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Abstract

13C-based metabolic flux analysis is an excellent technique to resolve fluxes

in the central carbon metabolism but costs can be significant when using

specialized tracers. This work presents a framework for cost-effective design

of 13C-tracer experiments, illustrated on two different networks.

Linear and non-linear optimal input mixtures are computed for networks

for Streptomyces lividans and a carcinoma cell line. If only glucose tracers

are considered as labelled substrate for a carcinoma cell line or S. lividans,

the best parameter estimation accuracy is obtained by mixtures containing
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high amounts of 1,2-13C2 glucose combined with uniformly labelled glucose.

Experimental designs are evaluated based on a linear (D-criterion) and non-

linear approach (S-criterion). Both approaches generate almost the same

input mixture, however, the linear approach is favoured due to its low com-

putational effort. The high amount of 1,2-13C2 glucose in the optimal designs

coincides with a high experimental cost, which is further enhanced when la-

belling is introduced in glutamine and aspartate tracers. Multi-objective

optimization gives the possibility to assess experimental quality and cost at

the same time and can reveal excellent compromise experiments. For ex-

ample, the combination of 100% 1,2-13C2 glucose with 100% position one

labelled glutamine and the combination of 100% 1,2-13C2 glucose with 100%

uniformly labelled glutamine perform equally well for the carcinoma cell line,

but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture

experiment.

We demonstrated the validity of a multi-objective linear approach to perform

optimal experimental designs for the non-linear problem of 13C-metabolic

flux analysis. Tools and a workflow are provided to perform multi-objective

design. The effortless calculation of the D-criterion can be exploited to per-

form high-throughput screening of possible 13C-tracers, while the illustrated

benefit of multi-objective design should stimulate its application within the

field of 13C-based metabolic flux analysis.

Keywords: 13C-based metabolic flux analysis, multi-objective optimal

experimental design, Streptomyces lividans , central carbon metabolism,

Carcinoma cell line, cost-effective experimental design
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1. Introduction

During the last decades, 13C-based metabolic flux analysis (13C-MFA)

has developed into an powerful tool in cell engineering and bioprocess op-

timization. Complementary to transcriptomics and proteomics, 13C-MFA of-

fers the possibility to in vivo quantify intracellular fluxes in different metabolic

phenotypes of cultured cell (Antoniewicz, 2013; Young, 2014). Several re-

search works on fundamental intracellular flux quantification as well as on

biotechnological applications (e.g., Ahn and Antoniewicz, 2013; Driouch et al.,

2012; Leighty and Antoniewicz, 2012) apply 13C-MFA but its wide-spread

use remains limited because of its computational challenges but possibly also

due to the expenses related to high 13C-tracers costs.

While most 13C-MFA studies make use of common and relatively cheap

labelled substrates (e.g., position one labelled glucose, uniformly labelled

glucose), the increasing availability of various labelled carbon sources opens

up new opportunities in 13C-MFA. Alternative 13C-tracers can increase flux

estimation quality or reduce practical flux identifiability problems. Metallo

et al. (2009) and Nargund and Sriram (2013), for example, selected 1,2-13C2-

glucose as an excellent tracer for resolving the phosphoglucoisomerase flux

and all metabolic fluxes in the central carbon metabolism of mammalian and

plant cells, respectively. In a follow-up study on mammalian cells, Walther

et al. (2012) applied a genetic algorithm to optimize mixtures of glucose and

glutamine tracers, which resulted in an optimal input mixture of 1,2-13C2-

glucose and uniformly labelled glutamine. The use of more customized la-

belled substrates brings along an increase in experimental cost, e.g., 1,2-13C2-

glucose costs three times more than uniformly labelled glucose. A clear view
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on the experimental cost of optimal 13C-tracer experiments with respect to

information content is, however, lacking and could impose a bottleneck for its

widespread acceptance in the biotech research community. Multi-objective

optimal design which optimizes for both cost-effectiveness and parameter es-

timation accuracy can be helpful here but has never been reported, as far as

the authors are aware.

The current paper focusses on cost-effective optimal design for 13C-based

metabolic flux analysis. Since both linear and non-linear approaches of opti-

mal experimental design are used for 13C-MFA, both methods are evaluated

in this paper. The classical optimal experimental design maximizes or min-

imizes a scalar function of the Fisher Information Matrix, which is a linear

approximation of the cost surface around its optimum. The novel optimal

experimental design approach accounts for the non-linear nature of the 13C-

MFA parameter estimation problem. This approach calculates non-linear

confidence intervals of intracellular fluxes and summarizes their accuracy in

the precision score, as proposed by Metallo et al. (2009). Within the knowl-

edge of the authors, no study has ever compared the linear and non-linear

approaches with respect to the resulting optimal designs.

Two different software platforms, namely influx s (Sokol et al., 2012) and

13C-FLUX2 (Weitzel et al., 2013), are used and the methods are illustrated

for two distinct networks: a network of a mammalian cell and a bacterial

cell, i.e., a lung carcinoma cell line and Streptomyces lividans, respectively.

The network of the carcinoma cell line is taken from Metallo et al. (2009)
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and Walther et al. (2012). An accurate description of the metabolism of such

cancer cells can help with identification of possible targets for treatment de-

velopment. Carcinoma cells are highly compartmentalized, grow on complex

media and require at least two carbon substrates.

