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PRODUCT DIFFERENTIATION, MULTIPRODUCT FIRMS, AND
ESTIMATING THE IMPACT OF TRADE LIBERALIZATION

ON PRODUCTIVITY

BY JAN DE LOECKER1

This paper studies whether removing barriers to trade induces efficiency gains for
producers. Like almost all empirical work which relies on a production function to re-
cover productivity measures, I do not observe physical output at the firm level. There-
fore, it is imperative to control for unobserved prices and demand shocks. I develop an
empirical model that combines a demand system with a production function to gener-
ate estimates of productivity. I rely on my framework to identify the productivity effects
from reduced trade protection in the Belgian textile market. This trade liberalization
provides me with observed demand shifters that are used to separate out the associated
price, scale, and productivity effects. Using a matched plant–product level data set and
detailed quota data, I find that correcting for unobserved prices leads to substantially
lower productivity gains. More specifically, abolishing all quota protections increases
firm-level productivity by only 2 percent as opposed to 8 percent when relying on stan-
dard measures of productivity. My results beg for a serious reevaluation of a long list of
empirical studies that document productivity responses to major industry shocks and,
in particular, to opening up to trade. My findings imply the need to study the impact of
changes in the operating environment on productivity together with market power and
prices in one integrated framework. The suggested method and identification strategy
are quite general and can be applied whenever it is important to distinguish between
revenue productivity and physical productivity.
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1. INTRODUCTION

OVER THE LAST DECADE, a large body of empirical work has emerged that re-
lies on the estimation of production functions to evaluate the impact of trade
policy changes on the efficiency of producers and industries as a whole. There
are two main reasons for this development. First, there is a great interest in
evaluating policy changes and, more precisely, whether a change in trade pol-
icy had any impact on the efficiency of firms in the economy. In this context,
being able to estimate a production function using microdata is imperative to
recover a measure for (firm-level) productivity. Second, the increased availabil-
ity of international trade data and firm-level data sets for various countries and

1An earlier version of this paper was circulated under the title “Product Differentiation, Multi-
Product Firms and Structural Estimation of Productivity,” and is a revised version of Chapter 4 of
my Ph.D. thesis. This paper has benefited from comments and suggestions of the editor and three
anonymous referees. I am especially grateful to Dan Ackerberg, Steve Berry, Penny Goldberg,
Joep Konings, Marc Melitz, Ariel Pakes, and Amil Petrin for comments and suggestions. A sec-
ond special thanks to Amil Petrin for sharing his programs and code. Comments on an earlier
version from David Blackburn, Mariana Colacelli, Frank Verboven, Patrick Van Cayseele, and
Hylke Vandenbussche helped improve the paper. Finally, I would like to thank various seminar
participants for their comments.
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industries has further boosted empirical work analyzing the trade–productivity
relationship. A seemingly robust result from this literature is that opening up
to trade, measured by either tariff or quota reductions, is associated with mea-
sured productivity gains and firms engaged in international trade (through ex-
port or Foreign Direct Investment (FDI)) have higher measured productivity.2

The productivity measures used to come to these conclusions are recovered
after estimating a production function where output is replaced by sales, be-
cause physical output is usually not observed. The standard solution in the lit-
erature has been to deflate firm-level sales by an industrywide producer price
index in the hope to eliminate price effects. This has two major implications.
First, it will potentially bias the coefficients of the production function if in-
puts are correlated with the price error, that is, the omitted price variable bias.
More precisely, the coefficients of the production function are biased if the
price error, which captures the difference between a firm’s price and the indus-
try price index, is correlated with the firm’s input choices. The use of produc-
tion function estimation on industries with differentiated products therefore
requires controlling for these unobserved prices. Second, relying on deflated
sales in the production function will generate productivity estimates that con-
tain price and demand variation.3 This potentially introduces a relationship be-
tween measured productivity and trade liberalization simply through the liberal-
ization’s impact on prices and demand. This implies that the impact on actual
productivity cannot be identified, which invalidates evaluation of the welfare
implications. Given that trade policy is evaluated on the basis of its impact on
welfare, the distinction between physical productivity and prices is important.

This paper analyzes the productivity effects of reduced quota protection us-
ing detailed production and product-level data for Belgian textile producers.4
The trade protection change in my application plays two roles. First, we want
to investigate its effects on productivity. Second, it is used to construct a set of
plausibly exogenous demand shifters at the firm level. I develop an empirical
model to estimate productivity by introducing a demand system in the stan-
dard production function framework. While the point that productivity esti-
mates obtained by using revenue data may be poor measures of true efficiency
had been made before (Klette and Griliches (1996), Katayama, Lu, and Tybout
(2009), Levinsohn and Melitz (2006)), we do not know how important it is in

2Pavcnik (2002) documented productivity gains from trade liberalization in Chile, Javorcik
(2004) found positive spillovers from FDI in Lithuania and Van Biesebroeck (2005) found learn-
ing by exporting in sub-Saharan African manufacturing. Bartelsman and Doms (2000) and Tybout
(2000) reviewed related studies.

3Productivity growth measures are not biased under the assumption that input variation is not
correlated with the price deviation when every firm’s price relative to the industry producer price
index (PPI) does not change over time.

4These data have become fairly standard in international trade applications. For instance-
similar data are available for India (Goldberg, Khandelwal, Pavcnik, and Topalova (2008)),
Colombia (Kugler and Verhoogen (2008)), and the United States.
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practice.5 My contribution is to empirically quantify the productivity response
to a reduction in trade protection while relying on demand shifters and exoge-
nous trade protection measures to control for demand and price effects. My
methodology is therefore able to isolate the productivity response to reduced
trade protection from the price and demand responses. The suggested method
and identification strategy are quite general and can be applied whenever it is
important to distinguish between revenue and physical productivity.

Recently the literature has focused almost exclusively on controlling for the
simultaneity bias when estimating production functions by relying on proxy
methods (Olley and Pakes (1996), Levinsohn and Petrin (2003)). A series of
papers used this approach to verify the productivity gains from changes in
the operating environment of firms, such as trade liberalization. In almost all
of the empirical applications, the omitted price variable bias was ignored or
assumed away.6 I build on this framework by introducing observed demand
shifters, product (-group) controls, and exogenous trade policy changes. This
allows me to consider a demand system where elasticities of demand differ by
product segment, and to recover estimates for productivity and returns to scale.

Using specific functional forms for production and demand, I back out esti-
mates for true productivity and estimate its response to the specific trade liber-
alization process that took place in the textile market. I find that the estimated
productivity gains from relaxing protection are reduced substantially when re-
lying on my empirical methodology. My results further imply that abolishing
all quotas would lead to only a 2 percent change in productivity, on average, as
opposed to about 8 percent when relying on standard measures of productiv-
ity. To my knowledge, this paper is the first to analyze productivity responses to
trade liberalization while controlling for price and demand responses, by rely-
ing on the insight that changes in quota protection serve as exogenous demand
shifters.

The remainder of this paper is organized as follows. In the next section, I in-
troduce the empirical framework of production and demand which generates
a revenue generating production function. Before turning to estimation and
identification of this model, I provide some essential background information
on the trade liberalization process in the textile market and describe the main
data sources. This data section highlights the constraints most, if not all, em-
pirical work faces in estimating production functions. Section 4 introduces the
specific econometric strategy to estimate and identify the parameters of my
model. The main results are presented in Section 5 and I provide various ro-
bustness checks in Section 6. I collect some final remarks and implications of
my results together with the main conclusion in the final section. The Supple-
mental Material (De Loecker (2011)) contains Appendixes A–C.

5Klette and Griliches (1996) were mostly interested in estimating returns to scale for selected
U.S. manufacturing sectors while correcting for imperfect competition in output markets.

6Some authors explicitly reinterpreted the productivity measures as sales per input measures.
For instance, see footnote 3 of Olley and Pakes (1996, p. 1264).
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2. EMPIRICAL MODEL: A FRAMEWORK OF PRODUCTION AND DEMAND

I start out with a model of single product firms to generate the estimating
equation of interest. However, given the prevalence of multiproduct and mul-
tisegment firms in the data, I discuss the extension toward multiproduct firms.
I stress that this extension allows me to use all firms in the data and therefore
increase the efficiency of the estimates. The product mix has no role on the
production function, but I emphasize the importance of observing the product
mix of each firm in my sample to recover segment-specific demand parameters.

2.1. Single Product Producers

I consider a standard Cobb–Douglas production function

Qit =L
αl
it M

αm
it K

αk
it exp(ωit + uit)�(1)

where a firm i produces a unit of output Qit at time t using labor (Lit), in-
termediate inputs (Mit), and capital (Kit). In addition to the various inputs,
production depends on a firm-specific productivity shock (ωit), which captures
a constant term, and uit , which captures measurement error and idiosyncratic
shocks to production.

As in most applications, physical output Qit is not observed; therefore, em-
pirical researchers have relied on measures of sales (Rit) or value added. The
standard solution in the literature has been to deflate firm-level sales by an in-
dustrywide producer price index in the hope of eliminating price effects. This
has two major implications. First, it potentially biases the coefficients of the
production function if inputs are correlated with prices, that is, the omitted
price variable bias. Second, it generates productivity estimates that contain
price and demand variation. This potentially introduces a relationship between
measured productivity and trade liberalization simply through the liberaliza-
tion’s impact on prices and demand.

To single out the productivity response to trade liberalization, I introduce a
demand system for a firm’s i variety in segment s into the production frame-
work. I consider a standard horizontal product differentiation demand system
(constant elasticity of substitution (CES)), where I allow for different substitu-
tion patterns by segment s:

Qit =Qst

(
Pit

Pst

)ηs

exp(ξit)�(2)

This demand system implies that demand for a firm’s product depends on
its own price (Pit), an average price in the industry (Pst), an aggregate de-
mand shifter (Qst), and unobserved demand shocks (ξit). The CES demand
system coupled with monopolistic competition implies a constant markup over
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marginal cost for every specific segment of the industry of ( ηs

ηs+1 ) or, alter-
natively, a segment-specific Lerner index ( 1

|ηs | ). Producers of textiles there-
fore face different demand elasticities depending on the product segment. My
model therefore departs from the single demand parameter model used by
Klette and Griliches (1996) and Levinsohn and Melitz (2006), who relied on
the number of firms or aggregate industry output to estimate a single markup.7
It is worth noting that the aggregate demand shifter Qst represents total de-
mand for textile products (in a given segment) in the market.8

As discussed by Klette and Griliches (1996) and Levinsohn and Melitz
(2006), I use the demand system (2) to obtain an expression for the price Pit .
Under the single product case, every firm produces a single variety and, in
equilibrium, quantity produced equals quantity demanded. A firm’s revenue is
simply Rit =QitPit� and using the expression for price,

Rit = Q(ηs+1)/ηs
it Q−1/ηs

st Pst(exp(ξit))
−1/ηs �(3)

A final step is to plug the specific production function (1) into equation (3) and
consider log deflated revenue (̃rit ≡ rit − pst), where lowercase letters denote
logs. This implies the following estimating equation for the sales generating
production function:

r̃it = βllit +βmmit +βkkit +βsqst +ω∗
it + ξ∗

it + uit�(4)

The coefficients of the production function are reduced form parameters that
combine production and demand, and I denote them by β as opposed to the
true technology parameters α. The parameters of interest are βh = (ηs+1

ηs
)αh

for h= {l�m�k}, and the segment-specific demand parameters, βs = 1
|ηs | , which

are direct estimates of the segment-specific elasticity of demand. Returns to
scale in production γ is obtained by summing the production function param-
eters, that is, γ = αl +αm +αk. Note that unobserved prices are already picked
up through the correlation with inputs and by including the segment-specific
output. In Section 4, I discuss the structure of unobserved productivity and
demand shocks in detail. For now, I note that both unobservables enter the
estimating equation scaled by the relevant demand parameter, just like the
production function coefficients, that is, ω∗

it ≡ωit(
ηs+1
ηs

) and ξ∗
it ≡ ξit |ηs|−1. The

difference between both only becomes important when recovering estimates
of productivity after estimating the parameters of the model.

7These single markup models imply that aggregate technology shocks or factor utilization can-
not be controlled for because year dummies can no longer be used if one wants to identify the
demand parameter.

