mud mixtures in different regimes. 
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Figure 6.11. Critical shear stress for erosion as function of the mud 
fraction. 

 

The erosion rate can be determined depending on the regime of the mixed 
sediment following the same procedure of Waeles (2005) (see equations 
5.12 – 5.17). The erosion constants E0s and E0m are determined based on the 

study of Mitchener and Torfs (1996), in which they used the sand with a 
median diameter of 230 μm and the mud with a median diameter less 
than 62.5 μm. They reported that the erosion rate for pure mud beds 
(0.05-0.1×10-3 kg·m-2·s-1) was an order of magnitude higher than for the 
20% and 40% sand beds (0.005-0.03×10-3 kg·m-2·s-1). Therefore, in this 
study the erosion constant E0s for the non-cohesive regime is assumed 
0.01×10-3 kg·m-2·s-1 and the erosion constant E0m for the cohesive regime 
is 0.1×10-3 kg·m-2·s-1. 

Since the vertical energy balance is not resolved in a 2DH model, the 
traditional deposition law, proposed by Krone (1962) is used. A new 
deposition criterion, which has been derived from a suspension capacity 
condition proposed by Toorman (2000 & 2002), has been introduced in 
this study, which allows estimating the critical stress for deposition in 
each node and no longer needs calibration – see Section 5.2.3. Since shear 
flow produces turbulence, the critical “shear stress” for deposition can be 
related to the total amount of turbulent energy that is required to keep a 
number of sediment particles in suspension. When the bed shear stress 
cannot provide the fluid with enough energy that is needed to maintain 
all the suspended particles in the water column, deposition shall begin. 
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The excessive sediment settles down to the bottom until the energy 
balance is restored.  

The critical shear stress for deposition, obtained by inversion of 
Toorman’s suspension capacity criterion, has been split into two parts in 
order to deal with sand-mud mixtures. In this case, the total required 
turbulent energy is also divided over both sediment fractions: part of it is 
used to keep non-cohesive particles in suspension and the rest is used to 
keep cohesive particles in suspension. The corresponding “critical 
stresses” are calculated in the equations (5.18) – (5.21). 

Krone’s deposition law (1962) subsequently is adapted to be used for 
calculating the deposition flux of each fraction, without violating the 
energy balance (see equations 5.22 – 5.25).  

The bed evolution is calculated using the Exner equation with an 
additional source term, allowing the inclusion of external changes caused 
by the erosion and deposition of sediment particles. The following form 
of the Exner equation is used in the study: 

   1 0b
b

Z
n Q E D

t


    


              (6.5) 

where: n is the bed porosity, Zb is the bottom elevation [m], Qb is the 
bedload transport rate per unit width [m2/s], E is the erosion flux and D is 
the deposition flux [m/s]. It is worth pointing out here that the bed 
porosity is an estimated value considering cohesive particles filling up 
part of the spaces between non-cohesive particles, and the erosion and 
deposition flux (equations 5.12 – 5.17 and equations 5.22 – 5.25) consists 
of contributions from both cohesive and non-cohesive sediments. 

 

 

Figure 6.12. Two-layer Bed Model 
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When computing the bed evolution, an iterative procedure is employed, 
where at each time step, the top layer is eroded first. Once it is empty, the 
erosion of the second layer starts. The deposited sediment always has the 
properties of a fresh deposit, i.e. the critical shear stress is as in the first 
layer. The sand/mud composition, however, is recalculated at each time 
step based on the mass fraction of sand/mud at each particular location 
after erosion/deposition processes, and the latest value is assigned to the 
new deposits (Figure 6.12). 

 

6.3. Calibration and validation 

6.3.1. Available data sets 

The model has been calibrated against the time series of measurements 
in 2009 at several locations both in the upstream and in the downstream 
near the Belgian coast. The available data sets are provided by the Royal 
Belgian Institute of Natural Sciences, Operational Directorate Nature 
(former Management Unit of the North Sea Mathematical Models and the 
Scheldt estuary, MUMM), Flanders Hydraulics Research 
(Waterbouwkundig Laboratorium) and IMDC, Belgium, and 
Rijkswaterstaat, Centre for Water Management, the Netherlands. 

The measurements close to the Port of Zeebrugge are taken and 
processed under the framework of “Monitoring and modelling of 
cohesive sediment transport and evaluation of the effects on the marine 
ecosystem as a result of dredging and dumping operations” (MOMO) by 
MUMM and RV Belgica in the period January to December, 2009 (Backers 
and Hindryckx, 2010). There are four field campaigns carried out and 
during these campaigns, water level, flow velocity and direction, and 
turbidity, are continuously measured as well as some basic parameters 
(temperature, salinity, density, fluorescence, and meteorological data) 
during one or several measurement cycles. In addition, the necessary 
water samples are taken for calibration. The measurement locations are 
indicated in Figure 6.13 and their coordinates are given in Table 6.3. 
These data are mainly used for calibration of the suspended-sediment 
concentration and salinity near the Belgian coast. 
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Figure 6.13 Measurement locations from MUMM. 

 

Rijkswaterstaat, Centre for Water Management, the Netherlands, has a 
monitoring network all over the Scheldt estuary, but those 
measurements are mainly water level, temperature and wind speed. The 
time series of measurements can be downloaded from the WTZ database 
in the Hydro Meteo Centrum. Thus, these data sets are used to calibrate 
the hydrodynamics in the coastal areas and as a complement to MUMM 
data. The measurement locations in the interested area are indicated in 
figure 6.14 and their coordinates are given in Table 6.4. 

 

Table 6.4. Measurement Locations from Rijkswaterstaat, Centre for 
Water Management, the Netherlands. 

Data Set RD coordinates Corresponding node 

Cadzand 15004.07, 378597.07 4448 

Vlissingen 30568.36, 385259.06 8949 

Westkapelle 19872.47, 394230.44 5482 
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Figure 6.14. Measurement Locations from Rijkswaterstaat, Centre for 
Water Management (the Netherlands). 

 

The third set of measurements mainly located in the upstream of Scheldt 
close to the Port of Antwerp, carried out by Flanders Hydraulics Research 
and IMDC, under the project “Prolonged measurements in Deurganckdok: 
Follow-up and accretion analysis”, which is the long-term measurements 
conducted in Deurganckdok aiming at the monitoring and analysis of silt 
accretion (International Marine and Dredging Consultants, 2010). This 
measurement campaign is an extension of the study “Extension of the 
study about density currents in the Beneden Zeeschelde” as part of the 
Long Term Vision for the Scheldt estuary.  
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Figure 6.15. Measurement locations from Flanders Hydraulics Research 
and IMDC. 

 

The available measurements are in the period April 2008 to March 2009, 
including upstream discharge in the river Scheldt; salt and sediment 
concentration in the Lower Sea Scheldt taken from permanent data 
acquisition sites at Oosterweel, Prosperpolder and up- and downstream 
of the Deurganckdok; near-bed processes in the central trench in the 
dock, near the entrance as well as near the landward end: near-bed 
turbidity, near-bed current velocity and bed elevation variations; current, 
salt and sediment transport at the entrance of Deurganckdok and vertical 
sediment and salt profiles (e.g. Figure 6.16) recorded with the SiltProfiler 
equipment (Bollen et al., 2006); and dredging and dumping activities. The 
measurement locations are indicated in Figure 6.15 and their coordinates 
are given in Table 6.5. These data sets contain the measurements of water 
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level, velocity magnitude, salinity level and suspension concentration in 
the simulation period 2009. 

 

 

Figure 6.16. Typical suspension concentration profile measured with the 
Siltprofiler at Deurganckdok at 16th Feb. 2005. The calculated depth-
averaged concentration at this particular location is 220.45 mg/L.  

 

6.3.2. Calibration processes 

The calibration is carried out for the hydrodynamic model first, since the 
flow conditions are crucial for the sediment transport. The main 
parameter calibrated at this step is the bottom friction coefficient (using 
the Chézy coefficient calculated from the new roughness law in this 
study). The sediment transport model is considered reliable only when 
realistic flow conditions can be reproduced. The following features are 
most valued when evaluating the hydrodynamic model: 

 the free surface elevation at the tidal cycle and seasonal time 
scales; 

 the magnitude of the velocity at different locations; 

 the salinity level in the mixing zone and in the coastal area. 

Once the validity of the hydrodynamic model has been assured, it is then 
coupled with the sediment transport model for further calibration, since 
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the implementation of the new friction law (see Section 5.1) and the bed 
evolution will also alter the flow conditions to a certain extent. This time 
the calibration not only focuses on the hydrodynamics but also on the 
suspended-sediment concentration. The critical shear stresses for 
erosion of sand and mud, as well as their erosion constants are the main 
parameters for calibration during this step. The model is declared 
satisfactory if the following features can be represented: 

 the order of magnitude of the suspended-sediment concentration 
throughout the estuary system; 

 the tidal and seasonal variations of the suspended-sediment 
concentration; 

 the turbidity maximum areas in the estuary. 

 

6.3.3. Model validation 

The model incorporated with the new friction law (see Section 5.1), 
including the concentration effects, is used during the calibration and 
validation processes because it is more physics based and it is likely to 
perform better. For the hydrodynamics in the Scheldt estuary, water 
level, magnitude of velocity and salinity level are shown in the following 
figures with comparison to the measured data.  

In general, the water levels obtained from the model show good 
agreement with the measured data throughout the estuary and the 
upstream river network. It is worth mentioning here that once the new 
friction law is implemented, the model gives good predictions in terms of 
water levels without tuning of the bottom friction parameters for specific 
areas, since the depth dependence is dominant relative to the influence 
of the roughness height ks. The comparisons are performed at three 
locations (nodes 4448, 5482 and 8949) in the downstream near the coast 
and three locations (nodes 27326, 28492 and 30783) in the upstream, 
close to the Port of Antwerp. Van Kessel et al. (2006) reported the tidal 
range at Vlissingen during a typical spring-neap tide varies from 2.97m 
to 4.46m. It first increases towards the upstream as it is affected by 
convergence and reflection. At Schelle (upstream of Antwerp), the tidal 
range during a typical spring-neap tide varies from 4.49m to 5.93m, 
which is larger than at the mouth. Further upstream, the tidal wave 
decreases due to dissipation. This characteristic is also reproduced by the 
model. The variations of the free surface at all these locations with the 
measured data are shown in Figures 6.17–6.22. In the locations close to 
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Vlissingen (nodes 4448, 5482 and 8949), the tidal range is around 2.8m 
up to 4.9m. This is smaller than the tidal range in locations in the 
upstream (nodes 27326, 28492 and 30783) before it reaches Schelle, 
which is from about 4.2m to 6.0m. 

 

 

Figure 6.17. Water level at node 4448.

 

Figure 6.18. Water level at node 5482. 

 

Figure 6.19. Water level at node 8949. 
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Figure 6.20. Water level at node 27326. 

 

Figure 6.21. Water level at node 28492. 

 

Figure 6.22. Water level at node 30783. 

 

Figure 6.23. Velocity magnitude at node 779. 
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Figure 6.24. Velocity magnitude at node 814. 

 

Figure 6.25. Velocity magnitude at node 28492. 

 

Figure 6.26. Velocity magnitude at node 30783. 

 

The measured velocity magnitude during the simulation period is 
available at four locations, two near the Port of Zeebrugge (nodes 779 and 
814) and the other two (Nodes 28492 and 30783) in the upstream close 
to the Port of Antwerp. The Figures 6.23–6.26 show the simulation results 
compared with the measurements. The depths of measurements are 
given in tables 6.2 and 6.4. The modelled depth-averaged velocities have 
been converted into the values at the corresponding depths (assuming a 
logarithmic profile) for proper model-data comparison. In general, the 
magnitude of the velocity obtained from the model is similar to the 
measurements except for the Node 779, at which there is 
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underestimation of the peaks during the high tide. The apparent 
difference in the minimum velocities are the artefact of the presentation 
of the velocity in terms of RMS value. The velocities always go through 
zero from ebb to flood and vice versa. But in general, the velocity in the 
upstream is larger than in the coastal area, which is consistent with the 
observations reported by van Kessel et al. (2006).   

Three locations are selected to compare the salinity level from the results 
(Figures 6.27–6.29) with the measurements. Node 814 is located in the 
coastal area near the Port of Zeebrugge. The time series of the measured 
data is available from February to April 2009. The salinity level near the 
Belgian coast is about 31g/L. The underestimations of the peaks can be 
easily seen at 14th and 30th of March. In general, the simulated result 
predicts the right magnitude of the salinity level but cannot match the 
measurements in detail at Node 814. Most likely, this can be attributed to 
the boundary values, which are generated by another numerical model 
and may not exactly correspond to the reality. The peaks observed in the 
measurements could be caused by a storm surge, which can bring 
seawater with higher salinity level to the coastal area. In Figure 6.31, peak 
values of suspension concentration also occurred at the same period, 
which indicates that a storm surge was possibly happening around that 
location and causing higher salinity and suspended sediment 
concentration in the measurements.  The other two locations (Nodes 
27326 and 28492) are in the partially mixed zone (Peters, 1975; Nihoul 
et al., 1978) far away from the downstream. The salinity level in this area 
fluctuates between 6-10g/L. The results show good agreement with the 
measured data at both nodes during that period. The more or less 
constant low value at ebb tide in these upstream nodes can be explained 
by the constant water discharge imposed as upstream boundary 
conditions, due to the lack of time series data. 

 

 

Figure 6.27. Salinity at node 814. 
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Figure 6.28. Salinity at node 27326. 

 

Figure 6.29. Salinity at node 28492. 

 

The suspended-sediment concentration consists of the contributions 
from both cohesive and non-cohesive sediment. However, the 
concentration of suspended non-cohesive sediment is about two orders 
of magnitude lower compared to cohesive sediment because the non-
cohesive sediment is mainly transported as bedload, as expected. The 
results are plotted in Figures 6.30–6.34 with comparison with 
measurements at five locations (Nodes 779, 814, 27326, 28492 and 
30783). Again, for better comparison, the simulated depth-averaged 
concentrations have been converted into the values at corresponding 
depths based on the shape of the measured suspension concentration 
profile of Figure 6.16. In general, the magnitude of the suspension 
concentration approximately matches the measured data. There are 
some deviations in the results, e.g. underestimations of the peaks at 
certain time steps. Nevertheless, considering that, the model is depth-
averaged and without coupling with the wave model, which becomes 
important in the coastal areas, this is not surprising. In Figure 6.30, the 
measured suspension concentration is plotted together with the 
significant wave height at Node 814. It can be seen that there are 
correlations between the fluctuations of suspension concentration and 
the wave actions. The phases of the time series of suspension 
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concentration generated by the model show agreement with 
measurements while the underestimation of peaks most likely can be 
explained by lack of wave action, which is ignored in this study. 

 

 

Figure 6.30. Measured suspension concentration at Node 814 (located in 
front of the Port of Zeebrugge) and the significant wave height around 
the same location. 

 

It is worth pointing out that, in the upstream locations, especially in nodes 
28492 and 30783, the simulated suspension concentration rapidly 
decreases after reaching the peaks, while the measurements tend to 
maintain higher concentrations for longer periods. Taking into account 
the locations, a possible explanation could be disturbance by human 
activities. Nodes 28492 and 30783 are located in a busy navigation 
channel in the upstream. The comparison with measured data may 
indicate that the cruising of a ship, dredging or other activities during the 
period mid-January to late March were intensive and influenced the 
suspension concentration. After that, those activities seem to have 
reduced and the suspended sediment was also less disturbed, which 
could explain the better agreement with data at the end of March in all 
three upstream locations. 
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Figure 6.30. Suspended-sediment concentration at node 779. 

 

Figure 6.31. Suspended-sediment concentration at node 814. 

 

Figure 6.32. Suspended-sediment concentration at node 27326. 

 

Figure 6.33. Suspended-sediment concentration at node 28492. 
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Figure 6.34. Suspended-sediment concentration at node 30783. 

 

Beside of the calibration against the point measurements, the spatial 
variability of the suspended-sediment concentration has also been 
examined.  

One of the most distinctive features of sediment transport in estuaries, 
e.g. the Scheldt estuary, is the presence of a turbidity maximum. The 
energetic tidal flow is capable of maintaining quite high concentrations of 
suspended sediment in the estuary, higher than occur either in the river 
or in the sea. This feature is called a turbidity maximum and there are two 
dominant mechanisms that contribute to its maintenance, the residual 
circulation of water and the tidal asymmetry that produces a net 
landward movement of sediment (Dyer, 1986). Burchard and Baumert 
(1998) studied relative importance of these mechanisms numerically and 
they concluded that in the setting they investigated (an academic 
idealized 2DV model considering all the mechanisms, e.g. the residual 
gravitational circulation, tidal velocity asymmetry and tidal mixing 
asymmetry) the mechanism associated with tidal asymmetry was more 
important than the one resulting from the residual gravitational 
circulation. 

There are studies in which 2D depth-averaged models were used to 
investigate the process of the formation and maintenance of estuary 
turbidity maximum (ETM), e.g. the study of Ellis et al. (2008) for the Irish 
Sea. Although the residual gravitational circulation cannot be accounted 
for directly, it can be implicitly accounted for by the depth-averaged 
advection, which reaches a minimum residual transport at the location of 
the turbidity maximum, and the vertical erosion/deposition processes. 