In contrary, S. lividans is non-compartmentalized and can easily grow on one

carbon substrate. 13C-based metabolic flux studies on S. lividans and the

accompanying optimal input design have not yet been reported in literature,

notwithstanding their industrial importance. S. lividans is a Gram-positive

bacterium, mostly found in the soil. Streptomycetes are well known for their

production of a wide variety of antibiotics and hydrolytic enzymes (Anné

et al., 2012; D’Huys et al., 2011). These products are easily obtainable at

high concentration in the extracellular medium due to the inherent potent

secretion capacity of Streptomycetes (Anné et al., 2012). The latter ad-

vantage has resulted in studies of Streptomycetes as a host for heterologous

protein production. Vrancken and Anné (2009) show an extensive list of large

and small proteins with industrial and therapeutic applications, which are

successfully secreted by S. lividans. However, the secretion of heterologous

products causes a so-called metabolic burden, often leading to unsatisfactory

yields (Anné et al., 2012). Metabolic engineering can help here to relax this

metabolic burden and improve protein yields. Lule et al. (2012) show how

over-expression of phosphoenolpyruvate carboxykinase in S. lividans TK24

leads to an increased yield of heterologous human tumour necrosis factor-

alpha. To understand the origin of this positive effect as well as to find other

targets for metabolic engineering, metabolic flux analysis is the best tool to

use. Although preliminary flux balance analysis has already been performed
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for S. lividans TK24 (D’Huys et al., 2012), 13C-metabolic flux analysis is

necessary to increase the knowledge concerning intracellular flux distribu-

tion when using different kinds of substrates. A first step is to determine the

optimal glucose input (mixture). In addition, the impact on input designs

should be studied when using additional substrates in S. lividans, since re-

search demonstrated a preferential uptake of glutamate and aspartate over

all other amino acids (D’Huys et al., 2011).

For the above-mentioned networks, the present work aims to find optimal

and cost-effective mixtures of labelled substrates. The message of this pa-

per is not the specific input design as such, but the methodology for linear

and non-linear optimal design in combination with cost optimization. Such

a multi-objective approach is new in the field of metabolic flux analysis. To

achieve this goal, an optimal mixture of glucose and glutamine tracers will

be determined for a lung carcinoma cell line by optimizing a scalar func-

tion of the Fisher Information Matrix and a non-linear criterion, defined by

Metallo et al. (2009). Advantages and disadvantages of both approaches

will be discussed. Besides the results of specific tracers mixtures, a complete

overview will be shown, which enables a clearer understanding of the effect of

specific tracers on flux estimation accuracy. In a second part, the optimiza-

tion methodology will be repeated on S. lividans, fed with only glucose or

mixtures of glucose and aspartate tracers. For both cases, a multi-objective

optimization will make the trade-off between information content and exper-

imental cost and will determine a range of suitable compromises.
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2. Materials and Methods

Theoretical background and computational implementation details are

explained in this section. Figure 1(A) summarizes the different elements in

the overall multi-objective optimal experimental design framework. Specific

inputs are required to set up a complete metabolic network model (e.g.,

nominal fluxes, measurement type) which is further used to calculate linear

and non-linear designs for optimal parameter estimation (Section 2.1 and

2.2). Subsequently, the combination of experimental cost with information

content is embedded in the multi-objective framework (Section 2.3). Section

2.4 and 2.5 specify the applied network models and 13C-tracer inputs. To

conclude, Section 2.6 gives details on the software used, the implementation

of the multi-objective design framework as well as the supplementary files

provided with this paper.

2.1. Optimal experimental design: a linear approach

The Fisher Information Matrix (FIM) is the key factor in linear optimal

experimental design (OED) (e.g., Walter and Pronzato, 1997). The FIM

is a linear approximation of the cost surface in the neighbourhood of the

true parameters. It combines information on the sensitivity of the model

outputs to small variations in the model parameters and on the uncertainty

of the output measurements. For 13C-MFA, the model outputs are the net

substrate uptake fluxes and the mass isotopomer measurements, while the

model parameters are the free, independent fluxes. An important property of

the FIM is that the inverse of this matrix approximates the Cramér Rao lower

bound of the parameter variancecovariance matrix, when evaluated for the set
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of true parameter values v∗ (Walter and Pronzato, 1997). Since the inverse of

the FIM approximates the covariance matrix of the estimated parameters, the

diagonal of the FIM can be used to compute the confidence intervals of the

estimated fluxes. The optimal design is found by maximisation/minimisation

of a scalar function of the FIM. In the current work, the determinant of the

FIM is maximized (D-criterion), which aims at maximisation of the global

parameter estimation accuracy by minimizing the volume of the uncertainty

region. The linear optimal experimental design approach yields the following

equation in the case of 13C-MFA (e.g., Araúzo-Bravo and Shimizu, 2003):

max det(FIM) (1)

with FIM(v0,u) = Cov(v0)−1 =

(
∂M

∂v

)
v=v0
· Σ−1

M ·
(
∂M

∂v

)T

v=v0
(2)

where v0 are the nominal values for the independent fluxes, u is the

mixture design, M are the measured model outputs and ΣM is the variance-

covariance matrix of the output measurements.

In optimal experimental design for 13C-MFA experiments, the variables that

will influence the FIM are the substrates, the type of measurements, the

amount of measurements and the nominal values for the independent fluxes.

The type (e.g., MS and/or NMR, free and/or proteinogenic amino acids)

and amount of measurements are assumed to be fixed and known a priori.

All published results are derived for GC-MS measurements, although the

considered software platforms (Section 2.6) also accept NMR measurements.

