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 2 

Abstract 40 

The goal of this work is to study the evolution and the degree of horizontal gene 41 

transfer (HGT) within rhizobial genera of both Alpha- (Mesorhizobium, Rhizobium) 42 

and Beta (Burkholderia) Proteobacteria, originating from South African Fynbos 43 

legumes. By using a phylogenetic approach and comparing multiple chromosomal 44 

and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal 45 

transfer of nodulation genes among closely related species of both groups of rhizobia, 46 

but also among species with distant genetic backgrounds (Rhizobium and 47 

Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as 48 

an important evolutionary force among rhizobia of the Cape Fynbos biome. The 49 

extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of 50 

significant events of HGT among Burkholderia symbionts from the South American 51 

Cerrado and Caatinga biome. Furthermore, homologous recombination among 52 

selected housekeeping genes had a substantial impact on sequence evolution within 53 

Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-54 

symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, 55 

revealed distinct relationships compared to the chromosomal and symbiosis genes, 56 

suggesting a different evolutionary history and independent events of gene transfer. 57 

The observed events of HGT and incongruence between different genes necessitate 58 

caution in interpreting topologies from individual data types. 59 
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Introduction 60 

The large-scale availability and analyses of sequence information from individual 61 

genes and complete genomes has demonstrated significant amounts of gene 62 

movements or horizontal gene transfer (HGT) in bacterial evolution (Ochman et al., 63 

2000). The acquisition of new genes and metabolic capabilities between a broad 64 

spectrum of bacteria in a non-parent-to-offspring manner impacts bacterial 65 

diversification (Jain et al., 2003; Vetsigian & Goldenfeld, 2005; Boto, 2010) and 66 

ecological adaptation of the recipient cells (Preston et al., 1998; Goldenfeld & Woese, 67 

2007) and has been attributed to several mechanisms such as insertion sequences, 68 

transposons, integrons, bacteriophages, genomic islands and plasmids.  69 

In rhizobia, the capacity to establish an effective symbiosis with the host plant and to 70 

fix atmospheric nitrogen involves the expression of nodulation (nod) and nitrogen 71 

fixation (nif) genes. These genes are part of the ‘accessory’ gene pool and are usually 72 

located as mobile genetic elements on either transferable plasmids (Rhizobium spp. 73 

and Ensifer spp.) or scattered across the chromosome(s) as genomic islands 74 

(Mesorhizobium spp. and Bradyrhizobium spp.) (Finan, 2002; Masson-Boivin et al., 75 

2009). In Mesorhizobium species (i.e. M. amorphae and M huakuii), symbiosis genes 76 

have also been detected on plasmids (Xu & Murooka, 1995; Wang et al., 1999; Zhang 77 

et al., 2000). Symbiosis related genes of rhizobia of the beta-subclass of 78 

Proteobacteria, which so far consist of the genera Burkholderia and Cupriavidus, are 79 

found on plasmids (Chen et al., 2003; Amadou et al., 2008; Gyaneshwar et al., 2011).  80 

Extensive evidence for horizontal transmission of symbiosis genes has been revealed 81 

by conflicting or incongruent sequence data of plasmid- and chromosomal-located 82 

genes among a wide range of rhizobial lineages including both alpha- (Van Berkum et 83 

al., 2003; Ormeno-Orrillo et al., 2006, 2013; Barcellos et al., 2007) and beta-rhizobia 84 

(Andam et al., 2007; Liu et al., 2012).  85 

In the Fynbos biome, rhizobial studies have recorded Burkholderia 86 

(Betaproteobacteria) symbionts as common root nodulating species associated with 87 

the papilionoid legume flora (Kock, 2004; Elliott et al., 2007b; Garau et al., 2009; 88 

Gyaneshwar et al., 2011; Beukes et al., 2013; Howieson et al., 2013; Sprent et al., 89 

2013; Lemaire et al., 2015), but the characterization of the symbiosis genes as an 90 

important basis for the understanding of gene transfer during rhizobial evolution 91 

remains elusive. A recent study of Beukes et al. (2013) revealed conflicting 92 

relationships between chromosomal (16S rRNA and recA) and nodulation (nodA) 93 
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genes among rhizobia mainly from legumes of the tribe Podalyrieae, suggesting HGT 94 

as an importance force in the evolution of South African Burkholderia. Interestingly, 95 

Burkholderia species isolated from native legume species from the Brazilian 96 

Cerrado/Caatinga biomes, another major biodiversity hotspot for Burkholderia 97 

dominated by a distinct legume flora (South American Mimosoideae versus South 98 

African Papilionoideae), are genetically different in terms of nodulation genes and 99 

appear not be subjected to the same levels of HGT (Bontemps et al., 2010; Bournaud 100 

et al., 2013). 101 

In contrast to Burkholderia, only a handful of studies have focussed on the diversity 102 

of South African Alphaproteobacteria, such as Mesorhizobium (Gerding et al., 2012; 103 