In the Scheldt estuary, turbidity maximum zones are observed in 
different regions (as indicated in Figure 6.35) where a large amount of 
sediment particles is accumulated. These sediments are continually 
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deposited and resuspended by the tidal flow. The distribution of 
suspended matter is influenced by a range of interrelated processes, e.g. 
temperature and biological activity, fresh water discharge and salinity, 
hydrodynamic conditions and turbulence, mineralogical composition, 
chemical conditions, aggregation and flocculation (Meire et al., 2005). 
The main mechanisms suggested by the Scheldt model in this study is the 
residual sediment circulation. The occurrence of tidal velocity asymmetry 
and its interaction with the time-varying concentration field is found in 
the estuary (see Section 6.4.2 and 6.4.4). 

 

  

Figure 6.35. Suspension concentration (g/L) averaged over one tidal 
cycle on 4th December 2009. 

 

Three turbidity maximum zones can be observed in the Scheldt estuary, 
one in front of the Belgian coast around the Port of Zeebrugge, one at the 
freshwater/seawater interface in the downstream, and a third one 
situated at about 50-110 km from the mouth originating from tidal 
asymmetry (Baeyens et al., 1998; Fettweis et al., 1998; Herman & Heip, 
1999). As indicated in Figure 6.35, these turbidity maximum zones are 
reproduced by the model. 
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Figure 6.36. Modelled erosion and accumulation (m) of sediment around 
Port of Zeebrugge after one year. 

 

 

Figure 6.37. Measured erosion and sedimentation near the Port of 
Zeebrugge between 1999 and 2009 (Janssens et al., 2012).  
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The Port of Zeebrugge is a major port in Europe and an important 
multifaceted port in northwestern Belgium. For better port management 
and toward sustainable development, many research tools were 
developed for investigating the flow conditions and sedimentation 
around Zeebrugge, in order to provide scientific advice to policy makers 
by simulating many different scenarios. In order to evaluate the quality 
of the model particularly in this area, the erosion and sedimentation 
around the Port of Zeebrugge after one-year simulation is carefully 
examined. The reference data are from the Quest4D project in which they 
measured topography and bathymetry changes over the period 1999-
2009 and observed long-term morphological evolution of the Belgian 
coast and shelf (Janssens et al., 2012). Comparing the modelled erosion 
and sedimentation patterns with the measurements (Figures 6.36 and 
6.37), many similarities can be discovered. Erosion occurs along the two 
breakwaters and develops towards the sea. The sedimentation zone 
appears on the right side of the port. These two patterns can be observed 
in Figure 6.37. The most obvious difference is that the sedimentation also 
develops inside the port near the entrance to the sea while it is not shown 
in Figure 6.37 due to lack of data. Since our model has not been optimized 
for the nearshore (a.o. too coarse mesh resolution and no wave effects), 
there remains potential for further future improvements. 

The agreement between the sedimentation and erosion patterns and 
magnitude reproduced by the model around the Port of Zeebrugge and 
the observations from the Quest4D project (Figures 6.35 and 6.36) also 
supports that the settling velocities chosen for this study are appropriate. 

 

6.4. Results 

The calibrated model is then used to investigate the sediment transport 
in the Scheldt Estuary, and more importantly, to evaluate the 
concentration effects in the new bottom friction law and its influence on 
the sediment flux. 

 

6.4.1. Movements of turbidity maximum areas 

The Figure 6.39 shows the sediment concentration evolving in one tidal 
cycle on 4th December 2009. The model shows that the movements of the 
turbidity maximum near the Port of Zeebrugge is always counter-
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clockwise. Sediment is accumulated at the east side of the port, and then 
transported around the port towards the south-west and finally stays at 
the west side of the port. This is consistent with the erosion and 
sedimentation patterns found in the observations (Janssens et al., 2012) 
and the modelled results (Figures 6.36 and 6.37). For the turbidity 
maximum in the upstream, its movement seems to react rapidly to the 
tidal waves. During the ebb tide, the turbidity maximum shifts towards 
the downstream and then shifts backwards during the flood tide.  

 

 

Figure 6.38. A typical tidal cycle in the Scheldt estuary 
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6.4.2. Residual sediment circulations 

The model also shows the ability to represent the residual flow 
circulations related to ebb and flood channels. 

 

 

Figure 6.40. Computed residual velocity (m/s, upper figure) and the 
bedload transport (m2/s, lower figure) over a period of one year. The red 
areas indicate the flood-dominated channels and the blue areas are the 
ebb-dominated channels. It also reveals the sediment circulation patterns 
and residual transport paths in the Terneuzen section of the Scheldt 
estuary. 
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Figure 6.40 reveals the flood/ebb channel system in the Terneuzen 
section of the Scheldt estuary with bedload transport, which is in good 
agreement with the study of Jeuken (2000). According to her study, the 
flood/ebb channel system is responsible for the residual sediment 
transport patterns found in the Scheldt, i.e. the sediment circulation and 
the transport paths. More sediment is transported landward in the flood 
channels and seaward in the ebb channels during a tidal cycle. The similar 
residual circulation patterns can also be found in the movement of 
suspended sediment in the estuary (see Section 6.4.4). This is also helpful 
for explaining the erosion/sedimentation occurring in the Scheldt. 

 

6.4.3. Evaluation of the new bottom friction law 

For demonstrating the new physics based bottom friction law, two more 
test cases were created besides the standard model. The standard model 
incorporates the full version of the new friction law including the 
concentration effects denoted as the DepCsR. The other two are the test 
case with constant roughness coefficient (Chézy coefficient = 65, obtained 
by calibration with water depth data, denoted as ConR) and the test case 
with the new friction law excluding the concentration effects (denoted as 
DepR). The rest of the model settings are identical in all the test cases.  

The suspended-sediment distribution from all three cases averaged over 
the same tidal cycle on 4th December 2009 are put together for 
comparison. As it can be seen from figure 6.41 – 6.43, similar sediment 
distribution patterns are found in both the ConR and DepR cases. 
However, the suspension concentration in the North Sea and in the 
upstream close to the port of Antwerp is reduced with the simplified 
version of the new friction law (without the concentration effects). In the 
DepR case, less suspended sediment appears in the river mouth. It also 
does not reach the southwest of the port of Zeebrugge as far as the ConR 
case. The DepCsR case shows a different sediment transport pattern 
compared with the other two cases. In general, higher suspension 
concentrations are obtained with the new friction law including the 
concentration effects, especially near the coast and in the upstream. The 
suspended sediment spreads further near the coastal area and the 
turbidity maximum close to the port of Antwerp also extends further 
towards the downstream (Figure 6.44), which is closer to the 
observations. It is situated at about 50-110 km from the mouth 
originating from tidal asymmetry (Baeyens et al., 1998; Fettweis et al., 
1998; Herman & Heip, 1999). 
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Figure 6.41. Suspended sediments concentration (g/L) from ConR case 
averaged over one tidal cycle. 

 

Figure 6.42. Suspended sediments concentration (g/L) from DepR case 
averaged over one tidal cycle. 
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Figure 6.43. Suspended sediments concentration (g/L) from DepCsR case 
averaged over one tidal cycle. 

 

Figure 6.44. Comparison of Suspended sediments concentration (g/L) 
averaged over one tidal cycle (from Figures 6.41 – 6.43) in the upstream 
around the Port of Antwerp. 

 

Differences of averaged suspension concentration over the same tidal 
cycle between DepR and the ConR cases are shown in Figure 6.45, and the 
differences between DepCsR and the ConR cases in Figure 6.46. Positive 
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values mean higher concentration compared to the ConR case and vice 
versa. Figure 6.45 shows that the new roughness law without considering 
the concentration effects used in the DepR case predicts less suspended 
sediment around the Port of Zeebrugge than using constant roughness in 
the ConR case. There are also underestimations in the navigation 
channels near the river mouth compared with ConR case while the 
concentration level in the turbidity maximum area close to Antwerp is 
higher. The better model performance can be clearly seen in the DepCsR 
case (Figure 6.46) with the new roughness law including the 
concentration effects, in which both the predictions in the upstream 
turbidity maximum zone, as mentioned earlier, and the predicted 
concentration levels of suspended sediment in the coastal area have been 
improved. As indicated in Figure 6.39, the suspended sediment is brought 
up from the northeast of the Port of Zeebrugge and then transported 
along the Belgian coast towards the southwest within a tidal cycle. The 
excess concentration in the coastal area, shown in figure 6.45, implies 
that the suspended sediments can be transported further southwest 
along the coast in the DepCsR case than the ConR case. This trend is 
confirmed by the processed SeaWiFS remote sensing images by Fettweis 
et al. (2007), which shows the seasonal averages (winter situation, 
similar as in figures 6.41 – 6.46) of vertically corrected SPM concentration 
in the southern North Sea.  

 

 

Figure 6.45. Differences of suspension concentration (g/L) predicted in 
the DepR case compared with the ConR case over the same tidal cycle on 
4th December 2009. 
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Figure 6.46. Differences of suspension concentration (g/L) predicted in 
the DepCsR case compared with the ConR case over the same tidal cycle 
on 4th December 2009. 

6.4.4. Analysis of sediment fluxes in the Scheldt 

In addition to the suspension concentration, the sediment flux has also 
been examined. Again, the results from all three cases were analysed and 
compared.  

 

 

Figure 6.47. Transects defined in the model for calculating sediment 
fluxes. 
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For a better understanding of the sediment circulation in the Scheldt, the 
entire research domain has been divided by nine transects (Figure 6.47). 
The accumulated sediment fluxes were calculated and plotted in figures 
6.48 – 6.56. The positive value means the sediment flux has a direction 
normal to the transect pointing to the downstream (seaward) while the 
negative value means the opposite direction (landward). 

 

 

Figure 6.48. Comparison of accumulated sediment flux in one year at 
Vlissingen.  

 

Figure 6.49. Comparison of accumulated sediment flux in one year at 
Borssele. 

 

Figure 6.50. Comparison of accumulated sediment flux in one year at 
Baarland. 
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Figure 6.51. Comparison of accumulated sediment flux in one year at 
Kruiningen. 

 

Figure 6.52. Comparison of accumulated sediment flux in one year at 
Dutch-Belgian boarder. 

 

 

Figure 6.53. Comparison of accumulated sediment flux in one year at 
Deurganckdok. 
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Figure 6.54. Comparison of accumulated sediment flux in one year 
downstream of Antwerp City 

 

Figure 6.55. Comparison of accumulated sediment flux in one year 
upstream of Antwerp City 

 

 

Figure 6.56. Comparison of accumulated sediment flux in one year at 
Rupelmonde. 

 

The initial (model warming-up) period (the first 40 days of the year) for 
each case is eliminated in order to avoid its influence. All the sediment 
fluxes start from zero at 00:00:00, 10th Feb 2009 and accumulate over 
time. The results explain how the turbidity maximum areas are formed in 
the River Scheldt. The turbidity maximum near the river mouth is caused 
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by the sediment fluxes coming from two opposite directions – suspended 
sediment being transported upstream at Borssele and transported 
downstream at Kruiningen, finally they converge at the locations in 
between, shifting back and forth due to the flood or ebb tide. Another 
turbidity maximum is formed in the same way. The sediment flux is 
towards the upstream at Deurganckdok, joining the sediment flux in the 
opposite direction from upstream Antwerp. The reason behind the 
sediment flux coming from different directions is the tidal asymmetry – 
the non-linear processes governed by the basin morphology when 
astronomic tidal waves propagate into the estuary (Bolle et al., 2010). For 
this particular case, the horizontal tide is considered as asymmetric since 
the differences can be easily found between the ebb and flood velocities 
from the results. Figures 6.57 and 6.58 show the velocity components at 
node 28492 (in the downstream of Deurganckdok) from 6000 to 7000 
hours of the simulation. The velocity components are asymmetric in both 
directions and the magnitude of the velocity towards upstream is almost 
30% - 40% larger than the opposite direction. It also reveals that the 
sediment flux is already in the upstream direction before reaching the 
transect at Deurganckdok.  

 

 

Figure 6.57. Velocity component U in X direction at node 28492 (location 
is indicated in Figure 6.15) from 6000 to 7000 hours 
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Figure 6.58. Velocity component V in Y direction at node 28492 (location 
is indicated in Figure 6.15) from 6000 to 7000 hours. 

 

Comparing the calculated sediment fluxes in all three cases at each 
transect does not give clear insight on how the new bottom friction law 
affects the sediment flux at a particular place. It is also determined by the 
bottom topography, flow conditions and many other factors. However, 
one thing is sure, that the concentration effects cannot only alter the 
distribution of suspended sediments in the estuary, but also have an 
influence on the sediment flux in the entire domain and it tends to be 
more important in the upstream. 

 

6.4.5. Wave effects on the sediment mass balance 

The mass balance for the Scheldt estuary is one of the enigmas that still is 
not resolved. A few attempts have been carried out in the 1990s, which 
suggest a small yearly import of mud from the sea into the Western 
Scheldt where it deposits (Wartel & van Eck, 2000). The most recent data 
and simulations suggest that the net inflow of fine-grained sediment 
during flood is of the same order of magnitude as the outflow during ebb 
(order 400,000 Tons/day; van Kessel & Vanlede, 2010). These results are 
confirmed by the present model. However, the residual transport over a 
tidal cycle is the difference between nearly equally large numbers and 
very sensitive to proper model settings. Estimations based on the change 
in bottom topography over many years and a known inflow from the 
continental side suggest confirmation of the earlier trend of net import of 
mud over the transect Vlissingen-Breskens, increasing in recent years, 
attributed to the subsequent deepenings (Dam & Cleveringa, 2013). 
However, the mud transport model set up by Deltares, without 
morphodynamics, predicted a small net export for the year 2006 (van 
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Kessel & Vanlede, 2010). The present model, the first one accounting 
simultaneously for both sand and mud transport and including 
morphodynamics, even predicts a net export roughly five times larger 
over the year 2009. 

 

 

Figure 6.59. Comparison of accumulated sediment flux with and without 
wave influence in one year at Vlissingen. The “v2” result is obtained by an 
assumed augmentation of the SPM concentration during floods with an 
average 12% caused by wave-induced resuspension (see text for details). 

 

Figure 6.60. Hourly computed values of depth-averaged SPM 
concentrations and mud fluxes and effect of artificial increase of SPM 
concentrations during the flood phase (indicated “v2” in Figure 6.58). 
Computed values of water levels and depth-averaged flow velocity are 
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also shown. Results for a tidal cycle (from 2009-12-30, 19:00hr to 2010-
01-01, 00:00hr) in a point roughly halfway in the cross section between 
Vlissingen and Breskens at the mouth of the estuary. Cumulated fluxes 
are for the full cross-section. 

 

In order to trace the likely reason for the discrepancy, despite the overall 
good predictions of the model, a sensitivity analysis has been carried out 
for an arbitrary tidal cycle near the end of the simulation. The simulated 
sediment flux (positive sign means exporting seaward, and vice versa) 
passing through the Vlissingen-Breskens transect at the end of December 
2009 is shown in Figured 6.59 and 6.60. For this particular cycle, the net 
export of mud is found to reach roughly 30,000 tons/cycle. The export is 
simply explained by the fact that during flood the flow velocity is lower 
than at ebb, while the flood SPM concentration varies between 90 and 
120 mg/l, whereas the ebb SPM varies between 100 and 140 mg/l. These 
values lie in the range of the few scattered data available, giving an 
average of 130 mg/l (van Kessel et al, 2011). With only a slight increase 
of on average 20% in the mud SPM during flood, the residual flux over 
one tide reverses sign. Unfortunately, there are no systematic SPM 
measurements over a tidal cycle available for this location at this 
moment. Nevertheless, it can easily be imagined that the SPM values at 
the seaside are underestimated in the model since resuspension by waves 
has not been modelled.  

In Figure 6.60, the total SPM with “wave-induced” resuspension is 
approximated heuristically (using a weak power law function), allowing 
the SPM to increase gradually during the flood tidal phase when the flow 
moves landward. This time, the cumulated sediment flux (1.6 Kt/cycle or 
1.17 Mt/yr) reverses the residual flux direction to import from the 
seaside, and its value is also much closer to the one found in the latest 
study for the Flemish-Dutch Scheldt Commission (VNSC: Vlaams-
Nederlandse Scheldecommissie) (Cleveringa, 2013) where the 
conclusion is a net import of the order 0.75 Mm3/yr, which corresponds 
to 0.9-1.2 Mt/yr (depending on the assumed mud density). To obtain the 
same net flux over the entire year 2009, the suspended concentration at 
sea needs an average increase of only 12% (Figure 6.59). These 
computations show the high sensitivity to assumptions and calculation 
procedures.  

The whole Scheldt estuary can be divided into different “cells”, in which 
the residual sediment transport mostly circulates within the cells. In this 
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sense, the sensitivity of the sediment flux at the transect Vlissingen-
Breskens is also related to this particular place, which is located at the 
boundary of one “cell”. Here, the residual flow velocity is usually low and 
can be easily affected by other factors, e.g. waves. 

Notice that in other two transects upstream of Vlissingen-Breskens, the 
simulated sediment fluxes (Figures 6.49 and 6.50) are much closer to the 
values found in the VNSC study (Cleveringa, 2013) at the similar cross-
sections in terms of both direction and magnitude (0.8-1.1 Mt/yr at both 
Borssele and Baarland, import from the seaside), which suggests that this 
kind of impact on the net sediment flux is specifically important in the 
coastal areas up to the river mouth and becomes very limited in the 
upstream. This strengthens the assumption about the role of the wave-
induced sediment flux. 