The possible substrates which are taken into account will be discussed in
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Section 2.5. Due to the non-linear nature of the network model the FIM is

also influenced by the values of the free, independent fluxes v, which are not

known a priori. This requires a good first guess for values of the free fluxes,

i.e., the nominal fluxes v0. Previous research has already demonstrated the

insensitivity of the optimal design with respect to small changes of the values

in v0 (e.g., Wiechert et al., 2001) and was confirmed for the case studies in

this study (data not shown).

2.2. Optimal experimental design: a non-linear approach

Non-linear optimal experimental design accounts for the non-linear na-

ture of 13C-MFA. First, non-linear confidence intervals are computed via

Monte Carlo simulations. Afterwards, these confidence intervals are used to

calculate a criterion value, which assesses the global accuracy of the experi-

mental design.

In analogy with the linear approach, nominal values are chosen for the in-

dependent fluxes. Nominal values are used to calculate the corresponding

nominal measurement values. In each Monte Carlo run, new measurement

values are randomly sampled from normal distributions around their nomi-

nal values and the independent fluxes are estimated. The known standard

error of each measurement is used as standard deviation for the normal dis-

tribution. After N Monte Carlo runs (and N parameter estimations) the

95% confidence interval can be derived for each individual flux by taking the

2.5% lower and 97.5% upper bound. In the current research N equals 200,

which represents an acceptable compromise between duration of simulations

and accuracy on the confidence intervals.

In order to compare different experimental designs, the S-criterion or the
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so-called precision score, as defined by Metallo et al. (2009), is calculated.

This criterion assesses the width of the confidence intervals. The search for

the optimal design thus results in the following optimisation problem:

max S (3)

with S =
∑
i

wi · exp

(
−ri
β

)
(4)

ri = min

(
ui
|vi|

,
vi
|vi|

+ α

)
−max

(
li
|vi|

,
vi
|vi|
− α

)
(5)

where vi, ui and li are the mean value, the lower bound (2.5%) and the

upper bound (97.5%) of the estimated flux i, respectively. α is a cut-off

parameter that diminishes the influence of badly determined fluxes on the

precision score (Metallo et al., 2009). The resulting ri is a normalized range

for the flux i. These normalized ranges are combined in the formula for the

precision score S, where wi and β are a weighing parameter for flux i and

an overall scaling parameter, respectively. wi can be one or zero. In the

current work, the weighing parameters wi of all free independent fluxes are

set to 1, which results in an overall precision score that can vary from 0 (i.e.

completely unidentifiable network) to a value equal to the number of free

fluxes (i.e. perfectly identifiable network). The α and β values were set to 3.

To get a full picture of the optimization space, the design criteria are not

only calculated for specific predefined mixtures, but also for a grid, which

spans the total space of possible substrate mixtures. This grid enables the

identification of regions of optimal designs and indicates how the information

content alters for varying input mixtures.
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2.3. Multi-objective formulation

The multi-objective optimization problem for cost-effective 13C-MFA takes

the following form:

min {f1(u), f2(u)} (6)

s.t u ∈ U, (7)

with f1(u) ≡ det[FIM
(
v0,u

)
]−1 or S−1 (8)

f2(u) ≡
n∑

i=1

uiCi (9)

The decision variable u is the vector containing the mixture fractions of the

applied substrate tracers. U is the feasible space of these input mixtures and

C represents the cost of a tracer per gram. In this paper, the multi-objective

formulation contains two objectives, i.e. minimisation of the global parame-

ter estimation uncertainty (expressed by the inverse of the D- or S-criterion)

and minimisation of part of the consumable cost of the experiment (expressed

as the cost per 1 gram of glucose). Other objectives as well as combinations

of objectives can however be made. Whereas the decision variable vector

is the main focus in single-objective optimization, this focus shifts towards

the objective space in the multi-objective context. This is mainly due to

the fact that usually no single optimal solution exists in a multiple objective

optimization. Instead, the concept of Pareto optimality is introduced to de-

termine the optimal solutions (Miettinen, 1999):

A decision vector u∗ ∈ U is Pareto optimal if there does not exist another

decision vector u ∈ U such that fi(u) ≤ fi(u
∗) for all i = 1, . . . , k and

fj(u) < fj(u
∗) for at least one index j. This means that a decision vector is

Pareto optimal if there exists no other decision vector that improves at least
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one objective without having a negative effect on another one. The result-

ing set of Pareto optimal solutions forms the so-called Pareto optimal set or

Pareto front and returns, from a mathematical point of view, equally optimal

solutions. A decision maker (a person or group), with a clear understanding

of the problem, is now needed to select a specific solution.

To obtain the Pareto optimal set in the current study, the ε-constraint

method is used as described in Miettinen (1999):

min fl(u) (10)

s.t. fj(u) ≤ εj for all j = 1, . . . , k, j 6= l, (11)

u ∈ U, (12)

where l ∈ {1, . . . , k}. By solving this problem for a fixed range of εj-values,

the complete Pareto front can be calculated. For the bi-objective study, this

means an optimization of the D (or S) -criterion, while keeping the cost

constrained, or vice versa.

2.4. Network models

The reaction network for the central metabolism of the carcinoma cell line

is obtained from Metallo et al. (2009) and Walther et al. (2012). This network

contains the glycolysis pathway, the pentose phosphate pathway, the tricar-

boxylic cycle (TCA), amino acid synthesis and anaplerotic reactions. The

model counts 27 intracellular metabolites and 46 fluxes, of which some are

implemented as bidirectional. The designation for each flux can be found in

Supplementary file 1. The bidirectional fluxes are presented by their net and

exchange flux as described in Wiechert et al. (2001). Throughout the paper
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net and exchange fluxes will be denoted by an n or x at the end of the flux

name, respectively. Twenty fluxes were identified as free, independent fluxes.