8I refer to Appendix B for a detailed discussion on the exact construction of this variable in my
empirical application. For now, it is sufficient to note that Qst measures total demand for textile
products (in segment s) at time t in the relevant market. In my context, it will be important to
include imports as well.
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2.2. Multiproduct Producers

Anticipating the significant share of multiproduct firms in my data, I explic-
itly allow for multiproduct firms in my empirical model so as to use the entire
sample of firms. However, to use the full data, more structure is required given
that standard production data do not record input usage by product. There-
fore, to use the product-level information I require an extra step of aggregat-
ing the data at the product level to the firm level, where the relevant variables
such as sales and inputs are observed. I aggregate the production function to
the firm level by assuming identical production functions across products pro-
duced, which is a standard assumption in empirical work; see, for instance,
Foster, Haltiwanger, and Syverson (2008) and more discussion in Appendix B.
Under this assumption, and given that I observe the number of products each
firm produces, I can relate the production of a given product j of firm i� Qijt ,
to its total input use and the number of products produced. The production
function for product j of firm i is given by

Qijt = (cijtLit)
αl (cijtMit)

αm(cijtKit)
αk exp(ωit + uit)(5)

= J−γ
it Qit�(6)

where cijt is defined as the share of product j in firm i’s total input use, for
instance, labor used on product j at firm i at time t, Lijt , is given by cijtLit . The
second line uses the concept that inputs are spread across products in exact
proportion to the number of products produced Jit such that cijt = J−1

it . Intro-
ducing multiproduct firms in this framework therefore only requires control-
ling for the number of products produced, which scales the production from
the product level to the firm level. This restriction is imposed to accommodate
a common data constraint of not observing input use by product.

I follow the same steps as above by relying on the demand system to gen-
erate an expression for firm-level revenue. The demand system is as before,
but at the level of a product. The only difference is that to use the equilibrium
condition that a firm’s total production is equal to its total demand, I have
to consider the firm’s total revenue over all products it owns J(i), that is,
Rit = ∑

j∈J(i) PijtQijt . Combining the production function and the expression for
price from (2) leads to an expression for total deflated revenue as a function
of inputs, observed demand shifters, productivity, the number of products, and
unobserved demand shocks, and is given by

r̃it = βnpnpit +βllit +βmmit +βkkit +βsqst +ω∗
it + ξ∗

it + uit�(7)

where npit = ln(Jit). Refer to Appendix B.3 for an explicit derivation. For a
single product firm ln(Jit) = 0, whereas for multiproduct firms an additional
term is introduced. I can take this last equation to data, except that in addition
to firms producing multiple products, they can also be active in different seg-
ments. The variation of activity across segments is discussed in the next section.
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For single segment firms, it suffices to stack observations across segments, and
to cluster the standard errors by segment to obtain consistent estimates and to
verify significance levels. Alternatively I can estimate this regression segment
by segment, but I can increase efficiency by pooling over all single segment
firms, since the production coefficients are assumed not to vary across seg-
ments, and simply expand the term on qst to

∑
s βssisqst , where a dummy vari-

able sis is switched on per firm.9 This generates estimates for all parameters of
interest, including the segment-specific demand parameters from estimating

r̃it = βnpnpit +βllit +βmmit +βkkit +
S∑

s=1

sisβsqst +ω∗
it + ξ∗

it + uit�(8)

Going to firms with multiple segments, sis can be anywhere between 0 and 1.
In this way, all firms now potentially face S different demand conditions, and
the product mix (sis) variance helps to identify the segment demand elasticities.

Estimating the revenue production function across all firms in the data,
which consist of single product producers, multiproduct–single segment pro-
ducers, and multiproduct–segment producers, requires additional restrictions
to the underlying production and demand structure. To estimate my model on
multiproduct/single segment firms, I rely on proportionality of inputs, which
follows the standard in the literature. However, to enlarge the sample to mul-
tisegment firms, I need to measure, at the level of a firm, the share of each
segment s in the firm’s total demand. I consider various approaches to mea-
sure the latter and, in addition, I estimate my model on the different sets of
firms in the data to verify whether my results are robust to the extra assump-
tions and potential measurement errors.

Before I discuss the estimation procedure and the identification strategy,
I introduce the various data sets I rely on in my empirical analysis. The dis-
cussion of the data guides my identification strategy, which requires to control
for unobserved demand shocks (ξit) and productivity shocks (ωit). I control
for unobserved productivity shocks by relying on a modification of recently de-
veloped proxy estimators initiated by Olley and Pakes (1996) and subsequent
work of Levinsohn and Petrin (2003). While segment-specific demand shocks
(qst) are directly observed, I rely on detailed product data and firm-specific pro-
tection rates to control for unobserved demand shocks which could otherwise
bias the production function and demand parameters. I develop an estimation
strategy that combines both controls and generates estimates of productivity
purged from price variation by jointly estimating production and demand pa-
rameters. This approach allows for a separate identification of the productivity
and residual demand effect of quota protection.

9This assumption is a consequence of not observing inputs broken down by products, a stan-
dard restriction in microdata.
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3. BACKGROUND ON TEXTILE MARKET AND DATA

I provide some background on the operating environment of Belgian textile
producers in the European Union (EU-15) market during my sample period
1994–2002. I show that reduced quota protection had a downward pressure on
output prices and led to a reallocation of imports toward low wage textile pro-
ducers. Furthermore, I describe my three main data sources and highlight the
importance of observing a firm’s product mix and product-specific protection
data.

3.1. Trade Protection in the Textile Market

Belgian producers shipped about 85 percent of their total production to the
EU-15 market throughout the sample period, or about 8.5 billion Eur. I there-
fore consider the EU-15 as the relevant market for Belgian producers. This has
an important implication for my empirical analysis. I can hereby rely on the
drastic change in quota protection that took place in the EU-15 textile market
during my sample period to serve two distinct roles in the analysis. First of all,
I want to examine its impact on firm-level productivity and the efficiency of
the industry. Second, quota protection acts as firm- and time-specific demand
shifters which play an important role in the analysis. Given that the protection
is decided at the EU level, I treat changes in trade policy as exogenous, as it is
hard to argue that a single Belgian producer can impact EU-wide trade policy.

The EU textile industry experienced a dramatic change between 1990 and
2005. Both a significant reduction in quota protection and a reorientation of
imports toward low wage countries had an impact on the operating environ-
ment of firms. All of this together had an impact on prices, investment, and
production in this market. Table I shows the number of quotas and the average
quota levels. I describe these data in more detail later in the paper. For now, it
suffices to observe the drop in the number of quota restrictions over the sam-
ple period. By 2002, the number of quotas had fallen by 54 percent over a 9
year period and these numbers refer to the number of product–supplier re-
stricted imports. The last four columns of Table I present the evolution by unit
of measurement and the same pattern emerges: the average quota level for
products protected throughout the sample period increased by 72 and 44 per-
cent for products measured in kilograms and number of pieces, respectively.
Both the enormous drop in the number of quotas and the increase in the lev-
els of existing quotas point to a period of significant trade liberalization in the
EU textile industry. This table does not show the variation in trade protection
across products, which is ultimately what determines how an individual firm
reacts to such a change. With respect to this dimension, the raw data also sug-
gest considerable variation in the change of quota protection across products.
Over the sample period, the unweighted average (across products) drop in the
number of supplying countries facing a quota is 36 percent with a standard
deviation of 36 percent. For instance, the number of quotas on “track suits of
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TABLE I

NUMBER OF QUOTAS AND AVERAGE QUOTA LEVELS (IN MILLIONS)

Number of Quota
kg No. of Pieces

Protections No. of Quotas Level No. of Quotas Level

1994 1,046 466 3.10 580 8.58
1995 936 452 3.74 484 9.50
1996 824 411 3.70 413 7.95
1997 857 413 3.73 444 9.28
1998 636 329 4.21 307 9.01
1999 642 338 4.25 304 10.53
2000 636 333 4.60 303 9.77
2001 574 298 5.41 276 11.06
2002 486 259 5.33 227 12.37

Change −54% −44% 72% −60% 44%

knitted or crocheted fabric, of wool, of cotton or of man-made textile fibres”
dropped by 80 percent, whereas quotas on “women’s or girls’ blouses, shirts
and shirt-blouses, whether or not knitted or crocheted, of wool, of cotton or
man-made fibres” only dropped by 30 percent. My empirical analysis relies on
this product (and time) variation of protection by adding product information
to the firm-level production data.

Table II reports the top suppliers of textile products to the EU-15 and their
share in total EU-15 imports in 1995 and 2002, as well as the number of quotas
they faced. Total imports increased by almost 60 percent from 1995 to 2002 and
the composition of supplying countries changed quite a bit. China is responsi-
ble for 16 percent of EU imports of textile products by 2002, while only facing
about half of the quota restrictions compared to 1995. The Europe Agreements
signed with (at the time) EU candidate countries reorientated imports as well.
Both Romania and the Czech Republic significantly increased their share in
EU imports due to the abolishment of quota protection. Firms operating in
this environment clearly faced different demand conditions that in turn are
expected to impact optimal price setting.

Finally, when analyzing producer prices of textile products, I find that dur-
ing 1996–1999 and 2000–2005, prices of textile products remained relatively
unchanged and even slightly decreased. Producer prices in the textile sector
further diverged from the manufacturing sector as a whole. In fact, in rela-
tive terms, Belgian textile producers saw their real prices, compared to the
manufacturing sector, drop by almost 15 percent by 2007. This then suggests a
potential relationship between producer prices and trade protection. It is im-
portant to note that these aggregate prices, PPI, mask the heterogeneity of
prices across goods. It is precisely the variation across producers and prod-
ucts that needs to be controlled for, and relying on deflated sales to proxy for
output in a production function only corrects for aggregate price shocks. The
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TABLE II

TOP SUPPLIERS OF TEXTILE PRODUCTS TO THE EUa

Top in 1995 (63%) Top in 2002 (68.3%)

Country Share No. of Quotas Country Share No. of Quotas

China 10.6 66 China 15.9 35
Turkey 9.4 35 Turkey 12.5 0
India 6.5 19 India 5.6 17
Hong Kong 5.7 32 Romania 5.4 0
Poland 4.2 18 Tunisia 4.4 0
Tunisia 4.1 2 Bangladesh 4.0 3
United States 4.1 0 Morocco 3.8 0
Switzerland 4.0 0 Poland 3.4 0
Morocco 3.8 0 Hong Kong 3.3 18
Indonesia 3.3 14 Indonesia 2.8 12
Pakistan 2.7 15 Pakistan 2.7 14
Bangladesh 2.3 3 Czech Republic 2.3 0
Romania 2.3 30 Republic of Korea 2.2 27

Total imports 45,252 71,414

Imports top 13 28,509 48,776

aTotal imports are in billions of euros and are from the author’s own calculations and EUROSTAT.

product-level quota data highlight the variation of protection across products
and suppliers over time, and I will allow prices to vary with changes in protec-
tion.

3.2. Production, Product, and Protection Data

I rely on detailed plant-level production data in addition to unique informa-
tion on the product mix of firms and product-specific quota protection data to
analyze the productivity effects of decreased quota protection. I describe the
three data sets and the main variables of interest in turn.

3.2.1. Production Data

My data cover firms active in the Belgian textile industry during the period
1994–2002. The firm-level data are collected from tax records by the National
Bank of Belgium and the data base is commercialized by BvD BELFIRST. The
data contain the entire balance sheets of all Belgian firms that have to report to
the tax authorities. In addition to traditional variables, such as revenue, value
added, employment, various capital stock measures, investments, and material
inputs, the data set also provides detailed information on firm entry and exit
behavior.

Table III reports summary statistics of some of the variables used in the
analysis. The last column repeats the finding of a decreased producer price
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TABLE III

SUMMARY STATISTICS OF PRODUCTION DATAa

Year Employment Total Sales VA p/w Materials PPI

1994 89 3,185 45.1 13,160 100.00
1995 87 3,562 44.4 14,853 103.40
1996 83 3,418 45.2 14,313 99.48
1997 85 4,290 53.0 16,688 99.17
1998 90 4,482 50.9 17,266 98.86
1999 88 4,248 51.6 15,546 98.77
2000 90 4,763 52.5 17,511 102.98
2001 92 4,984 51.5 17,523 102.67
2002 99 4,500 53.7 17,053 102.89

aEmployment is average number of full time employees, total sales is
given in millions of euros, VA p/w is value added per worker, and materials
is given in thousands of euros.

index (PPI) during my sample period. In fact, the organization of employers,
FEBELTEX, suggests in their various annual reports that the downward pres-
sure on prices was largely due to increased competition from low wage coun-
tries, most notably the Central and Eastern European Countries (CEECs),
Turkey, and China. Together with a drop in the average price, the industry
as a whole experienced a downward trend in sales at the end of the nineties,
as shown in the third column. Average value added per worker, often used as
a crude measure of productivity, increased by 19 percent. The raw data clearly
indicate a positive correlation between decreased quota protection and pro-
ductivity, on the one hand, and a downward pressure on prices, on the other
hand. This paper provides an empirical model to quantify both effects, and to
isolate the productivity response from the price and demand effects.