However, the simulated results on sediment fluxes may not necessarily 
correspond to reality. The reason for caution is the fact that the transport 
in the present 2DH model is governed by the depth-averaged velocity. For 
instance, in the present 2DH model the bedload transport shows the same 
accumulated flux pattern as the suspended load, which is not as expected. 
In reality, the transport at the surface may go in the opposite direction 
relative to the near-bottom and bedload transport as a result of 
freshwater-seawater interaction and inertia. Therefore, it is strongly 
recommended to set up a 3D model where surface and bed currents can 
be computed individually, before drawing conclusions on actual residual 
fluxes, their direction and magnitude. 
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Chapter 7  

 

CONCLUSION & RECOMMENDATIONS 

 

7.1. Conclusion and recommendation on the 1DV model 

In order to investigate the turbulence modulation due to particles in 
sediment-laden flow, a 1DV model has been developed in which the 
Navier-Stokes equations, k-ε model and advection-diffusion equation are 
coupled and solved numerically. For better describing the fluid-particle 
interactions, relevant experimental work is studied as well as the basics 
of two-phase flow theory. The extra terms were derived from two-fluid 
two-phase flow governing equations and have been tested and validated 
with studies of Muste et al. (2005) and Cellino (1998).  

It comes to conclusions that the extra terms in the modified k-ε model 
(v2) are able to improve the turbulent eddy viscosity profile especially in 
the upper water column. In both simulations for Muste’s NS2 and 
Cellino’s Q55S015_Sand_I experiments, the extra terms are capable to 
give better agreement with the measured data in terms of eddy viscosity 
and streamwise velocity. It appears that the extra terms due to the 
presence of the particle phase have most influence to the turbulence. 

After many numerical tests with the 1DV model, it is reasonable to make 
a conclusion that the advection-diffusion equation used in the traditional 
sediment transport model is not sufficient for complex situations where 
the reference concentration at the bottom is usually unknown. It is 
possible to apply the two-phase approach here for improving the 
prediction of suspended sediment movements. 

It is also worth mentioning that the major limitation of the modified k-ε 
model (v2) is that it cannot deal with the low-Reynolds effects near the 
bottom at this moment. However, the preliminary tests show that the 
extra terms can be added into the low-Reynolds k-ε model (Toorman, in 
preparation) and show improvements in the prediction of turbulence 
eddy velocity particularly in the upper water column. Currently the low-
Reynolds k-ε model proposed by Toorman is under test and the future 
step is to combine it with the extra terms to improve the overall 
performance of the k-ε model turbulence model. 
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For the future research, the first improvement can be done by using the 
particle force balance equation to solve the slip velocity. Then the next 
step is to include the low-Reynolds effects, implement the new two-layer 
low-Reynolds turbulence model. Later, in order to increase the prediction 
accuracy, it is necessary to include the particle collision, which turns out 
to be a major mechanism for keeping particles in suspension in the near-
bottom layer. After that, it is planned to extend the model to 2DV 
unsteady non-uniform flow to study e.g. wave-induced sediment 
transport, which is believed to be able to account for more mechanisms 
happening in the near-bottom layer. 

 

7.2. Conclusion and recommendation on the Scheldt 

model 

The KU Leuven-Telemac Western Scheldt model has been established 
and used as the first high-resolution mixed-sediment transport model to 
study the transport patterns and sediment flux in the Scheldt estuary. A 
new physics based friction law, based on a generalized mixing-length 
theory (GML), has been incorporated in this model. A new deposition 
criterion based on a suspension capacity condition has been 
implemented as well. The critical shear stress for deposition is no longer 
taken constant, but related to the available energy for suspending 
particles. Its instantaneous value is obtained from the local suspension 
capacity condition. It is no longer a pure material parameter but a 
function of sediment concentration, settling velocity, water depth and 
bed shear stress. The model deals with two types of sediments, sand and 
mud, and the bed composition of the entire domain is defined non-
uniformly based on survey data. A unified way of calculating 
erosion/deposition was used in this study. The model has been calibrated 
against measurements at different locations and is able to reproduce a 
realistic flow field in general. Due to the complexity of the research 
domain, more data are required for further validation and subsequent 
improvements. 

Numerical simulations have been carried out to compare and analyse the 
model results obtained for different friction laws. Three bottom friction 
laws have been implemented and applied to the same test case (identical 
model set-up and initial conditions), partially calibrated and validated 
with field data from 2009. The first model applies a constant roughness 
coefficient, which at present is the most current practice in engineering 
studies. The second model employed a depth-dependent formulation, 
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obtained by integration of the standard logarithmic velocity profile 
(Prandtl-von Karman). The third model is an extension of the second, 
including viscous stresses, effective bed roughness (dissipation by 
separation vortex generation) and additional dissipation mechanisms 
that become important in high-concentrations as found above the bed (i.e. 
inter-particle friction and collisions, and particle wake turbulence) 
resulting in a bed shear stress predictor. In each case, the computed 
friction has been converted into an equivalent Chézy friction coefficient. 
The comparison of all the three cases shows that the third model has 
better predictions in terms of distributions of suspended sediments in the 
Scheldt estuary, especially in the turbidity maximum zones in the 
upstream and the general transport patterns near the Belgian coast. It 
also demonstrate that the subgrid scale effects, such as additional viscous 
stresses and dissipation mechanisms induced by sediment particles, etc., 
in the high concentrated layer are important and indeed have big 
influence to the large scale domain.  

Since the new bed shear stress closure is constructed as the superposition 
of the turbulent and the laminar part, it allows the simulation of both 
transient conditions and the transition during drying or wetting of tidal 
flats. Nikuradse’s empirical roughness model is implemented allowing 
accounting for both hydraulic smooth and hydraulic rough conditions. 
The latter is important since the tidal induced oscillatory flow may fulfil 
either condition, depending on the phase of the tidal cycle. 

An additional advantage of the new friction law is the fact that its value 
automatically tends to infinity when the water depth goes to zero. 
Therefore, the drying and flooding of intertidal flats can now be modelled 
without specifying an inundation threshold. This proved to work very 
well for the many intertidal areas in the Western Scheldt. The benefit is 
that intertidal morphodynamics can now be modelled at great detail for 
the first time. Erosion and deposition in these areas can now be estimated 
with much higher accuracy, as well as their contribution to the overall net 
fluxes. Besides, the new friction law can adapt to different topographies 
due to its physics based characteristics and provides the hydrodynamic 
model with better performance in terms of water levels and velocity field 
without tuning of the bottom friction coefficient. 

The sensitivity of the model to the bed friction model has been evaluated 
by intercomparison of the computed sediment budget at the mouth of the 
estuary. This has always remained a point of discussion, since previous 
model results did not match with estimates based on field data, even 
opposite directions have been claimed. Near-bottom sediment transport, 
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which is hard to model and which escapes from most measuring 
techniques, most likely plays an important role in explaining the 
differences. The comparison of the three friction models indeed results in 
different evolutions of the net sediment budget calculated at different 
transects across the entire estuary. These differences are also reflected in 
significant differences in local erosion-sedimentation patterns.  

The asymmetrical tide is also reproduced in the model and could be 
interpreted as the main reason of the occurrence of the turbidity 
maximum areas in the Scheldt. The model captures the sediment fluxes 
from two different directions converging in the upstream and 
downstream, resulting in the accumulation of suspended sediment in 
those areas.  

Nevertheless, the fact that the flow at the surface may be in opposite 
direction than the near-bottom current, is expected to have a great impact 
on the actual residual fluxes of both suspended load and bedload. 
Therefore, it is necessary to develop a 3D version of the model, before any 
conclusions can be drawn on direction and magnitude of the fluxes. A 3D 
version of the present model is currently under development.  

To understand how to achieve this, the 1DV model research enters the 
picture. The currently used new friction law is based on the assumption 
of a logarithmic velocity profile and a Rousian concentration profile, 
which are no longer valid when high-suspended sediment concentrations 
occur and the velocity profile deviates. In the 3D version of the friction 
law, the bed shear stress needs to be computed from the computed 
velocity profile above the bed, which requires the model adaptations 
tested in the 1DV model. 

For the future research, the model will be extended to a full 3D model (3D 
hydrodynamics coupled with 3D sediment transport). The wave effects 
will be included because it is an important influence factor for predicting 
the sediment balance in the Scheldt estuary. Besides, a flocculation model 
is also important for the cohesive sediment transport and will be 
incorporated into the model. The model is expected to yield even better 
results when the dynamics of flocculation is incorporated, following the 
computational efficient methodology proposed by Lee et al. (2014). 
These two major aspects are believed to improve the model and make it 
more realistic for the complex estuary system.  

In the current study, results at certain locations are found difficult to be 
well interpreted due to the lack of additional information, e.g. the 
information of dredging activities in the navigation channel and the 
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meteo data in the area of interest. This data can be found in relevant 
institutes or government departments. For the future research, this kind 
of data will be collected for refining the calibration and validation 
process. 

 

7.3. Conclusions and recommendations on 

developments in the TELEMAC-2D/SISYPHE model 

It has been proved by many other studies that the TELEMAC modelling 
system is powerful and reliable for many types of free surface flow 
problems. Besides the various options and flexibilities provided by 
TELEMAC out of the box, the source code is also highly customizable for 
specific research purposes. In the TELEMAC system, the modules can 
always be coupled, e.g. the sediment transport module SISYPHE can be 
coupled with hydrodynamics, the hydrodynamic model can be coupled 
with the waves module TOMAWAC, or even to be more complex, the 
hydrodynamic model coupled with sediment transport and wave models, 
which provides the possibility for more realistic applications. 

During the model development, also some limitations have been 
encountered in the TELEMAC system, especially in the implementation of 
the new roughness law. It has been found that, in the coupled sediment-
hydrodynamic model, the variables such as the velocity components 
passed from the hydrodynamic model to the sediment transport model 
are the values from the previous time step. The roughness coefficient 
calculated at the current time step does not correspond the real 
roughness at the same time step. It sometimes can cause errors or 
instability issues at certain locations during the drying/wetting 
processes. This could be improved by making a sub-iteration loop, in 
which the new roughness law is calculated and the velocity is updated. 
Nevertheless, this has to be investigated further in a future study. 

Another limitation is encountered during the implementation of the new 
scheme for computing erosion/deposition of mixtures in the SISYPHE. 
The original process flow is not optimised for mixed-sediment transport. 
It only provides one variable for storing the deposition flux. Therefore, 
that variable is used either for non-cohesive or cohesive sediment at once 
and cannot account for the combination of both. This has been improved 
by defining an additional global variable for deposition flux and is used 
together with the original variable. 
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A summary of the original contributions is presented in Appendix IV. 
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APPENDIX I  
 
DERIVING GOVERNING EQUATIONS FOR TWO-
PHASE/MIXTURE MODEL 

 

The governing equations for two-phase/mixture model can be derived by 
performing Reynolds-averaging to the conservation equations of fluid 
and particle phase respectively (Toorman 2013). 

Conservation of mass 

In the case of non-cohesive sediments (like sand), the solids mass 
conservation is: 

( )
0

j

j

v

t x

 
 

 
                  (A.1) 

And fluid mass conservation: 

( (1 ))(1 )
0

j

j

u

t x
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                 (A.2) 

where 𝜙  = the volume fraction of the particle phase, 𝑣  the particle 
velocity, 𝑢 the fluid velocity. 

Conservation of momentum 

The volume-averaged momentum conservation equation for the particle 
phase is written as: 
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or, using mass conservation equation 
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For the fluid phase one can write the equivalent: 
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or, using mass conservation equation 

1
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where 𝑓 represents the interaction force between the two phases. 

The most elegant form of equations is obtained in terms of Reynolds-
averaged related fluid velocity and solids velocity (equation 3.7), related 
to Reynolds-averaged properties by Toorman (2008). Perform the 
Reynolds-averaging to equation (mass conservation of particle) and 
(mass conservation of fluid) and introduce the ensemble-averaged 
velocities then we get: 
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Combining the above equations yields: 
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Summing up the momentum equation for each gives the suspension 
momentum balance: 
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where the suspension density is defined as 𝜌 = 𝜌𝑝𝜙  +  𝜌𝑓(1 − 𝜙) and is 

the sum of the internal particle and fluid stresses and it follows that 
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Performing the Reynolds-averaging to the LHS of the above equation 
leads to: 
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Notice that the last term in the equation is dropped off because the third-
correlation terms are too small. Hence, 
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Again, using mass conservation of particle and fluid respectively, and 
notice that 
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Similarly, 
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the final form of LHS becomes: 
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Together with the definition of ensemble-averaged slip velocity and 
performing Reynolds-averaging to the RHS of equation momentum 
conservation suspension and we have: 
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APPENDIX II 
 
DERIVING k-ε TURBULENCE MODEL FOR TWO-
PHASE/MIXTURE MODEL 

 

The procedures of Wilcox (1998) are followed to derive the Reynolds-
Stress equation. That is, the conservation of momentum equation is 
multiplied by a fluctuating property and time average the product. Let 
𝒩(𝑢𝑖) be the conservation of momentum operator of fluid, viz., 

2

2
( ) i i i

i f f k f iz i

k i k

u u up
u u g

t x x x
     
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   
  (B.1) 

with 

1

i
i

f






   (B.2) 

and fi being the actual interaction force between two phases. Thus, the 

conservation of momentum equation can be written as: 

( ) 0iu     (B.3) 

Then the following time average can be formed: 

( ) ( ) 0i j j iu u u u      (B.4) 

First, we consider the unsteady term: 
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Turning to the convective term, gives: 
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  (B.6) 

Notice that in equation (B.6), the last term on the RHS cannot be 

eliminated due to the existence of two phases in the system. In the mass 

conservation equation of fluid, the divergence of velocity is not equal to 

zero. This is different from the standard single-phase model. 
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Then the pressure gradient term is as follows: 

( ) ( )

                      

i j i j

j i j i

i j

j i

p p p p p p
u u u u

x x x x

p p
u u

x x

      
     
   

  
  
 

   (B.7) 

And the viscous term yields: 
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  (B.8) 

Because the gravity term disappears after time averaging, the last one is 

the interaction term: 

( ) ( )
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u u u u

u u
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    
   (B.9) 

where ω is not the original interaction force between two phases but 

the ”force intensity” since it is averaged over the volume fraction of fluid 

as it is defined before. 

Collecting terms and we arrive at the equation for the Reynolds stress 

tensor. 
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  (B.10) 

With a little rearrangement of terms, we can cast the Reynolds-stress 
equation in the form which is similar to the standard Reynolds-stress 
equation, viz., 
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  (B.11) 

where 
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   (B.13) 

ijk f i j k i jk j ikC u u u p u p u              (B.14) 

Comparing equation (28) with the standard form of Reynolds-stress 
equation (Wilcox, 1998), we can find extra terms appearing due to the 
interactions between two phases and the phase exchanging within the 
control volume. 

Taking the trace of the Reynolds stress tensor yields: 

1
2     

2
ii f i i i iu u k with k u u             (B.15) 
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Thus, the trace of the Reynolds stress tensor is proportional to the 
turbulence kinetic energy. Therefore, we can derive a corresponding 
equation for k by taking the trace of the Reynolds stress equation. After 
contracting equation (28) and defining the turbulence dissipation rate as 

i i

j j

u u

x x


  
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 
   (B.16) 

The following transport equation for the turbulence kinetic energy is 
obtained: 
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  (B.17) 

The DNS results (Mansour et al., 1988) indicate that the turbulent 
transport term and the pressure diffusion term are quite small for simple 
flows, thus the assumption used by Wilcox (1998) is also adopted here: 
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where σk is a closure coefficient. With the equation (35), we get a new 
transport equation for the turbulence kinetic energy which is very similar 
to the k equation in the standard k-ε turbulence model: 
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  (B.19) 

with the extra term Пk which is due to the interaction between two 
phases: 
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   (B.20) 
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The next is formulating the energy dissipation equation. Define the 
turbulence dissipation rate in equation (33) and the exact equation for ε 
is derived by taking the following moment of the Navier-Stokes equation. 

2 ( ( )) 0i
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   (B.21) 

where 𝒩(𝑢𝑖) is the operator defined in the beginning. 

First, the unsteady term gives: 
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Then, the convective term gives: 
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  (B.23) 
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Next is the pressure gradient term: 
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  (B.24) 

And then the viscous term yields: 
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  (B.25) 

Finally, the interaction term gives: 
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Put all the terms together we have: 
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  (B.27) 

Rearrange the terms and adjust the notations, one obtains: 
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 (B.28) 

where Пε is the extra term compared with the ε equation in the standard 
k-ε model: 
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  (B.29) 

The above equation can also be written as: 
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where Cε1,Cε2 and σε are the closure coefficients. 
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APPENDIX III 
 
SOURCE CODE OF THE 1DV MODEL  

 

The source code is written in Python script as it can be run across the 
platforms (Windows, Linux, Mac OS, etc.) and it is completely free. Two 
additional packages need to be installed along with Python before 
running the 1DV model: numpy (the fundamental package for scientific 
computing with Python - www.numpy.org) and matplotlib (a python 
plotting library which produces publication quality figures in a variety of 
hardcopy formats and interactive environments across platforms – 
matplotlib.org). The Python version 2.7.10, numpy version 1.10.1 and 
matplotlib version 1.5.0 are used in the development of the code.   

The process flow of the 1DV model is shown in Figure C.1 and the 
structure of the source code is illustrated in Figure C.2.  

 

Figure C.1. The process flow of the 1DV model. 

