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Abstract

Sparse partial robust M regression is introduced as a new regression method.
It is the first dimension reduction and regression algorithm that yields esti-
mates with a partial least squares like interpretability that are sparse and
robust with respect to both vertical outliers and leverage points. A simula-
tion study underpins these claims. Real data examples illustrate the validity
of the approach.
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1. Introduction

Sparse regression methods have been a major topic of research in statistics
over the last decade. They estimate a linear relationship between a predic-
tand y € R™ and a predictor data matrix X € R"*P. Assuming the linear
model

y=XpB+e, (1)

the classical estimator is given by solving the least squares criterion

B:arg;ninHy—XﬂHQ (2)
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with the squared Ly norm ||u|* = >°7_, u? for any vector u € RP. Thereby

the predicted responses are y = X 3. When the predictor data contain a
column of ones, the model incorporates an intercept.

Typically, but not exclusively, when p is large, the X data matrix tends
to contain columns of uninformative variables, i.e. variables that bear no
information related to the predictand. Estimates of 3 often have a subset

of components { le, e ij} of small magnitude corresponding to p uninfor-

mative variables. As these components are small but not exactly zero, each
of them still contributes to the model and, more importantly, to increased
estimation and prediction uncertainty. In contrast, a sparse estimator of 3
will have many components that are exactly equal to zero.

Penalized regression methods impose conditions on the norm of the co-
efficient vector. The Lasso estimate [1], where an L; penalty term is used,
leads to a sparse coefficient vector:

mgﬂlly—Xﬁ||2+A1!\5lll7 (3)

with |Jull; = Y7, |w;| for any vector w € RP. The nonnegative tuning
parameter \; determines the sparsity of the estimation and implicitly reflects
the size of p. The Lasso sparse regression estimate has become a statistical
regression tool of widespread application, especially in fields of research where
data dimensionality is typically high, such as chemometrics, cheminformatics
or bioinformatics [2]. But, since it is nonrobust, it may be severely distorted
by outliers in the data.

Robust multiple regression has attracted widespread attention from statis-
ticians since as early as the 1970s. For an overview of robust regression
methods, we refer to e.g. Maronna et al. [3]. However, only recently, robust
sparse regression estimators have been proposed. One of the few existing
sparse and robust regression estimators that is robust to both vertical out-
liers (outliers in the predictand) and leverage points (outliers in the predictor
data), is sparse least trimmed squares regression [4], which is a sparse penal-
ized version of the least trimmed squares (LTS) robust regression estimator
[5].

In applied sciences, there is often a need for both regression analysis, and
interpretative analysis. In order to visualize the data and to interpret the
high-dimensional structure(s) in them, it is customary to project the pre-
dictor data onto a limited set of latent components and then analyze the



individual cases’ position as well as how each original variable contributes
to the latent components in a biplot. A first approach would be to do a
(potentially sparse) principal component analysis, followed by a (potentially
sparse) regression. The main issue with that approach is that the principal
components are defined according to a maximization criterion that does not
account for the predictand. With this reason, partial least squares regression
(PLS) [6] has become a mainstay tool in applied sciences such as chemo-
metrics. It provides a projection onto a few latent components that can be
visualized in biplots, and it yields a vector of regression coefficients based on
those latent components.

Partial least squares regression is both a nonrobust and a nonsparse es-
timator. Manifold proposals to robustify PLS have been discussed, of which
a good overview is given in Filzmoser et al. [7]. One of the most widely
applied robust alternatives to PLS is partial robust M regression [8]. Likely
its popularity is due to the fact that it provides a fair tradeoff between sta-
tistical robustness with respect to both vertical outliers and leverage points
on the one hand and statistical and computational efficiency on the other
hand. From an application perspective, it has been reported to perform well
[9]. Introduction of sparseness into the partial least squares framework is a
more recent topic of research [10, 11, 12].

In this article, a novel estimator is introduced, called Sparse Partial Ro-
bust M regression, which is up to our knowledge the first estimator to offer all
three benefits simultaneously: (i) it is based on projection onto latent struc-
tures and thereby yields PLS like visualization, (ii) it is integrally sparse,
yielding not only regression coefficients with exact zero components, but also
sparse direction vectors, and (iii) it is robust with respect to both vertical
outliers and leverage points.