Their nominal values can be found in the additional files (Supplementary file

2). Type, number and precision of measurements are taken in agreement with

Walther et al. (2012). A network for the central metabolism of S. lividans

TK24 was set up based on D’Huys et al. (2012). Pathways included are the

glycolysis pathway, pentose phosphate pathway, TCA cycle, anaplerotic and

gluconeogenic reactions and nitrogen metabolism. Biomass precursor effluxes

are calculated from the biomass composition of Streptomyces coelicolor, as

applied in Borodina et al. (2005). The final model counts 35 metabolites

and 71 fluxes of which some are implemented as bidirectional. The number

of free fluxes is 18, of which 6 are net fluxes and 12 are exchange fluxes. A

complete overview of the implemented network with the designation for each

flux and metabolite, information on the carbon mapping, the bidirectionality

of the reactions, the nominal flux values, and the presumed measurements

can be found in Supplementary file 1.

2.5. Input mixture composition

Considered labelled glucose tracers in both models are uniformly labelled

(U-GLC), position one labelled (1-GLC), unlabelled (0-GLC) and position

one and two labelled glucose (1,2-GLC). Various mixtures of these substrates

were applied, while the total glucose uptake remained the same. Applied glu-

tamine tracers for the carcinoma cell line are uniformly labelled (U-GLN),

position one labelled (1-GLN) and unlabelled glutamine (0-GLN). Various

mixtures of these substrates were simulated, while the total uptake was con-

strained to 30% of the glucose uptake. In the case of an additional aspartate
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uptake for S. lividans, uniformly labelled (U-ASP), position one labelled (1-

ASP) and unlabelled aspartate (0-ASP) tracers are considered. When con-

sidering aspartate as additional substrate, the uptake flux was constrained

to 10% of the glucose uptake, which is in agreement with the experimen-

tal observations of D’Huys et al. (2012). The prices of all substrates are

summarized in Table 1.

Table 1: Prices and product numbers of all the substrates that are used in the simulations.

Substrate Product number Price per gram

0-GLC G8270-1KG a $ 0.04

1-GLC CLM-420-1 b $ 212

U-GLC CLM-1396-1 b $ 194

1,2-GLC CLM-504-1 b $ 775

1-ASP 489972-100MG a $ 5340

0-ASP A9256-100G a $ 0.2

U-ASP CLM-1801-1 b $ 2450

1-GLN CLM-3612-1 b $ 1328

0-GLN G3126-100G a $ 0.61

U-GLN CLM-1822-0.5 b $ 5312
a Sigma Aldrich (Website consulted at 26/03/2014)

b Cambridge Isotope Laboratories (Website consulted at 26/03/2014)

2.6. Implementation and software platforms

All simulations were performed in two different 13C-MFA software envi-

ronments, i.e. 13C-FLUX2 (Weitzel et al., 2013) and influx s (Sokol et al.,

2012). This choice has different reasons. First of all, by offering methodology

implementations on different platforms, a broader range of research groups
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can be reached, since the threshold to start optimal designs is lowered. An

important fact here, is that design calculations on the carcinoma cell line,

performed by Metallo et al. (2009) and Walther et al. (2012), were not per-

formed in either 13C-FLUX2 or influx s. The current research, therefore,

offers two additional methodology implementations. Researchers can choose

the software they are familiar with. Secondly, not all software platforms are

equally efficient or user-friendly in respect to the desired calculations. Fi-

nally, input files of influx s (FTBL-files) can easily be converted to input

files for 13C-FLUX2 (FML-files), since 13C-FLUX2 offers a built-in feature

to convert FTBL-files.

Some notable differences between the software packages read as follows. Both

software platforms use different definitions for exchange fluxes. In influx s

all exchange fluxes are scaled to values between 0 and 1, which is not the

case in 13C-FLUX2. In order to gather comparable results (also with the re-

sults of Metallo et al. (2009) and Walther et al. (2012)) exchange fluxes were

not scaled. This required additional recalculations of the influx s results. In

contrary, Monte Carlo runs for non-linear calculation of the confidence in-

tervals are a built-in feature in influx s. This is not the case in 13C-FLUX2

and necessitates additional implementations. For both software platforms,

the complete implementation for experimental design led to a comprehensive,

user friendly, implementation which combines perl scripts, matlab-scripts and

third-party scripts to attain both linear and non-linear results. A schematic

overview of the non-linear implementation for 13C-FLUX2 for one specific

input design is summarized in Figure 1(B). Figure 1(A) situates this specific
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implementation within the complete framework of multi-objective experi-

mental design for 13C-MFA, which is established in this work. The frame-

work starts from a complete network model, either supplied as a FML- or

FTBL-files. This network model summarizes all possible user-defined in-

puts like network structure, nominal fluxes, measurement types and num-

bers, considered substrate tracers and their corresponding cost (green boxes).