3.2.2. Product-Level Data

The employer’s organization of the Belgian textile industry (FEBELTEX
(2003)) reports product-level information for around 310 Belgian textile pro-
ducers.10 More precisely, they list all products produced by every textile pro-
ducer, and the products are classified into five segments and various subseg-
ments based on the relevant markets of the products. From this, I constructed
the product mix of each firm: Table A.I lists the five segments of the textile
market with their corresponding product categories. I matched the product in-
formation with the production data set (BELFIRST) and ended up with 308
firms for which I observe both firm-level and product-level information. After
matching both data, I cover about 75 percent of total employment in the textile
industry.

10The firms listed in FEBELTEX account for more than 85 percent of value added and em-
ployment, and the data were downloaded online (www.febeltex.be) during 2003–2004.

http://www.febeltex.be
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TABLE IV

NUMBER OF FIRMS ACROSS DIFFERENT SEGMENTSa

Interior Clothing Technical Finishing Spinning

Interior 77.0 4.8 15.8 7.3 1.8
Clothing 58.9 33.9 7.1 1.8
Technical 35.1 19.6 17.5
Finishing 39.6 12.5
Spinning 47.5

No. of firms 165 56 97 48 40

aCells do not sum to 100 percent by row or column, as a firm can be active
in more than two segments.

For each firm, I observe the number of products produced, which products,
and in which segment(s) the firm is active. There are five segments: (i) Inte-
rior, (ii) Clothing, (iii) Technical Textiles, (iv) Finishing, and (v) Spinning and
Preparing (see Appendix A for more on the data). In total there are 563 dif-
ferent products: on average, a firm produces nine products and 50 percent of
firms have three or fewer products. Furthermore, around 25 percent of firms
are active in more than one segment and they are, on average, 20 percent larger
in terms of sales and employment.

This information is in itself interesting and relates to recent work by Bernard,
Redding, and Schott (2010), who looked at the importance of differences in
product mix across firms and time, where they relied on a 5 digit industry code
to define a product. Given that I rely on a less aggregated definition of a prod-
uct, it is not surprising that I find a higher average number of products per
firm.

Table IV presents a matrix where each cell denotes the percentage of firms
that are active in both segments. For instance, 4�8 percent of firms are active in
both the Interior and Clothing segments. The high percentages in the diagonal
(set in Italic type) reflect that most firms specialize in one segment; however,
firms active in the Technical and Finishing segments tend to be less specialized,
as they capture applying and supplying segments, respectively.

The same exercise can be done based on the number of products and is
shown in Table V. The concentration of activities into one segment is even
more pronounced when relying on the product-level data. The number in each
cell denotes the average (across firms) share of a firm’s products in a given seg-
ment relative to its total number of products. The table has to be interpreted
in the following way: firms that are active in the interior segment have (on av-
erage) 83�72 percent of all their products in the Interior segment. The analysis
based on the product information reveals that some firms concentrate their ac-
tivity in one segment, while others combine different product segments. Firms
active in any of the segments tend to have quite a large fraction of their prod-
ucts in Technical textiles, between 8�27 and 27�7 percent. Finally the last two
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TABLE V

FIRMS’ PRODUCT MIX ACROSS DIFFERENT SEGMENTS

Interior Clothing Technical Finishing Spinning

Interior 83.72 2.78 8.27 4.41 0.80
Clothing 3.03 79.28 15.36 1.86 0.48
Technical 7.01 8.97 70.16 9.06 4.79
Finishing 5.75 3.52 15.53 72.85 2.35
Spinning 3.72 0.65 27.20 7.40 61.04

Median 2 6 8 11 9
Min 1 2 1 2 1

rows of Table V show the median and minimum number of products owned by
a firm across the different segments. Firms that produce only two (or less)
products are present in all five segments, but the median varies somewhat
across segments.

3.2.3. Protection Data

The quota data come directly from the Systeme Integre de Gestion de Licenses
(SIGL) data base constructed by the European Commission and is publicly
available online (see Appendix A). This data base began in 1993 and reports
all products that hold a quota at some point in time for a given supplying coun-
try. For each product, the following data are available: the supplying country,
product, year, quota level, working level, licensed quantity, and quantity actu-
ally used by the supplying country.11 From this I constructed a data base that
lists product–country–year specific information on quotas relevant to the EU
market. In total there are 182 product categories and 56 supplying countries,
where at least one quota on a product from a supplier country in a given year
applies. As discussed before, Table I presents the change in protection in the
raw data and highlights the sharp drop in the number of quota protections as
well as the increase in average quota levels.12

I create a composite variable that measures the extent to which a firm is
protected (across its products). A first and most straightforward measure is a
dummy variable that is 1 if a quota protection applies for a certain product
category c on imports from country e in year t (qrect) and switches to 0 when

11Appendix A.4 describes the quota data in more detail and provides two cases of how quota
protection changed.

12For the remainder of this paper, I work under the assumption that no remaining tariffs are in
place after quotas are abolished. The quotas in my model therefore impact residual demand, after
which no more protection occurs. This working assumption is consistent with EU trade policy in
the textile market where the bulk of imported goods are exempt from tariffs and where quotas
are the predominant trade policy tool.
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the quota no longer applies. The average quota restriction that applies to a
given product c is given by

qrct =
∑
e

aetqrect�(9)

where aet is the weight of supplier e in period t.13 I experiment with various
weights for aet , ranging from gross domestic product (GDP) shares, total out-
put in textile products, export shares of a given supplier e, and simple averages.
It is important to stress that my weights take into account the production po-
tential of each supplier and are not related to the actual size of the quota. More
specifically, I construct aet as the share of a country e’s production (of textile
products) in total production across all supplying countries. When a quota is
abolished for a very small country, that is, with a small production potential, aet

is very close to zero and therefore its impact on my (firm-level) liberalization
variable is extremely small. This measure, qrct , is 0 if not a single quota applies
to imports of product c from any of the supplying countries at a given time and
is 1 if it holds for all supplying countries.

A final step is to relate the quota restriction measure to the firm-level data.14

I aggregate the product-level quota measure qct to the level of a firm i using the
product mix information and recover a firm-specific quota protection measure
(qrit). More precisely, I take a weighted sum over all products c that a firm
produces, c ∈ J(i), to obtain

qrit =
∑
c∈J(i)

acqrct�(10)

where ac represents the share of product c in a firm’s production so as to weigh
the protection across products accordingly. Because of differences in product
classification of the quota data and the production data, I can only rely on
simple averages to compute qrit by considering the average of qrct across a
firm’s products.

The protection rate variable (qrit) lies between 0 and 1: it is 0 if not a single
product is protected and is 1 if all its products are protected from all supplying
countries. Figure 1 shows the evolution of the quota restriction variable given

13As noted by a referee, a more general treatment would allow for a product–supplier weight
aect . However, due to data restrictions, I consider a constant share across product categories
within a supplier–year. To be able to compute a more general share which is product–supplier
specific, I need to observe production at the product level for all 52 supplying countries and these
data are very hard to come by.

14The 182 different quota product categories map into 390 different 8 digit product codes. The
latter correspond to 23 different 4 digit industry classifications (equivalent to the 5 digit standard
industrial criterion (SIC) level in the U.S.) that allow me to relate the quota restriction variable
to the firm-level variables.
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FIGURE 1.—Evolution of quota restriction measure by segment (1994–2002).

by (10) for each segment. In all segments the average quota restriction has
gone down considerably over the sample period. However, there is significant
variation across segments which will be important to identify segment-specific
demand elasticities.

Quota levels are not reflected in my measure of trade liberalization. How-
ever, I relate changes in quota levels to firm-level productivity in the empirical
analysis. The latter picks up changes in protection intensity, conditional on
having a quota in place.15 In the next section, I discuss my empirical strategy to
deal with unobserved productivity and demand shocks. The estimation proce-
dure relies on observing demand shifters, such as the protection rate variable
qrit , so as to jointly estimate demand and production parameters.

4. ESTIMATION AND IDENTIFICATION

In this section, I describe the estimation procedure to obtain estimates of the
production function and demand parameters, which are needed to obtain esti-
mates for productivity. Finally, I discuss some remaining identification issues.

15In principle, I could use my method to construct an alternative measure of protection where
I rely on the quota levels and weigh them by production potential. The problem lies now in
aggregating quota levels measured in various units (kg, m3, etc.). I therefore choose to rely on a
cleaner measure, that is, a quota dummy, to construct a measure for protection.
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4.1. Estimation Strategy

I lay out the estimation procedure that provides me with estimates of the
production function coefficients and the demand parameters. The estimating
equation for single product firms is given by

r̃it = βllit +βmmit +βkkit +βsqst +ω∗
it + ξ∗

it + uit�(11)

where the ultimate goal is to recover estimates of productivity. Note that the
asterisks on the unobservables only keep track of the difference between the
actual productivity (demand) unobservable and that unobservable multiplied
by the inverse demand parameter, as discussed in Section 2. To obtain consis-
tent estimates of the revenue production function, I need to control for both
unobserved productivity shocks and unobserved demand shocks.

Both the estimation procedure and the identification strategy are identical
for the multiproduct and multisegment producers where an additional term,
βnpnpi, enters the estimating equation. This has no implications on the ability
to identify the parameters of interest, as the product mix is assumed to be fixed
over time. When estimating this equation over multisegment firms, I consider
the same expansion of the output variable as before,

∑
s βssisqst , to account for

the different demand conditions across segments: Appendix B.3 provides more
details.

As noted before, under the CES demand structure, unobserved prices are
picked up by the variation in inputs and by aggregate demand (qst). However,
other factors that impact firm-level prices and that are unaccounted for will
potentially bias the coefficients of interest. In my setting a likely candidate is
quota protection. Differences in protection across producers and over time are
expected to impact firm-level residual demand and hence prices. I follow Gold-
berg (1995) and decompose the unobserved demand shock ξit based on the
nesting structure of the product data into three observable components and an
unobserved firm-specific demand shock. The observed components are based
on the firm-specific protection rate, the products a firm produces, and the sub-
segment of the industry in which the firm is active (Table A.II). Formally, let
ξit be decomposed into the components

ξit = ξj + ξg + τqrit + ξ̃it �(12)

where j refers to a product, g refers to a product group (subsegment), and τ is
a coefficient.16 In this way I capture persistent product-group differences in de-
mand as well as differences in protection. It will be important to keep track of
the properties of the protection variable, qrit , for the specific estimation proce-
dure. As discussed in Section 3, the protection differs by product, and because

16The demand unobservable ξ∗
it is again simply related to ξit via a common parameter and does

not affect the results. All coefficients on the product, product–group, and protection capture the
relevant segment Lerner index |ηs|−1.
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firms have different product mixes, the protection rate varies across firms and
acts as a firm-specific residual demand shock. I assume that the remaining de-
mand shocks (̃ξit) are independent and identically distributed (i.i.d.) across
producers and time.

In terms of the data, j is a product within a subsegment g which belongs to
a given segment s. To illustrate the various components of ξit , I present the
detailed structure for the Mobiltech sub-segment within the technical segment
in Table A.II. This implies that, in this example, I control for differences in
demand (and thus prices) across the nine subsegments (g) of the technical
segment and within each subsegment for differences across the products, in
addition to (potential) differences in protection rates.