2. The sparse partial robust M regression estimator

The sparse partial robust M regression (SPRM) estimator can be viewed
at as either a sparse version of the partial robust M regression (PRM) es-
timator [8], or as a way to robustify the sparse PLS (SPLS) estimator [11].
Therefore, its construction inherits some characteristics from both precur-
SOrS.

In partial least squares, the latent components (or scores) T are defined as
linear combinations of the original variables T = X A, wherein the so-called
direction vectors ay, (in the PLS literature also known as weighting vectors)



are the columns of A. The direction vectors maximize squared covariance to
the predictand:

aj, = argmaxcov’ (X a,y), (4a)

for h € {1, ..., hynaz } under the constraints that
|l an||=1 and a} X" Xa; =0for 1 <i< h. (4b)

Here, h,q. is the maximum number of components we want to retrieve. We
assume throughout the article, that both predictor and predictand variables
are centered, so that

1

T vT T
— _d"X"yy"Xa =
o1 X vy Xa

cov’ (Xa,y) = 2a,TMTMa, (5)

1
(n—1)
with M = y* X . Regressing the dependent variable onto the scores, yields

4 = argmin | y — T |*= (T7T) ' T"y. (6)
Y

Then, since § = T4 and T = X A, one gets 8 = AS.
In order to obtain a robust version of the partial least squares estimator,
case weights w; are assigned to the rows of X and y. Let

X =0X and ¢ =Qu, (7)

with @ a diagonal matrix with diagonal elements w; € [0, 1] for ¢ € {1,...,n}.
Outlying observations will receive a weight lower than one. An observation
is an outlier when it has a large residual, or a large value of the covariate
(hence a large leverage) in the latent regression model (i.e. the regression
of the predictand on the latent components). Let ¢; denote the rows of T,
r; = y; — t1 4 are the residuals of the latent variable regression model, where
y; are the elements of the vector y. Let 6 denote a robust scale estimator
of the residuals; we take the median absolute deviation (MAD). Then the
weights are defined by

W? = wp (%) WT( [£: — med; (#;)]] ) (8)

med; ||t; — med;(t;)]|

More specifics on weight functions wg and wy will be discussed in Section 3.



With (5) and M = §7X, the robust maximization criterion for the
direction vectors is e
a;, = argmaxa’ M Ma, (9a)
a

under the constraints that
lan||=1 and a’X Xa;=0for1<i<h, (9b)

which is identical to maximization criterion (4) if € is the identity matrix.

In order to obtain a fully robust PLS estimation, the latent variable re-
gression needs to be robustified too. Thereunto, note that the ordinary least
squares minimization criterion can be written as

y =argmin Y p (v —t/7), (10)
T =1

with p(u) = u? Using a p function with bounded derivative in criterion
(10) yields a well-known class of robust regression estimators called M es-
timators. They are computed as iteratively reweighted LS-estimators, with
weight function w(u) = p'(u)/u. The resulting estimator is the partial robust
M regression estimator [8].

Imposing sparseness on the PRM estimator can now be achieved by set-
ting an L; penalty to the direction vectors a; in (9a). To get sufficiently
sparse estimates the sparseness is imposed on a surrogate direction vector ¢
instead [13]. More specifically,

min —ka”M Ma+(1-r)(c—a)"M M(c—a)+\ | c|i (11a)

under the constraints that
lay||=1 and a’X Xa;=0for1<i<h. (11b)

The final estimate of the direction vector is given by

o

(12)

a, =

(e}

el

with ¢ is the surrogate vector minimizing (11a). In this way, we obtain
a sparse matrix of robustly estimated direction vectors A and scores T =



X A. After regressing the dependent variable on the latter using criterion
(10) we get the sparse partial robust M regression estimator. Note that the
sparsity of the estimated directions carries through to the vector of regression
coefficients.

This definition leads to a complex optimization task in which three pa-
rameters need to be selected h,,q., £ and \;. Nevertheless, Chun and Keleg
[11] have shown that the optimization problem does not depend on s for
any k € (0,1/2] for univariate y (which is the case throughout this article).
Therefore, the three parameter search reduces to the number of latent com-
ponents h,,.. and the sparsity parameter \;. How these parameters can be
selected will be discussed in detail in Section 4. The next section outlines a
fast algorithm to compute the SPRM estimator.

