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Abstract. Since Pearl’s seminal work on providing a formal language
for causality, the subject has garnered a lot of interest among philoso-
phers and researchers in artificial intelligence alike. One of the most
debated topics in this context is the notion of actual causation, which
concerns itself with specific – as opposed to general – causal claims.
The search for a proper formal definition of actual causation has evolved
into a controversial debate, that is pervaded with ambiguities and con-
fusion. The goal of our research is twofold. First, we wish to provide a
clear way to compare competing definitions. Second, we want to improve
upon these definitions so they can be applied to a more diverse range
of instances, including non-deterministic ones. To achieve these goals we
provide a general, abstract definition of actual causation, formulated in
the context of the expressive language of CP-logic (Causal Probabilis-
tic logic). We will then show that three recent definitions by Ned Hall
(originally formulated for structural models) and a definition of our own
(formulated for CP-logic directly) can be viewed and directly compared
as instantiations of this abstract definition, which also allows them to
deal with a broader range of examples.
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1 Introduction

Suppose we know the causal laws that govern some domain, and that we then
observe a story that takes place in this domain; when should we now say that, in
this particular story, one event caused another? Ever since [10] first analyzed this
problem of actual causation (a.k.a. token causation) in terms of counterfactual
dependence, philosophers and researchers from the AI community alike have
been trying to improve on his attempt. Following [11], structural equations have
become a popular formal framework for this [8, 9, 5, 7]. A notable exception is the
work of Ned Hall, who has extensively critiziced the privileged role of structural
equations for causal modelling, as well as the definitions that have been expressed
with it. He has proposed several definitions himself [2–4], the latest of which is
a sophisticated attempt to overcome the flaws he observes in those that rely too



heavily on structural equations. We have developed a definition of our own in
[1, 13], within the framework of CP-logic (Causal Probabilistic logic).

The relation between these different approaches is currently not well un-
derstood. Indeed, they are all expressed using different formalisms (e.g., neu-
ron diagrams, structural equations, CP-logic, or just natural language). There-
fore, comparisons between them are limited to verifying on which examples they
(dis)agree. In this paper, we work towards a remedy for this situation. We will
present a general, parametrized definition of actual causation in the context of
the expressive language of CP-logic. Exploiting the fact that neuron diagrams
and structural equations can both be reduced to CP-logic, we will then show
that our definition and three definitions by Ned Hall can be seen as particular
instantiations of this parametrized definition. This immediately provides a clear,
conceptual picture of the similarities and differences between these approaches.
Our analysis thus allows for a formal and fundamental comparison between them.

This general framework for comparing different approaches to actual cau-
sation is the main contribution of this paper. In addition, placing existing ap-
proaches in this framework may make it easier to improve/extend them. Our
versions of Hall’s definitions illustrate this, as their scope is expanded to also
include non-deterministic examples, and cases of causation by omission. Further,
our formulations prove to be simpler than the original ones and their application
becomes more straightforward. While our ambition is to work towards a frame-
work that encompasses a large variety of approaches to actual causation, this
goal is obviously infeasible within the scope of a single paper. We have there-
fore chosen to focus most of our attention on Hall, because his work is both
among the most refined and most influential in this field; in addition, it is also
representative for a larger body of work in the counterfactual tradition.

We first introduce the CP-logic language in Section 2. In Section 3, a gen-
eral definition of actual causation is first presented, and then instantiated into
four concrete definitions. Section 4 offers a succinct representation of all these
definitions, and an illustration of how they compare to each other.

2 CP-logic

We give a short, informal introduction to CP-logic. A detailed description can be
found in [14]. The basic syntactical unit of CP-logic is a CP-law, which takes the
general form Head ← Body. The body can in general consist of any first-order
logic formula. However, in this paper, we restrict our attention to conjunctions of
ground literals. The head contains a disjunction of atoms annotated with prob-
abilities, representing the possible effects of this law. When the probabilities in
a head do not add up to one, we implicitly assume an empty disjunct, annotated
with the remaining probability.

