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Abstract 

Weight-based pricing systems for municipal solid waste collection and processing are 

increasingly popular in many European countries and regions. However the impact on 

waste generation of such pricing schedules remains debated and depends strongly on the 

practical details of the system used. This paper assesses the impact of a voluntary 

transition by Flemish municipalities from the default price-per-bag pricing systems to a 

more sophisticated weight-based pricing schedule. By (1) exploiting alternative statistical 

techniques, (2) using more recent data and (3) focusing on the introduction effect of the 

new pricing schedule, we are able to complement and refine prior research on this topic. 

Our results indicate that introducing weight-based pricing has initially a significant and 

substantial downward impact on the amount of residual municipal solid waste per capita. 

This result is robust under different methodologies that control for selection bias. There 

are however indications that this initial effect does not persist in the years after 

introduction. 

Keywords:  
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Introduction 

In search of financial retribution systems that reflect the polluter-pays principle, more and 

more local authorities rely on weight-based waste pricing schedules for their household 

waste collection and processing services. Although generally designed to stimulate MSW 

reduction and recycling efforts, the debate on the impact of weight-based pricing 

schedules on waste generation is still ongoing (see for instance Linderhof et al. 2001, 

Dijkgraaf & Gradus 2004 and De Jaeger 2010). Inspired by the need for more empirical 

evidence, this paper analyzes the impact of the voluntary transition of certain Flemish 

municipalities from the standard price-per-bag pricing systems to more sophisticated 

weight-based pricing schedules. Under this more sophisticated weight-based pricing 

schedule, households are charged for each kilogram of waste they put on the curbside. 

Each household receives a standardized waste bin, marked with an identification chip. 

Upon collection, the difference in weight before and after emptying the bin is recorded 

and this weight measure is used later to bill households for the actual amount of waste 

they disposed of. 

There is a substantial literature in environmental and resource economics that tries to 

estimate the price sensitivity of consumers for waste collection services for different types 
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of waste, see Dijkgraaf and Gradus (2004) for an overview. This literature uses either 

detailed household surveys or aggregate municipal data to estimate long and short run 

price elasticities of demand for waste collection. Beyond doubt this price sensitivity 

information is important for the design and fine-tuning of price based MSW collection 

systems but it does not provide an answer to the question how effective the introduction 

of a weight-based system is in reducing overall MSW volume and/or weight. This is the 

question that policy makers typically are interested in and this paper wants to answer. 

We have at our disposal a panel data set of about 300 Flemish municipalities and 6 years. 

During that period municipalities gradually introduced weight-based pricing and by the 

last year in the sample about 72 municipalities (23.4%) had adopted the system. The 

gradual implementation of the system constitutes a natural experiment and allows us 

therefore in principle to estimate the impact of introducing a weight-based collection 

service. But as Flemish municipalities can decide on a voluntary basis whether to adopt a 

more sophisticated weight-based pricing system or to stick to the default price-per-bag 

system, adoption of weight-based pricing might not be random. This implies that assessing 

the impact of weight-based pricing via a regression of MSW on a dummy variable 

indicating whether weight-based pricing is used or not (and a set typical explanatory 
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variables), might result in biased estimates of the true effect of the pricing systems. 

Underlying this selection bias is the fact that the decision to participate in the new system 

is likely to be affected by factors that also have an impact on MSW generation. In others 

words, one cannot consider the decision variable as exogenous in this setting (see for 

instance Heckman et al. (1998a) or Wooldridge (2002) for more details on selection bias). 

If for instance municipalities with a long history of MSW reduction efforts are more/less 

likely to switch to the weight-based pricing system, the impact of the new system on MSW 

reduction will probably be over/underestimated.  

Dijkgraaf and Gradus (2004) in their assessment of the impact of introducing a unit-based 

pricing scheme for different types of waste streams in the Netherlands are aware of this 

problem and tried to correct for what they call “environmental activism” by including a 

dummy variable that takes value one for municipalities that adopted some unit-based 

pricing scheme and value zero for municipalities that never adopted such a system. The 

effect is strongly significant and leads them to conclude that the true impact of adopting a 

unit-based pricing system is much lower than in their original estimates without 

controlling for selection bias. But currently, a wide variety of statistical methods exists to 

address the problem of selection bias (for an introduction see Blundell & Costa Dias 2000). 
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Using one of these methods, De Jaeger (2010) found no proof for a significant and robust 

impact of weight-based pricing on MSW generation in Flanders.2 In this paper, we will 

consider a much more wider set of techniques to check the robustness of earlier results. 