3. The SPRM algorithm

The SPRM estimator can be implemented in a surprisingly straightfor-
ward manner. Chun and Keleg [11] have shown that imposing sparsity on
PLS estimates according to criterion (11) yields analytically exact solutions.
Denote by z; the classical, nonsparse PLS direction vectors of the deflated
X matrix, i.e. z, = Ejy/ || Ely |, wherein E), is X deflated in order
to fulfil the orthogonality side constraints in (11b). Hence, Ey; = X and
E,, = E, — t"t"TE, /||t"||?> where t" is the score vector computed in the
previous step. Then the exact SPLS solution is given by

wp, = (|zn] = A1/2) O I (|z4] — M /2 > 0) ©sgn(zy), (13)

wherein I(-) denotes the indicator function that yields a vector whose ele-
ments equal 1 if the argument is true and 0 otherwise, and ® denotes the
Hadamard (element wise) vector product. In (13), |z| is the vector of the
absolute values of the components of z,, and sgn(z;) is the vector of the
signs of the components. By putting the vectors w;, in the columns of W
for h = 1, ..., hynae, the sparse direction vectors in terms of the original, not
deflated variables are given by A = W(W XTXW)~!.

Formula (13) can be replaced by an equivalent expression. Let 1 denote
a tuning parameter with € [0,1). Then we redefine

wy, = (|Zh| — nmaX’Zih’) oI <’th — nmax |z| > 0) ©sgn(zy), (14)

with z;; being the components of z;,. The parameter 7 determines the size of
the threshold, as a fraction of the maximum of z;, beneath which all elements
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Figure 1: The Hampel (solid) weighting function with standard normal 95%, 97.5% and
99.9% quantiles as cutoffs and the Fair (dashed) weighting function with parameter ¢ = 4.

of vector wy, are set to zero. Since the range of 7 is known in this definition,
it facilitates the tuning parameter selection via cross validation (see Section
4).

Computation of the M estimators in (10) boils down to iteratively reweight-
ing the least squares estimator. We use the redescending Hampel weighting
function giving a good trade-off between robustness and efficiency [14].

1 lz] < a
_ o a<|z|<b
w(z) %\;T if b<lz|<q’ (15)
0 q < |z

wherein the tuning constants a,b and ¢ can be chosen as distribution quan-
tiles. For the residual weight function wg in (8) we take the 0.95,0.975 and
0.999 quantiles of the standard normal, for wr the corresponding quantile of
a chi-square distribution.

Note that in the original publication on partial robust M regression [8],
the Fair function was recommended (both weighting functions are plotted in
Figure 1), but the authors consider the Hampel redescending function supe-
rior over the Fair function, because (i) it yields case weights that are much
easier to interpret, since they are exactly 1 for the regular cases, exactly
0 for the severe outliers and in the interval (0,1) for the moderate outliers
and because (ii) the tuning constants for the cutoffs can be set according to
intuitively understandable statistical values such as quantiles from a corre-
sponding distribution function.



X and y denote robustly centered data (by column-wise median).
1. Calculate initial case weights:
e Calculate distances for x; (ith row of X) and y;:

|

di=——— and
med; ||z

T = _ il fori e {1,...,n}
cmed; [y;|

where ¢ = 1.4826 for consistency of the MAD.
e Define initial weights w; = \/wr(d;)wg(r;) for Q (see (8)).
2. Tteratively reweighting:

e Weight data:
X, =QX
Y, =y
e Apply the sparse NIPALS to X, and y,, and obtain scores T,
directions A, coefficients B, and predicted response y,.

e (Calculate weights for scores and response.

— Center diag(1/wy, ..., 1/w,)T, by the median and scale the
columns with the Rousseeuw and Croux [15] robust scale es-
timator n to obtain T .

— Calculate distances for #; (ith row of T) and the robustly
centered and scaled residuals r; for i € {1,...,n}:

£

med,; [¢]]
o |yw,i - gw,i - medk (yw,k - g)w,k)’

T, = = =
Cmedj ‘yw,j - yw,j - medk(yw,k - yw,k)’

P =

— Update weights w; = \/wr(d;)wr(r;).
Repeat until convergence of Bw.