Hassen et al., 2012; Kanu & Dakora, 2012), which are largely underestimated in 104 

terms of diversity (Lemaire et al., 2015), but co-exist as a dominant group with 105 

Burkholderia in the acidic and oligotrophic Fynbos soils. The study of Lemaire et al. 106 

(2015) also demonstrated that most isolated Cape mesorhizobia were distantly related 107 

to known reference species. Although HGT have been widely described in 108 

Mesorhizobium (Kaneko et al., 2000; Sullivan et al., 2002; Nandasena et al., 2006, 109 

2007), the occurrence and degree of HGT within the evolution of these putatively new 110 

Mesorhizobium lineages remains to be tested in the Fynbos.  111 

Similar to nodulation and nitrogen fixation genes, the ACC deaminase (acdS) gene is 112 

prevalent in rhizobia, playing an ecological role for plant growth and nodulation via 113 

the reduction of deleterious ACC levels (referred to as 1-aminocyclopropane-1-114 

carboxylate and considered as an ethylene precursor) in plants (Ma et al., 2003, 2004; 115 

Glick et al., 2007; Conforte et al., 2010; Nascimento et al., 2012a, 2012c). The acdS 116 

gene is also located on transmittable genetic elements (symbiosis islands) and has 117 

been previously shown to evolve via HGT in diverse bacterial groups, including 118 

Mesorhizobium (Hontzeas et al., 2005; Blaha et al., 2006; Nascimento et al., 2012b). 119 

In Fynbos mesorhizobia, however, the occurrence of the acdS gene, the degree of 120 

HGT, and its potential use for phylogenetic reconstruction has never been 121 

investigated.  122 

Homologous recombination is another common driving force for prokaryotic 123 

evolution (Didelot & Maiden, 2010), diffusing genetic material or creating new allele 124 

combination throughout bacterial populations (Fraser et al., 2007). In rhizobia, 125 

various degrees of homologous recombination have been demonstrated within species 126 

of Bradyrhizobium (Vinuesa et al., 2005, 2008; Tang et al., 2012), Ensifer (Silva et 127 
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 5 

al., 2007), Mesorhizobium (Li et al., 2009) and Rhizobium (Tian et al., 2010; Van 128 

Cauwenberghe et al., 2014). 129 

In an attempt to shed some new light on the evolution of Fynbos rhizobia, 130 

phylogenies from both housekeeping and symbiosis genes were reconstructed in order 131 

to assess incongruent signals as a result of levels of horizontal gene transfer 132 

(transmission of symbiosis genes and homologous recombination of chromosomal 133 

genes). By using this retrospective approach (sensu Sørensen et al., 2005) the degree 134 

of HGT will be investigated in both alpha- (Mesorhizobium) and beta- (Burkholderia) 135 

rhizobia. The objectives of the study were (i) to examine whether HGT of symbiotic 136 

plasmids has occurred among rhizobial lineages of Mesorhizobium and Burkholderia 137 

(incongruences between chromosomal and nod sequence data) (ii) to investigate 138 

recombination rates between homologues of rhizobial strains (incongruences between 139 

housekeeping genes) (iii) to evaluate the prevalence of acdS and test whether this 140 

accessory gene is prone to HGT among Mesorhizobium lineages. 141 

 142 
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Material and Methods 143 

Bacterial strains 144 

A selection of 22 Burkholderia and 24 Mesorhizobium isolates from phylogenetically 145 

diverse lineages was obtained from previous rhizobial screenings and new collections 146 

in the Fynbos region (Lemaire et al., 2015) (Table S1). The Mesorhizobium isolates 147 

originate from diverse host legumes of the tribes Crotalarieae (Aspalathus), Genisteae 148 

(Argyrolobium), Indigofereae (Indigofera) and Psoraleeae (Psoralea, Otholobium), 149 

whereas all Burkholderia accessions are from Podalyria calyptrata populations (tribe 150 

Podalyrieae) collected from 14 sites. One Rhizobium isolate (accession Dlodlo 49) 151 

from the study of Lemaire et al. (2015) with a nodulation gene related to 152 

Mesorhizobium was also included in this study. The Rhizobium and all 153 

Mesorhizobium strains were successfully authenticated on either the original host, 154 

siratro or Otholobium hirtum, except for the strain isolated from the host species 155 

Aspalathus spicata Muasya 5440 (Lemaire et al., 2015). For Burkholderia, the ability 156 

to nodulate was verified on the original host Podalyria calyptrata (data not 157 

presented).  158 

 159 

Amplification and phylogenetic analyses 160 

PCR reactions were performed in a standard 25 µl reaction mixture (Kapa 161 

Biosystems), according to the manufacturer’s instructions. All PCR amplifications 162 

were generated with primers listed in Table S2, following the PCR conditions as 163 

described by the authors. Amplified products were purified using the Exo/Sap enzyme 164 

cleaning protocol (Werle et al., 1994) and sent to the Macrogen sequence facility 165 