By starting the implementation from this complete network model, flexibil-

ity with respect to user-defined inputs is ensured. Flexibility is also en-

sured within the optimal design simulations. By uncoupling the cost and

performance calculations, multi-objective design can easily be extended to

other criteria, like for example other widely used scalar function of the FIM

(Walter and Pronzato, 1997). For each step within the general work flow,

Figure 1(A) suggests some possible alterations. The different implementa-

tions of the information content calculation (i.e. D- and S-criterion in 13C-

FLUX2 and influx s) represent a major part of the presented work. All

scripts which enable the reproduction of the published results are available at:

https://perswww.kuleuven.be/∼u0006977/MathematicalBiosciences(Bouvin

etal).

For both the carcinoma cell line and S. lividans, the model reaction networks

were implemented in the FTBL- and FML-format. Once the complete net-

work is implemented, together with specification of the nominal values of

the free fluxes, the whole network is fixed and all dependent reactions and

measurements (model outputs) can be calculated. This is called a forward

simulation. The FIM can also be calculated in the forward simulation.
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3. Results and discussion

3.1. Linear versus non-linear optimal experimental design: a comparison

based on glucose tracers

In order to compare the results of D-optimal (linear) and S-optimal (non-

linear) experimental design, the information content of input mixture designs

is calculated for two exemplary metabolic networks. Mixtures of 1,2-GLC,

U-GLC and 0-GLC are fed to the networks of carcinoma cells and S. lividans.

The carcinoma cell network is also fed with unlabelled glutamine, which is an

essential substrate. Classically, 13C-MFA studies apply mixtures of U-GLC,

0-GLC and 1-GLC, but Metallo et al. (2009) and Nargund and Sriram (2013)

have shown that 1,2-GLC significantly augments the parameter estimation

quality in mammalian and plant cell networks. Figure 2 depicts the mixture

design triangles for 1,2-GLC, U-GLC and 0-GLC based on the linear and

non-linear approach, and it can immediately be noticed that both designs

reproduce very similar mixture triangles. The dark red coloured area indi-

cates the input designs with the highest information content. For D-optimal

design, a clear optimum is situated at a mixture of 56% 1,2-GLC and 44% U-

GLC for carcinoma cells and at a mixture of 67% 1,2-GLC and 33% U-GLC

for S. lividans. For S-optimal design, the area of high S-values is more spread

out, especially for S. lividans. The S-optimal design for the carcinoma cell

network (60/40 1,2-GLC/U-GLC) is consistent with the D-optimal design,

taking into account the different grid sizes. For S. lividans, local optima are

detected, i.e. 90/10 1,2-GLC/U-GLC and 70/30 1,2-GLC/U-GLC, the latter

of which closely resembles the D-optimal design. The moderate resolution of

the mixture triangle, the smeared out area of high S-values, and the mod-
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erate number of Monte Carlo iterations per condition makes the non-linear

approach prone to local optima. Levelling out of S-values can be related

to the cut-off factor α, which is an arbitrary value in the definition of the

precision score S (see Equation 5) and diminishes the influence of badly de-

termined fluxes on the S-criterion. For example, increasing the amount of

1,2-GLC can significantly increase some confidence intervals of fluxes in the

TCA (Metallo et al., 2009), but this is probably smoothed out by the α

factor. Apart from the effect of the cut-off factor, S-optimal design is com-

putationally intensive and cannot detect practically unidentifiable fluxes. An

experiment with a mixture of 50% 0-GLC and 50% U-GLC, for example, is

unable to determine the exchange flux of the glucose-6-phosphate isomeriza-

tion step in the carconima network. This incapacity is reflected by a zero

row in the FIM and a corresponding zero value for the D-criterion, while the

S-value still scores high. In other words, if the D-criterion scores high, a

good overall estimation of all fluxes is guaranteed.

Based on these analyses, it can be concluded that D-optimal and S-optimal

experimental design return comparable optimal input mixture designs. This

emphasizes the usefulness of linear optimal design of 13C-MFA, although this

experimental fluxomics technique is non-linear of nature. Besides the com-

putational advantage, calculations performed on identical networks always

result in the same D-criterion value regardless of the software environment

in which simulations are performed. Such a good agreement between lin-

ear and non-linear optimal experimental design was already postulated by

Millard et al. (2014), yet was not illustrated.
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Figure 2: Optimal mixture of 1,2-GLC,U-GLC and 0-GLC for carcinoma cell line and

S. lividans. The colormaps give an overview of the change in experimental quality when

the mixture composition changes. The red regions are the most informative experiments.

Both the linear and non-linear approach result in a similar lay-out of the colormaps. The

optimal mixture is indicated with a black dot. The grid sizes are different in the linear

and non-linear colormap. In the linear case, mixture compositions changes with steps of

1%, while in the non-linear case compositions change with steps of 10% in order to limit

calculation time.

3.2. Linear versus non-linear optimal experimental design: tracers versus

cost

Figure 3 evaluates the information content of a series of input mixtures

fed to the carcinoma cell network and lists the associated cost of each input
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design per gram of glucose. It should be emphasized that this unit of cost per

gram of glucose is chosen as a reference value for tracer comparison. When

only a single culture experiment is considered as described in Metallo et al.

(2009), the real financial cost is one order of magnitude lower. Repetitions of

optimal experiments would again multiply the costs. The considered set of

experimental inputs includes pure traditional tracers (e.g., uniformly labelled

glucose and position one labelled glucose) as well as 50/50 mixtures, which

are commonly used in literature (e.g., Wiechert et al., 2001; Fischer et al.,

2004; Möllney et al., 1999). Three mixtures from Figure 2 are also included,

i.e. 100% 1,2-GLC, 50/50 1,2-GLC/U-GLC and the S-optimal mixture of

60/40 1,2-GLC/U-GLC. The set is further extended with the well performing

mixture of 100% 1,2-GLC with 100% U-GLN (Walther et al., 2012; Metallo

et al., 2009). The impact of U-GLN is also assessed by using mixtures of

100% 1-GLC and 100% U-GLN and a mixture of 100% 0-GLC and 100%

U-GLN. This set already enables a comparison within a wide spectrum of

possible tracers.