This leads to the main estimating equation of interest

r̃it = βllit +βmmit +βkkit +βsqst(13)

+
∑
j∈J(i)

δjDij +
∑
g∈G(i)

δgDig + τqrit +ω∗
it + εit�

where J(i) and G(i) denote the set of products and product groups a firm mar-
kets, respectively. The variables Dij and Dig are dummy variables that take on
value 1 if a firm i produces a product (product group) j (g) and are 0 oth-
erwise. In what follows, I collect all product and product-group dummies in
δD = ∑

j∈J(i) δjDij + ∑
g∈G(i) δgDig. Finally, εit captures idiosyncratic shocks to

production (uit) and demand (̃ξit).
The product and group effects enter my model to control for unobserved

demand shocks, and given my assumption on the production function, they
should not reflect any difference in technology across products. However, if
this assumption fails, the product and group effects might capture technology
differences across producers of different products and product groups. This
distinction becomes unimportant when I evaluate the productivity–protection
relationship, because time invariant factors are eliminated as I am interested
in relating protection to productivity changes. I revisit this when I discuss my
productivity estimates.

To estimate the parameters of the production function and the demand sys-
tem, I rely on the insight of Olley and Pakes (1996) and Levinsohn and Petrin
(2003) to proxy for unobserved productivity. I present both approaches in the
context of my setting and provide conditions under which the parameters of
interest are identified. The exact underlying assumptions depend on whether
I rely on a static input (e.g., materials) or a dynamic control (investment) to
proxy for productivity.

The empirical literature has been vague about how trade shocks enter the
productivity process. Given the research question at hand, it is clear that allow-
ing for reduced quota protection to impact (firm-level) demand is desirable,
and here I allow quotas to impact firm-level residual demand instantaneously
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and therefore to impact equilibrium prices. However, the mechanism through
which quotas impact productivity is less obvious. Standard approaches implic-
itly rely on a story of X-inefficiency: firms can react to increased competition by
eliminating inefficiencies, whereas aggregate productivity increases can come
about by reallocation and exit. In my case, plant managers who face less quota
protection could cut slack, which might reflect in higher productivity. This does
not capture productivity changes due to active investment decisions based on
expectations of future product market toughness, which allow quota protection
to causally impact future productivity.

I consider a process whereby lagged quota protection is allowed to impact
productivity and thereby affect productivity changes as

ωit = gt(ωit−1� qrit−1)+ υit�(14)

The law of motion on productivity highlights the two distinct effects of quotas.
Firm-level productivity can only react to quota protection with a lag. The latter
captures the idea that it takes time for firms to reorganize, cut slack, hire a new
manager, or introduce better production–supply management without affect-
ing input use, which can all lead to a higher ωit . On the other hand, quotas can
impact residual demand (and prices) instantaneously and create variation in
firm-level revenue.

As discussed in the Introduction, I work under the assumption that an indi-
vidual producer has no power over setting quotas, and this exogeneity of quota
is important for my identification strategy, as the shocks to productivity, υit ,
are not correlated with current quota levels qrit and, by construction, are not
correlated with lagged quota qrit−1.

After describing the estimation procedures, I briefly discuss the identifica-
tion of the variable and static inputs (labor and intermediate inputs) in both
approaches given the recent state of the literature. I evaluate the different as-
sumptions in my application and test them where possible. It is important to
note that my approach does not require a specific proxy estimator. In fact, the
discussion below should help subsequent empirical work trade off these vari-
ous assumptions.

4.1.1. Using a Static Input

The main advantages of relying on the insight of Levinsohn and Petrin (2003;
LP hereafter) in my setting are twofold. First of all, I do not have to revisit
the underlying dynamic problem of the firm; put differently, I do not have to
take a stand on the exact role and process of the protection variable qrit that
enters as a residual demand shock and potentially impacts productivity. The
use of a static input does not require me to model additional serially correlated
variables (state variables); it simply exploits the static input demand conditions.
Second, I can rely on intermediate inputs as opposed to investment data for
which all firms report positive values at each point in time.
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The starting point is to observe that the choice of materials mit is directly
related to a firm’s productivity level, capital stock, and all demand variables
(qrit� qst�D), including quota protection, segment demand and product–group
dummies which impact a firm’s residual demand and hence determine optimal
input demand. This gives rise to the material demand equation

mit = mt(kit�ωit� qrit� qst�D)�(15)

Before proceeding, I have to verify whether input demand is monotonically in-
creasing in productivity under imperfect competition. In Appendix C.1, I show
that monotonicity is preserved under the monopolistic competition setup with
constant markups. This finding is intuitive, as under the constant markup as-
sumption, markups are not related to productivity. I rely on a function ht(·) to
proxy for productivity:

ωit = ht(kit�mit� qrit� qst�D)�(16)

The estimation procedure consists of two stages as in the standard LP case,
except for the fact that I obtain both demand and supply parameters. I will
highlight the differences with respect to the original LP framework, and refer
to Levinsohn and Petrin (2003) for more details. The first stage consists of the
partial linear model

r̃it = βllit +φt(mit�kit� qrit� qst�D)+ εit�(17)

where φt(·)= βmmit +βkkit +βsqst +δD+τqrit +ht(·).17 The first stage could
then, in principle, identify the labor coefficient. I discuss the identification of
the labor coefficient in the first stage in a separate section. For now I want
to focus on the correction of price variation when estimating the production
function.

The second stage provides the moments to identify the parameters of inter-
est after constructing the innovation in the productivity process. Relying on the
productivity process (14), where past quota can impact current productivity,
I can obtain the innovation in productivity υit+1(βm�βk�βs� τ�δ) as a residual
by nonparametrically regressing ωit+1(βm�βk�βs� τ�δ) on ωit(βm�βk�βs� τ�δ)
and qrit , and we know productivity from the first stage for given values of the
parameters

ωit+1(βm�βk�βs� τ�δ) = φ̂it+1 −βmmit+1 −βkkit+1

−βsqst+1 − τqrit+1 − δD�

17The control function φt(·) always contains the demand parameter as well, and reflects the
difference between the structural error ωit and how it enters the main estimating equation ω∗

it .



1426 JAN DE LOECKER

The parameters are obtained by generalized method of moments (GMM) us-
ing the moment conditions

E

⎧⎪⎪⎨⎪⎪⎩υit+1(βm�βk�βs� τ�δ)

⎛⎜⎜⎜⎝
mit

kit+1

qst

qrit+1

D

⎞⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ = 0�(18)

More precisely, the demand parameter τ is identified by the moment
E(qrit+1υit+1) = 0 by relying on the exogeneity of quotas as motivated in the
Introduction of this paper. The demand parameter βs is identified by the con-
dition that shocks to productivity are not correlated with lagged total (seg-
ment) output.18 The coefficients on material and capital are identified using
the standard moment conditions in the literature.

For the practical implementation, I do not consider interaction terms be-
tween the product dummies D and the other variables. However, the first
stage coefficients of these product dummies contain both the demand param-
eters and the inverse productivity parameters. Therefore, I cannot simply use
the first stage estimates to subtract out these product effects. Instead I obtain
an estimate of productivity that contains the product effects and control for
product-group effects when constructing the innovation in productivity, υit+1

by including D in the nonparametric regression of ωit+1 on ωit and qrit . This
implies that I do not obtain estimates of δ, which are not of direct interest but
serve to control for product-specific demand controls. The sample analogue of
(18), given by

1
N

1
T

∑
i

∑
t

υit+1(βm�βk�βs� τ�δ)

⎛⎜⎜⎜⎝
mit

kit+1

qst

qrit+1

D

⎞⎟⎟⎟⎠ �(19)

is minimized using standard GMM techniques to obtain estimates of the pro-
duction and demand parameters. The above procedure generates a sepa-
rate estimate of the quota’s effect on productivity (through g(·)) and on de-
mand (τ). The intuition behind this result comes from the fact that in my
model, protection can only affect productivity with a lag, while current quota
protection can impact prices through residual demand.

18In principle, I could rely on qst+1 as well, but this would depend on there being no correla-
tion between total output produced in a segment and shocks to productivity, which is clearly a
stronger assumption. In particular, since total output is a weighted sum of producer-level output,
the correlation between the latter and productivity shocks is the reason why we need to control
for unobserved productivity shocks when estimating production functions in the first place. We
would, therefore, require the correlation to get washed out in the aggregate, which is not likely.
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4.1.2. Using a Dynamic Control

The Olley and Pakes (1996; hereafter OP) model relies crucially on the no-
tion that the investment policy function it(·) can be inverted to proxy unob-
served productivity by a function of investment and capital. However, as men-
tioned in LP, given that my problem is not the standard OP model, I have to
verify whether invertibility is preserved with the introduction of quotas into the
model. That is, if quotas are correlated over time and not simply i.i.d. shocks,
the quota variable qrit will constitute a new state variable in the dynamic prob-
lem of the firm. The investment equation in my setting is

iit = it(kit�ωit� qrit�D)�(20)

where the product–group dummies need to be included as well. The data sug-
gest that the segment output variable qst is not serially correlated conditional
on qrit and D; therefore, I do not treat it as a state variable.19 To invert the in-
vestment equation, I need to restrict the role of quotas in the model. The proof
by Pakes (1994) goes through under the assumption that qrit is an exogenous
state variable with known support: here it lies between 0 and 1. This implies
that the level of protection at time t provides a sufficient statistic for future
values of quotas. Although restrictive, it does get at an important mechanism
through which differences in quotas across firms (through products) lead to
differences in investment. Note that this rules out differences in beliefs about
future quotas for firms with identical quotas at time t. I discuss this restric-
tion and report a robustness check in Appendix C.2. Inverting equation (20)
generates the basis for estimation, since I can use

ωit = ht(kit� iit� qrit�D)(21)

to proxy for unobserved productivity. It is important to highlight that quotas
enter through shocks to residual demand and through the investment equation.
If τ = 0 and quotas do not impact residual demand, quota protection still en-
ters the investment proxy because quota, potentially, impact the law of motion
for productivity.

The first stage is then given by

r̃it = βllit +βmmit +βsqst +φt(iit� kit� qrit�D)+ εit�(22)

where φt(·) = βkkit + τqrit + δD + ht(iit� kit� qrit�D). This first stage identi-
fies the coefficients on labor, intermediate inputs, and the demand elasticity.
I revisit the identification of the variable static inputs (βl and βm) below.

19I can easily accommodate qst being serially correlated over time by including it in the in-
vestment equation and identifying its coefficient in the final stage by considering the moment
E(υit+1qst)= 0, just as in the material demand approach discussed before.
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The second stage rests on the estimated parameters of the first stage and
identifies the remaining production and demand parameters in a similar way
as the static input model discussed before. More precisely, I consider the mo-
ments

E

{
υit+1(βk� τ�δ)

(
kit+1

qrit+1

D

)}
= 0�(23)

Productivity is known up to parameters, ωit(βk� τ�δ)= φ̂it −βkkit −τqrit −δD,
and given the law of motion on productivity, I can recover the residual
υit+1(βk� τ�δ) by nonparametrically regressing ωit+1(βk� τ�δ) on ωit(βk� τ�δ)
and qrit . As in the material demand approach, I assume for computational con-
venience, that the product effects do not interact with the other state variables
and, therefore, I do not have to search over all product dummy coefficients
together with the coefficients of interest.

The only difference with the static input version is that productivity shocks
are controlled for by variation in investment choices rather than by variation
in material demand choices. However, my setting also echoes the argument
made by Levinsohn and Petrin (2003) on the advantage of using a static input
to control for productivity by avoiding the extra complexity of relying on a
dynamic control. In my setting, I need to specify the role of protection and
incorporate an additional state variable in the underlying framework of Olley
and Pakes (1996): Appendix C.2 discusses this complication further. However,
I show that my framework can accommodate both approaches, and recover
estimates of productivity and the productivity effect of quota reduction in this
setup, which is the ultimate goal of this paper.

4.2. Identifying Variable Inputs’ Coefficients

There has been some recent discussion on the ability to identify the variable
input coefficients—labor and material inputs in my case—in the first stage of
OP and LP. I briefly present how I can accommodate these concerns in my
approach either by estimating the coefficient of labor (and materials under
the OP approach) in a second stage or by following the Wooldridge (2011) one
step GMM version of OP and LP. I briefly present the three cases and I refer to
Wooldridge (2011) and Ackerberg, Caves, and Frazier (2006) for more details.
In the empirical part of the analysis, I verify the robustness of the parameters
of interest by considering the modifications suggested below.