(Macrogen, The Netherlands), using the same PCR primers for sequencing. All 166 

GenBank accessions numbers are listed in Table S1. 167 

Sequence reads were edited, assembled and aligned in Geneious Pro v.5.1.7 168 

(http://www.geneious.com). Alignments were subjected to phylogenetic analyses, 169 

using Maximum Likelihood (ML) and Bayesian Inference (BI) criteria, both carried 170 

out on the CIPRES web portal (http://www.phylog.org). ML analyses were done with 171 

RAxML-VI-HPC v.2.2.3 using GTR-GAMMA as the most complex substitution 172 

model available (Stamatakis, 2006). A multi-parametric bootstrap resampling of 1000 173 

pseudo-replicates was plotted onto the previously selected best-scored ML tree. 174 

Model selection for the Bayesian analyses was conducted with MrModeltest v.3.06 175 

(Posada & Crandall, 1998) under the Akaike information criterion. For all datasets, 176 
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 7 

MrModeltest selected the general time reversible (GTR) model of DNA substitutions 177 

with gamma-distributed rate variation across invariant sites. This best fitting model of 178 

DNA substitution was applied for each separate dataset. In the combined BI analyses, 179 

the multiple-gene dataset was partitioned and the same models were assigned to 180 

separate unlinked partitions. BI analyses were carried out using MrBayes v.3.1 181 

(Ronquist & Huelsenbeck, 2003), running four Markov chains (one cold and three 182 

heated) simultaneously for five million generations. Conservatively, 25% of the first 183 

trees sampled were regarded as ‘burnin’ and discarded. Convergence of the chains 184 

was checked using Tracer v.1.4 (Rambaut & Drummond, 2007). 185 

 186 

Testing phylogenetic incongruence between chromosomal and nodulation genes 187 

Parallel evolution between chromosomal and plasmid gene (vertical transmission of 188 

accessory genes) trees was evaluated with a topology or co-phylogeny mapping 189 

method in Jane v.4 (Conow et al., 2010). The degree of congruence between the 190 

topologies was assessed by maximizing the number of co-speciation (vertical gene 191 

transfer) and minimizing the possible number of non-codiversification events 192 

(horizontal gene transfer) under the default setting of event costs. A permutation 193 

procedure tested the null hypothesis that two phylogenies are randomly related or that 194 

the observed number of co-speciation events of the initial search was not larger than 195 

expected by chance alone. The best scoring ML trees were imported as input trees for 196 

the reconciliation analyses, comparing the scores of the optimal and initial 197 

reconstruction with those of randomly obtained topologies.  Randomization tests were 198 

ran with 1000 randomly permuted trees and a population size of 100. The cost 199 

distribution of random sample solutions and statistical significance was calculated in a 200 

cost histogram in Jane. 201 

 202 

Analysis of recombination  203 

Sequence alignments of the housekeeping genes recA, atpD, gyrB and glnA were 204 

subjected to ClonalFrame analyses (Didelot & Falush, 2007) to assess the effect of 205 

recombination estimated by the r/m (the ratio of probability that a nucleotide will be 206 

altered through recombination and point mutations) (Guttman & Dykhuizen, 1994) 207 

and the ρ/θ (the frequency of occurrence of recombination relative to point mutations) 208 

(Milkman & Bridges, 1990) statistics. Five independent ClonalFrame runs were 209 
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performed each consisting of 1,000,000 MCMC iterations (25% burn-in), and trees 210 

were sampled every 100 iterations, resulting in a sample size of 7500 trees. 211 

Convergence of the MCMC was confirmed by the Gelman & Rubin test (Gelman & 212 

Rubin, 1992). 213 
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Results  214 

Phylogenetic analyses of individual chromosomal and symbiosis genes 215 

Four chromosomal (16S rRNA – 1360 bp, atpD – 650 bp, recA – 620 bp, gyrB 650 216 

bp) and four symbiosis (nodA – 590 bp, nodB – 250 bp, nodC – 570 bp, nifH – 310 217 

bp) genes were sequenced and analysed for the Burkholderia isolates, including 218 

reference sequences of chromosomal and plasmid genes of available genomes of B. 219 

graminis, B. phytofirmans, B. rhynchosiae, B. tuberum and B. xenovorans. 220 

Phylogenetic reconstruction of the separate datasets produced similar groupings 221 

among genes of the core genome (Fig. S1A-D), and among symbiosis related genes 222 

(Fig. S1E-H). Some discrepancies were detected, but most conflicts were not 223 

statistically supported, except for the placement of two taxa in the 16S rRNA (isolate 224 

25I3R1 and 23I2R2) and one nodC lineage (29I6R2) relative to the housekeeping and 225 

nodulation gene trees, respectively. The nifH sequences within Burkholderia (Fig. 226 