There are several reasons why revisiting the case of Flanders could lead to new insights for 

both waste management professionals as scholars. First, the paper of De Jaeger (2010) is 

mainly a methodological contribution, using the case of weight-based pricing in Flanders 

as an application of the extended difference-in-differences approach. As alternative 

methods to address endogeneity issues could generate new insights, our paper will add 

the results of a matching estimator and panel data estimations. Second, the most recent 

observations included in the analysis of De Jaeger (2010) date back to 2007, while 

participation in the weight-based pricing schedule experienced an important boost 

between 2007 and 2010. Third and finally, due to the limited amount of new participants 

in a given year, De Jaeger (2010) was unable to present a robust analysis of the 

introduction effect (i.e. the first year impact for new participants) of the weight-based 

pricing schedule. Extending the dataset with more recent observations however, allows us 

                                                           
2
Note that the results presented in table 3 in De Jaeger (2010) contain an error, although the corrections do 

not materially change the conclusions of the paper, the corrected table will be send to the interested reader 
upon simple request. 
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to report a more detailed analysis of this introduction effect. Note that due to the long 

time frame analyzed in De Jaeger (2010) bulky household refuse was considered part of 

the MSW fraction, distinguishing between bulky household refuse and residual household 

waste quantities was not possible in the old dataset. The current paper however, builds on 

more recent and detailed data in which bulky household waste is no longer included in the 

MSW fraction. 

The structure of this paper is as follows. The next 2 sections describe the data and 

methodology. Results and conclusions are presented in the final 2 sections. 

 

Data 

In Flanders weight-based pricing systems for curbside waste collection are mainly used for 

residual MSW collection (i.e. MSW that is not collected for recycling or composting) and, 

to a lesser extent, for green waste collection. In this paper we focus on the impact of 

weight-based pricing on the first fraction, residual MSW (for more details on this pricing 

schedule see also De Jaeger and Rogge 2013). Hence other separately collected waste 

fractions, like green waste, but also packaging waste, are not taken into consideration in 
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our analysis.3 Data on residual MSW quantities for each municipality were provided to us 

by OVAM (Public Waste Agency of Flanders).  

In 1998, 9 pioneering municipalities introduced weight-based pricing for residual MSW 

collection in Flanders. Since then, this number gradually increased to 72 (out of 308, i.e. 

23.4%) in 2010 (reliable data on the incidence of weight-based pricing is currently only 

available up to 2010). Note that once having adopted the new pricing schedule, very few 

of the participating municipalities returned to the classical price-per-bag system. As the 

impact of weight-based pricing on residual MSW generation during the first years was 

already analyzed in De Jaeger (2010), this paper will focus on the period 2005-2010. Table 

1 reveals that during this period the number of participants more than quadrupled.  

                                                           
3
 Note that the Flemish waste agency requires all municipalities to organize separate collection for 

recyclable waste flows,  like packaging waste (cans, plastic bottles, etc.), paper, glass bulky household waste, 
etc. As this obligation holds for all municipalities, it cannot be the reason for possible differences in residual 
MSW per capita generation between municipalities. 
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Table 1: incidence of weight-based pricing in Flanders in number of municipalities for the 

first three columns and percentages for the last column  

Year New 
adopters 

Drop  
out 

Total # of 
Participants 

Participants 
share 

2005 8 0 28 9.1 

2006 11 0 39 12.7 

2007 3 1 41 13.3 

2008 11 1 51 16.6 

2009 16 1 66 21.4 

2010 6 0 72 23.4 

 

Combining the data on the adoption of weight-based pricing and residual MSW generation 

already points to possible problems that might arise if selection bias is not addressed 

adequately. Figure 1 depicts average residual MSW generation for both the treatment 

group of municipalities using weight-based pricing in 2010 (i.e. the 72 participating 

municipalities mentioned in the last row of Table 1) and a control group consisting of the 

municipalities which never used weight-based pricing during the observed period. Figure 1 

shows that average residual MSW generation is consistently lower in the treatment group 

compared to the control group. In line with the findings reported in De Jaeger (2010), 

participating municipalities are on average characterized by lower amounts of residual 

MSW compared to the control group even before the weight-based pricing was 

introduced for the first time (i.e. 1998). This observation can be considered as an 
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indication that the adoption decision is not exogenous. In other words, the participation 

municipalities are not just a random sample of all Flemish municipalities. They seem to 

share particular characteristics (observable and non-observable) that influence the 

adoption decision. 