4.2.1. Static Input Control

The static input control approach described above can, in principle identify
the labor coefficient in a first stage, while identifying the other parameters in
a second stage. Before laying out a more general identification strategy, where
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essentially all parameters are estimated jointly using moments on the produc-
tivity shock, I briefly discuss what data generating process (DGP) could provide
identification in the approach under Section 4.1. There is a separate literature
on the ability to identify variable inputs in a OP–LP setting. However, in my set-
ting the demand variation across firms is brought to the forefront, highlighting
that it is hard to come up with a suitable DGP where labor can move around
independently from all other inputs of production and all demand variables
of the model captured by φt(m�k�qst� qr�D). Without going into great detail,
a DGP that delivers identification is one where firms make material choices,
followed by labor choice, but both are made within the period t − 1, t and add
an optimization error to labor but none to materials. This would create varia-
tion in labor choices that is related to the variance in output conditional on the
nonparametric function in (m�k�qst� qr�D).20

I can relax this strong identification requirement by simply not identifying
the labor coefficient in a first stage. Instead I identify it together with the other
parameters by forming a moment on the productivity shock. When relying on
materials to proxy for productivity, I collect all inputs in φt(·) in a first stage:

r̃it =φt(kit� lit�mit� qst� qrit�D)+ εit �

From the first stage, I have an expression for productivity given all param-
eters and I can rely on the same moments to identify the production function
coefficients, where the extra moment on labor, E(υit+1lit) = 0, provides iden-
tification. The only difference with the approach outlined before is that the
labor coefficient is identified in a second stage.

4.2.2. Dynamic Input Control

The investment approach can, in principle, identify the variable input coeffi-
cients in a first stage. However, as under the static input model, we need a DGP
which allows both labor and material choices to move around independently
from the control function φt(iit� kit� qrit�D). In this setting, variation in lit and
mit can be obtained through an additional timing assumption of when exactly
the productivity shocks hit the firm. Let variable inputs be chosen after the firm
observes its productivity shock ωit−b, where b < 0. Furthermore, an additional
productivity shock occurs between t − b and t. The latter creates variation in
variable input choices conditional on the proxy for productivity φt(·). The in-
tuition behind this result comes from the idea that labor (material) is chosen

20It is instructive to derive optimal material demand given my explicit demand and production
structure, and to plug in the inverse material equation in the revenue production function. This
highlights the identification issue in the first stage. In fact, if I were to directly observe output,
αllit would cancel out and illustrate the nonidentification result. However, the use of revenue
data introduces additional variation but it does not help identification much since all relevant
demand variation is controlled for through the productivity proxy φt(·).
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at t −b without perfect information about what productivity at t is, and this in-
complete information is what moves labor (material) around independently of
the nonparametric function, where investment was set at t−1 as it is a dynamic
input decision.

To relax the extra timing assumption to obtain identification, I follow the
same approach as under the static input control. I collect all production func-
tion inputs in φt(·) in addition to investment (the proxy), the product dummies,
and quota protection:

r̃it = βsqst +φt(iit� kit� lit�mit� qrit�D)+ εit �

From the first stage, I have an expression for productivity given parameters,
and I can proceed as before and obtain estimates of the labor and material
coefficient from E(υit+1lit) = 0 and E(υit+1mit) = 0, respectively. The second
stage provides estimates of the variable input coefficients by noting that none
of the lagged input choices should be correlated with the innovation in the
productivity process, while lagged inputs are correlated with current inputs
through serially correlated input prices, therefore qualifying them as instru-
ments.

Both the static and dynamic input approaches can therefore be adjusted to
accommodate a recent debate on the identification concerns in proxy estima-
tors, as nicely summarized by Wooldridge (2011). However, the identification
of a perfectly variable input, such as materials in my setting, is still not guar-
anteed as discussed by Bond and Soderbom (2005). I deal with this concern by
considering a value added production function and imposing a fixed propor-
tion technology on the production function whereby I eliminate the need to
estimate the material coefficient. I present this robustness check in Section 6.

4.2.3. Alternative Approach

Wooldridge (2011) proposed an alternative implementation that deals with
the identification of the production function coefficients and is robust to the
criticism of Ackerberg, Caves, and Frazier (2006). The approach relies on a
joint estimation of a system of two equations using GMM, by specifying differ-
ent instruments for both equations. I consider the Wooldridge approach while
relying on materials mit to proxy for productivity which the literature refers to
as the Wooldridge–LP approach, and I briefly discuss some important features
that apply in my setting.

Wooldridge considers moments on the joint error term E((εit +υit)|Iit)= 0,
where Iit is the information set of firm i at t. Applying the Wooldridge ap-
proach to my setting implies having moment conditions on both idiosyncratic
production and demand shocks, εit , and the productivity shocks, υit . However,
because of the joint estimation of both stages, this procedure requires estima-
tion of all polynomial coefficients that approximate ht(·), gt(·), βh�t , and βg�t ,
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together with all production and demand coefficients, including the large num-
ber of product dummies. The sample analogue of these moments generates es-
timates for (βl�βm�βk�βs�δ� τ) in addition to the polynomial coefficients on
the functions ht(·) and g(·).

The advantage of this approach is that bootstrapping is not required to ob-
tain standard errors on the production function coefficients, and it produces
more efficient estimators by using cross-equation correlations. However, this
comes at the cost of searching over a larger parameter space, since I have
to search jointly over the production function coefficients, the demand coeffi-
cients, and all polynomial coefficients used to approximate the functions ht(·)
and g(·). The alternative approach I rely on requires searching over fewer pa-
rameters. In addition, I can control for the importance of product effects out-
side the GMM procedure using my approach, which is important given the high
dimension of the product dummy parameters. Furthermore, since all demand
variables enter the proxy for productivity, ht(·), and the quota protection vari-
able enters the productivity evolution g(·), I further increase the dimension of
the parameter space. These concerns are not present in the standard produc-
tion function case where one either assumes observing quantities or directly
observes it in the data.21

4.3. Productivity Estimates

I compute productivity ω̂it using the estimated parameters and plug them in

ω̂it = (̃rit − β̂llit − β̂mmit − β̂kkit − β̂sqst − τ̂qrit)

(
η̂s

η̂s + 1

)
�(24)

where I rescale by the relevant markup as indicated by the difference between
ωit and ω∗

it throughout the text. Note that I do not subtract the product and
group effects, since they become unimportant when I analyze the impact of
protection on productivity changes because time invariant factors are elimi-
nated. For the cross-sectional analysis, I can consider the productivity measure
both with and without the product and product–group effects, and evaluate the
role of the product and group dummies.22 The same is true for the role of the
number of products when considering multiproduct producers.

I could directly rely on the second stage of my algorithm to compute pro-
ductivity. However, to be able to compare my results across various proxy es-
timators, I could only rely on those observations with positive investment and
I would lose at least 1 year of data since differences in capital stock are used to

21However, the Wooldridge–LP estimator can be easily implemented using publicly available
STATA code (ivreg2). I estimate this on my data as a robustness check, while ignoring the product
dummies.

22For multisegment producers, the segment demand variable is expanded to
∑

sisβ̂sqst and the
markup term is a share weighted average across segments.
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construct the investment data (which is standard). Moreover, omitting plants
with zero investment would imply omitting the relatively lower productivity
firms which are important to include to verify the relationship between re-
duced quota protection and productivity; that is, those might be the firms with
an initially high level of quota protection where we want to verify the produc-
tivity impact of reducing protection. Olley and Pakes (1996) followed the same
procedure in their study of productivity dynamics in the telecommunications
industry.

The only difference between the productivity estimates that come directly
out of the estimation procedure and those out of equation (24) is the role of
measurement error and idiosyncratic shocks (uit). The variance of my produc-
tivity estimates then contains the variance of the i.i.d. production and demand
shocks, whereas the productivity estimates obtained inside the algorithm are
by construction purged from these shocks in the first stage. The averages of
both productivity measures are in fact identical. The only concern is therefore
that I use a less precise measure of productivity. If my parameters are correctly
estimated, then ω̂it =ωit +uit and, therefore, uit should not be correlated with
qrit . I rely on (24) to obtain estimates for productivity and check whether my
results are robust to using this alternative measure.

My approach generates productivity estimates purged from price effects
while relying on the correct returns to scale parameter. I exploit the time series
variation in production and demand to estimate the demand parameters, and
by giving up the ability to estimate a change in the slope of the demand curve,
I can estimate the slope for various product segments. However, this restric-
tion does buy me more flexibility on the production function by allowing for
dynamic inputs and additional state variables of the underlying firm’s problem.
It is useful to compare my productivity estimates directly to the standard sales
per input measures for productivity. Let me collect all inputs into xit and the
corresponding coefficients into β. In my notation, those standard estimates for
productivity are obtained as

ω̂st
it = r̃it − xit β̂�(25)

Note that price variation that is correlated with input variation is not part of
the productivity measure: that correlation leads to biased coefficients of the
production function and therefore leads to incorrect productivity estimates.
Relying on my methodology delivers estimates for productivity corrected from
price variation since they are based on the correct input coefficients by ac-
counting for both simultaneity and price bias; they are given by

ω̂it = qit − xit α̂�(26)

It is helpful to consider the difference between the standard sales per input
measure and my corrected estimate,

ω̂st
it − ω̂it = (pit −pt)+ xit (̂α/|η̂s|)�(27)
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where I use the notion that β = α(ηs+1
ηs

). This expression shows that my ap-
proach purges the standard measures for productivity from price variation (un-
correlated with input variation) through the CES structure (through the terms
βsqst and ξit), and corrects for the appropriate returns to scale in production
by correctly weighting the input variation by the correct input coefficients.

4.4. Some Identification Issues

The identification strategy of the structural parameters is very similar to
that in Klette and Griliches (1996). However, there are two important differ-
ences. First of all, I control for unobserved productivity shocks by relying on a
proxy for productivity. Second, I incorporate the product mix of a firm so that
my identification strategy allows for a richer demand structure. More specifi-
cally, as I project firm-specific revenue on segment-specific output (which are
weighted by the share of products in a given segment), product-group fixed ef-
fects, and firm-level protection rates, I control for unobserved prices and iden-
tify the parameters of both the production function and the demand system.

A crucial assumption throughout my identification strategy is that the prod-
uct mix does not react to changes in protection and is time invariant. This
condition is the result of a data constraint, that is, I only observe the product
mix information for a cross section. However, given this limitation, I fully ex-
ploit this information and use it to put more structure on the demand system.
This assumption seems to contradict recent evidence by Bernard, Redding, and
Schott (2010) on product switching in U.S. manufacturing plants. However, my
panel is 9 years, and the scope for adding and dropping products is therefore
smaller. In further support of this assumption, I do observe the product mix
over time for a set of firms in the Knitwear subsegment (see Table A.I). I see
very little adjustment in the number of products over time and there is almost
no adjustment in the number of segments in which a firm is active. In fact,
year to year only 5 percent of the firms adjust their product mix and about 15
percent adjust over a 5 year horizon.23

Whenever the fixed product mix assumption does not hold, it can poten-
tially impact the ability to identify the production and demand parameters.
Conditional on the input proportionality assumption, it only introduces devi-
ation around the observed number of products over time in the error term
(npit − npi). However, my framework incorporates the firm-level protection
rate qrit , and this controls for changes in the product mix that are correlated
with changes in protection. Therefore, I can identify the coefficients as long as
changes in the product mix are picked up by changes in trade protection. When
relying on the dynamic control to proxy for productivity, it additionally affects
the exact conditions for invertibility in the Olley and Pakes (1996) framework

23Relying on this small sample, I could not find a strong relationship between labor productivity
and the change in product mix.
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and requires modeling the product mix choice as well. I refer to Das, Roberts,
and Tybout (2007) where a dynamic model with two controls is introduced with
an application to international trade.

If the product line changes over time, my estimates of productivity pick up
changes in the product mix. Therefore, when projecting the productivity esti-
mates on the change in protection, those coefficients capture changes in the
product mix due to a change in protection. As a consequence, the results pre-
sented in this paper are consistent with the work of Bernard, Redding, and
Schott (2011), who showed that firm-level productivity can increase after trade
liberalization because firms adjust the product mix accordingly. Given the data
constraint, I cannot further separate the pure productivity effect from this
product reallocation and selection dimension. My approach still provides con-
sistent estimates of the demand and production structure, and could poten-
tially decompose the productivity effect into an intensive (change in produc-
tivity, holding number of products fixed) and an extensive margin (change in
number of products, holding productivity fixed). However, the focus of my pa-
per is on correctly estimating the impact of trade liberalization on firm-level
productivity while controlling for unobserved prices; therefore, my results can
be interpreted through the lens of product mix adjustment.