Each CP-law models a specific causal mechanism. Informally, if the Body of
the law is satisfied, then at some point it will be applied, meaning one of the
disjuncts in the Head is chosen, each with their respective probabilities. If a
disjunct is chosen containing an atom that is not yet true, then this law causes



it to become true; otherwise, the law has no effect. A finite set of such CP-laws
forms a CP-theory, and represents the causal structure of the domain at hand.
The domain unfolds by laws being applied one after another, where multiple
orders are often possible, and each law is applied at most once. We illustrate
with an example from [3]:

Suzy and Billy each decide to throw a rock at a bottle. When Suzy does
so, her aim is accurate with probability 0.9. Billy’s aim is slightly worse,
namely 0.8. If a rock hits it, the bottle breaks.

This small causal domain can be expressed by the following CP-theory T :

Throws(Suzy)← . (1)

Throws(Billy)← . (2)

(Breaks : 0.9)← Throws(Suzy). (3)

(Breaks : 0.8)← Throws(Billy). (4)

The first two laws are vacuous (i.e., they will be applied in every story) and
deterministic (i.e., they have only one possible outcome, where we leave implicit
the probability 1). The last two laws are non-deterministic, causing either the
bottle to break or nothing at all.

The given theory summarizes all possible stories that can take place in this
model. For example, it allows for the story consisting of the following chain of
events:

Suzy and Billy both throw a rock at a bottle. Suzy’s rock gets there
first, shattering the bottle. However Billy’s throw was also accurate, and
would have shattered the bottle had it not been preempted by Suzy’s
throw.

To formalize this idea, the semantics of CP-logic uses probability trees [12]. For
this example, one such tree is shown in Figure 1. Here, each node represents a
state of the domain, which is characterized by an assignment of truth values to
the atomic formulas, in this case Throws(Suzy), Throws(Billy) and Breaks.
In the initial state of the domain (the root node), all atoms are assigned their
default value false. In this example, the bottle is initially unbroken and the rocks
are still in Billy and Suzy’s hands. The children of a node x are the result of the
application of a law: each edge (x, y) corresponds to a specific disjunct that was
chosen from the head of the law that was applied in node x. In this particular
case, law (1) is applied first, so the assignment in the child-node is obtained by
setting Throws(Suzy) to true, its deviant value. The third state has two child-
nodes, corresponding to law (3) being applied and either breaking the bottle (left
child) or not (right child). The leftmost branch is thus the formal counterpart
of the above story, where the last edge represents the fact that Billy’s throw
was also accurate, even though there was no bottle left to break. A branch ends
when no more laws can be applied.

A probability tree of a theory T in CP-logic defines an a priori probability
distribution PT over all things that might happen in this domain, which can
be read off the leaf nodes of the branches by multiplying the probabilities on
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Fig. 1: Probability tree for Suzy and Billy.

the edges. For instance, the probability of the bottle breaking is the sum of the
probabilities of the leaves in which Breaks is true – the white circles in Figure
1 – giving 0.98. We have shown here only one such probability tree, but we can
construct others as well by applying the laws in different orders.

An important property however is that all trees defined by the same theory
result in the same probability distribution. Thus even though the order in a
branch can capture temporal properties of the corresponding story – which play
a role in deciding actual causation – it does not affect the resulting assignment.
To ensure that this property holds even when there are bodies containing neg-
ative literals, CP-logic makes use of a probabilistic variant of the well-founded
semantics [14]. Simply put, this means the condition for a law to be applied in a
node is not merely that its body is currently satisfied, but that it will remain so.
This implies that a negated atom in a body should not only be currently assigned
false, but actually has to have become impossible, so that it will remain false
through to the end-state. For atoms currently assigned true, it always holds
that they remain true, hence here there is no problem.

Counterfactual Probabilities In the context of structural equations, [11]
studies counterfactuals and shows how they can be evaluated by means of a
syntactic transformation. In their study of actual causation and explanations,
[6, p. 27] also define counterfactual probabilities (i.e., the probability that some
event would have had in a counterfactual situation). [15] present an equivalent
method for evaluating counterfactual probabilities in CP-logic, also making use
of syntactic transformations.