Figure 3 clearly illustrates the out-performance of the mixture 1,2-GLC/U-

GLN (100/100), both in the linear and the non-linear design approach, but

it also emphasizes the tremendous increase of substrate costs. Second best

experiments are the mixtures of 1-GLC/U-GLN (100/100) followed by the

optimized 1,2-GLC/U-GLC (60/40) with 100% unlabelled glutamine. Costs

can drastically change depending on the input mixture, and it is the choice

of the researcher to select the applied input mixture balancing between in-

formation content and experimental costs. Selecting the experiment with

21



Figure 3: Information content and experimental cost for various sets of labelled substrates,

fed to the carcinoma cell line. S-criterion (left), D-criterion (middle) and cost per glucose-

gram (right) is shown for common and recently identified substrate mixtures, fed to the

network of carcinoma cell line.

the highest information and cost is one option, while the other option could

be to replicate the second best experiment in order to account for biological

variability and to increase the information content. In order to help scientists

to take such crucial decisions, a multi-objective optimal design approach can

be exploited. Screening for tracers which optimize both experimental quality

and cost could offer better alternatives.

Mixtures of 1-GLC/U-GLN and mixtures of 1,2-GLC/U-GLC have not yet

been reported in literature. Previous work only focused on identifying tracers

which maximize the quality of the parameter estimation with no constraints

on cost. The best performing mixture of 1,2-GLC/U-GLN was identified

by such search methods, which is confirmed in the current paper, but the

coinciding feed cost of approximately $ 2500 per glucose-gram was never men-

tioned as a possible bottleneck in future 13C-MFA. Seeing that the mixtures
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of 1-GLC/U-GLN and 1,2-GLC/U-GLC score well in experimental quality

and offer a decrease in cost (especially the 1,2-GLC/U-GLC mixture), these

designs could surface when considering cost as an extra optimization crite-

rion.

Furthermore, 13C-MFA would benefit from a high-throughput screening of

potential tracers and their mixture regions, which could enable a better un-

derstanding of the concept of optimal design in the field of 13C-MFA. It

could be argued that the attempt for a high-throughput screening would im-

ply a great, time-consuming effort, seeing the non-linear confidence-intervals.

However, as illustrated in Figure 2 and 3, the D-criterion calculation results

in the same relative ranking of the considered input designs, is calculated

with minor effort and (as discussed earlier) guarantees a good overall esti-

mations of all fluxes. The latter aspect is reinforced in Figure 3 for tracers

which can not resolve the entire flux map (like U-GLC combined with 0-GLN

and U-GLN combined with 0-GLC). Experiments with U-GLC for example

are essentially the same as experiments with 0-GLC in the upper glycolysis

pathway and the pentose phosphate pathway of the carinoma cell line. 0-

GLN can not reach the upper part of the network (see network specifications

in Metallo et al. (2009) and Walther et al. (2012)) which means that all

intracellular metabolites in the upper part of the network will be fully la-

belled, resulting in unidentifiable fluxes. Similarly, experiments with U-GLN

are proven to accurately predict fluxes in the TCA-cycle, but not in the gly-

colyis or the pentose phosphate pathway. A prerequisite in the calculation of

the covariance matrix is that all fluxes are structural identifiable (Wiechert

et al., 2001). Evaluation of the D-criterion is therefore not possible in the
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latter two mixture designs, but S-values are obtained due to the smoothing

property of the α cut-off factor. This statement can be verified by taking

a look at the non-linear 95% confidence intervals of the free fluxes, sum-

marized in the additional files (Supplementary file 2). Mixtures of U-GLC

combined with 0-GLN and U-GLN combined with 0-GLC give rise to very

large confidence intervals for a number of fluxes (e.g., v10.n, v2.n, v10.x,

v12.x, v4.x ) compared to the other mixtures, considered in Figure 3. The

relatively high S -values can therefore unmistakeably be attributed to the α

cut-off factor.

The confidence intervals also illustrate the potency of specific tracers to elu-

cidate fluxes in different pathways as stated in previous publications (e.g.,

Metallo et al., 2009; Nargund and Sriram, 2013). Introducing U-GLN clearly

reduces the confidence intervals in the TCA (e.g., v17.x and v18.x ), while

introducing 1,2-GLC has a big influence on fluxes in the pentose phosphate

pathway and the glycolysis (e.g,. v2.n, v10.n, v10.x and v11.x ). The same

conclusions can be drawn from the linear confidence intervals, which are also

summarized in the Supplementary file 2. As expected, these linear confidence

interval tend to overestimate the confidence intervals.

3.3. Multi-objective optimal experimental design

Multi-objective optimization jointly optimizes two objective functions, in

this case maximal information content and minimal experiment cost. Such

multi-objective approach is first demonstrated on the same exemplary net-

works and input mixtures as in Figure 2. The D-criterion is used to quantify

the performance of each input design. Figure 4 (left plots) depicts the Pareto

front for each network. Grey boxes mark points which do not obey the Pareto
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optimality definition and, therefore, do not belong to the Pareto front. Re-

maining points are all Pareto optimal and, therefore, mathematically spoken

equally optimal. Non-Pareto optimal points are found because the ε-value in

the problem statement (Equation 10) is implemented as equality constraints

instead of inequality constraints. For completeness, the Pareto front is drawn

onto the mixture triangle showing the composition changes along the Pareto

line (rights plots in Figure 4).