S1H) generated mostly an unresolved topology as a result of similar or identical (12 227 

out of 21 isolates) amplicons (pairwise genetic similarity > 99%), comprising only 16 228 

variable nucleotides in the dataset.  229 

Similarly for Mesorhizobium, analyses of sequence data of five chromosomal (16S 230 

rRNA – 1329 bp, atpD – 516 bp, recA – 458 bp, gyrB - 637 bp, glnA – 953 bp) and 231 

four symbiosis (nodA – 621 bp, nodB – 560 bp, nodC – 592 bp, nifH – 349 bp) genes 232 

generated consistent relationships (Fig. S2) with only a few conflicts observed among 233 

different chromosomal loci (Fig. S2 A-E), comprising the isolates of Psoralea 234 

rigidula 5343 (16S rRNA), Aspalathus aurantiaca 5397, Psoralea asarina 15 (recA) 235 

and Argyrolobium lunare 5369 (gyrB). Incongruences among nodulation and nitrogen 236 

fixation gene trees (Fig. S2G-J) were detected for the Mesorhizobium isolates of 237 

Psoralea asarina 15 (nodC, nifH) and Otholobium hirtum 5334 (nodA).  238 

One Rhizobium isolate (accession 49) was included in the analyses, previously 239 

demonstrated to harbour nodA and nifH symbiosis genes from a Mesorhizobium strain 240 

(Lemaire et al., 2015). Sequencing of the nodB and nodC genes supports the 241 

identification of symbiosis genes related to Mesorhizobium, indicating horizontal 242 

transfer of symbiosis genes across different rhizobial genera 243 

(Rhizobium/Mesorhizobium). 244 

Two strongly supported clades were recovered in the nodA and nodC Mesorhizobium 245 

gene trees, largely separating the isolates of Otholobium and Psoralea (tribe 246 

Psoraleeae) from nodule symbionts of the genera Aspalathus (tribe Crotalarieae), 247 
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Argyrolobium (tribe Genisteae) and Indigofera (tribe Indigofereae). Only one 248 

Aspalathus symbiont (Mesorhizobium sp. 31) was found in the Otholobium-Psoralea 249 

clade. The grouping of nodulation genes, according to the host was reflected by high 250 

sequence divergence in the nodA (72.3 % mean sequence similarity) and nodC (80.2 251 

% mean sequence similarity) datasets. Moreover, for nodB, none of the Psoralea or 252 

Otholobium isolates could be amplified (except for Mesorhizobium sp. 5462) (Table 253 

S1), suggesting that the used primers are not suitable for rhizobia of the tribe 254 

Psoraleeae, which have probably too diverged nodB genes.  255 

In contrast to the symbiosis genes (Fig. S2G-J), which are correlated with the host 256 

range, the housekeeping genes (Fig. S2 A-E) of Mesorhizobium species differ from 257 

the host phylogeny, showing an intermingled pattern of isolates from Argyrolobium, 258 

Aspalathus, Otholobium and Psoralea legumes. This result indicates that legume 259 

species form symbiosis with Mesorhizobium lineages with diverse genetic 260 

backgrounds. 261 

 262 

Concatenated sequence analyses 263 

Analyses of the concatenated sequences were generally congruent with those of the 264 

individual gene trees. Because short gene fragments appear to lack sufficient 265 

phylogenetic information to provide well-resolved trees, combination of single genes 266 

with unequal evolutionary rates has been recommended to give a more robust 267 

evolutionary tree and to level out conflicting signals of homoplastic character states 268 

(Gaunt et al., 2001; Gadagkar et al., 2005; Vinuesa et al., 2005; Rivas et al., 2009; 269 

Laranjo et al., 2012). In this study, the concatenated sequences of single gene markers 270 

of chromosomal (16S rRNA, recA, atpD, gyrB) and nodulation (nodA, nodB, nodC) 271 

genes produced robust phylogenies, resolving relationships among most isolates with 272 

high support values for both genera of Burkholderia and Mesorhizobium (Fig. 1-2). 273 

Because the 16S rRNA matrix of the Mesorhizobium isolates lacks phylogenetic 274 

information (pairwise genetic similarity > 99%), comprising only 5 variable 275 

nucleotides within 18 out of 24 sequences, we excluded 16S rRNA from the 276 

concatenated chromosomal gene analysis (Fig. 2).  277 

A considerable number of Mesorhizobium (Fig. S3) and Burkholderia (Fig. S4) 278 

isolates were not related to 16S rRNA sequences of reference type strains, suggesting 279 

novel rhizobial species. For Burkholderia (Fig. S4), only seven isolates were highly 280 

related (> 99% 16S rRNA sequence similarity) to the common South African 281 
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rhizobial species B. tuberum and B. dilworthii (Gyaneshwar et al., 2011; De Meyer et 282 

al., 2014), and the diazotrophic species B. xenovorans, B. sediminicola, which were 283 

previously isolated from Fynbos legumes (Beukes et al., 2013). One Burkholderia 284 

isolate was related to B. sartisoli, which has never been isolated from root nodules. 285 