Finally, it is worth mentioning that if my assumption on ξ̃it fails and captures
persistent demand shocks, I can accommodate for persistent demand shocks
by simply collapsing the unobserved demand shock ξ̃it with unobserved pro-
ductivity ωit into a new state variable ω̃it . The same control function ht(·) is
now used as long as the unobserved demand shock ξ̃it follows the exact same
Markov process as productivity.24 This would imply that ξ̃it no longer enters in
any of the expressions since it would be part of φt(·). However, it would change
the interpretation of the productivity estimates since they would contain those
demand shocks (̃ξit). Levinsohn and Melitz (2006) explicitly assumed that a
control function in materials and capital is sufficient to control for both unob-
served productivity and all demand shocks to identify the coefficients of the
production function and the elasticity of substitution. In contrast, I allow for
unobserved demand shocks to be correlated with segment-level output and the
various inputs. Note that in my estimation algorithm, described above, I rely
on three different (observed) demand shifters (at the product, group, and firm
level) and I verify the importance of this control by comparing my estimates of
βs to those where only the proxy for productivity is included.

24In the case where ξ̃it captures serially correlated demand shocks but follows a different pro-
cess over time, the investment proxy approach is directly affected by introducing an additional
serially correlated unobserved state variable in the model, and this affects both the invertibility
conditions and the ability to identify the parameters.
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5. RESULTS

In this section, I compare the coefficients of my augmented production func-
tion to a few benchmark estimators. I demonstrate the importance of con-
trolling for both unobserved demand and productivity shocks so as to recover
direct estimates of segment-specific elasticities.25 I recover estimates for firm
productivity and relate them to the drastic change in trade protection in the
textile market. In addition, I discuss the inability of the current available ap-
proaches to single out the productivity response from decreased trade protec-
tion.

5.1. Production Function Coefficients and Demand Parameters26

In this section, I show how the estimated coefficients of a revenue production
function are reduced form parameters of a demand and supply structure. As
as consequence, the actual production function coefficients and the resulting
returns to scale parameter are underestimated.

I compare my results with a few baseline specifications in Table VI: a simple
ordinary least squares (OLS) estimation [1] and the Klette and Griliches (1996)
specification in differences KG [2]. Furthermore, I compare my results with the
Olley and Pakes (1996) and Levinsohn and Petrin (2003) estimation techniques
to correct for the simultaneity bias [3]. I first compare the various benchmark
coefficients to a highly aggregated version of my empirical model [4], where
I only consider one demand parameter to characterize the textile industry. This
model is similar to that used by Levinsohn and Melitz (2006), and this specifi-
cation is useful to illustrate the importance of controlling for unobserved price
variation around the aggregate producer price index.

Going from specification [1] to [2] illustrates that OLS produces reduced
form parameters from a demand and a supply structure. As expected, the omit-
ted price variable biases the estimates on the inputs downward and hence un-
derestimates the returns to scale elasticity. Specification [2] takes care of un-
observed heterogeneity by taking a first difference of the production function,
as in the original Klette and Griliches (1996) paper. The coefficient on capi-
tal goes to zero as expected for a fixed input. In specification [3], the impact

25With the additional assumption that firms are cost minimizing and do not face adjustment
cost, one can, in principle, obtain estimates of markups from the production function coefficients;
see De Loecker and Warzynski (2010). In this paper I am concerned with obtaining the correct
productivity estimates.

26All the results reported here are robust with respect to estimating the variable input coeffi-
cients (labor and materials) either using the GMM approach of Wooldridge (2011) or the second
stage approach as described in Section 4. I thank Amil Petrin for making the LP–Wooldridge
code available. Interestingly, the coefficients on the freely chosen variables are very stable across
methods. The returns to scale parameter differs slightly but is not statistically different due to
different capital coefficients. This shows that my correction for unobserved prices is robust to the
use of a specific proxy estimator.
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TABLE VI

PRODUCTION FUNCTION ESTIMATESa

[1] OLS
[2] KG

[3] Proxy
[4] Augmented

[5]: Single Segment
Coefficient on β β α β β α β

Labor 0.230 0.245 0.334 0.211 0.213 0.308 0.230
(0.009) (0.0120) (0.034) (0.011) (0.011) (0.062) (0.017)

Materials 0.630 0.596 0.812 0.628 0.627 0.906 0.650
(0.007) (0.013) (0.052) (0.009) (0.008) (0.175) (0.013)

Capital 0.088 0.019 0.026 0.093 0.104 0.150 0.090
(0.007) (0.011) (0.014) (0.008) (0.006) (0.034) (0.006)

Output 0.266 0.309 0.260
(0.046) (0.134) (0.137)

η −3.76 −3.24 −3.85

No. of obs 1,291 1,291 985/1,291 985 735

aBootstrapped standard errors are given in parentheses. Results under [3] Proxy are obtained using the intermedi-
ate inputs as a proxy as suggested by Levinsohn and Petrin (2003) and are compared with the Olley and Pakes (1996)
approach. The LP estimator was implemented using their estimator in STATA (levpet) and the Wooldridge (2011)
version of LP using ivreg2 in STATA.

of correcting for the simultaneity bias changes my coefficients in the direction
predicted by theory, that is, the labor coefficient is estimated somewhat lower
and the capital coefficient is estimated higher. The omitted price variable bias
is not addressed in the OP and LP framework as they are only interested in a
sales per input productivity measure.27 Both biases are addressed in specifica-
tion [4], and the corrections for the simultaneity and omitted price variable go
in opposite directions, therefore making it hard to sign the total bias a priori.

As expected, the estimate on the capital coefficient does not change much
when introducing the demand shifter since the capital stock at t is predeter-
mined by investments at t − 1; however, it is considerably higher than in the
Klette and Griliches (1996) approach. The correct estimate of the scale elas-
ticity (αl + αm + αk) is of the most concern in the latter and indeed when cor-
recting for the price variation, the estimated scale elasticity goes from 0�9477
in the OLS specification to 1�1709 in the KG specification. The latter specifica-
tion does not control for the simultaneity bias, which results in an upward bias
on the variable inputs labor and material. This is exactly what I find in spec-
ification [4], that is, when correcting for unobserved productivity shocks, the
implied coefficient on labor drops from 0�334 to 0�308 for the labor coefficient.

27A downside is that the product-level information (number of products produced, segments,
and which products) is time invariant and leaves me with a panel of firms active until the product
information was available. Therefore I check whether my results are sensitive to this by consider-
ing a full unbalanced data set where I control for the selection bias (exit before 2000) as well as
suggested in Olley and Pakes (1996). I can do this as the BELFIRST data set provides me with
the entire population of textile producers. The results turn out to be very similar.



PRODUCT DIFFERENTIATION AND PRODUCTIVITY 1437

The estimated coefficient on the industry output variable is a direct esti-
mate of the Lerner index and I also report the implied elasticity of demand.
In Appendix B, I discuss in detail how the segment-specific shifters qst are
constructed using a firm’s product mix. Moving across the various specifica-
tions, the estimate of the Lerner index (or the markup) increases as I control
for unobserved firm productivity shocks.28 The implied demand elasticities are
around −3. These estimates are worth discussing for several reasons. First of
all, they provide me with a check on the economic relevance of the demand
model I assumed. Second, they can be compared to other methods that esti-
mate markups using firm-level production data.29 It is because of the specific
demand system that I obtain direct estimates of the markup on the total out-
put variable. This is in contrast to the approach due to Hall (1988) where, in
addition to standard cost minimization, we require that firms face no adjust-
ment costs so as to estimate markups directly from the production function
coefficients.

The last column of Table VI presents the estimates of the augmented pro-
duction function for firms active in a single segment, specification [5]. As dis-
cussed in Section 2.2, I require an extra assumption on how inputs are allocated
across segments and products so as to estimate my model on multi-segment
producers. The estimates indicate that my results are not sensitive to this. For
the remainder of the paper, I consider all firms in my data unless explicitly
mentioned.

In Table VII I demonstrate the importance of controlling for unobserved
demand shocks by estimating the full model as described in Section 4. I rely
on product and product-group fixed effects and firm-specific protection mea-
sures to control for ξit in the augmented production function. As expected,
I find significantly more elastic demand, confirming that demand is higher for
firms active in relatively more protected segments, and thereby inducing a pos-
itive correlation between the segment demand variables (qst) and the error
term, containing variation in protection (qrit). It is useful to refer back to Fig-
ure 1, where the difference in the rate of protection across segments and time
is highlighted. In addition to the protection measure, my model controls for
unobserved differences in demand conditions such as (average over the sam-
ple period) differences in demand for products and product groups, reflecting

28The industry output variable captures variation over time of total deflated revenue and as
Klette and Griliches (1996) mention, therefore potentially picks up industry productivity growth
and changes in factor utilization. If all firms had a shift upward in their production frontier, the
industry output would pick up this effect and attribute it to a shift in demand and lead to an over-
estimation of the scale elasticity. In my prefered empirical model, I consider different demand
elasticities at the segment level and can allow for aggregate (across all segments) productivity
shocks.

29In particular, Konings, Van Cayseele, and Warzynski (2001) used the Hall method and found
a Lerner index of 0.26 for the Belgian textile industry, which is well within the range of my esti-
mates.
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TABLE VII

SEGMENT-SPECIFIC DEMAND PARAMETERS AND RETURNS TO SCALEa

Estimated Coefficient (βs) Implied Elasticity (ηs)

Demand Controls Not Included Included Not Included Included

Industry (I) 0.35 0.26 −2.86 −3.85
Interior (s = 1) 0.24 0.16 −4.17 −6.25
Clothing (s = 2) 0.35 0.23 −2.86 −4.35
Technical (s = 3) 0.31 0.21 −3.23 −4.76
Finishing (s = 4) 0.33 0.22 −3.03 −4.55
Spinning (s = 5) 0.26 0.18 −3.85 −5.56

RTS 1.3 1.11

aDemand controls are product, product–group, and protection rate variables,
(ξj� ξg�qrit ). All coefficients are significant at the 1 percent level.

consumer taste. It is interesting to note that the coefficients on the segment
output variables are estimated more precisely when I control for unobserved
productivity using the control function. Including the demand side controls has
little impact on the estimated reduced form coefficients (βl�βm, and βk) of the
production function, but they obviously matter for the correct marginal prod-
uct estimates (αl�αm�αk) which require the estimates on the segment demand
elasticities (ηs).30

The results in Table VII demonstrate that controlling for the differences in
protection rates across segments and over time is crucial to recover reliable
measures for segment-specific elasticities and hence productivity. The fact that
the coefficients become much smaller implies higher (in magnitude) elasticities
of demand after controlling for unobserved demand shocks. This is a standard
finding in the empirical demand literature. For example, for the Interior seg-
ment, the estimated demand elasticity goes from −4.17 to −6.25 after I control
for unobserved demand shocks, implying a positive correlation between de-
mand for products in a given segment and the rate of protection as measured
by qrit .

Given the functional form for demand and supply, these lower markup esti-
mates have a direct impact on my estimates for returns to scale. I find signifi-
cantly increasing returns to scale in production with a coefficient of 1�11. This
is in itself an important result and supports the results of Klette and Griliches
(1996), who discussed the downward bias of the production function coeffi-
cients due to unobserved prices.

30I do not list the estimated coefficients of the production function again, as they hardly change
compared to the results in the last column of Table VI. The coefficients on labor, materials, and
capital are obtained by multiplying the reduced form estimates by the segment-specific inverse
markup estimate.
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In sum, my results indicate that both the omitted price variable and the si-
multaneity bias are important to correct for, although the latter is somewhat
smaller in my sample. The estimated reduced form parameters (β) do not
change much when controlling for the omitted price variable, after correcting
for the simultaneity bias. However, it has a big impact on the estimated produc-
tion function parameters (α), which by itself is important if one is interested in
obtaining the correct marginal products. Finally, the estimated coefficients of
the production function and the demand elasticities, and hence productivity,
are not sensitive to the specific proxy estimator approach (OP, LP, and modi-
fications discussed in Section 4). The various proxy approaches produce very
similar coefficients of the reduced production function coefficients (β) and do
not impact the demand parameters. In Section 6, I discuss two additional ro-
bustness checks. The different approaches do, however, imply different mod-
eling assumptions as discussed in detail in Section 4 and, therefore, show that
my results are robust to them.