1DV model

create grid

define initial conditions

solve_fluid_unsteady

solve_turbulence_unsteady

solve_sediment_unsteady

http://www.numpy.org/
http://matplotlib.org/
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Figure C.2. The structure of the source code. 
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momentum exchange between fluid and particle phases)

so
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tu

rb
u

le
n

ce
_u
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y

SOLVE_1D_KEPSILON_CW (solve standard k-ε model for clear water)

SOLVE_1D_KEPSILON_SED (solve standard k-ε model with buoyancy term 
for sediment-laden flow)

SOLVE_1D_KEPSILON_SED_ET (solve modified k-ε model with buoyancy 
term for sediment-laden flow)

so
lv

e_
se

d
im

en
t_

u
n

st
ea

d
y

SOLVE_1D_SEDIMENT (solve advection-diffusion equation)
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1. basic_functions.py 

 
import numpy as np 
 
#========================================================= 
 
def CREATE_GRID(NELEM,GSIZE): 
       
#  DEFINE ELEMENT PROPERTIES 
   NNODL = 3 
   NPOIN = NELEM*NNODL-(NELEM-1) 
    
#  INITIALIZE VARIABLES    
   COORD = np.zeros(NPOIN) 
   LNODS = np.zeros((NELEM,NNODL)) 
    
#  FORM THE GRID WITH INPUT PARAMETERS 
   for IPOIN in range (0,NPOIN): 
         COORD[IPOIN]=0.0+GSIZE*(IPOIN) 
    
#  CREATE THE CONNECTION TABLE 
   for IELEM in range (0,NELEM): 
      for INODL in range (0,NNODL): 
         LNODS[IELEM,INODL]=INODL+(IELEM)*2 
          
   return NPOIN,NNODL,COORD,LNODS 
 
#========================================================= 
 
def DEF_3_GAUSS_POINT(): 
 
#  DEFINE GAUSS POINTS 
   NGAUS = 3 
   POSGP = np.zeros(NGAUS) 
   WEIGP = np.zeros(NGAUS) 
    
   POSGP[0] = -np.sqrt(0.6) 
   POSGP[1] = 0.0 
   POSGP[2] = np.sqrt(0.6) 
   WEIGP[0] = 5.0/9.0 
   WEIGP[1] = 8.0/9.0 
   WEIGP[2] = 5.0/9.0 
    
   return POSGP,WEIGP 
 
#========================================================= 
 
def SHAPE_LINE_QUADRATIC_S(Z): 
    
   SHAPE = np.zeros(3) 
   DERIV = np.zeros(3) 
   SDERIV = np.zeros(3) 
    
   SHAPE[0] = 0.5*Z*(Z-1.0) 
   SHAPE[1] = -(Z+1.0)*(Z-1.0) 
   SHAPE[2] = 0.5*Z*(Z+1.0) 
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   DERIV[0] = Z-0.5 
   DERIV[1] = -2.0*Z 
   DERIV[2] = Z+0.5 
    
   SDERIV[0] = 1.0 
   SDERIV[1] = -2.0 
   SDERIV[2] = 1.0 
 
   return SHAPE,DERIV,SDERIV 
 
#========================================================= 
 
def DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV): 
 
#  CALCULATE JACOBIAN MATRIX 
 
   TEMPY=0.0 
    
   for INODL in range(0,NNODL): 
         TEMPY=TEMPY+DERIV[INODL]*COORD[LNODS[IELEM,INODL]] 
    
   DJACK=TEMPY 
 
#  CALCULATE THE INVERSE OF JACOBIAN MATRIX 
   DJACI=1.0/DJACK 
          
   return DJACK,DJACI 
 
#========================================================= 
 
def INITIAL_CONDITION(NPOIN,COORD,DP_DX,CMU,KAPPA): 
 
   UX0 = np.zeros(NPOIN) 
   K0 = np.zeros(NPOIN) 
   EP0 = np.zeros(NPOIN) 
   NU_T0 = np.zeros(NPOIN) 
    
#  CALCULATE SHEAR VELOCITY 
   USTAR = np.sqrt(-(COORD[NPOIN-1]-COORD[0])/1.0e3*DP_DX) 
 
#  SOLVE THE INITIAL VELOCITY PROFILE 
   UX0 = (USTAR*(1/0.41*np.log(USTAR*COORD/1.0e-6)+5.2)) 
   UX0[0] = 0.0 
    
#  INITIALIZE K AND EPSILON 
   K0 = USTAR**2/np.sqrt(CMU)*(1-COORD/(COORD[NPOIN-1]-COORD[0])) 
   EP0 = USTAR**3/(KAPPA*COORD)*(1-COORD/(COORD[NPOIN-1]-COORD[0])) 
   NU_T0 = KAPPA*USTAR*COORD*(1-COORD/(COORD[NPOIN-1]-COORD[0])) 
    
#  INITIALIZE CONCENTRATION 
   C0 = np.zeros(NPOIN) 
   C0[:] = 1.0e-3 
    
   return USTAR,UX0,K0,EP0,NU_T0,C0 
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2. solve_fluid_unsteady.py 

 
import numpy as np 
from basic_functions import * 
 
#========================================================= 
 
def 
SOLVE_1D_FLUID(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DP_DX,USTAR,DELTA_T,
MU_EN,UXN): 
 
#  INITIALIZE VARIABLES 
   GA = np.zeros((NPOIN,NPOIN)) 
   GF = np.zeros(NPOIN) 
   LA = np.zeros((NNODL,NNODL)) 
   LF = np.zeros(NNODL) 
   UX = np.zeros(NPOIN) 
    
#  LOOP FOR ALL THE ELEMENTS 
   for IELEM in range(1,NELEM): 
        
#      SHAPE FUNCTIONS AT GAUSS POINT 1        
       SHAPE1, DERIV1, SDERIV1 = SHAPE_LINE_QUADRATIC_S(POSGP[0]) 
       DJACK1, DJACI1 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV1) 
#      SHAPE FUNCTIONS AT GAUSS POINT 2        
       SHAPE2, DERIV2, SDERIV2 = SHAPE_LINE_QUADRATIC_S(POSGP[1]) 
       DJACK2, DJACI2 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV2) 
#      SHAPE FUNCTIONS AT GAUSS POINT 3        
       SHAPE3, DERIV3, SDERIV3 =SHAPE_LINE_QUADRATIC_S(POSGP[2]) 
       DJACK3, DJACI3 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV3) 
        
#      GLOBAL DERIVATIVE AND GAUSS WEIGHTING AREAS AT GAUSS POINTS 
       GDERIV1 = DJACI1*DERIV1 
       GDERIV2 = DJACI2*DERIV2 
       GDERIV3 = DJACI3*DERIV3 
        
       AREAW1 = DJACK1*WEIGP[0] 
       AREAW2 = DJACK2*WEIGP[1] 
       AREAW3 = DJACK3*WEIGP[2] 
        
#      UX AT GAUSS POINTS 
       UX1 = 
SHAPE1[0]*UXN[LNODS[IELEM,0]]+SHAPE1[1]*UXN[LNODS[IELEM,1]]+SHAPE1[2]*UXN[LNO
DS[IELEM,2]] 
       UX2 = 
SHAPE2[0]*UXN[LNODS[IELEM,0]]+SHAPE2[1]*UXN[LNODS[IELEM,1]]+SHAPE2[2]*UXN[LNO
DS[IELEM,2]] 
       UX3 = 
SHAPE3[0]*UXN[LNODS[IELEM,0]]+SHAPE3[1]*UXN[LNODS[IELEM,1]]+SHAPE3[2]*UXN[LNO
DS[IELEM,2]]        
        
#      EFFECTIVE VISCOSITY AT GAUSS POINTS 
       MU_E1 = 
SHAPE1[0]*MU_EN[LNODS[IELEM,0]]+SHAPE1[1]*MU_EN[LNODS[IELEM,1]]+SHAPE1[2]*MU_
EN[LNODS[IELEM,2]] 
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       MU_E2 = 
SHAPE2[0]*MU_EN[LNODS[IELEM,0]]+SHAPE2[1]*MU_EN[LNODS[IELEM,1]]+SHAPE2[2]*MU_
EN[LNODS[IELEM,2]] 
       MU_E3 = 
SHAPE3[0]*MU_EN[LNODS[IELEM,0]]+SHAPE3[1]*MU_EN[LNODS[IELEM,1]]+SHAPE3[2]*MU_
EN[LNODS[IELEM,2]] 
        
#      CONSTRUCT THE LOCAL MATRIX OF COEFFICIENT 
       LA[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[0]*GDERIV1[0]*AREAW1+MU_E2*GDERIV2[0]*GDERIV2[
0]*AREAW2+MU_E3*GDERIV3[0]*GDERIV3[0]*AREAW3) 
       LA[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[0]*GDERIV1[1]*AREAW1+MU_E2*GDERIV2[0]*GDERIV2[
1]*AREAW2+MU_E3*GDERIV3[0]*GDERIV3[1]*AREAW3) 
       LA[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[0]*GDERIV1[2]*AREAW1+MU_E2*GDERIV2[0]*GDERIV2[
2]*AREAW2+MU_E3*GDERIV3[0]*GDERIV3[2]*AREAW3) 
 
       LA[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[1]*GDERIV1[0]*AREAW1+MU_E2*GDERIV2[1]*GDERIV2[
0]*AREAW2+MU_E3*GDERIV3[1]*GDERIV3[0]*AREAW3) 
       LA[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[1]*GDERIV1[1]*AREAW1+MU_E2*GDERIV2[1]*GDERIV2[
1]*AREAW2+MU_E3*GDERIV3[1]*GDERIV3[1]*AREAW3) 
       LA[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[1]*GDERIV1[2]*AREAW1+MU_E2*GDERIV2[1]*GDERIV2[
2]*AREAW2+MU_E3*GDERIV3[1]*GDERIV3[2]*AREAW3) 
 
       LA[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[2]*GDERIV1[0]*AREAW1+MU_E2*GDERIV2[2]*GDERIV2[
0]*AREAW2+MU_E3*GDERIV3[2]*GDERIV3[0]*AREAW3) 
       LA[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[2]*GDERIV1[1]*AREAW1+MU_E2*GDERIV2[2]*GDERIV2[
1]*AREAW2+MU_E3*GDERIV3[2]*GDERIV3[1]*AREAW3) 
       LA[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[2]*GDERIV1[2]*AREAW1+MU_E2*GDERIV2[2]*GDERIV2[
2]*AREAW2+MU_E3*GDERIV3[2]*GDERIV3[2]*AREAW3) 
                     
#      ASSEMBLE THE GLOBAL MATRIX 
       for IDIME in range(0,NNODL): 
           for JDIME in range(0,NNODL): 
               GA[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GA[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LA[IDIME,JDIME] 
        
#      FORM THE LOCAL RHS COEFFICIENTS AND ASSEMBLE INTO GLOBAL RHS VECTOR 
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       LF[0] = 
((UX1*SHAPE1[0]*AREAW1+UX2*SHAPE2[0]*AREAW2+UX3*SHAPE3[0]*AREAW3)/DELTA_T)-
(SHAPE1[0]*AREAW1+SHAPE2[0]*AREAW2+SHAPE3[0]*AREAW3)*DP_DX 
       LF[1] = 
((UX1*SHAPE1[1]*AREAW1+UX2*SHAPE2[1]*AREAW2+UX3*SHAPE3[1]*AREAW3)/DELTA_T)-
(SHAPE1[1]*AREAW1+SHAPE2[1]*AREAW2+SHAPE3[1]*AREAW3)*DP_DX 
       LF[2] = 
((UX1*SHAPE1[2]*AREAW1+UX2*SHAPE2[2]*AREAW2+UX3*SHAPE3[2]*AREAW3)/DELTA_T)-
(SHAPE1[2]*AREAW1+SHAPE2[2]*AREAW2+SHAPE3[2]*AREAW3)*DP_DX 
        
       for IDIME in range(0,NNODL): 
           GF[LNODS[IELEM,IDIME]] = GF[LNODS[IELEM,IDIME]]+LF[IDIME] 
    
#  DEAL WITH THE BOUNDARY CONDITIONS 
   for IPOIN in range(0,NPOIN): 
#      WALL BOUNDARY        
       GA[2,IPOIN] = 0.0 
    
#  WALL BOUNDARY    
   GA[2,2] = 1.0 
 
#  WALL BOUNDARY 
   GF[2] = USTAR*(1/0.41*np.log(USTAR*COORD[2]/1.0e-6)+5.2) 
 
#  SOLVE LINEAR EQUATIONS 
   UX[2:] = np.linalg.solve(GA[2:,2:],GF[2:]) 
    
   UX[1] = USTAR*(1/0.41*np.log(USTAR*COORD[1]/1.0e-6)+5.2) 
   UX[0] = 0.0 
 
   return UX 
    
#========================================================= 
 
def 
SOLVE_1D_FLUID_2P(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DP_DX,USTAR,DELTA
_T,MU_EN,UXN,CN,RHO_S,WS): 
 
#  INITIALIZE VARIABLES 
   GA = np.zeros((NPOIN,NPOIN)) 
   GF = np.zeros(NPOIN) 
   LA = np.zeros((NNODL,NNODL)) 
   LF = np.zeros(NNODL) 
   UX = np.zeros(NPOIN) 
    
   WZ0=WS 
    
#  LOOP FOR ALL THE ELEMENTS 
   for IELEM in range(1,NELEM): 
        
#      SHAPE FUNCTIONS AT GAUSS POINT 1        
       SHAPE1, DERIV1, SDERIV1 = SHAPE_LINE_QUADRATIC_S(POSGP[0]) 
       DJACK1, DJACI1 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV1) 
#      SHAPE FUNCTIONS AT GAUSS POINT 2        
       SHAPE2, DERIV2, SDERIV2 = SHAPE_LINE_QUADRATIC_S(POSGP[1]) 
       DJACK2, DJACI2 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV2) 
#      SHAPE FUNCTIONS AT GAUSS POINT 3        
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       SHAPE3, DERIV3, SDERIV3 =SHAPE_LINE_QUADRATIC_S(POSGP[2]) 
       DJACK3, DJACI3 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV3) 
        
#      GLOBAL DERIVATIVE AND GAUSS WEIGHTING AREAS AT GAUSS POINTS 
       GDERIV1 = DJACI1*DERIV1 
       GDERIV2 = DJACI2*DERIV2 
       GDERIV3 = DJACI3*DERIV3 
        
       AREAW1 = DJACK1*WEIGP[0] 
       AREAW2 = DJACK2*WEIGP[1] 
       AREAW3 = DJACK3*WEIGP[2] 
        
#      UX AT GAUSS POINTS 
       UX1 = 
SHAPE1[0]*UXN[LNODS[IELEM,0]]+SHAPE1[1]*UXN[LNODS[IELEM,1]]+SHAPE1[2]*UXN[LNO
DS[IELEM,2]] 
       UX2 = 
SHAPE2[0]*UXN[LNODS[IELEM,0]]+SHAPE2[1]*UXN[LNODS[IELEM,1]]+SHAPE2[2]*UXN[LNO
DS[IELEM,2]] 
       UX3 = 
SHAPE3[0]*UXN[LNODS[IELEM,0]]+SHAPE3[1]*UXN[LNODS[IELEM,1]]+SHAPE3[2]*UXN[LNO
DS[IELEM,2]]        
        
#      EFFECTIVE VISCOSITY AT GAUSS POINTS 
       MU_E1 = 
SHAPE1[0]*MU_EN[LNODS[IELEM,0]]+SHAPE1[1]*MU_EN[LNODS[IELEM,1]]+SHAPE1[2]*MU_
EN[LNODS[IELEM,2]] 
       MU_E2 = 
SHAPE2[0]*MU_EN[LNODS[IELEM,0]]+SHAPE2[1]*MU_EN[LNODS[IELEM,1]]+SHAPE2[2]*MU_
EN[LNODS[IELEM,2]] 
       MU_E3 = 
SHAPE3[0]*MU_EN[LNODS[IELEM,0]]+SHAPE3[1]*MU_EN[LNODS[IELEM,1]]+SHAPE3[2]*MU_
EN[LNODS[IELEM,2]] 
 
#      C AT GAUSS POINTS 
       
C1=SHAPE1[0]*CN[LNODS[IELEM,0]]+SHAPE1[1]*CN[LNODS[IELEM,1]]+SHAPE1[2]*CN[LNO
DS[IELEM,2]] 
       
C2=SHAPE2[0]*CN[LNODS[IELEM,0]]+SHAPE2[1]*CN[LNODS[IELEM,1]]+SHAPE2[2]*CN[LNO
DS[IELEM,2]] 
       
C3=SHAPE3[0]*CN[LNODS[IELEM,0]]+SHAPE3[1]*CN[LNODS[IELEM,1]]+SHAPE3[2]*CN[LNO
DS[IELEM,2]] 
        
#      WZ AT GAUSS POINTS 
       WZ1=WZ0*(1-C1)**4.65 
       WZ2=WZ0*(1-C2)**4.65 
       WZ3=WZ0*(1-C3)**4.65   
        
#      CONSTRUCT THE LOCAL MATRIX OF COEFFICIENT 
       LA[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[0]*GDERIV1[0]*AREAW1+MU_E2*GDERIV2[0]*GDERIV2[
0]*AREAW2+MU_E3*GDERIV3[0]*GDERIV3[0]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[0]*GDERIV1
[0]*AREAW1+C2*WZ2*SHAPE2[0]*GDERIV2[0]*AREAW2+C3*WZ3*SHAPE3[0]*GDERIV3[0]*ARE
AW3) 
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       LA[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[0]*GDERIV1[1]*AREAW1+MU_E2*GDERIV2[0]*GDERIV2[
1]*AREAW2+MU_E3*GDERIV3[0]*GDERIV3[1]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[0]*GDERIV1
[1]*AREAW1+C2*WZ2*SHAPE2[0]*GDERIV2[1]*AREAW2+C3*WZ3*SHAPE3[0]*GDERIV3[1]*ARE
AW3) 
       LA[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[0]*GDERIV1[2]*AREAW1+MU_E2*GDERIV2[0]*GDERIV2[
2]*AREAW2+MU_E3*GDERIV3[0]*GDERIV3[2]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[0]*GDERIV1
[2]*AREAW1+C2*WZ2*SHAPE2[0]*GDERIV2[2]*AREAW2+C3*WZ3*SHAPE3[0]*GDERIV3[2]*ARE
AW3) 
 