Similarly for Mesorhizobium (Fig. S3) we showed that only one strain was 286 

conspecific to Mesorhizobium chacoense (symbionts of Otholobium bracteolatum 287 

42), placing the remaining isolates in distinct phylogenetic clades unrelated to any 288 

reference Mesorhizobium species. These mesorhizobia isolates are most likely new 289 

species as previously suggested by Lemaire et al. (2015). 290 

 291 

Incongruence between chromosomal and symbiosis genes 292 

Phylogenetic relationships of the chromosomal genes were largely inconsistent with 293 

the nodulation genes for both Burkholderia (Fig. 1) and Mesorhizobium (Fig. 2). 294 

Visual inspection of the combined trees of chromosomal versus nodulation genes 295 

revealed congruent relationships for only three Burkholderia clades (clade 1: 296 

16I4R2/13R2/B. tuberum, clade 2: 25I3R6/9I2R2, clade 3: 297 

25I1R1/18I8R3/6665CI2R2) and one Mesorhizobium grouping (Aspalathus ericifolia 298 

31/Otholobium hirtum 32). To estimate the degree of parallel evolution between 299 

chromosomal and nodulation genes, a reconciliation analyses was performed for the 300 

Burkholderia and Mesorhizobium datasets, mapping the nodulation gene tree on the 301 

chromosomal gene phylogeny (Fig. S5). The co-divergence approach estimates the 302 

maximum number of co-speciation events and visualizes all solutions by introducing 303 

a minimum number of non-co-speciation events (duplication, host-switch and sorting 304 

events) on the nodulation gene tree. For Burkholderia, 8336 equal cost solutions were 305 

recovered with co-speciation events ranging between seven and nine, and a total cost 306 

of 36 for 18 events of host switches/duplications. A similar degree of non-parallel 307 

evolution was also observed for the Mesorhizobium analyses, revealing 6432 equal 308 

cost solutions with six co-speciation events and 22 lateral transfers/duplications (cost 309 

= 44) (Fig. S5). Topological congruence (vertical inheritance/parallel evolution) was 310 

further statistically examined with a randomization tests (Fig. S6), providing evidence 311 

to reject the null hypothesis of random relationships for both gene phylogenies (P < 312 

0.01). Despite large-scale symbiosis-gene transfers, the overall chromosomal and 313 

symbiosis topology shares a significant number of co-divergence, indicating that 314 

 by guest on O
ctober 7, 2015

http://fem
sec.oxfordjournals.org/

D
ow

nloaded from
 

http://femsec.oxfordjournals.org/


 12 

events of parallel evolution occurs more frequently than we would expect purely by 315 

chance.  316 

 317 

Recombination in Mesorhizobium and Burkholderia 318 

The frequency and relative impact of recombination on the evolution of housekeeping 319 

genes was assessed using the ClonalFrame approach (Didelot & Falush, 2007). 320 

Recombination frequencies were estimated for the Mesorhizobium and Burkholderia 321 

datasets, comprising similar levels of genetic divergence with the lowest sequence 322 

similarity of 90% for both rhizobial groups. For the Mesorhizobium dataset (n = 28 323 

strains), the r/m and ρ/θ values were 11.81 (7.52, 16.01; 95% CI) and 2.62 (1.73, 2.91; 324 

95% CI), respectively, implying recombination rather than mutations as predominant 325 

contribution to the evolution among the tested regions of the Mesorhizobium strains. 326 

Similarly, substantial levels of recombination were observed among the Burkholderia 327 

strains (n = 28), with r/m = 7.80 (2.47, 16.42; 95% CI) and ρ/θ = 2.18 (0.68, 3.76; 328 

95% CI).  329 

 330 

Phylogenetic analysis of the acdS gene  331 

The presence of acdS in one Rhizobium (49), one Burkholderia (25I3R1) and all 332 

Mesorhizobium isolates was confirmed by sequence analyses. Phylogenetic analyses 333 

of the acdS isolates and closely related reference sequences of Mesorhizobium, 334 

Rhizobium and Burkholderia, placed all Mesorhizobium isolates within a 335 

monophyletic group (100% Bayesian support value - BS, 100% Bootstrap support 336 

value - BSS) as a sister group to Mesorhizobium chacoense (98% BS, 90 BSS) (Fig. 337 

3, S7). The sequence divergence between the acdS Mesorhizobium isolates (mean 338 

pairwise sequence similarity > 95%) generated well-resolved relationships with high 339 

support values for most nodes. The acdS gene phylogeny revealed significant 340 

incongruent groupings in comparison to both chromosomal and symbiosis-related 341 

genes, indicating a different evolutionary history prone to HGT. Concordant 342 

relationships between the acdS tree (Fig. S2F) and the chromosomal gene trees (Figs. 343 