Assume we have a branch b of a probability tree of some theory T . To make
T deterministic in accordance with the choices made in b, we transform T into
T b by replacing the heads of the laws that were applied in b with the disjuncts



that were chosen from those heads in b. For example, if we take as branch b the
previous story, then T b would be:

Throws(Suzy)← .

Throws(Billy)← .

Breaks← Throws(Suzy).

Breaks← Throws(Billy).

We will use Pearl’s do()-operator to indicate an intervention [11]. The inter-
vention on a theory T that ensures variable C remains false, denoted by do(¬C),
removes C from the head of any law in which it occurs, yielding T |do(¬C). For ex-
ample, to prevent Suzy from throwing, the resulting theory T |do(¬Throws(Suzy))
is given by:

← .

Throws(Billy)← .

(Breaks : 0.9)← Throws(Suzy).

(Breaks : 0.8)← Throws(Billy).

Laws with an empty head are ineffective, and can thus simply be omitted. The
analogous operation do(C) on a theory T corresponds to adding the deterministic
law C ←.

With this in hand, we can now evaluate a Pearl-style counterfactual probabil-
ity “given that b in fact occurred, the probability that ¬E would have occurred
if ¬C had been the case” as PT b(¬E|do(¬C)).

3 Defining Actual Causation Using CP-logic

We now formulate a general, parametrized definition of actual causation, which
can accommodate several concrete definitions by filling in details that we first
leave open. We demonstrate this using definitions by Hall and one by ourselves.
For the rest of the paper, we assume that we are given a CP-theory T , an actual
story b in which both C and E occurred, and we are interested in whether or
not C caused E. By Con we denote the quadruple (T, b, C,E), and refer to this
as a context.

3.1 Actual Causation in General

For reasons of simplicity, the majority of approaches (including Hall) only con-
sider actual causation in a deterministic setting. Further, it is taken for granted
that the actual values of all variables are given. In such a context, counterfac-
tual dependence of the event E on C is expressed by the conditional: if do(¬C)
then ¬E, where it is assumed that all exogenous variables take on their actual
values. In our probabilistic setting, the latter translates into making those laws
that were actually applied deterministic, in accordance with the choices made in
the story. However in many cases some exogenous variables simply do not have
an actual value to start with. For example, if Suzy is prevented from throwing
her rock, then we cannot say what the accuracy would have been had she done
so. In CP-logic, this would be represented by the fact that law (3) is not ap-
plied. Hence, in a more general setting, it is required only that do(¬C) makes



¬E possible. In other words, we get a probabilistic definition of counterfactual
dependence:

Definition 1 (Dependence). E is counterfactually dependent on C in (T, b)
iff

PT b(¬E|do(¬C)) > 0.

As counterfactual dependency lies at the heart of causation for all of the
approaches we are considering, Dependence represents the most straightforward
definition of actual causation. It is however too crude and allows for many coun-
terexamples, preemption being the most famous.

More refined definitions agree with the general structure of the former, but
modify the theory T in more subtle ways than T b does. We identify two different
kinds of laws in T , that should each be treated in a specific way. The first are
the laws that are intrinsic with respect to the given context. These should be
made deterministic in accordance with b. The second are laws that are irrelevant
in the given context. These should simply be ignored. Together, the methods of
determining which laws are intrinsic and irrelevant, respectively, will be the
parameters of our general definition. Suppose we are given two functions Int
and Irr, which both map each context (T, b, C,E) to a subset of the theory T .
With these, we define actual causation as follows:

Definition 2 (Actual causation given Int and Irr). Given the context Con,
we define that C is an actual cause of E if and only if E is counterfactually
dependent on C according to the theory T ′ that we construct as:

T ′ = [T \ (Irr(Con) ∪ Int(Con))] ∪ Int(Con)b.

For instance, the naive approach that identifies actual causation with coun-
terfactual dependence corresponds to taking Irr as the constant function {} and
Int(Con) as {r ∈ T | r was applied in b}. From now on, we use the following,
more legible notation for a particular instantiation of this definition:

Irr-Dependence 1 No law r is irrelevant.

Intr-Dependence 1 A law r is intrinsic iff r was applied in b.