 

 

Legend: WBP stands for weight-based pricing 

Figure 1: Comparison of residual MSW generation between participants and non-

participants 
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Focusing on the introduction effect however, reveals a different picture. If we depict for 

instance the average amount of residual MSW per capita for municipalities introducing 

weight-based pricing for the first time in 2006 together with the average amount of 

residual MSW per capita for the control group, i.e. the municipalities which never used 

weight-based pricing between 2005 and 2010 (see Figure 2), we observe a substantial 

downward jump for the newly adopting municipalities. Note that this trend is not present 

in the control group. The figure again reveals that in the years prior to the introduction of 

the new pricing system, participating municipalities had on average already a lower 

amount of residual MSW compared to the control group. Although not depicted in this 

paper, a similar pattern can be found for municipalities introducing weight-based pricing 

for the first time in 2008 and 2009, with respective reductions of 27% and 30% in residual 

MSW generation.  Note that for municipalities introducing weight-based pricing for the 

first time in the other observation years (i.e. 2005, 2007 and 2010) the pattern is less 

pronounced. This could be caused by relatively low amount of new participants in those 

years (see also Table 1). 
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Figure 2: Comparison of residual MSW generation between new participants and non-

participants 

 

Although the above figures already reveal some information on the potential impact of 

(the introduction of) weight-based pricing on residual MSW generation, the potential 

problems arising from selection bias must be addressed in a more consistent way before 

conclusions can be drawn. 
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Methods 

There exist many statistical methods to analyze the effectiveness of policy measures while 

taking into account selection bias. In this paper we will use a selection of models: (1) 

standard linear regression models, (2) panel data models, (3) a matching estimator, and 

(4) the difference-in-differences approach. As this paper is intended to illustrate the value 

of our specific dataset for an international professional audience, we will only briefly 

describe the three methods and refer the interested reader to other sources for a more 

detailed and technical description of the above methods. The definition of the variables 

used to estimate the models can be found in the Table 2. 

Table 2: Variable definitions 

Weight-based pricing: a dummy variable indicating if the municipality uses/introduced weight 
based pricing. 
Source: collected via a database of Openbare Vlaamse Afvalstoffenmaatschappij, municipal 
websites, provincial archives and telephone interviews with the municipalities.   

Residual municipal solid waste: all waste (in kg per capita) generated in a residential environment 
due to regular activities by private households excluding  bulky household refuse and any 
selectively collected flow such as packaging waste, paper and cardboard, small hazardous waste, 
etc. Note that waste generated by companies, schools, hospitals, prisons etc. is collected by 
private waste collection and processing firms and is not included in the definition of residual 
municipal solid waste. 
Source: Database of Openbare Vlaamse Afvalstoffenmaatschappij (Public Waste Agency of 
Flanders). 

Young: Percentage of people younger than 5 years of age.  
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Source: Statistics Belgium (http://statbel.fgov.be/en). 

Old: Percentage of people older than 65 years of age. 
Source: Statistics Belgium (http://statbel.fgov.be/en). 

Underprivileged index: percentage of children born in an underprivileged household in the last 4 
years.  
Source:  Studiedienst van de Vlaamse Regering (http://www4dar.vlaanderen.be/sites/svr [in 
Dutch]). 

Average income: average income before taxes. This statistic is based on the declaration of 
incomes subject to taxation for private persons. 
Source:  Studiedienst van de Vlaamse Regering (http://www4dar.vlaanderen.be/sites/svr [in 
Dutch]). 

Population density: average population per square km. 
Source: Statistics Belgium (http://statbel.fgov.be/en). 

Classification of municipalities: the typology of the 308 Flemish municipalities is derived from the 
well-known Belfius classification (see source below).  The latter classification is the result of a 
factor and cluster analysis based on a set of municipal socio-economic variables. The Belfius 
classification consist of 16 clusters which we grouped in 4 main categories and 1 benchmark 
category: 

 Touristic: municipalities attracting a lot of tourists. This group contains only coastal 
municipalities. Note that cities attracting a lot of tourists are included in the ‘City’ group.   

 City: Large, medium sized an regional cities. 

 Rural: municipalities with a low level of urbanization 

 Urbanized: urban or semi-urban municipalities with low average income levels, modest 
economic activity and, in contrast to the category ‘City’,  a  limited level of centrality. 

 Benchmark category :  residential municipalities (urban fringe and rural) and municipalities 
with economic activity.  

Source: Belfius socio-economic typology  
(https://www.belfius.be/publicsocial/NL/Expertise/Studies/LokaleFinancien/GemeentenProvincies
/Typology/index.aspx  [in Dutch]). 