S2A-E) were only detected among a few sister group relationships (e.g. 344 

Mesorhizobium spp. 31/32, Mesorhizobium spp. 5382/5343, Mesorhizobium spp. 345 

5361/5357, Mesorhizobium spp. 5378/5334). One similar relationship 346 

(Mesorhizobium sp. 31R1-31R2) was observed between the acdS and nodulation gene 347 

trees (Fig. 2-3). 348 
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The acdS sequence of the Rhizobium isolate was placed as a sister group to the 349 

Mesorhizobium spp., although this relationships is not supported (Fig. 3, S7). 350 

Sequence analysis of the Rhizobium isolates detected low levels of similarity among 351 

available reference strains, showing the highest similarity value with R. gallicum 352 

(83.6 % sequence similarity). 353 

Amplification of the acdS region in Burkholderia resulted in only one amplicon, 354 

suggesting that the primers originally designed for Mesorhizobium 355 

(Alphaproteobacteria) (Nascimento et al., 2012b) are not suitable for Burkholderia 356 

genus (Betaproteobacteria) due to primer mismatches. The acdS sequence of 357 

Burkholderia was placed as a sister group to the reference strain B. ginsengisoli 358 

NBRC100965 (100% BS, 100 BSS). This species was originally recovered from the 359 

rhizosphere of plants from ginseng field (Kim et al., 2006). 360 

 361 
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Discussion 362 

Horizontal gene transfer of symbiosis genes among rhizobia of the Fynbos biome 363 

Extensive incongruence between phylogenies of nodulation and chromosomal genes 364 

of members of the genera Burkholderia and Mesorhizobium provides evidence for 365 

frequent exchange of nodulation genes among rhizobial lineages of the South African 366 

Cape Fynbos biome. Within the Burkholderia species of the Cape, horizontal gene 367 

transfer of symbiosis genes has been previously suggested to explain discordant 368 

relationships between the nodulation (nodA) gene in comparison to chromosomal 369 

genes (Beukes et al., 2013). The observed exchange of nodulation genes located on 370 

plasmids and symbiosis islands in Burkholderia and Mesorhizobium, respectively, 371 

indicates that HGT is not restricted to one rhizobial group (i.e. Burkholderia), but also 372 

occurs among rhizobia of the Alphaproteobacteria, suggesting HGT as a common 373 

feature in the Fynbos biome. This observation is in contrast with rare events of HGT 374 

of symbiosis genes among South American Burkholderia, which are associated with 375 

Mimosa spp. mostly endemic to the Cerrado and Caatinga biomes of Brazil 376 

(Bontemps et al., 2010; Mishra et al., 2012). Recently, alpha- and beta-rhizobia of 377 

Mexican Mimosa spp. were also characterized without an indication of gene exchange 378 

of nodulation genes (Bontemps et al., 2015). 379 

The symbiotic nodulation genes, which are involved in host recognition by the 380 

synthesis of signalling molecules (Nod factors), are expected to evolve under 381 

constraints imposed by the interaction with the host plant (Perret et al., 2000; Spaink, 382 

2000). Hence the evolutionary history of nodulation genes is usually related to the 383 

host plant (Haukka et al., 1998; Laguerre et al., 2001; Suominen et al., 2001; Lu et 384 

al., 2009). In Fynbos mesorhizobia, two distinct symbiosis clades (nodA-nodB-nodC-385 

nifH) were recovered, largely grouped by the host tribes Psoraleeae and 386 

Crotalarieae/Genisteae (Fig. 2); all symbionts of the legumes of Otholobium and 387 

Psoralea (tribe Psoraleeae) were clustered within a monophyletic group, while all 388 

Aspalathus (tribe Crotalarieae) and Argyrolobium (tribe Genisteae) symbionts were 389 

placed in a clade with distinct nodulation and nitrogen fixation genes, except for one 390 

Aspalathus symbiont (accession 31). While the nod gene phylogenies of mesorhizobia 391 

are strongly aligned with the host, at least at tribal (but not generic) level, it does not 392 

explain the complex evolutionary history of nodulation genes for Burkholderia, which 393 

were all originally isolated from the same host Podalyria calyptrata. In previous 394 

studies, the association between Burkholderia isolates and the host was not strong, 395 
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showing one Burkholderia species nodulating diverse host species from different 396 

legume tribes and genera (Beukes et al., 2013). Host range studies confirmed the 397 

aspecificity of the Burkholderia-legume interaction, showing one rhizobial strain able 398 

to form effective nodules in various legume species (Gyaneshwar et al., 2011; Liu et 399 

al., 2012; Angus et al., 2013; Sprent et al., 2013). This observation may indicate that 400 