The Pareto optimal line now allows the user to make a motivated choice bal-

ancing global parameter estimation quality and experimental cost. Figure 4

(left plots) shows that maximum D-value and minimum cost are conflicting

objectives. In general, use of D-optimal mixtures allies with a very high cost.

Starting in the optimal mixture and gradually replacing 1,2-GLC fractions

with U-GLC systematically reduces cost, but strongly decreases the D-value.

Opposed to the most expensive input mixture (100% 1,2-GLC), which is not

Pareto optimal, a Pareto optimal mixture with equivalent D-value but lower

costs exists. For the carinoma cell line this is a mixture of 20% 1,2-GLC,

62% U-GLC and 18% 0-GLC, while for S. lividans this is a mixture of 43%

1,2-GLC, 53% U-GLC and 4% 0-GLC.

3.4. Multi-objective and multi-substrate optimal experimental design

Intracellular metabolites from cells growing on multiple substrates can

be labelled from different carbon sources. A multi-substrate optimal exper-

imental design optimizing the labelling ratios for all carbon sources and all

possible labelling compositions can thus be adopted. To illustrate this, the

multi-objective design for the carcinoma cell network (see Figure 4, top left)
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Figure 4: Result of multi-objective optimization between cost ($) and D-criterion for

the network of the carcinoma cell line (top) and S. lividans (bottom). The red crosses

are the result of the ε-constraint method when cost-values are constraint, while the blue

circles represent the optimization when the D-criterion is constraint. Due to this hard

constraints, experiments are identified which do not obey to the definition of the Pareto

front (grey boxes).

is expanded to include additional glucose and glutamine tracers with different

labelling positions. Selected results are shown in Figure 5. Mixtures trian-

gles for three labelled substrates are calculated while systematically changing

the fraction of two additional substrates. Different color codes are used for

different mixture triangles, with the red color depicting the mixture triangle

from Figure 2 (top left). Figure 5(A) illustrates the tremendous increase in

substrates cost associated with increasing ratios of uniformly labelled glu-
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tamine (U-GLN) to unlabelled glutamine (0-GLN), but it also significantly

increases the information content. Best performing substrate mixtures com-

bine 100% 1,2-GLC with fractions of U-GLN, and ideally with 100% U-GLN.

U-GLN reproduces informative labelling in the TCA metabolites enabling ac-

curate elucidation of fluxes in the TCA cycle. In this case, the Pareto front

depicts the trade-off between information loss and cost, but it does not offer

a better alternative for 100% 1,2-GLC/100% U-GLN.

Figure 5: Multi-objective and multi-substrate design on the network of the carcinoma cell

line. Figure A summarizes the D-criterion and the cost of all possible mixtures of 1,2-

GLC, U-GLC and 0-GLC, combined with possible mixtures of U-GLN and 0-GLN. Figure

B summarizes the D-criterion and the cost of all possible mixtures of 1,2-GLC, U-GLC and

0-GLC, combined with possible mixtures of U-GLN and 1-GLN. Mixtures with the same

ratio U-GLN/0-GLN or U-GLN/1-GLN are marked in the same color. 100% 1,2-GLC is

marked with an *.

In Figure 5(B), mixtures of uniformly labelled glutamine and position one

labelled glutamine are added. Two input mixtures return almost the same

highest global parameter estimation quality, but have significantly different
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costs. The mixture of 100% 1,2-GLC and 100% 1-GLN offers high experi-

mental quality and low cost. The D-criterion only drops from 4.3 to 3.4 as

compared to 100% 1,2-GLC with 100% U-GLN, while the cost drops from

approximately $ 2500 towards $ 1200 per glucose-gram. From both an eco-

nomical and experimental view, Figure 5(B) also reveals the fruitless effort

of using mixtures of U-GLN and 1-GLN. Mixtures of both lowers the D-

criterion, compared to the use of either pure 1-GLN and U-GLN, and belong,

according to the definition, not to the Pareto front.

In order to re-strengthen the claim that optimal design results based on the

D-criterion are valid, the S-criterion is calculated for the mixture of 100%

1,2-GLC with 100% 1-GLN. The resulting S-value of 15.57 closely approaches

the highest S-value (15.73) in Figure 3. Although these results point at the

relevant contribution of the 1-GLN tracer, it could not been identified as an

informative tracer by the genetic algorithm of Walther et al. (2012).

As discussed earlier, S. lividans can, in contrast with the carcinoma cell line,

grow on a single carbon substrate. When searching for the optimal tracers,

feeding with one or two substrates should therefore be treated as two different

design and estimation problems. Figure 2 already summarized the results

when applying common glucose tracers as single substrate. When consid-

ering S. lividans experiments grown on two substrates, additional mixtures

of 0-ASP, 1-ASP and U-ASP are considered. Different cost-experimental

quality overviews are calculated, of which the most interesting is shown in

Figure 6. Without performing any optimal designs, extrapolating the previ-

ous multi-objective results of the carcinoma cell line would result in a mixture
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of 100% 1,2-GLC combined with 100% 1-ASP. For the current network, this

would result in a non-optimal experiment with the maximum cost ($ 1350).