Municipal debt per capita: Total debt (in €) listed in the balance sheets, divided by the total 
population. 
Source:  Studiedienst van de Vlaamse Regering (http://www4dar.vlaanderen.be/sites/svr [in 
Dutch]). 

Vote share of the municipal council: the share of votes  (in %) for the political parties represented 
in the  municipal council. For the treatment years 2005 and 2006 we use the results of the 2000 
municipal election and for treatment years 2007-2010 the results of the 2006 municipal election. 
Source: own calculations based on the official election results (http://www.vlaanderenkiest.be/ [in 

http://www4dar.vlaanderen.be/sites/svr
http://www.vlaanderenkiest.be/
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Dutch]). 

Municipal joint venture: dummy variable taking value 1 if other municipalities in the same 
municipal waste joint-venture have implemented weight-based pricing. 
Source: own calculations. 

 

Linear regression model: ordinary least squares (OLS) 

We start by estimating simple linear regression models with MSW as dependent variable 

and a number of covariates as depend variables. The dependent variable ity  is the 

amount of MSW per capita collected by municipality i in year t. Whether a municipality 

applies weight-based pricing (WBP in the sequel) in year t or not is indicated by the 

dummy variable itw . It takes value zero as long as the municipality does not apply WBP. 

From the year it introduces WBP, the variable takes value one for the rest of the time 

horizon. Covariates that describe municipalities’ characteristics are denoted by vector xit  

and include average income, population density, two variables that account for the 

specific consumption patterns of age groups (i.e. the percentage of residents younger 

than 5 years and older than 65 year), an underprivileged index (i.e. the percentage of 

children born in an underprivileged household in the last 4 years) and a set of dummy 

variables classifying municipalities into five categories according to objective geographic, 

demographic and economic criteria (touristic, city, urbanized, rural, and “other”). Error 
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terms are denoted by ite  and are assumed to be independent and identically distributed 

(IID): 

 0    x βit t it t t it ity w e   (1) 

Starting from this model it can be shown that the estimated coefficient  t  measures the 

difference in group average MSW between the municipalities that apply WBP and the ones that do 

not. For a given year, summing over all municipalities that apply WBP and dividing by the number 

of these municipalities, it follows: 

 WBP 0 WBP   x βt t t t ty   (2) 

Likewise, for a the group of municipalities that do not apply WBP it can be shown that: 

 no WBP 0 no WBP   x βt t t ty   (3) 

Taking the difference, and assuming that the effect of other covariates is the same for both groups 

of municipalities, it follows: 

 WBP no WBP WBP no WBP

t t t t t ty y         x x β   (4) 

Note that in our estimation the intercept and slopes can vary trough time as we estimate 

equation (1) for each year separately.  
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So far we have been comparing municipalities that apply WBP to municipalities that do not. We 

call this the “general participation effect” model in the sequel. But, another interesting 

comparison is between municipalities that newly introduced WBP and municipalities that did not 

introduce it in a given year. Formally, this is a slight variation on model (1):.   

 0     x βit t it t t it ity w e   (5) 

where 1  it it itw w w  stands for the first difference of the indicator variable itw . It only 

takes value one in the year that a particular municipality introduced WBP and zero in all 

other years. The interpretation of the regression coefficient is again the difference in 

group average but in this case between newly adopters of WBP and those who did not 

introduce it in a given year. We will call this model the “introduction effect” model in the 

sequel. Comparison of the result of both the general participation and introduction effect 

models will allows us to infer something about the persistence of the effect of WBP on 

MSW generation. If the introduction effect is stronger than the general participation 

effect, this is an indication that the effect of WBP on MSW erodes over time.  

Panel data models 

The models above where estimated year by year. One can exploit the data better by 

taking into account the panel data structure, i.e. the fact that we have repeated 
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observations on the same municipalities. The literature on panel data models is very large, 

see for instance Verbeek (2008) or Baltagi (2008) for an introduction. We will confine 

ourselves to the basic panel data models. 

We start by considering fixed effects models which can be written as follows: 

 
it i t it it ity w e      x β   (6) 

 
it t it it ity w e      x β   (7) 

The distinguishing feature of fixed effects models is given by the  i ’s and t ’s which are 

municipality and time specific constants respectively. Hence the intercept is allowed to 

differ between municipalities and can therefore control for specific characteristics of 

municipalities even if we have no observable data on that. The difference between both 

specifications above is that model (6) considers the levels of the variables and captures 

the general participation effect. Model (7) on the other hand uses first differences of the 

variables (causing the fixed municipality effects to disappear) and refers to the 

introduction effect. The interpretation of the slope coefficient    is similar as in the linear 

regression model above: it measures the difference in average MSW per capita between 

group of municipalities that apply or that introduce WBP compared to the group that does 
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not. Compared to the yearly OLS models higher, the estimated slope coefficient is 

assumed to be constant through time in the panel data specification. 