       LA[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[1]*GDERIV1[0]*AREAW1+MU_E2*GDERIV2[1]*GDERIV2[
0]*AREAW2+MU_E3*GDERIV3[1]*GDERIV3[0]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[1]*GDERIV1
[0]*AREAW1+C2*WZ2*SHAPE2[1]*GDERIV2[0]*AREAW2+C3*WZ3*SHAPE3[1]*GDERIV3[0]*ARE
AW3) 
       LA[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[1]*GDERIV1[1]*AREAW1+MU_E2*GDERIV2[1]*GDERIV2[
1]*AREAW2+MU_E3*GDERIV3[1]*GDERIV3[1]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[1]*GDERIV1
[1]*AREAW1+C2*WZ2*SHAPE2[1]*GDERIV2[1]*AREAW2+C3*WZ3*SHAPE3[1]*GDERIV3[1]*ARE
AW3) 
       LA[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[1]*GDERIV1[2]*AREAW1+MU_E2*GDERIV2[1]*GDERIV2[
2]*AREAW2+MU_E3*GDERIV3[1]*GDERIV3[2]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[1]*GDERIV1
[2]*AREAW1+C2*WZ2*SHAPE2[1]*GDERIV2[2]*AREAW2+C3*WZ3*SHAPE3[1]*GDERIV3[2]*ARE
AW3) 
 
       LA[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[2]*GDERIV1[0]*AREAW1+MU_E2*GDERIV2[2]*GDERIV2[
0]*AREAW2+MU_E3*GDERIV3[2]*GDERIV3[0]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[2]*GDERIV1
[0]*AREAW1+C2*WZ2*SHAPE2[2]*GDERIV2[0]*AREAW2+C3*WZ3*SHAPE3[2]*GDERIV3[0]*ARE
AW3) 
       LA[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[2]*GDERIV1[1]*AREAW1+MU_E2*GDERIV2[2]*GDERIV2[
1]*AREAW2+MU_E3*GDERIV3[2]*GDERIV3[1]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[2]*GDERIV1
[1]*AREAW1+C2*WZ2*SHAPE2[2]*GDERIV2[1]*AREAW2+C3*WZ3*SHAPE3[2]*GDERIV3[1]*ARE
AW3) 
       LA[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+(MU_E1*GDERIV1[2]*GDERIV1[2]*AREAW1+MU_E2*GDERIV2[2]*GDERIV2[
2]*AREAW2+MU_E3*GDERIV3[2]*GDERIV3[2]*AREAW3)+RHO_S*(C1*WZ1*SHAPE1[2]*GDERIV1
[2]*AREAW1+C2*WZ2*SHAPE2[2]*GDERIV2[2]*AREAW2+C3*WZ3*SHAPE3[2]*GDERIV3[2]*ARE
AW3) 
                     
#      ASSEMBLE THE GLOBAL MATRIX 
       for IDIME in range(0,NNODL): 
           for JDIME in range(0,NNODL): 
               GA[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GA[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LA[IDIME,JDIME] 
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#      FORM THE LOCAL RHS COEFFICIENTS AND ASSEMBLE INTO GLOBAL RHS VECTOR 
 
       LF[0] = 
((UX1*SHAPE1[0]*AREAW1+UX2*SHAPE2[0]*AREAW2+UX3*SHAPE3[0]*AREAW3)/DELTA_T)-
(SHAPE1[0]*AREAW1+SHAPE2[0]*AREAW2+SHAPE3[0]*AREAW3)*DP_DX 
       LF[1] = 
((UX1*SHAPE1[1]*AREAW1+UX2*SHAPE2[1]*AREAW2+UX3*SHAPE3[1]*AREAW3)/DELTA_T)-
(SHAPE1[1]*AREAW1+SHAPE2[1]*AREAW2+SHAPE3[1]*AREAW3)*DP_DX 
       LF[2] = 
((UX1*SHAPE1[2]*AREAW1+UX2*SHAPE2[2]*AREAW2+UX3*SHAPE3[2]*AREAW3)/DELTA_T)-
(SHAPE1[2]*AREAW1+SHAPE2[2]*AREAW2+SHAPE3[2]*AREAW3)*DP_DX 
        
       for IDIME in range(0,NNODL): 
           GF[LNODS[IELEM,IDIME]] = GF[LNODS[IELEM,IDIME]]+LF[IDIME] 
    
#  DEAL WITH THE BOUNDARY CONDITIONS 
   for IPOIN in range(0,NPOIN): 
#      WALL BOUNDARY        
       GA[2,IPOIN] = 0.0 
    
#  WALL BOUNDARY    
   GA[2,2] = 1.0 
 
#  WALL BOUNDARY 
   GF[2] = USTAR*(1/0.41*np.log(USTAR*COORD[2]/1.0e-6)+5.2) 
 
#  SOLVE LINEAR EQUATIONS 
   UX[2:] = np.linalg.solve(GA[2:,2:],GF[2:]) 
    
   UX[1] = USTAR*(1/0.41*np.log(USTAR*COORD[1]/1.0e-6)+5.2) 
   UX[0] = 0.0 
 
   return UX 
 
 

3. solve_turbulence_unsteady.py 

 
import numpy as np 
from basic_functions import * 
 
#========================================================= 
 
def 
SOLVE_1D_KEPSILON_CW(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DELTA_T,NU,KN,
EPN,UXN): 
 
#  INITIALIZE VARIABLES 
   GK = np.zeros((NPOIN,NPOIN)) 
   GFK = np.zeros(NPOIN) 
   LK = np.zeros((NNODL,NNODL)) 
   LFK = np.zeros(NNODL) 
    
   GEP = np.zeros((NPOIN,NPOIN)) 
   GFEP = np.zeros(NPOIN) 
   LEP = np.zeros((NNODL,NNODL)) 
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   LFEP = np.zeros(NNODL) 
    
   K = np.zeros(NPOIN) 
   EP = np.zeros(NPOIN) 
 
#  DEFINE CONSTANTS 
   SIGMA_K = 1.0 
   SIGMA_EP = 1.3 
   CMU = 0.09 
   C1 = 1.44 
   C2 = 1.92 
 
#  LOOP FOR ALL THE ELEMENTS 
   for IELEM in range(1,NELEM): 
        
#      SHAPE FUNCTIONS AT GAUSS POINT 1        
       SHAPE1, DERIV1, SDERIV1 = SHAPE_LINE_QUADRATIC_S(POSGP[0]) 
       DJACK1, DJACI1 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV1) 
#      SHAPE FUNCTIONS AT GAUSS POINT 2        
       SHAPE2, DERIV2, SDERIV2 = SHAPE_LINE_QUADRATIC_S(POSGP[1]) 
       DJACK2, DJACI2 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV2) 
#      SHAPE FUNCTIONS AT GAUSS POINT 3        
       SHAPE3, DERIV3, SDERIV3 = SHAPE_LINE_QUADRATIC_S(POSGP[2]) 
       DJACK3, DJACI3 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV3) 
        
#      GLOBAL DERIVATIVE AND GAUSS WEIGHTING AREAS AT GAUSS POINTS 
       GDERIV1 = DJACI1*DERIV1 
       GDERIV2 = DJACI2*DERIV2 
       GDERIV3 = DJACI3*DERIV3 
        
       AREAW1 = DJACK1*WEIGP[0] 
       AREAW2 = DJACK2*WEIGP[1] 
       AREAW3 = DJACK3*WEIGP[2] 
 
#      K AT GAUSS POINTS 
       K1 = 
SHAPE1[0]*KN[LNODS[IELEM,0]]+SHAPE1[1]*KN[LNODS[IELEM,1]]+SHAPE1[2]*KN[LNODS[
IELEM,2]] 
       K2 = 
SHAPE2[0]*KN[LNODS[IELEM,0]]+SHAPE2[1]*KN[LNODS[IELEM,1]]+SHAPE2[2]*KN[LNODS[
IELEM,2]] 
       K3 = 
SHAPE3[0]*KN[LNODS[IELEM,0]]+SHAPE3[1]*KN[LNODS[IELEM,1]]+SHAPE3[2]*KN[LNODS[
IELEM,2]] 
        
#      EPSILON AT GAUSS POINTS 
       EP1 = 
SHAPE1[0]*EPN[LNODS[IELEM,0]]+SHAPE1[1]*EPN[LNODS[IELEM,1]]+SHAPE1[2]*EPN[LNO
DS[IELEM,2]] 
       EP2 = 
SHAPE2[0]*EPN[LNODS[IELEM,0]]+SHAPE2[1]*EPN[LNODS[IELEM,1]]+SHAPE2[2]*EPN[LNO
DS[IELEM,2]] 
       EP3 = 
SHAPE3[0]*EPN[LNODS[IELEM,0]]+SHAPE3[1]*EPN[LNODS[IELEM,1]]+SHAPE3[2]*EPN[LNO
DS[IELEM,2]] 
        
#      GAMMA AT GAUSS POINTS 
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       GAMMA1 = EP1/K1 
       GAMMA2 = EP2/K2 
       GAMMA3 = EP3/K3 
        
#      EDDY VISCOSITY AT GAUSS POINTS 
       NUT1 = CMU*K1**2/EP1 
       NUT2 = CMU*K2**2/EP2 
       NUT3 = CMU*K3**2/EP3 
 
#      CONSTRUCT THE LOCAL MATRIX OF COEFFICIENT 
 
#      FOR K        
       LK[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[0]*AREAW3) 
       LK[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[1]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[1]*AREAW3) 
       LK[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[2]*AREAW3) 
        
       LK[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[0]*AREAW3) 
       LK[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[1]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[1]*AREAW3) 
       LK[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[2]*AREAW3) 
        
       LK[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[2]*SHAPE3[0]*AREAW3) 
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       LK[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[1]*AREAW2+GAM
MA3*SHAPE3[2]*SHAPE3[1]*AREAW3) 
       LK[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[2]*SHAPE3[2]*AREAW3) 
 
#      FOR EPSILON 
       LEP[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[0]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[0]*AREAW3) 
       LEP[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[1]*AREAW3) 
       LEP[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[2]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[2]*AREAW3) 
 
       LEP[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[0]*
AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[0]*AREAW3) 
       LEP[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[1]*AREAW3) 
       LEP[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[2]*
AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[2]*AREAW3) 
 
       LEP[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[0]*
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AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[0]*AREAW3) 
       LEP[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[1]*AREAW3) 
       LEP[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[2]*
AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[2]*AREAW3) 
 
#      ASSEMBLE THE GLOBAL MATRIX 
       for IDIME in range(0,NNODL): 
           for JDIME in range(0,NNODL): 
               GK[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GK[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LK[IDIME,JDIME] 
               GEP[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GEP[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LEP[IDIME,JDIME] 
        
#      FORM THE LOCAL RHS COEFFICIENTS AND ASSEMBLE INTO GLOBAL RHS VECTOR 
 
#      (DUX_DZ)**2 AT GAUSS POINTS 
       DUX_DZ_S1 = 
(GDERIV1[0]*UXN[LNODS[IELEM,0]]+GDERIV1[1]*UXN[LNODS[IELEM,1]]+GDERIV1[2]*UXN
[LNODS[IELEM,2]])**2 
       DUX_DZ_S2 = 
(GDERIV2[0]*UXN[LNODS[IELEM,0]]+GDERIV2[1]*UXN[LNODS[IELEM,1]]+GDERIV2[2]*UXN
[LNODS[IELEM,2]])**2 
       DUX_DZ_S3 = 
(GDERIV3[0]*UXN[LNODS[IELEM,0]]+GDERIV3[1]*UXN[LNODS[IELEM,1]]+GDERIV3[2]*UXN
[LNODS[IELEM,2]])**2 
        
#      CONSTRUCT THE LOCAL VECTOR OF RHS 
       LFK[0] = 
((K1*SHAPE1[0]*AREAW1+K2*SHAPE2[0]*AREAW2+K3*SHAPE3[0]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[0]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[0]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[0]*AREAW3) 
       LFK[1] = 
((K1*SHAPE1[1]*AREAW1+K2*SHAPE2[1]*AREAW2+K3*SHAPE3[1]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[1]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[1]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[1]*AREAW3) 
       LFK[2] = 
((K1*SHAPE1[2]*AREAW1+K2*SHAPE2[2]*AREAW2+K3*SHAPE3[2]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[2]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[2]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[2]*AREAW3) 
        
       LFEP[0] = 
((EP1*SHAPE1[0]*AREAW1+EP2*SHAPE2[0]*AREAW2+EP3*SHAPE3[0]*AREAW3)/DELTA_T)+(C
1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[0]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[0]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[0]*AREAW3) 
       LFEP[1] = 
((EP1*SHAPE1[1]*AREAW1+EP2*SHAPE2[1]*AREAW2+EP3*SHAPE3[1]*AREAW3)/DELTA_T)+(C
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1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[1]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[1]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[1]*AREAW3) 
       LFEP[2] = 
((EP1*SHAPE1[2]*AREAW1+EP2*SHAPE2[2]*AREAW2+EP3*SHAPE3[2]*AREAW3)/DELTA_T)+(C
1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[2]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[2]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[2]*AREAW3) 
        
       for IDIME in range(0,NNODL): 
           GFK[LNODS[IELEM,IDIME]] = GFK[LNODS[IELEM,IDIME]]+LFK[IDIME] 
           GFEP[LNODS[IELEM,IDIME]] = GFEP[LNODS[IELEM,IDIME]]+LFEP[IDIME] 
    
#  DEAL WITH THE BOUNDARY CONDITIONS 
   for IPOIN in range(0,NPOIN): 
#      WALL BOUNDARY        
       GK[2,IPOIN] = 0.0 
       GEP[2,IPOIN] = 0.0 
#      FREE SURFACE        
       GK[NPOIN-1,IPOIN] = 0.0 
    
#  WALL BOUNDARY    
   GK[2,2] = 1.0 
   GEP[2,2] = 1.0 
#  FREE SURFACE      
   GK[NPOIN-1,NPOIN-1] = 1.0 
 
#  IMPOSE BOUNDARY VALUES 
#  WALL BOUNDARY   
   GFK[2] = KN[2] 
   GFEP[2] = EPN[2] 
#  FREE SURFACE 
   GFK[NPOIN-1] = 0.0 
 
#  SOLVE LINEAR EQUATIONS 
   K[2:] = np.linalg.solve(GK[2:,2:],GFK[2:]) 
   EP[2:] = np.linalg.solve(GEP[2:,2:],GFEP[2:]) 
  
#  UPDATE NU_T 
   K[0]=KN[0] 
   K[1]=KN[1] 
   EP[0]=EPN[0] 
   EP[1]=EPN[1] 
   NU_T=CMU*K**2/EP 
 
   return K, EP, NU_T 
 
#========================================================= 
 
def 
SOLVE_1D_KEPSILON_SED(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DELTA_T,NU,RH
O_W,RHO_S,KN,EPN,UXN,CN): 
 
#  INITIALIZE VARIABLES 
   GK = np.zeros((NPOIN,NPOIN)) 
   GFK = np.zeros(NPOIN) 
   LK = np.zeros((NNODL,NNODL)) 
   LFK = np.zeros(NNODL) 
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   GEP = np.zeros((NPOIN,NPOIN)) 
   GFEP = np.zeros(NPOIN) 
   LEP = np.zeros((NNODL,NNODL)) 
   LFEP = np.zeros(NNODL) 
    
   K = np.zeros(NPOIN) 
   EP = np.zeros(NPOIN) 
 
#  DEFINE CONSTANTS 
   SIGMA_K = 1.0 
   SIGMA_EP = 1.3 
   CMU = 0.09 
   C1 = 1.44 
   C2 = 1.92 
   G = 9.81 
   SIGMA_0 = 0.7 
    
#  MIXTURE BULK DENSITY 
   RHO = RHO_W+(1-RHO_W/RHO_S)*(CN*RHO_S) 
 
#  LOOP FOR ALL THE ELEMENTS 
   for IELEM in range(1,NELEM): 
        
#      SHAPE FUNCTIONS AT GAUSS POINT 1        
       SHAPE1, DERIV1, SDERIV1 = SHAPE_LINE_QUADRATIC_S(POSGP[0]) 
       DJACK1, DJACI1 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV1) 
#      SHAPE FUNCTIONS AT GAUSS POINT 2        
       SHAPE2, DERIV2, SDERIV2 = SHAPE_LINE_QUADRATIC_S(POSGP[1]) 
       DJACK2, DJACI2 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV2) 
#      SHAPE FUNCTIONS AT GAUSS POINT 3        
       SHAPE3, DERIV3, SDERIV3 = SHAPE_LINE_QUADRATIC_S(POSGP[2]) 
       DJACK3, DJACI3 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV3) 
        