3. Denote estimates of the final iteration by A and B and the scores by
T=XA.

Algorithm 1: The8SPRM algorithm.




The algorithm to compute the SPRM estimators iteratively reweights
a sparse PLS estimate. This sparse PLS estimate is computed as in Lee
et al. [16], who outline a sparse adaptation of the NIPALS computation
scheme [17], where in each step of the NIPALS the obtained direction vector
of the deflated X matrix is modified according to Equation (14) in order
to get sparseness. The starting values of the SPRM algorithm have to be
robust. Failing to estimate robust starting values, would lead to an overall
nonrobust estimator. Algorithm 1 presents the computing scheme and details
the starting values. We iterate until convergence, that is whenever the relative
difference in norm between two consecutive approximations of ,3 is smaller
than a specified threshold, e.g. 1072, An implementation of the algorithm is
available on CRAN in the package sprm [18].

4. Model selection

The computation of the SPRM estimator requires specification of A4z,
the number of latent components, and the sparsity parameter € [0,1) (see
Equation (14)). For n = 0 the model is estimated including all variables, for
1 tending towards 1 almost no variables are selected.

A grid of values for 7 is searched and h,,., = 1,2,..., H. With k-fold
robust cross validation the best parameter combination is selected. For each
combination of A,,., and 7 the model is estimated k£ times based on a train-
ing set containing (100 — k) percent of the data, and then evaluated for the
remaining data, constituting the validation set. All observations are con-
sidered once for validation and so we obtain a single prediction for each of
them. As robust cross validation criterion the one sided a% trimmed mean
is calculated from the squared prediction errors, such that the largest a% er-
rors which may come from outliers, are excluded. We choose the parameter
combination where this measure of prediction accuracy is smallest.

The model selection procedure in the following is based on 10-fold cross
validation. For the robust methods, the one sided 15% trimmed mean
squared error is applied as decision criterion and for the classical methods
the mean squared error of prediction is used for validation. The parameter
hmae has a value domain from 1 to 5 and for SPLS and SPRM the sparsity
parameter 7 is chosen among ten equally spaced values from 0 to 0.9.



5. Simulation study

In this section the properties of SPRM and the related methods PRM,
PLS and SPLS are studied by means of a simulation study. The predictand
is generated according to the model

vy =tiy+e for 1<i<n, (16)

where the score matrix T' = X A, for a given matrix of direction vectors A.

Let X be an n x p data matrix with columns generated independently
from the standard normal distribution. We generate the columns a; (h =
1,..., hnas) of A such that only the first ¢ < p elements of each a, are
nonzero. Thereby, the data matrix X is divided into ¢ columns of relevant
variables and p — ¢ columns of uninformative variables. The nonzero part
of A is given by the eigenvectors of the matrix X z;X ¢» Where X, contains
the first ¢ columns of X. This ensures that the side conditions for a; hold
(see (11b)). The components of the regression vector 4 € Rme= are drawn
from the uniform distribution on the interval [0.5,1.5]. The errors e; are
generated as independent values from the standard normal distribution. In
a second experiment, we investigate the influence of outliers. The first 10%
of the errors are generated from N(15,1) instead of N(0,1). To induce bad
leverage points, the first 5% of the observations x; are replaced by vectors
of random values from N(5,0.1). This will demonstrate the stability of the
robust methods when compared to the classical approaches.

In the simulation study, m,., = 200 data sets with n = 60 observations
are generated according to (16) for various values of p. While ¢ = 6 is fixed,
we will increase p gradually and therefore decrease the signal to noise ra-
tio. This illustrates the effect of uninformative variables on the four model
estimation methods and incorporates low dimensional as well as high dimen-

sional settings. For every generated data set we compute the estimator B]
(for 1 < j < 'm,,) with sparsity parameter n and hy,,, selected as described
in Section 4. Note that the true coefficients @’ are different for every simula-
tion run, since every data set is generated with a different regression vector

5.
Performance Measures: To evaluate the simulation results, the mean

squared error (MSE) is used as a measure of the accuracy of the model
estimation.