If desired, we can order different causes by their respective counterfactual
probabilities, as this indicates how important the cause was for E.

3.2 Beckers and Vennekens 2012 Definition

A recent proposal by the current authors for a definition of actual causation
was originally formulated in [13], and later slightly modified in [1]. Here, we
summarize the basic ideas of the latter, and refer to it as BV12. We reformulate
this definition in order to fit into our framework. It is easily verified that both
versions are equivalent.



Because we want to follow the actual story as closely as possible, the condition
for intrinsicness is exactly like before: we force all laws that were applied in b to
have the same effect as they had in b.

To decide which laws were relevant for causing E in our story, we start from
a simple temporal criterion: every law that was applied after the effect E took
place is irrelevant, and every law that was applied before isn’t. For example, to
figure out why the bottle broke in our previous example, law (4) is considered
irrelevant, because the bottle was already broken by the time Billy’s rock arrived.
For laws that were not applied in b, we distinguish laws that could still be applied
when E occurred, from those that could not. The first are considered irrelevant,
whereas the second aren’t. This ensures that any story b′ that is identical to b
up to and including the occurrence of E provides the same judgements about
the causes of E, since any law that is not applied in b but is applied in b′, must
obviously occur after E.

Irr-BV12 1 A law r is irrelevant iff r was not applied before E in b, although
it could have. (I.e., it was not impossible at the time when E occurred.)

Intr-BV12 1 A law r is intrinsic iff r was applied in b.

3.3 Hall 2007

One of the currently most refined concepts of actual causation is that of [4].
Although Hall uses structural equations as a practical tool, he is of the opinion
that intuitions about actual causation are best illustrated using neuron diagrams.
A key advantage of these diagrams, which they share with CP-logic, is that they
distinguish between a default and deviant state of a variable. Proponents of
structural equations, on the other hand, countered Hall’s approach by criticizing
neuron diagrams’ limited expressivity [9, p. 398]. Indeed, a neuron diagram, and
thus Hall’s approach as well, is very limited in the kind of examples it can express.
In particular, neuron diagrams can only express deterministic causal relations
and they also lack the ability to directly express causation by omission, i.e.,
that the absence of C causes E. Hall’s solution is to argue against causation by
omission altogether. By contrast, we will offer an improvement of Hall’s account
that generalizes to a probabilistic context, and can also handle causation by
omission. In short, we propose CP-logic as a way of overcoming the shortcomings
of both structural equations and neuron diagrams.

In a neuron diagram, a neuron can be in one of two states, the default “off”
state and the deviant “on” state in which the neuron “fires”. Different kinds of
links define how the state of one node affects the other. For instance, in (a), E
fires iff at least one of B or D fires, D fires iff C fires, and B fires iff A fires
and C doesn’t fire. Nodes that are “on” are represented by full circles and nodes
that are “off” are shown as empty circles.
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Diagrams (a) and (b) represent the same causal structure, but different stories:
in both cases there are two causal chains leading to E, one starting with C
and another starting with A. But in (a) the chain through B is preempted by
C, whereas in (b) there is nothing for C to preempt, as A doesn’t even fire.
Therefore (a) is an example of what is generally known as Early Preemption,
whereas (b) is not.

Although Hall presents his arguments using neuron diagrams, his definitions
are formulated in terms of structural equations that correspond to such diagrams
in a straightforward way: for each endogenous variable there is one equation,
which contains a propositional formula on the right concisely expressing the
dependencies of the diagram.

Any structural model M can also be read as a CP-logic theory T . The firing of
the neurons and the resulting assignment to the variables in M , then correspond
to a story b.

One important difference between structural equations and CP-laws, is that
we are not limited to using a single CP-law for each variable. As each law repre-
sents a separate causal mechanism, and only one mechanism can actually make
a variable become true, we will represent dependencies such as that of E by
three laws, corresponding to the three different ways in which B and D can
cause E: each by themselves, or the two of them simultaneously. At first sight
the conjunctive law may seem redundant, but if one has a temporal condition
for irrelevance – eg. BV12 – then it may not be. The translation of examples
(a) and (b) into CP-logic is given by the following CP-theory – where p and q
represent some probabilities:

(A : p)← .