#      GLOBAL DERIVATIVE AND GAUSS WEIGHTING AREAS AT GAUSS POINTS 
       GDERIV1 = DJACI1*DERIV1 
       GDERIV2 = DJACI2*DERIV2 
       GDERIV3 = DJACI3*DERIV3 
        
       AREAW1 = DJACK1*WEIGP[0] 
       AREAW2 = DJACK2*WEIGP[1] 
       AREAW3 = DJACK3*WEIGP[2] 
 
#      K AT GAUSS POINTS 
       K1 = 
SHAPE1[0]*KN[LNODS[IELEM,0]]+SHAPE1[1]*KN[LNODS[IELEM,1]]+SHAPE1[2]*KN[LNODS[
IELEM,2]] 
       K2 = 
SHAPE2[0]*KN[LNODS[IELEM,0]]+SHAPE2[1]*KN[LNODS[IELEM,1]]+SHAPE2[2]*KN[LNODS[
IELEM,2]] 
       K3 = 
SHAPE3[0]*KN[LNODS[IELEM,0]]+SHAPE3[1]*KN[LNODS[IELEM,1]]+SHAPE3[2]*KN[LNODS[
IELEM,2]] 
        
#      EPSILON AT GAUSS POINTS 
       EP1 = 
SHAPE1[0]*EPN[LNODS[IELEM,0]]+SHAPE1[1]*EPN[LNODS[IELEM,1]]+SHAPE1[2]*EPN[LNO
DS[IELEM,2]] 



193 
 

       EP2 = 
SHAPE2[0]*EPN[LNODS[IELEM,0]]+SHAPE2[1]*EPN[LNODS[IELEM,1]]+SHAPE2[2]*EPN[LNO
DS[IELEM,2]] 
       EP3 = 
SHAPE3[0]*EPN[LNODS[IELEM,0]]+SHAPE3[1]*EPN[LNODS[IELEM,1]]+SHAPE3[2]*EPN[LNO
DS[IELEM,2]] 
        
#      GAMMA AT GAUSS POINTS 
       GAMMA1 = EP1/K1 
       GAMMA2 = EP2/K2 
       GAMMA3 = EP3/K3 
        
#      EDDY VISCOSITY AT GAUSS POINTS 
       NUT1 = CMU*K1**2/EP1 
       NUT2 = CMU*K2**2/EP2 
       NUT3 = CMU*K3**2/EP3 
 
#      CONSTRUCT THE LOCAL MATRIX OF COEFFICIENT 
 
#      FOR K        
       LK[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[0]*AREAW3) 
       LK[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[1]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[1]*AREAW3) 
       LK[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[2]*AREAW3) 
        
       LK[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[0]*AREAW3) 
       LK[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[1]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[1]*AREAW3) 
       LK[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[2]*AREAW3) 
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       LK[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[2]*SHAPE3[0]*AREAW3) 
       LK[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[1]*AREAW2+GAM
MA3*SHAPE3[2]*SHAPE3[1]*AREAW3) 
       LK[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[2]*SHAPE3[2]*AREAW3) 
 
#      FOR EPSILON 
       LEP[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[0]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[0]*AREAW3) 
       LEP[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[1]*AREAW3) 
       LEP[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[2]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[2]*AREAW3) 
 
       LEP[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[0]*
AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[0]*AREAW3) 
       LEP[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[1]*AREAW3) 
       LEP[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[2]*
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AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[2]*AREAW3) 
 
       LEP[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[0]*
AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[0]*AREAW3) 
       LEP[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[1]*AREAW3) 
       LEP[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[2]*
AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[2]*AREAW3) 
 
#      ASSEMBLE THE GLOBAL MATRIX 
       for IDIME in range(0,NNODL): 
           for JDIME in range(0,NNODL): 
               GK[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GK[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LK[IDIME,JDIME] 
               GEP[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GEP[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LEP[IDIME,JDIME] 
        
#      FORM THE LOCAL RHS COEFFICIENTS AND ASSEMBLE INTO GLOBAL RHS VECTOR 
 
#      (DUX_DZ)**2 AT GAUSS POINTS 
       DUX_DZ_S1 = 
(GDERIV1[0]*UXN[LNODS[IELEM,0]]+GDERIV1[1]*UXN[LNODS[IELEM,1]]+GDERIV1[2]*UXN
[LNODS[IELEM,2]])**2 
       DUX_DZ_S2 = 
(GDERIV2[0]*UXN[LNODS[IELEM,0]]+GDERIV2[1]*UXN[LNODS[IELEM,1]]+GDERIV2[2]*UXN
[LNODS[IELEM,2]])**2 
       DUX_DZ_S3 = 
(GDERIV3[0]*UXN[LNODS[IELEM,0]]+GDERIV3[1]*UXN[LNODS[IELEM,1]]+GDERIV3[2]*UXN
[LNODS[IELEM,2]])**2 
        
#      RHO AND DRHO_DZ AT GAUSS POINTS 
       RHO1 = 
SHAPE1[0]*RHO[LNODS[IELEM,0]]+SHAPE1[1]*RHO[LNODS[IELEM,1]]+SHAPE1[2]*RHO[LNO
DS[IELEM,2]] 
       RHO2 = 
SHAPE2[0]*RHO[LNODS[IELEM,0]]+SHAPE2[1]*RHO[LNODS[IELEM,1]]+SHAPE2[2]*RHO[LNO
DS[IELEM,2]] 
       RHO3 = 
SHAPE3[0]*RHO[LNODS[IELEM,0]]+SHAPE3[1]*RHO[LNODS[IELEM,1]]+SHAPE3[2]*RHO[LNO
DS[IELEM,2]] 
 
       DRHO_DZ1 = 
GDERIV1[0]*RHO[LNODS[IELEM,0]]+GDERIV1[1]*RHO[LNODS[IELEM,1]]+GDERIV1[2]*RHO[
LNODS[IELEM,2]] 
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       DRHO_DZ2 = 
GDERIV2[0]*RHO[LNODS[IELEM,0]]+GDERIV2[1]*RHO[LNODS[IELEM,1]]+GDERIV2[2]*RHO[
LNODS[IELEM,2]] 
       DRHO_DZ3 = 
GDERIV3[0]*RHO[LNODS[IELEM,0]]+GDERIV3[1]*RHO[LNODS[IELEM,1]]+GDERIV3[2]*RHO[
LNODS[IELEM,2]] 
 
#      SIGMA_S AND RI AT GAUSS POINTS 
       SIGMA_S1 = SIGMA_0 
       SIGMA_S2 = SIGMA_0 
       SIGMA_S3 = SIGMA_0 
        
#      CONSTRUCT THE LOCAL VECTOR OF RHS 
       LFK[0] = 
((K1*SHAPE1[0]*AREAW1+K2*SHAPE2[0]*AREAW2+K3*SHAPE3[0]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[0]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[0]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[0]*AREAW3)+(G/RHO1*NUT1/SIGMA_S1*DRHO_DZ1*SHAPE1[0]*AREAW1+G/RHO2*NUT2/S
IGMA_S2*DRHO_DZ2*SHAPE2[0]*AREAW2+G/RHO3*NUT3/SIGMA_S3*DRHO_DZ3*SHAPE3[0]*ARE
AW3) 
       LFK[1] = 
((K1*SHAPE1[1]*AREAW1+K2*SHAPE2[1]*AREAW2+K3*SHAPE3[1]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[1]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[1]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[1]*AREAW3)+(G/RHO1*NUT1/SIGMA_S1*DRHO_DZ1*SHAPE1[1]*AREAW1+G/RHO2*NUT2/S
IGMA_S2*DRHO_DZ2*SHAPE2[1]*AREAW2+G/RHO3*NUT3/SIGMA_S3*DRHO_DZ3*SHAPE3[1]*ARE
AW3) 
       LFK[2] = 
((K1*SHAPE1[2]*AREAW1+K2*SHAPE2[2]*AREAW2+K3*SHAPE3[2]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[2]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[2]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[2]*AREAW3)+(G/RHO1*NUT1/SIGMA_S1*DRHO_DZ1*SHAPE1[2]*AREAW1+G/RHO2*NUT2/S
IGMA_S2*DRHO_DZ2*SHAPE2[2]*AREAW2+G/RHO3*NUT3/SIGMA_S3*DRHO_DZ3*SHAPE3[2]*ARE
AW3) 
        
       LFEP[0] = 
((EP1*SHAPE1[0]*AREAW1+EP2*SHAPE2[0]*AREAW2+EP3*SHAPE3[0]*AREAW3)/DELTA_T)+(C
1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[0]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[0]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[0]*AREAW3) 
       LFEP[1] = 
((EP1*SHAPE1[1]*AREAW1+EP2*SHAPE2[1]*AREAW2+EP3*SHAPE3[1]*AREAW3)/DELTA_T)+(C
1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[1]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[1]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[1]*AREAW3) 
       LFEP[2] = 
((EP1*SHAPE1[2]*AREAW1+EP2*SHAPE2[2]*AREAW2+EP3*SHAPE3[2]*AREAW3)/DELTA_T)+(C
1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[2]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[2]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[2]*AREAW3) 
        
       for IDIME in range(0,NNODL): 
           GFK[LNODS[IELEM,IDIME]] = GFK[LNODS[IELEM,IDIME]]+LFK[IDIME] 
           GFEP[LNODS[IELEM,IDIME]] = GFEP[LNODS[IELEM,IDIME]]+LFEP[IDIME] 
    
#  DEAL WITH THE BOUNDARY CONDITIONS 
   for IPOIN in range(0,NPOIN): 
#      WALL BOUNDARY        
       GK[2,IPOIN] = 0.0 
       GEP[2,IPOIN] = 0.0 
#      FREE SURFACE        
       GK[NPOIN-1,IPOIN] = 0.0 
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#  WALL BOUNDARY    
   GK[2,2] = 1.0 
   GEP[2,2] = 1.0 
#  FREE SURFACE      
   GK[NPOIN-1,NPOIN-1] = 1.0 
 
#  IMPOSE BOUNDARY VALUES 
#  WALL BOUNDARY   
   GFK[2] = KN[2] 
   GFEP[2] = EPN[2] 
#  FREE SURFACE 
   GFK[NPOIN-1] = 0.0 
 
#  SOLVE LINEAR EQUATIONS 
   K[2:] = np.linalg.solve(GK[2:,2:],GFK[2:]) 
   EP[2:] = np.linalg.solve(GEP[2:,2:],GFEP[2:]) 
  
#  UPDATE NU_T 
   K[0]=KN[0] 
   K[1]=KN[1] 
   EP[0]=EPN[0] 
   EP[1]=EPN[1] 
   NU_T=CMU*K**2/EP 
 
   return K, EP, NU_T 
 
#========================================================= 
 
def 
SOLVE_1D_KEPSILON_SED_ET(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DELTA_T,NU
,RHO_W,RHO_S,KN,EPN,NU_TN,UXN,CN): 
 
#  INITIALIZE VARIABLES 
   GK = np.zeros((NPOIN,NPOIN)) 
   GFK = np.zeros(NPOIN) 
   LK = np.zeros((NNODL,NNODL)) 
   LFK = np.zeros(NNODL) 
    
   GEP = np.zeros((NPOIN,NPOIN)) 
   GFEP = np.zeros(NPOIN) 
   LEP = np.zeros((NNODL,NNODL)) 
   LFEP = np.zeros(NNODL) 
    
   K = np.zeros(NPOIN) 
   EP = np.zeros(NPOIN) 
 
#  DEFINE CONSTANTS 
   SIGMA_K = 1.0 
   SIGMA_EP = 1.3 
   CMU = 0.09 
   C1 = 1.44 
   C2 = 1.92 
   C3 = 0.6 
   G = 9.81 
   SIGMA_0 = 0.7 
    
#  MIXTURE BULK DENSITY 
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   RHO = RHO_W+(1-RHO_W/RHO_S)*(CN*RHO_S) 
 
#  LOOP FOR ALL THE ELEMENTS 
   for IELEM in range(1,NELEM): 
        
#      SHAPE FUNCTIONS AT GAUSS POINT 1        
       SHAPE1, DERIV1, SDERIV1 = SHAPE_LINE_QUADRATIC_S(POSGP[0]) 
       DJACK1, DJACI1 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV1) 
#      SHAPE FUNCTIONS AT GAUSS POINT 2        
       SHAPE2, DERIV2, SDERIV2 = SHAPE_LINE_QUADRATIC_S(POSGP[1]) 
       DJACK2, DJACI2 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV2) 
#      SHAPE FUNCTIONS AT GAUSS POINT 3        
       SHAPE3, DERIV3, SDERIV3 = SHAPE_LINE_QUADRATIC_S(POSGP[2]) 
       DJACK3, DJACI3 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV3) 
        
#      GLOBAL DERIVATIVE AND GAUSS WEIGHTING AREAS AT GAUSS POINTS 
       GDERIV1 = DJACI1*DERIV1 
       GDERIV2 = DJACI2*DERIV2 
       GDERIV3 = DJACI3*DERIV3 
        
       AREAW1 = DJACK1*WEIGP[0] 
       AREAW2 = DJACK2*WEIGP[1] 
       AREAW3 = DJACK3*WEIGP[2] 
 
#      K AT GAUSS POINTS 
       K1 = 
SHAPE1[0]*KN[LNODS[IELEM,0]]+SHAPE1[1]*KN[LNODS[IELEM,1]]+SHAPE1[2]*KN[LNODS[
IELEM,2]] 
       K2 = 
SHAPE2[0]*KN[LNODS[IELEM,0]]+SHAPE2[1]*KN[LNODS[IELEM,1]]+SHAPE2[2]*KN[LNODS[
IELEM,2]] 
       K3 = 
SHAPE3[0]*KN[LNODS[IELEM,0]]+SHAPE3[1]*KN[LNODS[IELEM,1]]+SHAPE3[2]*KN[LNODS[
IELEM,2]] 
        
#      EPSILON AT GAUSS POINTS 
       EP1 = 
SHAPE1[0]*EPN[LNODS[IELEM,0]]+SHAPE1[1]*EPN[LNODS[IELEM,1]]+SHAPE1[2]*EPN[LNO
DS[IELEM,2]] 
       EP2 = 
SHAPE2[0]*EPN[LNODS[IELEM,0]]+SHAPE2[1]*EPN[LNODS[IELEM,1]]+SHAPE2[2]*EPN[LNO
DS[IELEM,2]] 
       EP3 = 
SHAPE3[0]*EPN[LNODS[IELEM,0]]+SHAPE3[1]*EPN[LNODS[IELEM,1]]+SHAPE3[2]*EPN[LNO
DS[IELEM,2]] 
        
#      GAMMA AT GAUSS POINTS 
       GAMMA1 = EP1/K1 
       GAMMA2 = EP2/K2 
       GAMMA3 = EP3/K3 
        
#      EDDY VISCOSITY AT GAUSS POINTS 
       NUT1 = CMU*K1**2/EP1 
       NUT2 = CMU*K2**2/EP2 
       NUT3 = CMU*K3**2/EP3 
        
#      DERIVATIVE OF EDDY VISCOSITY AT GAUSS POINTS 
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       DNUT_DZ_1 = 
GDERIV1[0]*NU_TN[LNODS[IELEM,0]]+GDERIV1[1]*NU_TN[LNODS[IELEM,1]]+GDERIV1[2]*
NU_TN[LNODS[IELEM,2]] 
       DNUT_DZ_2 = 
GDERIV2[0]*NU_TN[LNODS[IELEM,0]]+GDERIV2[1]*NU_TN[LNODS[IELEM,1]]+GDERIV2[2]*
NU_TN[LNODS[IELEM,2]] 
       DNUT_DZ_3 = 
GDERIV3[0]*NU_TN[LNODS[IELEM,0]]+GDERIV3[1]*NU_TN[LNODS[IELEM,1]]+GDERIV3[2]*
NU_TN[LNODS[IELEM,2]] 
        
#      C AT GAUSS POINTS 
       C01 = 
SHAPE1[0]*CN[LNODS[IELEM,0]]+SHAPE1[1]*CN[LNODS[IELEM,1]]+SHAPE1[2]*CN[LNODS[
IELEM,2]] 
       C02 = 
SHAPE2[0]*CN[LNODS[IELEM,0]]+SHAPE2[1]*CN[LNODS[IELEM,1]]+SHAPE2[2]*CN[LNODS[
IELEM,2]] 
       C03 = 
SHAPE3[0]*CN[LNODS[IELEM,0]]+SHAPE3[1]*CN[LNODS[IELEM,1]]+SHAPE3[2]*CN[LNODS[
IELEM,2]] 
        
#      DERIVATIVE OF K AND EPSILON AT GAUSS POINTS 
       
DK_DZ_1=GDERIV1[0]*KN[LNODS[IELEM,0]]+GDERIV1[1]*KN[LNODS[IELEM,1]]+GDERIV1[2
]*KN[LNODS[IELEM,2]] 
       
DK_DZ_2=GDERIV2[0]*KN[LNODS[IELEM,0]]+GDERIV2[1]*KN[LNODS[IELEM,1]]+GDERIV2[2
]*KN[LNODS[IELEM,2]] 
       
DK_DZ_3=GDERIV3[0]*KN[LNODS[IELEM,0]]+GDERIV3[1]*KN[LNODS[IELEM,1]]+GDERIV3[2
]*KN[LNODS[IELEM,2]]        
 
#      AUXILARY FUNCTION FOR EXTRA TERMS        
       if C01 < 1.0e-4: 
           FTD_1 = 1.0*C01/1.0e-04 
       else: 
           FTD_1 = 1 
 
       if C02 < 1.0e-4: 
           FTD_2 = 1.0*C02/1.0e-04 
       else: 
           FTD_2 = 1 
 
       if C03 < 1.0e-4: 
           FTD_3 = 1.0*C03/1.0e-04 
       else: 
           FTD_3 = 1 
 