MSE(3) = > o8 - e (17)

TP 1<j<myep
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Table 1: Mean percentage of correct zero coefficients, i.e. zero coeflicients of uninformative
variables, for SPLS and SPRM for simulations with (a) clean training data and (b) training
data with 10% outliers.

p—q 20 100 200 300 500
SPLS 912 97.6 984 99.1 98.0
SPRM 755 934 951 96.8 94.5

(a) without outliers

p—q 20 100 200 300 500

SPLS 435 387 36.2 393 355

SPRM 769 91.0 942 981 97.6
(b) with outliers

Furthermore, let Bé be the subvector of 3’ corresponding to the uninforma-
tive variables. In the true model B is a vector of zeros. Nonzero values

of ,@é contribute to the model uncertainty. One main advantage of sparse
estimation is to reduce this uncertainty by setting most coefficients of un-
informative variables exactly to zero. The mean number of nonzero values

in Bé is reported for both sparse methods to illustrate whether this goal
was achieved. Furthermore, the mean number of nonzero coefficients of the
informative variables, is reported.

The last quality criterion discussed in this section is the prediction per-
formance of the estimated model for new data of the same structure. A test
data set with n = 60 observations is generated according to the model in
each repetition. For 1 < j < m,, the estimated response of the test data
is denoted by ¢, and the true response is yl..,. Then the mean squared
prediction error (MSPE) is computed as

1 L .
Z ”yiest - ygest||2' (18>

TP 1<j<myrep

MSPE =

Results for clean data: In the absence of outliers (see Figure 2a and 3a),
the overall performance of the classical methods SPLS and PLS is slightly
better than for the robust counterparts SPRM and PRM, respectively. In
Figure 2a it is seen that the MSE is smallest for SPLS. If all variables are
informative, so p — ¢ = 0, then PLS performs as good as SPLS; but for

11



Table 2: Mean percentage of correct nonzero coeflicients, i.e. nonzero coeflicients of the
six informative variables, for SPLS and SPRM for simulations with (a) clean training data
and (b) training data with 10% outliers.

p—q 20 100 200 300 500
SPLS 65.8 54.1 520 484 46.6
SPRM 70.0 53.8 478 46.7 448

(a) without outliers

p—q 20 100 200 300 500

SPLS 652 70.1 713 684 722

SPRM 688 53.8 493 450 41.3
(b) with outliers

an increasing number of uninformative variables PLS quickly becomes less
reliable. The same can be observed for the mean squared prediction error
in Figure 3a. Both Figures 2a and 3a show that SPRM is not as accurate
as SPLS, but performs much better than PLS and PRM for settings with
increasing number of uninformative variables.

Table 1a underpins the advantage of sparse methods. It shows that the av-
erage percentage of uninformative variables excluded from the model is close
to 100%. SPLS is again slightly better than SPRM, but for both estimates
few uninformative variables are included, leading to reduced estimation er-
ror in comparison to PLS and PRM. The MSE for the estimation of 3 is
given in Figure 4a. SPLS and SPRM have a comparably good performance,

even though SPRM has less zero components in Bé That means that the
nonzero coefficient estimates of the uninformative variables are very small
for SPRM. PRM gives surprisingly good results for the MSE of Bo and out-
performs PLS. Table 2a shows the mean percentage of nonzero coefficients
for the informative variables. For both SPLS and SPRM only roughly half
of the six informative variables are included. The sensitivity of SPLS, i.e.
the proportion of nonzero correctly identified as such, is reported to be close
to 100% in other simulation settings [11], but in this simulation setting the
true nonzero coefficients can be close to zero. SPRM includes slightly less
variables, but gives very comparable results to SPLS.

Results for data with outliers: Outliers distort the estimation of PLS and

12
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Figure 2: Mean squared error of the coeflicient estimates for PLS, PRM, SPLS and SPRM
for simulations with (a) clean training data and (b) training data with 10% outliers.
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Figure 3: Mean squared prediction error for PLS, PRM, SPLS and SPRM for simulations
with (a) clean training data and (b) training data with 10% outliers.
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Figure 4: Mean squared error of the coefficient estimates of the uninformative variables for
PLS, PRM, SPLS and SPRM for simulations with (a) clean training data and (b) training
data with 10% outliers.