Instead, the highest global parameter estimation quality is obtained when

using a mixture of 90/10 1,2-GLC/U-GLC combined with 100% U-ASP. The

cost of this experiment is approximately $ 950.

These conclusions support the need and merit of multi-objective and multi-

substrate optimal experimental design when performing 13C-MFA on a new

network and should stimulate 13C-MFA researchers to perform such designs,

seeing the easy and quick calculation of the D-criterion.

Figure 6: Multi-objective and multi-substrate design on the network of S. lividans. The

figure summarizes the D-criterion and the cost of all possible mixtures of 1,2-GLC, U-

GLC and 0-GLC, combined with possible mixtures of U-ASP and 1-ASP. Mixtures with

the same ratio U-ASP/1-ASP are marked in the same color. 100% 1,2-GLC is marked

with an *.

3.5. Alternative software implementation

Implementation of the models and confidence interval calculations were

performed in both influx s and 13C-FLUX2. Further data analysis was
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performed in MATLAB. Calculations of the D-criterion were for both soft-

ware platforms exactly the same. Non-linear calculations however diverted,

due to the numerical nature of calculations, differentiation in optimizer and

differences in simulation set-up. The diversion is especially notable for badly

identifiable fluxes. 13C-FLUX2 appears less sensitive and still generates rel-

atively small confidence intervals, resulting in even more misleading values

of the S-criterion. For the carcinoma cell line, 100% U-GLN combined with

100% 0-GLC, for example, outperformed a 50/50 mixture of 1-GLC/U-GLC,

which is not in accordance with the D-criterion and previous published re-

sults (Walther et al., 2012). For this reason, published S-values are a result

of calculations with influx s. An overview of the corresponding S-values,

calculated in 13C-FLUX2, can be found in Supplementary file 2, Figure S4.

4. Conclusion

This study reports on cost-effective experimental designs for 13C-metabolic

flux analysis, implemented on the central carbon metabolism of S. lividans

and a carcinoma cell line. In a first part, the search for the optimal de-

sign was implemented based on a linear and a non-linear approach. In both

cases, validation is based on a single scalar value, i.e the D-criterion and the

S-criterion, respectively. The same optimal design is found, independently of

the chosen approach, which opens the door for a high-throughput screening

of labelled substrates based on the computationally effortless calculation of

the linear D-criterion, once the network has been characterized.

In a second part this screening possibility was combined with minimization

of experimental cost. Previous studies, focusing on identifying the optimal
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mixtures, do not emphasize the financial cost of experiments with respect

to parameter estimation quality, although the new tracers cause a significant

increase in required budget. When comparing different mixtures of 1,2-GLC,

U-GLC and 0-GLC, the optimal mixture in both networks consisted of 1,2-

GLC and U-GLC, i.e 56/44 1,2-GLC/U-GLC for the carinoma cell line and

67/33 1,2-GLC/U-GLC for the network of S. lividans. Both mixtures gener-

ate a noticeable decrease in cost as compared to 100% 1,2-GLC, which was

identified in previous research as the most effective tracer. Moreover, the

multi-objective approach offers a way to evaluate the information loss when

budget is constraint.

In the last part, the dimensionality of the problem is increased by extending

the set of possible substrate types. The most striking result was obtained in

the case of the carcinoma cell line, were a mixture of 1,2-GLC and 1-GLN

renders the same global accuracy for the parameter estimation, but costs

approximately $ 130 per culture experiment less (i.e. more than a 50% re-

duction) than the high performant mixture of 1,2-GLC and U-GLN identified

by Walther et al. (2012). In addition, a mere extrapolation of this result to

the network of S. lividans would result in an inferior experiment, since a

mixture of U-ASP with a high amount of 1,2-GLC outperforms 1-ASP with

1,2-GLC in both price as experimental quality. The latter remark highlights

the importance for an a priori experimental design when studying a new

organism or strain.

The presented framework for multi-objective optimal design for 13C-MFA is

very flexible and can be adopted to variable networks, phenotypes, substrates,
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criteria, mixture composition, etc. Labelling purity of the used tracers can

be accounted for in both software platforms. If this is not taken into account

during the design, this information should at least be determined and used

during flux estimation.

Follow-up studies are recommended to make use of the beneficial properties

of the D-criterion when designing optimal experiments. Recently, Walther

et al. (2012) developed a genetic algorithm to find the optimal labelling in

which non-linear calculations were used to evaluate the designs. Since the

D-criterion offers the same qualitative evaluation and requires less compu-

tational effort, the genetic algorithm could easily be extended with extra

objectives (like cost) and more substrates.

Possible variations in the search for the optimal input design can be found

in extending the multi-objective approach by other criteria or other design

approaches. If one specific flux is targeted, its confidence interval can, for ex-

ample, be used as an extra criterion. Another possibility is the combination

of multiple scalar criteria of the FIM, as illustrated by Telen et al. (2012).

Furthermore, combining the design approach based on the EMU basis vector

methodology, as applied by Crown et al. (2012), with financial constraints

could yield extra rational labelling rules in the search for optimal experimen-

tal designs in 13C-based metabolic flux analysis.
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Appendix. Supplementary Materials

Supplementary file 1 — Network of S. lividans and carcinoma cell line

Full implementation details of the network of S. lividans (metabolic re-

actions, carbon mapping, measurements, constraints) are provided.

Supplementary file 2 — Summary of linear and non-linear confidence inter-

vals of the carcinoma network and comparison of S-criterion obtained via

influx s and 13C-FLUX2.
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