5.2. Estimating the Effect of Trade Liberalization on Productivity

I rely on my estimates of productivity to estimate the firm-level productivity
reaction to relaxing quota protection in the EU textile market. As discussed in
Section 4, my estimation procedure provides a direct nonparametric estimate
of the effect of quota on productivity. Once I have all the model’s parameters
estimated, I can compute productivity and therefore obtain an estimate of g(·)
which describes how past productivity and quota affect current productivity.
Before presenting my results, I briefly discuss the main approach in the current
literature and contrast it to my setting.

5.2.1. Standard Approach

Attempts to identify the productivity effects from trade liberalization in the
literature can be classified into two main approaches: a two-stage and a single
equation approach. Based on my empirical framework, I briefly discuss how
neither approach is able to single out productivity responses to the reduced
quota protection or, in general, to any change in the operating environment of
firms that impact demand for the goods marketed.

The Two-Stage Approach. In this approach, the strategy follows two steps,
where the first is estimating the production function while ignoring the un-
observed price problem. The second stage then simply projects the recovered
“productivity” estimate ωst

it against the shift in trade regime. It is clear that
this approach does not allow the productivity response to be isolated from the
demand response since the productivity estimates capture price and demand
variation. This approach typically considers a variant of the regression

ωst
it = c + λqrit + eit�(28)
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where the interest lies in estimating λ. Equation 28 shows the very strong as-
sumptions one needs to invoke to be able to identify the productivity impact
from decreased quota protection: protection cannot impact prices—except
through productivity—and cannot be related to returns to scale in production.
Using the expression derived in (27), this two-stage approach then implies cor-
relating the entire term (ωit + pit − pt + xit(α/|η|)) to quota protection and
leads to incorrect estimates of the quota effect. In addition, this approach does
not allow protection to impact the evolution of productivity when estimating
the production function itself, which is at odds with the research question.

The Single Equation Approach. This procedure starts out with specifying
a parametric function for productivity in the variable of interest, here trade
liberalization (qrit). For example, let me consider a simple linear relationship
ωit = λqrit + eit , where distributional assumptions are made on eit . Substitut-
ing this expression for productivity into the production function generates an
estimating equation

r̃it = βllit +βmmit +βkkit + λqrit + e∗
it �(29)

where λ is meant to capture the productivity effect of a reduction in protec-
tion, and where e∗

it now includes eit and unobserved prices. The coefficient λ
is not identified unless the protection rate variable, qrit , is not allowed to be
correlated with (unobserved) prices.

Both the single equation and the two-stage approach are expected to lead to
an incorrect estimate of the impact of trade liberalization on productivity. In
fact, the single and two-stage approaches should provide identical results on
the estimate for λ. However, the two-stage approach has the potential to pro-
duce productivity estimates that are obtained while correcting for the simul-
taneity bias using the standard OP–LP approach. I compare my estimates to
the two main approaches in the literature. Putting all the different approaches
side by side allows me to shed light on the importance of controlling for unob-
served productivity shocks, as well as controlling for unobserved prices in ob-
taining the correct estimated protection effect on productivity. My approach
relaxes the strong assumption needed for both approaches—that changes in
quota protection do not affect prices and firm-level demand—while control-
ling for unobserved productivity shocks. The ability to separately identify the
demand from the productivity effect comes from the notion that prices re-
flect differences in residual demand and hence differences in quota protec-
tion, whereas the supply effect comes through productivity which takes time to
materialize. This identification strategy implies that we expect to see separate
roles for the contemporaneous and the lagged quota variables in a simple OLS
regression of the production function while ignoring the simultaneity and omit-
ted price variable bias. When running such a regression on my data, I obtain a
strong effect on the contemporaneous quota variable, while the coefficient on
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the lagged quota variable is smaller in magnitude and not significant. The next
section produces the structural estimates while controlling explicitly for both
unobserved productivity and unobserved prices as outlined in Section 4.

5.2.2. Controlling for Price and Demand Effects

To verify the extent to which trade liberalization, measured by a decrease in
quota restrictions, has impacted the efficiency of textile producers, I compare
my results to several different specifications. I start out with following the stan-
dard practice in the literature, and consider both a single equation approach
and a two-stage approach, as discussed above, which both ignore unobserved
prices and productivity. In particular, the single-stage approach estimate of λ
is obtained after running the regression (29) using OLS (Approach I).31 I then
proceed by considering a two-stage approach (28) where I rely on the standard
OP–LP productivity estimates (Approach II).32 The final benchmark model is
a two-stage approach which relies on productivity estimates from an adjusted
OP–LP framework where quota protection enters the model through the pro-
cess of productivity, ωit = g(ωit−1� qrit−1)+ υit , and hence in the control func-
tion (Approach III). This benchmark model, Approach III, generates nonpara-
metric estimates of the productivity effect of quotas through the estimate of
g(·). I report the average to compare with the other models and, in addition,
list the support of the estimated effect. It is important to note that the first two
benchmark results are not directly comparable to my results as they report the
level effect of quotas and productivity, whereas I am concerned with obtain-
ing the correct estimates of within firm productivity changes. Benchmark III,
however, is directly comparable.

Table VIII presents the results of the various estimates, where it is important
to note that the sign of λ is expected to be negative if trade liberalization effects
productivity at all, since qrit = 1 under full protection and is 0 if not a single
product–supplier combination faces a quota. The first row presents the results
from a simple OLS regression of deflated revenue on the protection variable,
controlling for input use. The coefficient is highly significant and negative, sug-
gesting about 16 percent higher productivity from eliminating all quotas on all
products. As discussed before, this regression cannot separate the impact of
protection on demand (and hence prices) and productivity. In addition, it con-
siders quotas that directly impact the level of productivity, and would suggest a
very high effect when ignoring price and demand effects. Approach II.1 shows
the very small impact on the estimate of λ by relying on productivity estimates
obtained from a OP–LP approach, which corrects for unobserved productivity
shocks. Both Approaches I and II are not directly comparable to my estimates,

31The two-stage approach without any correction for the unobserved productivity shocks pro-
duces the same estimate for λ, but differs in precision.

32These estimates rely on an exogenous Markov process for productivity and control for unob-
served productivity shocks using either material demand or investment, in addition to capital.
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TABLE VIII

IMPACT OF TRADE LIBERALIZATION ON PRODUCTIVITYa

Approach Description Estimate Support

I OLS levels −0.161∗ n.a.
(0.021)

II.1 Standard proxy-levels −0.153∗ n.a.
(0.021)

II.2 Standard proxy-LD −0.135∗ n.a.
(0.030)

III Adjusted proxy −0.086 [−0�129�−0�047]
(0.006)

IV Corrected −0.021 [−0�27�0�100]
sd: 0.067

V Corrected LD −0.046∗∗ n.a.
(0.027)

aI report standard errors in parentheses for the regressions, while I report the
standard deviation (sd) of the estimated nonparametric productivity effect in my
empirical model (given by g(·)). ∗ and ∗∗ denote significant at 5 or lower and 10
percent, respectively. LD refers to a 3 year differencing of a two-stage approach
where Approach II.2 relies on standard productivity measures, as opposed to Ap-
proach V, which relies on my corrected estimates of productivity.

as suggested before. I therefore consider an adjusted proxy estimator where
I nonparametrically estimate the lagged quota effect relying on my productiv-
ity process while still ignoring unobserved prices. The productivity effects now
reflect productivity changes and how these within firm productivity changes are
related to trade protection. The average effect of quotas on productivity is re-
duced to −0�086. The support of the estimated effect indicates that eliminating
quotas impacts productivity positively throughout the distribution.

Moving to the results from my approach, Approach IV, where unobserved
productivity and prices are jointly controlled for, I find a substantially lower
average quota effect of −0�021. This results indicates that eliminating quotas
on all products would, on average, only raise productivity about 2 percent, as
opposed to almost 9 percent when ignoring the price effect. Just as in Ap-
proach III, I obtain a nonparametric estimate of the productivity effect, and
the support suggests a wide range of outcomes, with a large mass around zero.
Interestingly, my estimates of g(·) also indicate that the productivity effect of
quotas is positive for relatively low productivity firms, albeit still much lower in
magnitude. The latter comes from the estimated coefficients of g(·), βg, that
capture the interaction between quota protection and productivity.

A final set of results is presented under Approaches II.2 and V, where I com-
pare a simple long difference version of (28) while relying on standard produc-
tivity estimates and my corrected estimates, respectively. My results imply that
abolishing all quotas over a 3 year period would merely increase firm-level pro-
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ductivity by 4�5 percent as opposed to 13�5 percent when relying on standard
measures of productivity.

5.2.3. Additional Results

I briefly discuss a few other results that emerge from my analysis: the time
aspect of the productivity effects, the potential separate role of enlarging quo-
tas as opposed to abolishment, and implications for the effect of protection on
prices charged.

As discussed in Section 3.1, a significant part of reduction in protection took
place after the Europe Agreements were signed with various Central and East-
ern European countries (CEECs). The sharp fall in the number of quotas in
the period between 1994 and 1997 is consistent with the preparation process
for EU enlargement toward Central and Eastern Europe (CEE). By the year
1998, almost all trade barriers between the EU and the candidate countries of
CEE were abolished, which implied that industrial products from the associ-
ated countries (mostly CEE) had virtually free access to the EU with restric-
tions in only a few sectors, such as agriculture and textiles. Using my estimates,
I find that, if anything, the productivity effects are not constant over time and
are somewhat higher during the first half of the sample, although still relatively
small in magnitude compared to relying on standard approaches.

Another channel through which EU trade policy relaxed quota restrictions
was by increasing the level of existing quotas for a set of supplying countries. To
verify the impact of this on productivity, I can only consider product categories
where I observe a positive level of protection. Furthermore, I only consider
quotas where the unit of measurement of a quota level is constant within a
given industry code (23 categories). This dimension of opening up to trade
has been for imports coming from outside CEE. Table A.IV lists the supplying
countries where relaxing import restrictions mainly occurred through higher
levels of quotas. I report the increase in the average level per quota during my
sample period 1994–2002 and list the countries that gained access to the EU
textile market. For instance, the average quota level on textile products from
Pakistan has more than doubled over a 9 year period (129 and 144 percent,
depending on product category). This process is not captured by the quota
restriction variable that picks up whenever a quota on a given product from a
supplying country is abolished. To verify the impact of increased quota levels,
I simply correlated my estimate of productivity with a variable that measures
the total level of quotas (in logs) while controlling for qrit . The coefficient on
the level variable is estimated with a positive sign, indicating that an increase
in the level of quotas had a small but positive effect on productivity. The point
estimate suggests an elasticity of 1.9 and implies, on average, a moderate effect
of increasing quota levels on firm-level productivity.

Finally, in standard approaches, the coefficient on protection measures the
effect of quota protection on revenues, including both the demand and the pro-
ductivity effect. Using my structural model of demand and production, I can



1444 JAN DE LOECKER

back out estimates of firm-level prices, and I find that these are highly positively
correlated with protection, suggesting that firms facing stronger competition
on average charge lower prices.33

5.3. Collecting Results

In sum, across all specifications, using standard measures for productivity
leads to overestimating the productivity response to trade liberalization. These
results indicate that correcting for unobserved price and demand effects leads
to substantially lower productivity gains, ranging between one-third and one-
fourth, and suggests that trade liberalization substantially impacts firm-level
demand and hence prices. These observations then imply a very different in-
terpretation of how opening up to trade impacts individual firms.34

My results can be interpreted as a decomposition of measured productivity
gains from relaxing trade protection into productivity effects and price–scale
effects, and indicate that only a small share (ranging up to 20 percent) is asso-
ciated with true productivity gains. The fact that after my correction, reduced
quota protection still is associated with productivity gains, although small, is
consistent with the work of Bernard, Redding, and Schott (2011), since my
productivity estimates potentially capture product mix responses as discussed
in Section 4.4. In the next section, I check whether my results are sensitive to
relaxing some of the assumptions related to the production technology and the
demand system.

6. ROBUSTNESS ANALYSIS

In this section, I verify whether my results are robust to the specific pro-
duction function and demand system. Specifically, I test whether the demand
elasticities are sensitive to a specific production function. On the demand side,
I show that my approach is consistent with assuming a restricted version of a
nested CES model of demand and I test the importance of this restriction.