SPLS heavily. Figures 2b and 3b show that the performance of PLS and
SPLS strongly deteriorates, while the robust methods are hardly influenced
by the presence of the outliers. Furthermore, the robust methods behave
as expected as the number of uninformative variables increases: The MSE
and MSPE for PRM increase remarkably, whereas SPRM shows only a slight
increase, which illustrates the advantage of sparse estimation.

In Table 1b it is seen that SPRM excludes nearly all uninformative vari-
ables from the model, whereas SPLS fails to identify them up to a high
degree. For all settings, less than half of the uninformative variables are
excluded. Hence, the estimation of 3 is distorted for the classical methods
as shown in Figure 4b. Not only the uninformative variables are affected
by this trend. In Table 2b, the average percentage of nonzero coefficients
corresponding to informative variables, are shown. From these results, it is
evident that SPLS includes more informative variables compared to the case
without outliers, which can be explained by the relatively large number of
contributing variables in the models. For SPRM only marginal changes are
observed compared to the results for data without outliers.

Increasing the number of outliers: An important focus in the analysis of
robust methods, is to study how an increasing percentage of outliers affects

14
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Figure 5: Mean squared prediction error for PLS, PRM, SPLS and SPRM illustrating the
effect of increasing number of outliers for data with (a) 20 uninformative variables, (b)
500 uninformative variables.

the model estimation. We use the same simulation design, again with m,.., =
200 repetitions for each considered number of outliers. In each step the
number of outliers increases by two (one of these two is a bad leverage point)
till 50% outliers are generated. The mean squared prediction error as defined
in (18) is calculated. Figures 5a and 5b display the MSPE for increasing
number of outliers, each graph for a fixed number of uninformative variables.
We observe for the robust methods PRM and SPRM hardly any change
in the quality of the prediction performance of the estimated models for up
to 33% contamination. The classical methods yield distorted results even
for only 3% contamination. Figure 5b show that this high robustness of
PRM and SPRM remains when there is a large number of (uninformative)
variables. We conclude that the robust methods clearly outperform PLS
and SPLS in presence of outliers, while SPRM gives better mean squared
prediction error than PRM for percentages of outliers up to 33 percent.

Nonnormal error distributions: A common assumption in model (16) is
that the errors e; come from a normal distribution. We simulate data with
p = 500, ¢ = 6 and n = 60 as described previously for the setting without
outliers, but replace the error term e; by random values from heavy tailed

~

distributions. In Table 3, the MSE of the coefficients MSE(3) estimated for

15



Table 3: Mean value (and standard error) of the mean squared error of the coefficient
estimates MSE(3) for simulated data with error terms from the standard normal distri-
bution, the ¢ distribution with 3 and 2 degrees of freedom and Laplace distribution with

dispersion parameter 1 and 2.

N ts t L1 L2
PLS  2.00 (.05) 225 (.06) 277 (.11) 2.04 (.05) 272 (.05)
PRM 210 (.05) 213 (.05) 218 (.05) 2.06 (.05) 2.31 (.06)
SPLS  0.60 (.02) 129 (.07) 229 (.15) 1.06 (.04) 2.94 (.09)
SPRM 0.88 (.04) 1.16 (.05) 1.22 (.05) 1.15 (.05) 2.43 (.09)

simulated data with normal error terms are compared to those from data
with error terms from the t distribution with 3 and 2 degrees of freedom
and the Laplace distribution with a dispersion parameter of 1 and of 2.
The mean squared error of the coefficient estimates behaves as expected
for the t distributions. It increases significantly for the classical methods
as the number of degrees of freedom decreases from three to two, in which
case more extreme values are generated. For error terms from the Laplace
distribution, the advantage of the robust methods gets more pronounced
for the Lapalce distribution with the higher dispersion parameter, which
generates more extreme values.

Computation time and convergence: The computation time of the ro-
bust sparse NIPALS algorithm strongly depends on the number of iterations
needed till convergence of the robust and sparse coefficient estimates Bw as
described in Algorithm 1 in step 2. This varies with the structure of the data.
In the simulation study with ten percent outliers in the data and p = 500 on
average five iterations are needed, i.e. the sparse NIPALS algorithm, which
is computationally efficient for a univariate response, has to be applied on
average five times. On a standard PC (Intel i7-4790K) the average compu-
tation time for the estimation of a model based on these data with fixed
parameters 1 = 0.5 and h,q, = 2 is 0.12 seconds.