South African legumes do not have stringent requirements for a particular 401 

Burkholderia genotype and allow relaxed co-evolution between the symbiotic 402 

partners.  403 

While Burkholderia seems to have a broad host-range with local papilionoid species 404 

they appear incapable of nodulating South American mimosoid hosts (Gyaneshwar et 405 

al., 2011). Interestingly, mimosoid-nodulating Burkholderia from the South Americas 406 

exhibit a broader host range, which are able to form interactions with papilionoid 407 

species (Martínez-Romero, 2009; Talbi et al., 2010; Gyaneshwar et al., 2011; Liu et 408 

al., 2014; Moulin et al., 2014). The naturally broader host range of these Burkholderia 409 

species (e.g. B. phymatum) and consequently the low pressure of the bacterial 410 

symbiont to adapt to a legume host by the exchange of symbiosis-specific genes 411 

(Segovia et al., 1991) might explain the relative lack of HGT observed in South 412 

American Mimosa symbionts (Bontemps et al., 2010, 2015; Mishra et al., 2012).  413 

In the Fynbos biome, the lateral transfer of nodulation genes in Burkholderia might 414 

also be the result of other factors, such as the flexibility and adaptability of the 415 

genome to highly diverse ecological environments (Miché et al., 2002). Rhizobial 416 

populations seem to interact reciprocally by exchanging symbiotic elements, 417 

comprising genes related to nodulation, nitrogen fixation, auxin synthesis, 418 

hydrogenase components and ACC deaminase activity (de Oliveira Cunha et al., 419 

2012; Zuleta et al., 2014), in order to respond to highly diverse and changeable 420 

environments, and extend their capacity to colonize new habitats, which allow the 421 

host plants to associate with the most adapted rhizobia to the environment (Suominen 422 

et al., 2001; Moulin et al., 2004; Vinuesa et al., 2005; Zhao et al., 2008).  423 

 424 

Role of recombination in Fynbos rhizobia 425 

The rates of recombination relative to those of mutation showed similar results of 426 

recombination for Mesorhizobium and Burkholderia strains, indicating a high impact 427 

of homologous recombination or low mutation rates. The ratio of the probabilities that 428 

a given nucleotide is changed by recombination or mutation (r/m) is roughly eleven 429 
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and seven for the Mesorhizobium and Burkholderia isolates, respectively. Although 430 

similar high values of recombination relative to mutation (r/m = 2-10, sensu Vos & 431 

Didelot, 2009) have been recorded in many rhizobial groups (e.g. Tian et al., 2010, 432 

2012; Van Cauwenberghe et al., 2014), the observation of recombination among 433 

distinct Mesorhizobium (M. ciceri, M. loti, M. huakuii) and Burkholderia species 434 

(including at least five species) is remarkable, because the success rate of exchange of 435 

homologous genetic material decreases exponentially with the genetic distance of 436 

interacting species (Majewski, 2001). Consequently, high rates of recombination 437 

occur more frequently between close relatives than among divergent organisms 438 

(Didelot & Maiden, 2010; Popa et al., 2011). Nevertheless, events of recombination 439 

across bacterial divisions and domains have been reported (Garcia-Vallve et al., 2000; 440 

Rest & Mindell, 2003). 441 

Why these Mesorhizobium and Burkholderia are shuffling around alleles by 442 

homologous recombination is still an open question. Although Mesorhizobium and 443 

Burkholderia are phylogenetically distinct (alpha- and beta-subclass of 444 

Proteobacteria), similar recombination rates in both rhizobial groups could imply that 445 

events of recombination are more related with comparable ecologies rather than to 446 

genetic background (Wiedenbeck & Cohan, 2011). Although speculative, the 447 

considerable level of recombination (and gene movement of symbiosis genes; see 448 

above) in Burkholderia, and linked to its renowned genomic plasticity (Miché et al., 449 

2002; Vial et al., 2007), is not evolutionary constrained to beta-rhizobia, but is a 450 

common feature in the Fynbos, occurring among mesorhizobia adapted to the same 451 

ecological environment. 452 

 453 

Evolution, occurrence and ecological significance of the ACC deaminase (acdS) 454 

gene 455 

The location of the acdS gene varies in different species but is often located on 456 

transferable elements such as plasmids in Rhizobium and Ensifer (Ma et al., 2003; 457 

Young et al., 2006; Kuhn et al., 2008) and symbiosis islands in Mesorhizobium 458 

(Sullivan et al., 2002; Nascimento et al., 2012b). In Burkholderia, analyses of genome 459 

data identified acdS on the chromosome, except for B. phymatum STM815T and B. 460 

phenoliruptrix BR3459a, which have two copies of the acdS gene, one on the 461 

chromosome and the other on the plasmid (Nascimento et al., 2014). Despite the 462 

variation of the position on transmittable elements, the acdS gene is expected to 463 
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evolve mainly through HGT, at least for species having acdS on plasmids and 464 

symbiosis islands, as previously demonstrated in phylogenetic studies of both Alpha- 465 

and Betaproteobacteria (Hontzeas et al., 2005; Blaha et al., 2006; Glick et al., 2007; 466 