The big advantage of the panel data method over the OLS model is that the estimated 

parameters are more robust for misspecification and omitted variable bias. If there would 

be unobserved characteristics of municipalities that correlate with the introduction 

decisions, they are likely to be captured by the municipality-specific intercepts so that 

they do not distort the estimated coefficients of participation or introduction, see Verbeek 

(2008). 

Apart from the fixed effect panel model, we also consider a random effects version. In this 

model there is a common intercept but the error terms are assumed to consist of a 

municipality specific component in order to capture unobserved municipality 

characteristics. We report the results for completeness but for our analysis the fixed effect 

model is the more natural choice.  

Matching estimator (MATCH) 

The matching estimator addresses the problem arising from selection bias by composing a 

new control group before comparing the average value of the outcome variable (in our 
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case the amount of residual MSW) between the treatment group and the control group. In 

our case we use a so-called nearest-neighbor matching estimator which selects for each 

participating municipality the “closest” non-participating counterpart in terms of a set of 

covariates. Regarding these covariates we start from the same set of exogenous variables 

used for estimating the other models. As we expect that both financial and political 

motives could influence participation in the weight-based pricing schedule, we include 

municipal debt per capita and the vote share of the municipal council as additional 

variables in the matching procedure. As most Flemish municipalities cooperate with 

neighboring municipalities to provide waste related services via so-called municipal joint-

ventures, we also include a dummy variable indicating if other municipalities in the same 

municipal waste joint-venture have implemented weight-based pricing as a third matching 

variable. The underlying assumption is that, conditional on the set of covariates, 

participation is independent of the outcome, implying that the outcome in the absence of 

participation is the same in both groups. For more details on the matching technique see 

for instance Heckman et al. (1998b) or Abadie et al. (2004). 

Difference-in-Difference estimators (DD and DDD) 
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The last method that we consider in this paper to overcome potential problems with 

selection bias, is the difference-in-difference (DD) estimator. It compares the evolution of 

the outcome variable between participating and non-participating municipalities, see for 

instance Blundell and Costa Dias (2000), De Jaeger and Eyckmans (2008) or De Jaeger 

(2010). The intention behind the DD estimator is to compare the progress (i.e. the 

difference in the outcome variable after and before adoption) of participating 

municipalities with the progress of non-participating municipalities. The difference in 

progress between both groups is then considered as the treatment effect. Note that this 

implies that in absence of participation, both groups are assumed to have the same 

progress in the outcome variable (common trend assumption). This assumption implicitly 

defines the counterfactual baseline against which the participation effect is judged. 

Whether that baseline assumption holds, is very hard to test. “Higher order” DD 

estimators exist (see Moffit (1991) or De Jaeger (2010)) which allow for more general 

identification assumptions. For instance the second order DD estimator (which will be 

indicated by DDD in the sequel) compares the changes of the progress between both 

groups, any difference between those changes are then attributed to participation. In this 

case the underlying assumption is that in absence of treatment, the change in progress 
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should be identical between both groups. In our paper we will report the results of both 

the standard DD estimator as well as results from a second order DD (or DDD). Note that 

in our case the DD (DDD) estimator can be estimated by regressing the (change of the) 

progress of MSW per capita generation on a dummy variable indicating if the municipality 

has adopted weight-based pricing (and the same set of exogenous covariates used 

before).  

 

Results 

We first present the detailed results for 2010, next we report the treatment effect 

estimates for the other years (i.e. 2005-2009) and finally the output for panel data 

estimations is discussed. Note that for the general effect, a municipality is considered a 

participant of the weight-based pricing system in a given year if the municipality uses the 

pricing system in that particular year. This implies that only participation determines the 

composition of this group and that therefore the number of years that a municipality uses 

weight-based pricing is irrelevant. For the introduction effect on the other hand, we 

consider a municipality as a participant in a given year if the municipality used weight-
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based pricing for the first time in that year. However, the estimated introduction effect 

should be interpreted cautiously, as the number of municipalities introducing weigh-based 

pricing is for some years limited (see also Table 1). The control group consists in both 

cases of the municipalities which never used weight-based pricing during the observed 

period (or a selection of this group when the matching procedure is used). 