6. Application

Sparse regression methods and big data go hand in hand. Therefore,
there are manifold applications of those methods in the omics fields (e.g. the
microarray CHIP-chip data [11]), but they have also found their way into
chemometrics [e.g. 19] or medicine (e.g. the application on NMR spectra
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Figure 6: The PRM and SPRM biplots for the gloss data example

of neural cells [12]). Even though sparse regression methods are of great
use when data dimensionality is high, they can already be beneficial when
applied to low dimensional problems (which, in the context of classification,
has been reported in Filzmoser et al. [19]). Therefore, in the first example we
will focus on data of moderate dimensionality, followed by a gene expression
example to illustrate the application to high dimensional data.

The gloss data: The data consist of n = 58 polymer stabilization formula-
tions, wherein the p = 7 predictors are the respective concentrations of seven
different classes of stabilizers. The actual nature of the classes of stabilizers,
as well as the respective concentrations, are proprietary to BASF Corp. and
cannot be disclosed. The response variable targets to quantify the quality
of stabilization by measuring how long it takes for the polymer to lose 50%
of its gloss when weathered (in what follows, simply called the gloss). The
target is to predict the gloss from the stabilizer formulations. The data were
scaled with the Qn scale for the robust methods [15] and for the classical
methods with the standard deviation.

Table 4: Prediction performance for polymer stabilizer data.

PLS PRM SPLS SPRM
15% TMSPE 2099382 2218181 2113960 2047858
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PLS, SPLS, PRM and SPRM use the 10-fold cross validation procedure
described in Section 4. The optimal number of latent components for PLS
and PRM was detected to equal 1. For SPRM the optimal number of latent
components is 4 and the sparsity parameter was found to be n = 0.6; for
SPLS we have h,,., = 3 and n = 0.9.

To evaluate the four methods, leave-one-out cross validation was per-
formed and the one sided 15% trimmed mean squared prediction error (TM-
SPE) is reported in Table 4. SPRM performs slightly better according to the
TMSPE. Another advantage of sparse robust modeling in this example is the
interpretability. Figure 6 compares the biplots of PRM and SPRM for the
first two latent components. In the sparse biplot variables V1, V2 and V3
are excluded and so it is easier to grasp in which way the latent components
depend on the original variables, and how the individual cases differ with
respect to the selected variables.

The NCI data: The National Cancer Institute provides data sets of mea-
surements from 60 human cancer cell lines (http://discover.nci.nih.
gov/cellminer/). The 40th observation has to be excluded due to miss-
ing values, i.e. n = 59. The gene expression data comes from an Affymetrix
HG-U133A chip and was normalized with the GCRMA method. It is used
to model logs transformed protein expression from a Lysate Array. From
the gene expression data only the 25% of the variables with highest variance
are considered, which leads to p = 5571, as was similarly conducted by [16].
The protein data consists of measurements of 162 expression levels. Since
the proposed method is designed for univariate response we modeled the re-
lationship for each protein expression separately and obtain 162 models for
each of the competitive methods.

As before, the model selection is done using 10-fold cross validation (see
Section 4) and the selected models are evaluated with the 15% TMSPE. For
each of the 162 different responses the TMSPE of each estimated model is
divided by the smallest of the four TMSPEs. This normed TMSPE is a value
equal to 1 (for the best method) or larger and we can compare it across the
different responses (see Figure 7). Overall, the combination of sparsity and
robustness leads to a superior evaluation. The median of the normed TMSPE
of the SPRM models is very close to 1 and therefore, we can conclude that for
half of the models SPRM is either the best or very close to the best model.
PLS is not an appropriate method for these data, since the TMSPE differs
strongly from the best model in most cases.
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Figure 7: Boxplots of normed TMSPE of 162 responses from the NCI data for PLS, PRM,
SPLS and SPRM.