#      CONSTRUCT THE LOCAL MATRIX OF COEFFICIENT 
 
#      FOR K        
       LK[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[0]*AREAW3)+(FTD_1*SHAPE1[0]*DNUT_DZ_1*GDERIV1[0]*AREAW1+
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FTD_2*SHAPE2[0]*DNUT_DZ_2*GDERIV2[0]*AREAW2+FTD_3*SHAPE3[0]*DNUT_DZ_3*GDERIV3
[0]*AREAW3)/SIGMA_K 
       LK[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[1]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[1]*AREAW3)+(FTD_1*SHAPE1[0]*DNUT_DZ_1*GDERIV1[1]*AREAW1+
FTD_2*SHAPE2[0]*DNUT_DZ_2*GDERIV2[1]*AREAW2+FTD_3*SHAPE3[0]*DNUT_DZ_3*GDERIV3
[1]*AREAW3)/SIGMA_K 
       LK[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[0]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[0]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[0]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[0]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[0]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[0]*SHAPE3[2]*AREAW3)+(FTD_1*SHAPE1[0]*DNUT_DZ_1*GDERIV1[2]*AREAW1+
FTD_2*SHAPE2[0]*DNUT_DZ_2*GDERIV2[2]*AREAW2+FTD_3*SHAPE3[0]*DNUT_DZ_3*GDERIV3
[2]*AREAW3)/SIGMA_K 
        
       LK[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[0]*AREAW3)+(FTD_1*SHAPE1[1]*DNUT_DZ_1*GDERIV1[0]*AREAW1+
FTD_2*SHAPE2[1]*DNUT_DZ_2*GDERIV2[0]*AREAW2+FTD_3*SHAPE3[1]*DNUT_DZ_3*GDERIV3
[0]*AREAW3)/SIGMA_K 
       LK[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[1]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[1]*AREAW3)+(FTD_1*SHAPE1[1]*DNUT_DZ_1*GDERIV1[1]*AREAW1+
FTD_2*SHAPE2[1]*DNUT_DZ_2*GDERIV2[1]*AREAW2+FTD_3*SHAPE3[1]*DNUT_DZ_3*GDERIV3
[1]*AREAW3)/SIGMA_K 
       LK[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[1]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[1]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[1]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[1]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[1]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[1]*SHAPE3[2]*AREAW3)+(FTD_1*SHAPE1[1]*DNUT_DZ_1*GDERIV1[2]*AREAW1+
FTD_2*SHAPE2[1]*DNUT_DZ_2*GDERIV2[2]*AREAW2+FTD_3*SHAPE3[1]*DNUT_DZ_3*GDERIV3
[2]*AREAW3)/SIGMA_K 
        
       LK[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[0]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[0]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[0]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[0]*AREAW2+GAM
MA3*SHAPE3[2]*SHAPE3[0]*AREAW3)+(FTD_1*SHAPE1[2]*DNUT_DZ_1*GDERIV1[0]*AREAW1+
FTD_2*SHAPE2[2]*DNUT_DZ_2*GDERIV2[0]*AREAW2+FTD_3*SHAPE3[2]*DNUT_DZ_3*GDERIV3
[0]*AREAW3)/SIGMA_K 
       LK[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[1]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[1]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[1]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[1]*AREAW2+GAM
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MA3*SHAPE3[2]*SHAPE3[1]*AREAW3)+(FTD_1*SHAPE1[2]*DNUT_DZ_1*GDERIV1[1]*AREAW1+
FTD_2*SHAPE2[2]*DNUT_DZ_2*GDERIV2[1]*AREAW2+FTD_3*SHAPE3[2]*DNUT_DZ_3*GDERIV3
[1]*AREAW3)/SIGMA_K 
       LK[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_K)*GDERIV1[2]*GDERIV1[2]*AREAW1+(NU+NUT2/SIGM
A_K)*GDERIV2[2]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_K)*GDERIV3[2]*GDERIV3[2]*ARE
AW3)+(GAMMA1*SHAPE1[2]*SHAPE1[2]*AREAW1+GAMMA2*SHAPE2[2]*SHAPE2[2]*AREAW2+GAM
MA3*SHAPE3[2]*SHAPE3[2]*AREAW3)+(FTD_1*SHAPE1[2]*DNUT_DZ_1*GDERIV1[2]*AREAW1+
FTD_2*SHAPE2[2]*DNUT_DZ_2*GDERIV2[2]*AREAW2+FTD_3*SHAPE3[2]*DNUT_DZ_3*GDERIV3
[2]*AREAW3)/SIGMA_K 
 
#      FOR EPSILON 
       LEP[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[0]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[0]*AREAW3) 
       LEP[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[1]*AREAW3) 
       LEP[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[0]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[0]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[0]*GDERIV3[2]*
AREAW3)+(C2*GAMMA1*SHAPE1[0]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[0]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[0]*SHAPE3[2]*AREAW3) 
 
       LEP[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[0]*
AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[0]*AREAW3) 
       LEP[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[1]*AREAW3) 
       LEP[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[1]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[1]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[1]*GDERIV3[2]*
AREAW3)+(C2*GAMMA1*SHAPE1[1]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[1]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[1]*SHAPE3[2]*AREAW3) 
 
       LEP[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[0]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[0]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[0]*
AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[0]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[0]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[0]*AREAW3) 
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       LEP[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[1]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[1]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[1]*
AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[1]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[1]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[1]*AREAW3) 
       LEP[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+((NU+NUT1/SIGMA_EP)*GDERIV1[2]*GDERIV1[2]*AREAW1+(NU+NUT2/SIG
MA_EP)*GDERIV2[2]*GDERIV2[2]*AREAW2+(NU+NUT3/SIGMA_EP)*GDERIV3[2]*GDERIV3[2]*
AREAW3)+(C2*GAMMA1*SHAPE1[2]*SHAPE1[2]*AREAW1+C2*GAMMA2*SHAPE2[2]*SHAPE2[2]*A
REAW2+C2*GAMMA3*SHAPE3[2]*SHAPE3[2]*AREAW3) 
 
#      ASSEMBLE THE GLOBAL MATRIX 
       for IDIME in range(0,NNODL): 
           for JDIME in range(0,NNODL): 
               GK[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GK[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LK[IDIME,JDIME] 
               GEP[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GEP[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LEP[IDIME,JDIME] 
        
#      FORM THE LOCAL RHS COEFFICIENTS AND ASSEMBLE INTO GLOBAL RHS VECTOR 
 
#      (DUX_DZ)**2 AT GAUSS POINTS 
       DUX_DZ_S1 = 
(GDERIV1[0]*UXN[LNODS[IELEM,0]]+GDERIV1[1]*UXN[LNODS[IELEM,1]]+GDERIV1[2]*UXN
[LNODS[IELEM,2]])**2 
       DUX_DZ_S2 = 
(GDERIV2[0]*UXN[LNODS[IELEM,0]]+GDERIV2[1]*UXN[LNODS[IELEM,1]]+GDERIV2[2]*UXN
[LNODS[IELEM,2]])**2 
       DUX_DZ_S3 = 
(GDERIV3[0]*UXN[LNODS[IELEM,0]]+GDERIV3[1]*UXN[LNODS[IELEM,1]]+GDERIV3[2]*UXN
[LNODS[IELEM,2]])**2 
        
#      RHO AND DRHO_DZ AT GAUSS POINTS 
       RHO1 = 
SHAPE1[0]*RHO[LNODS[IELEM,0]]+SHAPE1[1]*RHO[LNODS[IELEM,1]]+SHAPE1[2]*RHO[LNO
DS[IELEM,2]] 
       RHO2 = 
SHAPE2[0]*RHO[LNODS[IELEM,0]]+SHAPE2[1]*RHO[LNODS[IELEM,1]]+SHAPE2[2]*RHO[LNO
DS[IELEM,2]] 
       RHO3 = 
SHAPE3[0]*RHO[LNODS[IELEM,0]]+SHAPE3[1]*RHO[LNODS[IELEM,1]]+SHAPE3[2]*RHO[LNO
DS[IELEM,2]] 
 
       DRHO_DZ1 = 
GDERIV1[0]*RHO[LNODS[IELEM,0]]+GDERIV1[1]*RHO[LNODS[IELEM,1]]+GDERIV1[2]*RHO[
LNODS[IELEM,2]] 
       DRHO_DZ2 = 
GDERIV2[0]*RHO[LNODS[IELEM,0]]+GDERIV2[1]*RHO[LNODS[IELEM,1]]+GDERIV2[2]*RHO[
LNODS[IELEM,2]] 
       DRHO_DZ3 = 
GDERIV3[0]*RHO[LNODS[IELEM,0]]+GDERIV3[1]*RHO[LNODS[IELEM,1]]+GDERIV3[2]*RHO[
LNODS[IELEM,2]] 
 
#      SIGMA_S AND RI AT GAUSS POINTS 
       SIGMA_S1 = SIGMA_0 
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       SIGMA_S2 = SIGMA_0 
       SIGMA_S3 = SIGMA_0 
        
#      CONSTRUCT THE LOCAL VECTOR OF RHS 
       LFK[0] = 
((K1*SHAPE1[0]*AREAW1+K2*SHAPE2[0]*AREAW2+K3*SHAPE3[0]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[0]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[0]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[0]*AREAW3)+(G/RHO1*NUT1/SIGMA_S1*DRHO_DZ1*SHAPE1[0]*AREAW1+G/RHO2*NUT2/S
IGMA_S2*DRHO_DZ2*SHAPE2[0]*AREAW2+G/RHO3*NUT3/SIGMA_S3*DRHO_DZ3*SHAPE3[0]*ARE
AW3) 
       LFK[1] = 
((K1*SHAPE1[1]*AREAW1+K2*SHAPE2[1]*AREAW2+K3*SHAPE3[1]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[1]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[1]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[1]*AREAW3)+(G/RHO1*NUT1/SIGMA_S1*DRHO_DZ1*SHAPE1[1]*AREAW1+G/RHO2*NUT2/S
IGMA_S2*DRHO_DZ2*SHAPE2[1]*AREAW2+G/RHO3*NUT3/SIGMA_S3*DRHO_DZ3*SHAPE3[1]*ARE
AW3) 
       LFK[2] = 
((K1*SHAPE1[2]*AREAW1+K2*SHAPE2[2]*AREAW2+K3*SHAPE3[2]*AREAW3)/DELTA_T)+(NUT1
*DUX_DZ_S1*SHAPE1[2]*AREAW1+NUT2*DUX_DZ_S2*SHAPE2[2]*AREAW2+NUT3*DUX_DZ_S3*SH
APE3[2]*AREAW3)+(G/RHO1*NUT1/SIGMA_S1*DRHO_DZ1*SHAPE1[2]*AREAW1+G/RHO2*NUT2/S
IGMA_S2*DRHO_DZ2*SHAPE2[2]*AREAW2+G/RHO3*NUT3/SIGMA_S3*DRHO_DZ3*SHAPE3[2]*ARE
AW3) 
        
       LFEP[0] = 
((EP1*SHAPE1[0]*AREAW1+EP2*SHAPE2[0]*AREAW2+EP3*SHAPE3[0]*AREAW3)/DELTA_T)+(C
1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[0]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[0]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[0]*AREAW3)-
(FTD_1*C3*GAMMA1*DK_DZ_1*DNUT_DZ_1*SHAPE1[0]*AREAW1+FTD_2*C3*GAMMA2*DK_DZ_2*D
NUT_DZ_2*SHAPE2[0]*AREAW2+FTD_3*C3*GAMMA3*DK_DZ_3*DNUT_DZ_3*SHAPE3[0]*AREAW3)
/SIGMA_K 
       LFEP[1] = 
((EP1*SHAPE1[1]*AREAW1+EP2*SHAPE2[1]*AREAW2+EP3*SHAPE3[1]*AREAW3)/DELTA_T)+(C
1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[1]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[1]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[1]*AREAW3)-
(FTD_1*C3*GAMMA1*DK_DZ_1*DNUT_DZ_1*SHAPE1[1]*AREAW1+FTD_2*C3*GAMMA2*DK_DZ_2*D
NUT_DZ_2*SHAPE2[1]*AREAW2+FTD_3*C3*GAMMA3*DK_DZ_3*DNUT_DZ_3*SHAPE3[1]*AREAW3)
/SIGMA_K 
       LFEP[2] = 
((EP1*SHAPE1[2]*AREAW1+EP2*SHAPE2[2]*AREAW2+EP3*SHAPE3[2]*AREAW3)/DELTA_T)+(C
1*GAMMA1*NUT1*DUX_DZ_S1*SHAPE1[2]*AREAW1+C1*GAMMA2*NUT2*DUX_DZ_S2*SHAPE2[2]*A
REAW2+C1*GAMMA3*NUT3*DUX_DZ_S3*SHAPE3[2]*AREAW3)-
(FTD_1*C3*GAMMA1*DK_DZ_1*DNUT_DZ_1*SHAPE1[2]*AREAW1+FTD_2*C3*GAMMA2*DK_DZ_2*D
NUT_DZ_2*SHAPE2[2]*AREAW2+FTD_3*C3*GAMMA3*DK_DZ_3*DNUT_DZ_3*SHAPE3[2]*AREAW3)
/SIGMA_K 
        
       for IDIME in range(0,NNODL): 
           GFK[LNODS[IELEM,IDIME]] = GFK[LNODS[IELEM,IDIME]]+LFK[IDIME] 
           GFEP[LNODS[IELEM,IDIME]] = GFEP[LNODS[IELEM,IDIME]]+LFEP[IDIME] 
    
#  DEAL WITH THE BOUNDARY CONDITIONS 
   for IPOIN in range(0,NPOIN): 
#      WALL BOUNDARY        
       GK[2,IPOIN] = 0.0 
       GEP[2,IPOIN] = 0.0 
#      FREE SURFACE        
       GK[NPOIN-1,IPOIN] = 0.0 
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#  WALL BOUNDARY    
   GK[2,2] = 1.0 
   GEP[2,2] = 1.0 
#  FREE SURFACE      
   GK[NPOIN-1,NPOIN-1] = 1.0 
 
#  IMPOSE BOUNDARY VALUES 
#  WALL BOUNDARY   
   GFK[2] = KN[2] 
   GFEP[2] = EPN[2] 
#  FREE SURFACE 
   GFK[NPOIN-1] = 0.0 
 
#  SOLVE LINEAR EQUATIONS 
   K[2:] = np.linalg.solve(GK[2:,2:],GFK[2:]) 
   EP[2:] = np.linalg.solve(GEP[2:,2:],GFEP[2:]) 
  
#  UPDATE NU_T 
   K[0]=KN[0] 
   K[1]=KN[1] 
   EP[0]=EPN[0] 
   EP[1]=EPN[1] 
   NU_T=CMU*K**2/EP 
 
   return K, EP, NU_T 
 
 

4. solve_sediment_unsteady.py 

 
import numpy as np 
from basic_functions import * 
 
def 
SOLVE_1D_SEDIMENT_US(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DELTA_T,NU,CN,
NU_TN,WS): 
 
#  INITIALIZE VARIABLES 
   GC = np.zeros((NPOIN,NPOIN)) 
   GFC = np.zeros(NPOIN) 
   LC = np.zeros((NNODL,NNODL)) 
   LFC = np.zeros(NNODL) 
    
#  DEFINE CONSTANTS 
   SIGMA_T = 0.7 
   DT = (NU_TN/SIGMA_T+NU) 
 
#  LOOP FOR ALL THE ELEMENTS 
   for IELEM in range(0,NELEM): 
        
#      SHAPE FUNCTIONS AT GAUSS POINT 1        
       SHAPE1, DERIV1, SDERIV1 = SHAPE_LINE_QUADRATIC_S(POSGP[0]) 
       DJACK1, DJACI1 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV1) 
#      SHAPE FUNCTIONS AT GAUSS POINT 2        
       SHAPE2, DERIV2, SDERIV2 = SHAPE_LINE_QUADRATIC_S(POSGP[1]) 
       DJACK2, DJACI2 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV2) 
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#      SHAPE FUNCTIONS AT GAUSS POINT 3        
       SHAPE3, DERIV3, SDERIV3 = SHAPE_LINE_QUADRATIC_S(POSGP[2]) 
       DJACK3, DJACI3 = DJACOB_LINE(COORD,LNODS,NNODL,IELEM,DERIV3) 
        
#      GLOBAL DERIVATIVE AND GAUSS WEIGHTING AREAS AT GAUSS POINTS 
       GDERIV1 = DJACI1*DERIV1 
       GDERIV2 = DJACI2*DERIV2 
       GDERIV3 = DJACI3*DERIV3 
        
       AREAW1 = DJACK1*WEIGP[0] 
       AREAW2 = DJACK2*WEIGP[1] 
       AREAW3 = DJACK3*WEIGP[2] 
        
#      C AT GAUSS POINTS 
       C1 = 
SHAPE1[0]*CN[LNODS[IELEM,0]]+SHAPE1[1]*CN[LNODS[IELEM,1]]+SHAPE1[2]*CN[LNODS[
IELEM,2]] 
       C2 = 
SHAPE2[0]*CN[LNODS[IELEM,0]]+SHAPE2[1]*CN[LNODS[IELEM,1]]+SHAPE2[2]*CN[LNODS[
IELEM,2]] 
       C3 = 
SHAPE3[0]*CN[LNODS[IELEM,0]]+SHAPE3[1]*CN[LNODS[IELEM,1]]+SHAPE3[2]*CN[LNODS[
IELEM,2]] 
        