The regression and matching output for 2010 is shown in Table 3. The results for the 

general participation effect are depicted in the first 4 columns of the table. The figures for 

both OLS as the matching procedure show a statistically significant negative relation 

between weight-based pricing and residual MSW generation. For instance the coefficient 

of -10.658 for the matching estimator indicates that on average municipalities using 

weight-based pricing in 2010 generate about 11 kg less residual MSW per capita 

compared to municipalities that never adopted weight-based pricing. Note that the 

magnitude of the effect is lower using the matching estimator compared to the OLS 

estimates. This is an indication of selection bias in the OLS results. The DD and DDD 

approaches on the other hand, reveal a different picture. Both coefficients for weight-

based pricing are not significantly different from zero. In other words, according to the DD 

and DDD estimates there is no general participation effect for using weight-based pricing 
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in 2010. Of the coefficients for the other covariates, only the percentage of residents 

younger than 5 years of age (variable labelled “Young”), the percentage of people older 

than 65 years of age (variable labelled “Old), the population density and the dummy 

variable for coastal municipalities (variable labelled “Touristic”) are significantly different 

from 0 in the OLS estimates.  According to this result, the particular consumption behavior 

for both age groups results in higher waste quantities. Note that only the impact of the 

variable young is confirmed by the DD and DDD estimates. The population density is 

significantly positive, but only at the 10% level. In addition this effect is not supported by 

the estimation output of the DD and DDD. Finally the significant positive coefficient for the 

coastal municipalities points to the importance of waste generation by tourists. Note that 

the underprivileged index is significantly negative at the 10% level for the DDD estimates.  

Estimates for the introduction effect in 2010 are presented in the last 4 columns of table 3.  

Only for the OLS and DD estimates the introduction effects is found to be significantly 

negative. The lack of a robust negative impact could be caused by the limited number of 

municipalities (only 6) introducing weight-based pricing for the first time in 2010. The 

coefficients and inferences for the socio-economic covariates are qualitatively very similar 

between the estimates for the general participation effect and the introduction effect, 
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with the exception of the underprivileged index which is no longer significantly different 

from zero in the DDD model. 

Results for the other treatment years 2005-2009 are summarized in Table 4. Note that, 

due to space limitations, this table does not report the estimated coefficients for all 

independent variables, but only depicts the estimates for the treatment effects. The full 

regression output is available for to the interested reader upon simple request.  

 

 

 

 

 

Table 3: OLS, matching and  difference-in-differences estimates for the  general 

participation effect and the introduction effect in 2010
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 General participation effect (2010)  Introduction effect (2010) 

 

OLS 
 

MATCH  DD 
 

DDD 
 

 OLS 
 

MATCH  DD 
 

DDD 
 Weight-based pricing -34.044 *** -10.658 *** -0.250 

 
2.281 

 
 -30.262 ** 6.977  -18.075 *** -6.920 

 
 

(3.708) 
 

(4.156)  (1.183) 
 

(2.318) 
 

 (12.067) 
 

(10.534)  (4.061) 
 

(7.241) 
 Young 6.699 *** –  7.408 ** 10.278 **  8.546 *** –  10.328 ** 16.569 *** 

 
(2.582) 

 
–  (3.276) 

 
(4.617) 

 

 (3.015) 
 

–  (4.068) 
 

(5.295) 
 Old 4.991 *** –  -0.118 

 
4.059 

 

 6.421 *** –  -2.417 
 

4.981 
 

 

(0.940) 
 

–  (2.395) 
 

(4.552) 
 

 (1.164) 
 

–  (2.915) 
 

(5.158) 
 Underprivileged index  0.654 

 
–  -0.503 

 
-1.046 *  0.452 

 
–  -0.265 

 
-0.994 

 
 

(0.494) 
 

–  (0.340) 
 

(0.590) 
 

 (0.600) 
 

–  (0.401) 
 

(0.648) 
 Average income -1.118 

 
–  -1.421 

 
0.993 

 

 -0.402 
 

–  -2.476 
 

-1.159 
 

 

(1.164) 
 

–  (2.121) 
 

(2.525) 
 

 (1.461) 
 

–  (2.492) 
 

(2.841) 
 Population density 0.007 * –  -0.009 

 
0.205 

 

 0.005 
 

–  -0.089 
 

0.133 
 

 

(0.004) 
 

–  (0.102) 
 

(0.233) 
 

 (0.004) 
 

–  (0.113) 
 

(0.240) 
 Touristic 112.842 *** –  – 

 