For purpose of illustration, we focus on Keratin 18 as response. It has the
highest variance of all responses and its expression is an often used criterion
for the detection of carcinomas [20]. Table 5 presents the number of latent
components and the number of selected variables (i.e. having nonzero esti-
mated coefficients) for each method, together with the TMSPE. The SPRM
model gives the best result with only 6 out of 5571 variables selected. Even
PRM performs better than SPLS in this high dimensional setting, which un-
derpins the importance of robust estimation for these data. Figure 8 shows
the biplot of scores and directions for the first two latent components of the
SPLS and the SPRM model. For SPRM, the first latent component is de-
termined by the variables KRT8 and KRT19. The expression of these genes
is known to be closely related to the protein expression of Keratin 18 and
they are used for the identification and classification of tumor cells [21, 20].
KRTR® has previously been reported to play an important role in sparse and
robust regression models of these data [4]. The biplot further unveils some
clustering in the scores and provides insight into the multivariate structure
of the data. The biplot of the SPLS model (Figure 8a) cannot be interpreted
since this model including 78 variables is too complex. Interestingly, in the
SPLS biplot KRT8 and KRT19 are also the genes which have the largest
positive influence on the first latent component.

Note that the case weights w; of the robust models presented in Figure 9
are as expected: they are one for the bulk of the data, exactly zero for the
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Table 5: Model properties for NCI gene expression data with protein expression of Keratin
18 as response variable.

PLS PRM SPLS SPRM

15% TMSPE 3.22 1.72 203 1.24
no. of latent components 4 2 2 3
no. of selected variables 5571 5571 78 6
04- EEF1A2 2 BASP1
MYH10

KRT19

0.2-

Zéf
01-
1

4

23

%
0.0-

0.2- 57

0.0-

Comp2
Comp2

- %
014 KRT8
“04- 56
11
17 “02-
12 50

-0.6- ! . Y ] ' i U |

-0.2 -0.1 0.0 0.1 0.2 -0.1 0.0 0.1

Compl Compl
(a) SPLS (b) SPRM

Figure 8: The SPLS and SPRM biplots for the gene data example with protein expression
of Keratin 18 as response.

potential outliers and in the interval (0,1) for a few observations, which is an
immediate consequence of adopting the Hampel weighting function (Equation
(15) and Figure 1). Hence, outliers can easily be identified. The detection of
potential outliers differs between PRM and SPRM, but the pattern is similar.

7. Conclusions

SPRM is a sparse and robust regression method, which performs dimen-
sion reduction in a manner closely related to partial least squares regression.
It performs intrinsic variable selection and retrieves sparse latent compo-
nents, which can be visualized in biplots and interpreted better than non-
sparse latent components especially for high dimensional data. Since sparse
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Figure 9: The PRM and SPRM case weights for the gene data example with protein
expression of Keratin 18 as response.

methods eliminate the uninformative variables, higher estimation and pre-
diction accuracy is attained. The SPRM estimation of latent components
and the selection of variables is resistant to outliers. To reduce the influence
of outliers on the model estimation, an iteratively reweighted regression algo-
rithm is used. The resulting case weights can be used for outlier diagnostics.

We demonstrated the importance of robustness and sparsity properties
in a simulation study. The method was shown to be robust with respect
to outliers in the predictors and in the response and achieved good results
for settings with high percentage of outliers. The informative variables were
detected accurately. We illustrated the performance of SPRM on a data
set of polymer stabilization formulations of moderate dimensionality and on
high dimensional gene expression data. An implementation of the SRPM, as
well as visualization tools and the cross-validation model selection method
outlined in Section 4, is available on CRAN in the package sprm [18].

The extension of SPRM regression for a multivariate response is a next
step to take. Note that few papers combine sparseness and robustness for
multivariate statistics, an exception is Croux et al. [22] for principal com-
ponent analysis. The development of prediction intervals around the SPRM
prediction is another challenge left for future research. A bootstrap approach
seems reasonable, but its validity remains to be investigated. Obtaining the-
oretical results on breakdown point or consistency of the model section is out
of the scope of this paper. Few theoretical results are available in the PLS lit-
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erature, and this only for the nonrobust and nonsparse case. In this paper we
proposed and put into practice a new sparse and robust partial least squares
method, which we believe to be valuable for data scientists confronted with
prediction problems involving many predictors and noisy data.
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