#      DT AT GAUSS POINTS 
       DT1 = 
SHAPE1[0]*DT[LNODS[IELEM,0]]+SHAPE1[1]*DT[LNODS[IELEM,1]]+SHAPE1[2]*DT[LNODS[
IELEM,2]] 
       DT2 = 
SHAPE2[0]*DT[LNODS[IELEM,0]]+SHAPE2[1]*DT[LNODS[IELEM,1]]+SHAPE2[2]*DT[LNODS[
IELEM,2]] 
       DT3 = 
SHAPE3[0]*DT[LNODS[IELEM,0]]+SHAPE3[1]*DT[LNODS[IELEM,1]]+SHAPE3[2]*DT[LNODS[
IELEM,2]] 
  
#      CONSTRUCT THE LOCAL MATRIX OF COEFFICIENT 
       LC[0,0] = 
((SHAPE1[0]*SHAPE1[0]*AREAW1+SHAPE2[0]*SHAPE2[0]*AREAW2+SHAPE3[0]*SHAPE3[0]*A
REAW3)/DELTA_T)+(GDERIV1[0]*(WS*SHAPE1[0]+DT1*GDERIV1[0])*AREAW1+GDERIV2[0]*(
WS*SHAPE2[0]+DT2*GDERIV2[0])*AREAW2+GDERIV3[0]*(WS*SHAPE3[0]+DT3*GDERIV3[0])*
AREAW3) 
       LC[0,1] = 
((SHAPE1[0]*SHAPE1[1]*AREAW1+SHAPE2[0]*SHAPE2[1]*AREAW2+SHAPE3[0]*SHAPE3[1]*A
REAW3)/DELTA_T)+(GDERIV1[0]*(WS*SHAPE1[1]+DT1*GDERIV1[1])*AREAW1+GDERIV2[0]*(
WS*SHAPE2[1]+DT2*GDERIV2[1])*AREAW2+GDERIV3[0]*(WS*SHAPE3[1]+DT3*GDERIV3[1])*
AREAW3) 
       LC[0,2] = 
((SHAPE1[0]*SHAPE1[2]*AREAW1+SHAPE2[0]*SHAPE2[2]*AREAW2+SHAPE3[0]*SHAPE3[2]*A
REAW3)/DELTA_T)+(GDERIV1[0]*(WS*SHAPE1[2]+DT1*GDERIV1[2])*AREAW1+GDERIV2[0]*(
WS*SHAPE2[2]+DT2*GDERIV2[2])*AREAW2+GDERIV3[0]*(WS*SHAPE3[2]+DT3*GDERIV3[2])*
AREAW3) 
 
       LC[1,0] = 
((SHAPE1[1]*SHAPE1[0]*AREAW1+SHAPE2[1]*SHAPE2[0]*AREAW2+SHAPE3[1]*SHAPE3[0]*A
REAW3)/DELTA_T)+(GDERIV1[1]*(WS*SHAPE1[0]+DT1*GDERIV1[0])*AREAW1+GDERIV2[1]*(
WS*SHAPE2[0]+DT2*GDERIV2[0])*AREAW2+GDERIV3[1]*(WS*SHAPE3[0]+DT3*GDERIV3[0])*
AREAW3) 
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       LC[1,1] = 
((SHAPE1[1]*SHAPE1[1]*AREAW1+SHAPE2[1]*SHAPE2[1]*AREAW2+SHAPE3[1]*SHAPE3[1]*A
REAW3)/DELTA_T)+(GDERIV1[1]*(WS*SHAPE1[1]+DT1*GDERIV1[1])*AREAW1+GDERIV2[1]*(
WS*SHAPE2[1]+DT2*GDERIV2[1])*AREAW2+GDERIV3[1]*(WS*SHAPE3[1]+DT3*GDERIV3[1])*
AREAW3) 
       LC[1,2] = 
((SHAPE1[1]*SHAPE1[2]*AREAW1+SHAPE2[1]*SHAPE2[2]*AREAW2+SHAPE3[1]*SHAPE3[2]*A
REAW3)/DELTA_T)+(GDERIV1[1]*(WS*SHAPE1[2]+DT1*GDERIV1[2])*AREAW1+GDERIV2[1]*(
WS*SHAPE2[2]+DT2*GDERIV2[2])*AREAW2+GDERIV3[1]*(WS*SHAPE3[2]+DT3*GDERIV3[2])*
AREAW3) 
 
       LC[2,0] = 
((SHAPE1[2]*SHAPE1[0]*AREAW1+SHAPE2[2]*SHAPE2[0]*AREAW2+SHAPE3[2]*SHAPE3[0]*A
REAW3)/DELTA_T)+(GDERIV1[2]*(WS*SHAPE1[0]+DT1*GDERIV1[0])*AREAW1+GDERIV2[2]*(
WS*SHAPE2[0]+DT2*GDERIV2[0])*AREAW2+GDERIV3[2]*(WS*SHAPE3[0]+DT3*GDERIV3[0])*
AREAW3) 
       LC[2,1] = 
((SHAPE1[2]*SHAPE1[1]*AREAW1+SHAPE2[2]*SHAPE2[1]*AREAW2+SHAPE3[2]*SHAPE3[1]*A
REAW3)/DELTA_T)+(GDERIV1[2]*(WS*SHAPE1[1]+DT1*GDERIV1[1])*AREAW1+GDERIV2[2]*(
WS*SHAPE2[1]+DT2*GDERIV2[1])*AREAW2+GDERIV3[2]*(WS*SHAPE3[1]+DT3*GDERIV3[1])*
AREAW3) 
       LC[2,2] = 
((SHAPE1[2]*SHAPE1[2]*AREAW1+SHAPE2[2]*SHAPE2[2]*AREAW2+SHAPE3[2]*SHAPE3[2]*A
REAW3)/DELTA_T)+(GDERIV1[2]*(WS*SHAPE1[2]+DT1*GDERIV1[2])*AREAW1+GDERIV2[2]*(
WS*SHAPE2[2]+DT2*GDERIV2[2])*AREAW2+GDERIV3[2]*(WS*SHAPE3[2]+DT3*GDERIV3[2])*
AREAW3) 
 
#      ASSEMBLE THE GLOBAL MATRIX 
       for IDIME in range(0,NNODL): 
           for JDIME in range(0,NNODL): 
               GC[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]] = 
GC[LNODS[IELEM,IDIME],LNODS[IELEM,JDIME]]+LC[IDIME,JDIME] 
        
#      FORM THE LOCAL RHS COEFFICIENTS AND ASSEMBLE INTO GLOBAL RHS VECTOR 
       LFC[0] = 
((C1*SHAPE1[0]*AREAW1+C2*SHAPE2[0]*AREAW2+C3*SHAPE3[0]*AREAW3)/DELTA_T)+0.0 
       LFC[1] = 
((C1*SHAPE1[1]*AREAW1+C2*SHAPE2[1]*AREAW2+C3*SHAPE3[1]*AREAW3)/DELTA_T)+0.0 
       LFC[2] = 
((C1*SHAPE1[2]*AREAW1+C2*SHAPE2[2]*AREAW2+C3*SHAPE3[2]*AREAW3)/DELTA_T)+0.0 
 
#      DEAL WITH THE BOUNDARY FLUX 
#        if (IELEM==1) 
#            
LFC(1)=((C1*SHAPE1[0]*AREAW1+C2*SHAPE2[0]*AREAW2+C3*SHAPE3[0]*AREAW3)/DELTA_T
)+(WS*CN(1)) 
#        elseif (IELEM==NELEM) 
#            
LFC(3)=((C1*SHAPE1[2]*AREAW1+C2*SHAPE2[2]*AREAW2+C3*SHAPE3[2]*AREAW3)/DELTA_T
)+(WS*CN(NPOIN)) 
#        end 
 
       for IDIME in range(0,NNODL): 
           GFC[LNODS[IELEM,IDIME]] = GFC[LNODS[IELEM,IDIME]]+LFC[IDIME] 
 
#  DEAL WITH THE BOUNDARY CONDITIONS 
#    for IPOIN=1:NPOIN 
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#      WALL BOUNDARY        
#        GC(1,IPOIN)=0.0 
#      FREE SURFACE        
#        GC(NPOIN,IPOIN)=0.0 
#    end 
    
#  WALL BOUNDARY    
#    GC(1,1)=1.0 
#  FREE SURFACE      
#    GC(NPOIN,NPOIN)=1.0 
 
#  IMPOSE BOUNDARY VALUES 
#  WALL BOUNDARY   
#    GFC(1)=1.0e-3 
#  FREE SURFACE 
#    GFC(NPOIN)=0.0    
    
#  SOLVE LINEAR EQUATIONS 
   C = np.linalg.solve(GC,GFC) 
    
   return C 
 
 

5. Master.py 

 
import warnings 
warnings.filterwarnings('ignore') 
 
print("==========================") 
print("Yes, Master! Let's start!!") 
print("==========================") 
 
import numpy as np 
import matplotlib.pyplot as plt 
from basic_functions import * 
from solve_fluid_unsteady import * 
from solve_turbulence_unsteady import * 
from solve_sediment_unsteady import * 
 
#========================================================= 
  
#  DEFINE PHYSICAL PARAMETERS 
KAPPA = 0.402 
CMU = 0.09 
NU = 1.0e-6 
RHO_W = 1.0e3 
DELTA_T = 20 
WS = 0.01 
RHO_S = 2.65e3 
DP_DX = -5.0 
 
print("1. Let me create a grid for you.") 
NELEM = 50 
GSIZE = 0.005 
NPOIN,NNODL,COORD,LNODS = CREATE_GRID(NELEM,GSIZE) 
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print("2. Now I'm going to define three Gauss points.") 
POSGP,WEIGP = DEF_3_GAUSS_POINT() 
 
print("3. I guess you're going to need some shape functions.") 
SHAPE1,DERIV1,SDERIV1 = SHAPE_LINE_QUADRATIC_S(POSGP[0]) 
SHAPE2,DERIV2,SDERIV2 = SHAPE_LINE_QUADRATIC_S(POSGP[1]) 
SHAPE3,DERIV3,SDERIV3 = SHAPE_LINE_QUADRATIC_S(POSGP[2]) 
 
print("4. The initial conditions have been set up.") 
USTAR,UX0,K0,EP0,NU_T0,C0 = INITIAL_CONDITION(NPOIN,COORD,DP_DX,CMU,KAPPA) 
UXN = UX0 
KN = K0 
EPN = EP0 
NU_TN = NU_T0 
MU_EN = (NU+NU_TN)*RHO_W 
CN = C0 
 
print("5. Entering the loop for solving the equations!!") 
ERROR = np.zeros(NPOIN) 
ERROR[:] = 1.0 
STEP = 1 
while max(ERROR)>1.0e-8: 
   UX = 
SOLVE_1D_FLUID(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DP_DX,USTAR,DELTA_T,
MU_EN,UXN) 
   UXN = 0.5*(UX+UXN) 
   K, EP, NU_T = 
SOLVE_1D_KEPSILON_SED(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DELTA_T,NU,RH
O_W,RHO_S,KN,EPN,UXN,CN) 
   KN = 0.5*(K+KN) 
   EPN = 0.5*(EP+EPN) 
   NU_TN = 0.5*(NU_T+NU_TN) 
   MU_EN = (NU+NU_TN)*RHO_W 
   C = 
SOLVE_1D_SEDIMENT(COORD,LNODS,NPOIN,NELEM,NNODL,POSGP,WEIGP,DELTA_T,NU,CN,NU_
TN,WS) 
   ERROR = abs((C-CN)/CN) 
   print("   ERROR is {} at iteration step {}".format(np.max(ERROR),STEP)) 
   CN=0.5*(C+CN) 
   STEP=STEP+1 
 
print("6. It's time to show you the results!!") 
plt.figure(1) 
plt.plot(UX, COORD) 
plt.xlabel('streamwise velocity (m/s)') 
plt.ylabel('water depth (m)') 
plt.legend(['UX'],loc=2,fontsize=11) 
plt.figure(2) 
plt.plot(K0, COORD, EP0, COORD, NU_T0, COORD) 
plt.ylabel('water depth (m)') 
plt.legend(['K','EP','NU_T'],loc=1,fontsize=11) 
plt.figure(3) 
plt.plot(C, COORD) 
plt.xlabel('suspended sediment concentration (m/s)') 
plt.ylabel('water depth (m)') 
plt.xscale('log') 
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plt.legend(['C'],loc=1,fontsize=11) 
plt.show() 
 
print ("Streamwise velocity UX:") 
print UX 
print ("Turbulence kinetic energy K:") 
print K 
print ("Turbulence dissipation rate EP:") 
print EP 
print ("Turbulent eddy viscosity NU_T:") 
print NU_T 
print ("Suspended sediment concentration C:") 
print C 
 
print ("7. Well done. Enjoy!!") 

 

  



210 
 

 

 



211 
 

APPENDIX IV 
 
ORIGINAL CONTRIBUTIONS AND 
PUBLICATIONS 

 

CONTRIBUTION LIST 

 

In this dissertation, the author contributed in the following aspects: 

 The derivation of modified k-ε equations based on two-phase flow 
theory; 

 The derivation of closures for the additional turbulence 
modulation terms due to fluid-sediment interaction; 

 The development and validation of 1DV finite element model; 

 The development of mixed-sediment transport model for the 
Scheldt estuary and the Belgian coast using TELEMAC modelling 
system; 

 The implementation of the new roughness law developed by 
Toorman (in prep.); 

 The implementation of equations of erosion of mixtures proposed 
by Waeles (2005); 

 The implementation of the new deposition criterion proposed by 
Toorman (in prep.) and extension to the mixed-sediment 
transport model; 

 The development of variety of tools for pre- and post-processing 
of the data and the simulated results; 

 The calibration and validation of the Scheldt mode and the 
analysis of the results. 
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PUBLICATION LIST 

 

(Peer-reviewed journals) 

Bi, Q., Toorman, E. (2015). Mixed-sediment transport modelling in the 
Scheldt estuary with a physics based bottom friction law. Ocean 
Dynamics, 65 (4), 555-587. 

 

 (Contributions in academic book) 

Monbaliu, J., Bi, Q., Bouma, T., Toorman, E., van Belzen, J., Willems, P. 
(2014). Extreme estuarine water levels and channel morphology, effect 
on flood extents and habitat resilience; the Scheldt Estuary, Belgium and 
the Netherlands. In: Zanuttigh B., Nicholis R. (Eds.), Coastal Risk 
Management in a Changing Climate, Chapt. 7.1 Elsevier. 

 

(Contributions in scientific report) 

Toorman, E., Bi, Q. (2012). Section 2.4, EU FP7 FIELD_AC Report D3.3. In 
Liste, M., Monbaliu, J., (Eds.). Improvements to sea-bed boundary 
conditions. (pp. 19-31). 

 

(Proceedings of international conference) 

Monbaliu, J., Bi, Q., Ortega Yamamoto, H., Toorman, E., Willems, P. (2014). 
Correlating surge and inland flow and a physics bed roughness model for 
sediment laden flows are tools for improved estimation of 
hydrodynamics and morphodynamics in view of climate change. EU 
Symposium on Ocean Observation and Its Applications. Taiwan, 4-6 
November 2014 (pp. 1-8). 

 

(Presentations and abstracts) 

Bi, Q., Toorman, E. (2015). On two-phase/mixture modelling of sediment 
transport and turbulence modulation due to fluid-particle interactions. 
Book of Abstracts, 13th International Conference on Cohesive Sediment 
Transport Processes. INTERCOH. Leuven, 7-11 September 2015, 10-11. 
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Bi, Q., Toorman, E. (2014). A new sediment transport model for the 
Western Scheldt. JONSMOD 2014 Abstracts. JONSMOD. Brussels, 12-14 
May 2014, 44-45. 

Toorman, E., Bi, Q. (2013). A practical model for drag modulation by 
suspended sediment, with application to the Scheldt estuary. 
INTERCOH2013 Book of Abstracts. Int. Conf. on Cohesive Sediment 
Transport. Gainesville, Florida, 20-24 October 2013, 7-8.  

Bi, Q., Toorman, E. (2013). Two-dimensional modelling of mixed 
sediment transport in the Western Scheldt. TELEMAC-MASCARET User 
Conference. Karlsruhe (DE), 16-18 October 2013. 

Toorman, E., Bi, Q. (2013). Hybrid two-phase/mixture modelling of 
sediment transport. Abstracts THESIS-2013 (CDRom). Symposium on 
Two-phase Modelling for Sediment Dynamics. Chatou (France), 10-12 
June 2013, 4 pp.. 

Bi, Q., Toorman, E. (2013). Modelling of hydrodynamic and morphological 
processes in the Scheldt Estuary with a new bed roughness model. Book 
of abstracts – VLIZ Young Scientists’ Day. Brugge, Belgium, 15 February 
2013. VLIZ Special Publication: vol. 63. VLIZ Young Scientists’ Day. 
Brugge, Belgium, 14-15 February 2013, 15-15. 

Toorman, E., Bi, Q. (2011). Dealing with benthic high-concentrated layers 
and fluid mud in cohesive sediment transport modelling. INTERCOH'11. 
Book of Abstracts. Int. Conf. on Cohesive Sediment Transport Processes. 
Shanghai, China, 18-21 October 2011, 85-86. 
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