– 

 

 104.891 *** –  – 
 

– 

 

 

(13.178) 
 

–  – 

 

– 

 

 (14.768) 
 

–  – 

 

– 

 City -0.250 
 

–  – 

 

– 

 

 -1.201 
 

–  – 

 

– 

 

 

(5.730) 
 

–  – 

 

– 

 

 (6.795) 
 

–  – 

 

– 

 Urbanized -5.275 
 

–  – 

 

– 

 

 -9.173 
 

–  – 

 

– 

 

 

(5.213) 
 

–  – 

 

– 

 

 (6.202) 
 

–  – 

 

– 

 Rural -7.277 
 

–  – 

 

– 

 

 -8.879 
 

–  – 

 

– 

 

 

(4.498) 
 

–  – 

 

– 

 

 (5.537) 
 

–  – 

 

– 

 Constant 2.693 
 

–  1.706 
 

7.867 ***  -41.684 
 

–  2.469 ** 7.942 *** 

 
(34.590) 

 

–  (1.041) 
 

(1.307) 
 

 (44.126) 
 

–  (1.198) 
 

(1.329) 
 Observations 303  303  302  302   237  303  236  236  

R-square 0.581  –  0.026  0.042   0.517  –  0.106  0.069  

F-value 40.56 *** –  1.30  2.18 **  24.19 *** –  4.53 *** 2.83 ** 
OLS = Ordinary Least Square model, MATCH = Matching estimator, DD = Difference-in-Difference estimator, DDD = Difference-in-Difference-in-Difference estimator 
Standard errors between brackets and asterisks indicate statistical significance: p<0.10*; p<0.01**; p<0.001***. 



27 
 

Table 4: OLS, matching and  difference-in-differences estimates for the  general 
participation effect and the introduction effect for 2005-2009 

YEAR OLS MATCH DD DDD 

General participation effect 

2005 -28.649 *** -23.071 *** -12.607 *** -18.975 *** 

 

(6.702)  (6.204)  (2.720)  (5.075)  

2006 -32.900 *** -15.346 *** -7.084 *** 0.851  

 

(5.741)  (4.712)  (1.379)  (2.731)  

2007 -30.888 *** -11.800 *** 2.825 ** 10.176 *** 

 

(5.693)  (4.416)  (1.376)  (2.065)  

2008 -33.034 *** -9.879 ** -3.452 ** -6.295 *** 

 

(4.729)  (4.032)  (1.728)  (2.031)  

2009 -35.759 *** -15.098 *** -2.101  0.749  

 

(3.906)  (4.338)  (1.800)  (2.343)  

Introduction effect 

2005 -52.489 *** -45.841 *** -44.596 *** -62.556 *** 

 

(12.708)  (6.922)  (4.223)  (8.636)  

2006 -47.546 *** -9.705 ** -26.347 *** -28.240 *** 

 

(10.323)  (4.671)  (2.066)  (3.003)  

2007 -32.588  -19.480  -10.124 ** 5.932  

 (20.040)  (22.946)  (4.742)  (6.850)  

2008 -43.713 *** -19.447 *** -23.222 *** -25.983 *** 

 (9.604)  (5.883)  (3.378)  (3.965)  

2009 -51.364 *** -27.633 *** -21.683 *** -20.809 *** 

 (7.340)  (7.827)  (3.157)  (4.137)  

OLS = Ordinary Least Square model, MATCH = Matching estimator, DD = Difference-in-
Difference estimator, DDD = Difference-in-Difference-in-Difference estimator 
standard errors between brackets and asterisks indicate statistical significance: p<0.10*; 
p<0.01**; p<0.001*** 
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The general participation effect for treatment years 2005-2009 is depicted in the first 

panel of Table 4. We observe for all years lower estimated effects (in absolute values) for 

the MATCH model compared to the OLS model. The DD and DDD approaches on the other 

hand reveal a different picture. In this case we only find a significant negative relation 

between participation and residual MSW generation for 2005 and 2008. For 2007 we even 

find a significant positive coefficient. Summarizing, we do not find a significant impact of 

weight-based-pricing for all years and methods. Simple OLS regression results suggest a 

significant downward effect of weight-based pricing on residual municipal waste 

generation. However, after correcting for possible selection bias problems, the effect does 

not appear to be robust across methods and years. 

When looking at the figures for the introduction effect on the other hand (second panel of 

Table 4), we do find much more of a statistically significant and robust negative relation 

between adoption of weight-based pricing and residual MSW generation for the 

participation years with 8 or more municipalities introducing weight-based pricing (i.e. 