(C : q)← .

B ← A ∧ ¬C.
D ← C.

E ← B.

E ← D.

E ← B ∧D.
The idea behind Hall’s definition is to check for counterfactual dependence

in situations which are reductions of the actual situation, where a reduction is
understood as “a variant of this situation in which strictly fewer events occur”.
In other words, because the counterfactual dependence of E on C can be masked
by the occurrence of events which are extrinsic to the actual causal process, we
look at all possible scenario’s in which there are less of these extrinsic events.
Hall puts it like this [4, p. 129]:

Suppose we have a causal model for some situation. The model consists of
some equations, plus a specification of the actual values of the variables.
Those values tell us how the situation actually unfolds. But the same
system of equations can also represent nomologically possible variants:



just change the values of one or more exogenous variables, and update
the rest in accordance with the equations. A good model will thus be able
to represent a range of variations on the actual situation. Some of these
variations will be – or more accurately, will be modeled as – reductions
of the actual situation, in that every variable will either have its actual
value or its default value. Suppose the model has variables for events C
and E. Consider the conditional

if C = 0; then E = 0

This conditional may be true; if so, C is a cause of E. Suppose instead
that it is false. Then C is a cause of E iff there is a reduction of the
actual situation according to which C and E still occur, and in which
this conditional is true.

Rather than speaking of fewer events occuring, in this definition Hall charac-
terizes a reduction in terms of whether or not variables retain their actual value.
This is because in the context of neuron diagrams, an event is the firing of a
neuron, which is represented by a variable taking on its deviant value, i.e., the
variable becoming true. In the dynamic context of CP-logic, the formal object
that corresponds most naturally to Hall’s informal concept of an event is the
transition in a probability tree (i.e., the application of a causal law) that makes
such a variable true. Therefore we take a reduction to mean that no law is ap-
plied such that it makes a variable true that did not become true in the actual
setting.

To make this more precise, we introduce some new formal terminology. Let
d be a branch of a probability tree of the theory T . Lawsd denotes the set of
all laws that were applied in d. The resulting effect of the application of a law
r ∈ Lawsd – i.e., the disjunct of the head which was chosen – will be denoted
by rd, or by 0 if an empty disjunct was chosen. The set of true variables in the
leaf of d will be denoted by Leafd.

A branch d is a reduction of b iff ∀r ∈ Lawsd : rd = 0∨∃s ∈ Lawsb : rd = sb.
Or, equivalently, Leafd ⊆ Leafb.

A reduction of b in which both C and E occur – i.e., hold in its leaf – will

be called a (C,E)-reduction. The set of all of these will be denoted by Red
(C,E)
b .

These are precisely the branches which are relevant for Hall’s definition.

Definition 3. We define that C is an actual cause of E iff

(∃d ∈ Red
(C,E)
b : PTd(¬E|do(¬C)) > 0).

Theorem 1 shows the correctness of our translation. Proofs of all theorems can
be found in the Appendices.

Theorem 1. Given a neuron diagram with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T and story b
that we get when applying the translation discussed above. Then C is an actual
cause of E in the diagram according to Hall’s definition iff C is an actual cause
of E in b and T according to Definition 3.



At first sight, Definition 3 does not fit into the general framework we intro-
duced earlier, because of the quantifier over different branches. However, we will
now show that for a significant group of cases it actually suffices to consider just
a single T ′, which can be described in terms of irrelevant and intrinsic laws.

Rather than looking at all of the reductions separately, we single out a mini-
mal structure which contains the essence of our story. In general such a minimal
structure need not be unique, as the story may contain elements none of which
are necessary by themselves yet without all of them the essence is changed. The
following makes this more precise.

Definition 4. A law r is necessary iff

– ∀d ∈ Red
(C,E)
b : r ∈ Lawsd and

– ∀d, e ∈ Red
(C,E)
b : rd = re.

We define Nec(b) as the set of all necessary laws.