Nandasena et al., 2007; Nascimento et al., 2012b). 467 

In Mesorhizobium, acdS has been reported in many species, which are shown to be 468 

prone to HGT, most likely through symbiotic island exchange (Nascimento et al., 469 

2012b; Laranjo et al., 2014). In the study of Nascimento et al. (2012b), the acdS tree 470 

revealed similar relationships in comparison to the symbiosis gene trees and correlates 471 

well with the host range, rather than the 16S rRNA phylogeny. In the current study, 472 

few congruent relationships were observed between the acdS, housekeeping and 473 

nodulation gene trees, indicating that ACC deaminase genes of these South African 474 

Proteobacteria are extensively subjected to HGT with genes on transmittable 475 

elements (i.e. plasmids and symbiotic islands) being prone to such different 476 

evolutionary histories. Future genome studies are needed to investigate the genome 477 

characteristics and the exact location of the acdS gene within the multipartite genome; 478 

a genome arrangement prevalent among plant-associated symbionts (Harrison et al., 479 

2010; Landeta et al., 2011). It is also important to note that the genes located on 480 

accessory replicons or smaller chromosomes may evolve at a higher substitution rate 481 

compared to genes present within the larger primary chromosomes (Cooper et al., 482 

2010; MacLean et al., 2014) and hence may consequently affect the inference of 483 

phylogenetic relationships between different sets of genes (i.e. housekeeping, 484 

nodulation, acdS). 485 

The ecological significance of the microbial ACC deaminase activity to stimulate 486 

plant growth (Glick et al., 2007) and the observed prevalence of the ACC deaminase 487 

gene throughout all Mesorhizobium spp. indicate that this enzyme is playing an 488 

important role in the nodulation process of these strains by increasing their ecological 489 

competitiveness and symbiotic performance (Ma et al., 2003, 2004; Uchiumi et al., 490 

2004; Nascimento et al., 2012b, 2012c; Brígido et al., 2013). The presence of acdS 491 

genes in all Mesorhizobium and one Rhizobium and Burkholderia strain, originating 492 

from different geographical locations and diverse legume groups of the tribes 493 

Crotalarieae, Genisteae, Podalyrieae and Psoraleeae, indicates that ACC deaminase is 494 

a common and important plant-beneficial property among Fynbos rhizobia, 495 

particularly for lineages of the genus Mesorhizobium.  496 

 497 
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Conclusion 498 

In this multilocus sequence analysis, we provided phylogenetic evidence for 499 

horizontal transfer of plasmid located genes within species of Burkholderia and 500 

Mesorhizobium, and extensive exchange of housekeeping genes through homologous 501 

recombination. No evidence of HGT between alpha- and beta-rhizobia was observed. 502 

The dynamic nature of gene transfer and acquisition observed in selected ‘core’ and 503 

‘accessory’ genes among Burkholderia and Mesorhizobium in the Fynbos biome is 504 

most likely only the tip of the iceberg, and future genomic work is necessary to reveal 505 

the true extent of the migratory lifestyle of (accessory) genes among rhizobia of the 506 

Fynbos biome. 507 

 508 
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Figure legends 

 
Fig. 1. Phylogenetic incongruences between chromosomal and nod sequence data of 
Burkholderia isolates. Comparison of the best Maximum Likelihood trees based on 
(A) chromosomal (16S rRNA, recA, atpD, gyrB) and (B) nodulation genes (nodA, 
nodB, nodC) (right tree). Support values for the Bayesian and Maximum Likelihood 
analyses are shown at the nodes. Dashed lines indicate the species association 
between the chromosomal and nodulation gene trees. Nodes highlighted by a circle 
represent events of co-speciation as revealed by the reconciliation analysis.   by guest on O
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Fig. 2. Phylogenetic incongruences between chromosomal and nod sequence data of 
Mesorhizobium isolates. Comparison of best Maximum Likelihood trees based on (A) 
chromosomal (recA, atpD, gyrB, glnA) and (B) nodulation genes (nodA, nodB, nodC) 
(right tree). Support values for the Bayesian and Maximum Likelihood analyses are 
shown at the nodes. Dashed lines indicate the species association between the 
chromosomal and nodulation gene trees. Nodes highlighted by a circle represent 
events of co-speciation as revealed by the reconciliation analysis.   
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Fig. 3. Phylogenetic relationships based on acdS sequences of Mesorhizobium, 
Burkholderia and Rhizobium isolates. Major lineages are schematically represented 
by triangles. Support values for the Bayesian and Maximum Likelihood analyses are 
shown at the nodes. A full phylogram is presented in Fig. S7. 
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