6.1. Relaxing Production Technology35

I verify whether my estimated demand parameters are sensitive to the spe-
cific choice of a production function. A more flexible approach allows for a

33This result is obtained by first computing prices by using pit =ωst
it −ωit −xit(α/|η|)+pt and

then running a simple OLS of pit on qrit while controlling for unobserved firm-specific shocks.
34However, average productivity of an industry can still increase due to the elimination of

inefficient producers from the productivity distribution. In a different context, Syverson (2004)
demonstrated the importance of demand shocks in increasing average productivity of producers
through exit of inefficient producers.

35All the results on the relationship between productivity and trade liberalization are robust to
the use of productivity estimates under the various extensions and alternatives discussed in this
section.
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general production function where productivity shocks are additive in the log
specification, Qit = F(Lit�Mit�Kit)exp(ωit + uit), and thus allows for flexible
substitution patterns among inputs such as the translog production function.
However to recover the production function parameters, I have to specify mo-
ment conditions of the data on Lit�Mit , and Kit .

I consider the results in Section 5 (baseline) and compare them with esti-
mates obtained from a more flexible approach, while relying on investment to
proxy for productivity.36 The first stage is then reduced to the regression

rit =
∑
s

βs(sisqst)+φt(lit�mit�kit� iit� qrit�D)+ εit�(30)

where I am only interested in the coefficients on the segment output variables.
Table IX shows that the estimated demand parameters are well within the
range of the less flexible model used in the main text. The estimates of the
demand parameter at the industry and segment level are robust with respect to
relaxing the assumptions on the production technology. For example, for the
Interior segment, the estimated markup lies between 0�17 and 0�14.

I also check whether the estimated demand parameters are robust to the use
of a value added production function whereby I allow for a fixed proportion
of materials per unit of output in the production technology. The last row in

TABLE IX

ESTIMATED DEMAND PARAMETERS UNDER ALTERNATIVE SPECIFICATIONSa

Segment

Specification Industry Interior Clothing Technical Finishing Spinning

Baseline 0.26 0.16 0.23 0.21 0.22 0.18
Flexible 0.22 0.14 0.23 0.19 0.22 0.21
Value added 0.29 0.20 0.21 0.27 0.25 0.21

Unrestricted σ = 0�008 0.17 0.25 0.21 0.23 0.19
(0.113)

aBaseline specification is compared to (i) Flexible, which allows for a general production func-
tion that is log additive in productivity, (ii) to a Value added production function specification, and
(iii) to an unrestricted nested CES demand system. For the latter, I report the estimated cross-
segment correlation coefficient σ and its standard error. I suppress the bootstrapped standard
errors on the demand parameters, since they are all significant at the 1 percent level.

36In addition, the flexible approach no longer takes a stand on whether labor and materials are
static or dynamic inputs, and coincides with the approach discussed in Section 4.2. More impor-
tantly, it does not rely on a specific timing of the productivity shock and inputs to obtain consistent
estimates of the demand elasticities. I do not change the properties of the segment output vari-
ables and still rely on them being not serially correlated conditional on all other demand variables
in the model.
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Table IX shows that the estimated demand parameters hardly change. In ad-
dition, the results presented in Section 5 are robust with respect to relying on
productivity estimates from a value added production function. This robust-
ness check deals directly with the observation of Bond and Soderbom (2005),
who argued that it may be hard to identify coefficients on a perfectly variable
input, such as materials in my case, in a Cobb–Douglas production function.

6.2. Alternative Demand Systems

I briefly show how my approach is equivalent to a discrete choice model of-
ten used in the empirical demand estimation literature. The parameters have
slightly different interpretations, but all of the main results on the productivity
response of liberalizing trade are unchanged. More precisely, I show that the
empirical model I rely on in the main text can be generated from a logit or re-
stricted nested CES or logit model of consumer choice. It is important to stress
that the inability to measure prices and quantities directly limits the demand
system I can rely on. An important feature of the demand system I suggest
is the ability to relate log price to log quantity and observed demand shocks
that vary over time and segments, which allows identification of the demand
parameter by segment.

The discrete choice model consistent with my main empirical model has an
indirect utility function Vljt for consumer l buying good j at time t, consisting
of a mean utility component and an idiosyncratic preference shock ζljt , which
is assumed to be drawn from a Type I extreme value distribution as in Berry,
Levinsohn, and Pakes (1995). The mean utility component in my framework
is simply a function of the logarithmic price pjt , product fixed effects δj , and
an unobserved demand shock ξjt .37 This leads to the following specification for
indirect utility:

Vljt = δjDj +ηpjt + ξjt + ζljt �(31)

The next step is to aggregate over individual choices to buy good j, and I re-
cover a well known expression for the market share of good j relative to the
outside good of the model,

ln(msjt)− ln(msot)= δjDj +ηpjt + ξjt �(32)

Starting from log market share and simply rearranging terms using that
ln(msjt) = lnQjt − lnQst , I obtain an expression for log price and plug it into

37Introduction of the logarithmic price into the indirect utility function is the key difference
between the (nested) CES and the (nested) logit model. Anderson, de Palma, and Thisse (1992)
provided a good overview of the similarities of both models. To see this, it is useful to rewrite the
CES demand system to make it directly comparable to the logit (i.e., ln(Qjt/Qst)= η(pjt −pt)+
ξjt).
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the revenue expression to retrieve the same estimating equation,

rit = β0 +βllit +βmmit +βkkit +βsqst + δiDi +ω∗
it + ξ∗

it + uit�(33)

where I consider single product producers for simplicity (i.e., i = j),38 and
where now β0 = 1

|η| ln(mso), βh = (η+1
η
)αh for h = {l�m�k}, and importantly

βs = 1
|η| . It is important to note that total output enters in exactly the same

way, leading to identification of η in the production function framework.
The difference between the CES model and the logit is clearly the interpre-

tation of the estimated demand parameter η. In the CES case, the estimated
coefficient βs is a direct estimate of the Lerner index ( 1

|η| ) or of the elasticity
of demand (η). When relying on the logit demand structure, the estimated pa-
rameter η is used to compute own and cross-price elasticities. However, in this
setup with log prices in the indirect utility function, they are identical (Ander-
son, de Palma, and Thisse (1992)).

It is well known that the logit model makes very strong assumptions about
the substitution patterns across the various goods in the market, just like the
CES demand structure. However, I allow for different substitution patterns
across the various segments of the market. In this way, I am estimating a re-
stricted version of a nested CES model, whereby the correlation of unobserved
demand shocks across segments is assumed to be zero, after controlling for
subsegment and product fixed effects.

Working through the same steps as above, I recover a similar estimating
equation for a nested CES demand system where σ measures the correlation
across segments. As Berry (1994) mentioned, we can interpret this model as a
random coefficients model involving group-specific dummy variables. The ad-
vantage of the nested structure over the standard CES (or logit) is that I can
allow for correlation of utility between groups of similar goods. This advan-
tages comes at the cost of having to order the goods in a market in well defined
nests. I rely on the classification presented in Table A.II to create segments and
subsegments of the textile industry. It is important to note that relaxing the sub-
stitution patterns among the goods further reinforces the argued importance
of controlling for unobserved prices and demand shocks. The ultimate con-
straint on modeling substitution patterns is the inability to observe quantities
and prices for individual goods, which is a standard constraint in this literature.

Proceeding as before by rearranging terms to get an expression for pjt , I ob-
tain the same expression as before (i.e., (33)), with only an extra term that
captures the share of segment s in total demand, qs|It (where subscript I de-
notes the textile industry), which provides information on σ .39 The coefficient

38I show this for a single product producer. For multiproduct firms, I need an additional step
to aggregate to the firm level.

39The reduced form parameters of the production function are now given by βh = ( ηs+1−σ
ηs

)αh

for h = {l�m�k}. I rely on the same demand controls to estimate both the segment-specific de-
mand parameters and the additional parameter σ .
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on this extra term is a direct estimate of the correlation across the various
segments. The last row in Table IX reports the coefficients of an unrestricted
nested CES demand system and I recover an insignificant estimate of 0�008 for
the cross-segment correlation parameter σ . Therefore, in my particular appli-
cation, I cannot reject the restricted version where the cross-segment correla-
tion is set to zero. Given the different product categories listed in the various
segments, this result is not surprising (see Table A.I).

I also considered the demand system one level lower in the structure of prod-
ucts, whereby I estimate a demand parameter for each subsegment (e.g., Mo-
biltech). However, this implies that more than 50 extra demand parameters
need to be estimated in addition to the control function and the product dum-
mies, and leads to a low testing power. I only find a few subsegments for which
the markup is differently estimated.

In sum, my demand specification is consistent with a random utility discrete
choice demand system. The results further support the specification relied on
throughout the paper, where I allow for different parameters per segment.
However, it is clear that my methodology does not rule out richer substitution
patterns across products.

7. REMARKS AND CONCLUSION

In this section, I briefly discuss a few important implications that emerge
from my findings. Detailed discussions of these implications are separate re-
search questions on their own and are beyond the scope of this paper. This
section is meant to highlight a few important avenues for research that directly
follow from this paper. I conclude with an overview of my main results and
findings.

7.1. Remarks

This paper shows the importance of correctly estimating the effect of trade
policy on productivity. The suggested correction is also expected to be impor-
tant for any reallocation analysis where researchers are interested in the co-
variance between productivity and the weight of an individual producer in the
industry or economy at large. Regardless of the specific method used to aggre-
gate productivity across individual producers, it is clear that relying on produc-
tivity measures that contain prices and demand shocks leads to an incorrect
assessment of the underlying sources of aggregate productivity growth. I find a
strong covariance of market share and my implied estimates of prices, control-
ling for the correct returns to scale, that suggests that revenue based produc-
tivity measures are not sufficient to measure the extent to which resources get
reallocated across producers based on productivity differences. This helps me
further evaluate how trade liberalization impacts the productivity of individual
producers and that of industries as a whole. A full analysis of the reallocation
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effects lies beyond the scope of this paper, and I refer to Petrin and Levin-
sohn (2010) for more details on the aggregation of producer-level productivity
estimates.

Second, my estimates can directly shed light on whether traditional produc-
tivity measures are good measures of productivity. Using my estimates, I find a
positive correlation between the standard measures of productivity and prices,
whereas prices are negatively correlated with my corrected productivity esti-
mates, as predicted by a large class of economic models in international trade
and industrial organization. It interesting to compare the correlation coeffi-
cients using my results with those of Foster, Haltiwanger, and Syverson (2008),
who observed prices at the plant level for a subset of U.S. producers in the
U.S. census data set. I obtain similar correlation coefficients without observ-
ing prices and quantities produced at the firm level. More precisely, I obtain
a positive correlation of 0�12 between prices and standard revenue based pro-
ductivity estimates, while prices and my corrected productivity estimates are
negatively correlated (−0�35). Foster, Haltiwanger, and Syverson (2008) found
correlation coefficients of 0�16 and −0�54, respectively. My results therefore
show that correcting for unobserved prices and demand effects is absolutely
critical in obtaining measures for productivity.

7.2. Conclusion

I analyze productivity responses to a reduction in trade protection in the
Belgian textile industry using a matched product–firm-level data set. By in-
troducing demand shifters, I am able to decompose the traditional measured
productivity gains into real productivity gains and price and demand effects.
The empirical method sheds light on other parameters of interest, such as the
price elasticity of demand, and my results highlight the importance of both
productivity and price responses to a change in a trade regime.

Combining a production function and a demand system into one framework
provides other interesting results and insights with respect to product mix and
market power. I find that including the product mix of a firm is an important
dimension to consider when analyzing productivity dynamics. Even if this has
no impact on the aggregation of production across products, it allows estima-
tion of different elasticities across product segments. In the context of the esti-
mation of production functions, multiproduct firms have not received a lot of
attention. The main reason for this is the lack of detailed product-level pro-
duction data: input (labor, material, and capital) usage and output by product
and firm. I observe the number of products produced per firm and where these
products are located in product space (segments of the industry). This allows
specifying a richer demand system while investigating the productivity response
of trade liberalization, controlling for price and demand shocks.

While I find positive significant productivity gains from relaxing quota re-
strictions, the effects are estimated to be substantially lower, up to 20 per-
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cent, compared to using standard productivity estimates. The latter still cap-
ture price and demand variation (across product segments and time) which
are correlated with the change in trade policy, leading to an overestimation of
productivity gains from opening up to trade. The suggested method and identi-
fication strategy are quite general and can be applied whenever it is important
to distinguish between prices and physical productivity.
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