2005, 2006, 2008 and 2009). Immediately after introduction we observe a drop in residual 

solid waste ranging between minus 10 and minus 63 kg per capita. All methods indicate 

that municipalities produce significantly less residual MSW in the year the new pricing 
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schedule is introduced. Only for 2007 and 2010 with 3 and 6 municipalities introducing 

weight-based pricing respectively, the results are less robust across methods.   

 

Table 5: Panel data estimations 

 

Random effects 
(on levels) 

( 
(on levels) 

Fixed effects 
(on levels) 

Fixed effects 
(on differences) 

Weight-based pricing  -20.187 *** -19.080 *** -24.95 *** 

 
(1.514) 

 
(1.545) 

 
(1.501) 

 Young 3.126 ** 3.788 *** 2.883 * 

 
(1.281) 

 
(1.478) 

 
(1.561) 

 Old 0.842 
 

-3.418 *** -1.602 
 

 
(0.621) 

 
(0.872) 

 
(1.395) 

 Underprivileged index  -1.168 *** -1.394 *** -0.463 ** 

 
(0.208) 

 
(0.225) 

 
(0.219) 

 Average income -2.026 *** -3.309 ** 0.276 
 

 
(0.385) 

 
(1.400) 

 
(1.091) 

 Population density 0.012 *** -0.198 *** -0.039 
 

 
(0.004) 

 
(0.038) 

 
(0.078) 

 Touristic 209.039 *** – 
 

– 
 

 
(11.851) 

 
– 

 

– 
 City 14.741 ** – 

 

– 
 

 
(5.812) 

 
– 

 

– 
 Urbanized 1.567 

 

– 
 

– 
 

 
(5.438) 

 

– 
 

– 
 Rural -8.650 ** – 

 

– 
 

 
(4.419) 

 

– 
 

– 
 Constant (110.359) *** 312.380 *** -1.950 ** 

 
11.971 

 
(35.844) 

 
(0.883) 

 Time fixed effects NO YES YES 
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Observations 1834  1834  1832  

Wald chi² 730.34 *** –  –  

F-value –  32.08 *** 34.69 *** 

Standard errors between brackets and asterisks indicate statistical significance: p<0.10*; 
p<0.01**; p<0.001*** 

 

Finally we turn to the panel data estimations (see Table 5). The first column depicts the 

output of a basic random effects model. The second column presents the result of fixed 

effects model on levels (see model 6 in the Methods section). Recall that this model 

captures the general participation effect. Finally the last column in Table 5 shows the 

output for a fixed effects model on the first differences (see model 7 in the Methods 

section). The latter model refers to the introduction effect.  The coefficients for weight-

based pricing are significantly negative across the three models, indicating that there is a 

negative relation between using or introducing weight-based pricing and residual MSW 

generation. Note that the coefficient for the percentage of residents younger than 5 years 

of age is again significantly positive in the three models. For the underprivileged index we 

find a consistent and significant negative coefficient. The impact of average income and 

population density on the other hand, is not stable across the different models, as the sign 

of the coefficients change when going from the random effects model to the fixed effects 

model on levels. Similarly the percentage of residents older than 65 years of age is only 
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significantly different from zero in the fixed effects model on levels. Finally the coefficients 

for the dummy variables classifying municipalities into categories indicate that residual 

MSW generation is higher for touristic municipalities and cities and lower  for rural 

municipalities compared to the benchmark category (i.e. residential municipalities and 

municipalities with considerable economic activity).   

 

Concluding remarks 

Given the above observations, we find a strong indication that introducing weight-based 

pricing has a significant initial impact on the amount of residual MSW. We find however 

no convincing evidence that this effect persists in the years after initial adoption. In other 

words, switching from the default pay-per-bag pricing schedule to a weight-based pricing 

system has a significant initial impact on MSW volumes per capita, but long term effects 

are less clear. In addition, the absence of a robust general effect, could even indicate that 

the introduction effect is partly offset once the system is in use for a number of years. 

However before such a conclusion could be drawn, a more thorough analysis of higher 

year effects is required. However, such an analysis is possible only if larger time series 
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become available. In addition, due to data limitations information on local residual MSW 

collection fees was not incorporated in this analysis. Including a price index for residual 

MSW collection services will also raise new methodological issues that require more 

sophisticated estimation procedures, as pricing decisions probably depend endogenously 

on characteristics of municipalities. In interesting route for further research therefore 

involves the construction an incorporation of a price index in a  more complex panel data 

model. 
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