In general it might be that there are two (or more) edges which are un-
necessary by themselves, but at least one of them has to be present. Consider
for example a case where C causes both A and B, and each of those in return
is sufficient to cause E. Then neither the law r = A : ... ← C nor the law
r′ = B : ... ← C is necessary, yet at least one of them has to be applied to get
E. In cases where this complication does not arise, we shall say that the story
is simple.

Definition 5. A story b is simple iff the following holds:

– ∀r ∈ Lawsb : the head of r contains at most two disjuncts;

– ∀d ∈ Red
(C,E)
b , for all non-deterministic r ∈ Lawsd \Nec(b) : ∃e ∈ Red

(C,E)
b

so that e = d up to the application of r, and rd 6= re.

As an example, note that the story in the previous paragraph is not simple.
Neither law r nor r′ is necessary. Now consider the (C,E)-reduction d where first
r′ fails to cause B, followed by r causing A, which in turn causes E. The branch
that is identical to d up to and including the application of r′ but in which r
does not cause A, is not a (C,E)-reduction.

We are now in a position to formulate a theorem that will allow us to adjust
Hall’s definition into our framework.

Theorem 2. If (∃d ∈ Red
(C,E)
b : PTd(¬E|do(¬C)) > 0) then PTNec(b)(¬E|do(¬C)) >

0. If b is simple, then the reverse implication holds as well.

It is possible to add an additional criterion to turn this theorem into an equiv-
alence that also holds for non-simple stories. We choose not to do this, because
all of the examples Hall discusses are simple, as are all of the classical exam-
ples discussed in the literarure, such as Early and Late Preemption, Symmetric
Overdetermination, Switches, etc.

As a result of this theorem, rather than having to look at all (C,E)-reductions
and calculate their associated probabilities, we need only find all the necessary



laws and calculate a single probability. If the story b is simple, then this proba-
bility represents an extension of Hall’s definition, since they are equivalent if one
ignores the value of the probability but for it being 0 or not. To obtain a work-
able definition of actual causation, we present a more constructive description
of necessary laws. From now on we call the node resulting from the application
of a law r in b Nodebr.

Theorem 3. If b is simple, then a non-deterministic law r is necessary iff there
is no (C,E)-reduction passing through a sibling of Nodebr.

With this result, we can finally formulate our version of Hall’s definition,
which we will refer to as Hall07.

Irr-Hall07 1 No law r is irrelevant.

Intr-Hall07 1 A law r is intrinsic iff r was applied in b, and there is no branch
d passing through a sibling of Nodebr such that {C,E} ⊆ Leafd ⊆ Leafb.

3.4 Hall 2004 Definitions

[3] claims that it is impossible to account for the wide variety of examples in
which we intuitively judge there to be actual causation by using a single, all-
encompassing definition. Therefore he defines two different concepts which both
deserve to be called forms of causation but are nonetheless not co-extensive.

Dependence The first of these is simply Dependence, as stated in Definition
1. As mentioned earlier, Hall only considers deterministic causal relations, and
thus the probabilistic counterfactual will either be 1 or 0.

Production The second concept tries to express the idea that to cause some-
thing is to bring it about, or to produce it. The original, rather technical, defini-
tion can be found in the appendices, but the following informal version suffices
for our purposes: C is a producer of E iff there is a directed path of firing neurons
in the diagram from C to E. In our framework, this translates to the following.

Irr-Production 1 A law r is irrelevant iff r was not applied before E in b, or
if its effect was already true when it was applied.

Intr-Production 1 A law r is intrinsic iff r was applied in b.

Theorem 4. Given a neuron diagram with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T , and a story b,
that we get when applying the translation discussed earlier. C is a producer of E
in the diagram according to Hall iff C is a producer of E in b and T according
to the CP-logic version stated here.

Besides providing a probabilistic extension, the CP-logic version of produc-
tion also offers a way to make sense of causation by omission. That is, just as
with all of the definitions in our framework in fact, we can extend it to allow
negative literals such as ¬C to be causes as well.



4 Comparison

Table 1 presents a schematic overview of the four definitions discussed so far, as
well as two new ones, that we give appropriate names. The columns and rows
give the criteria for a law r of T to be considered intrinsic, respectively irrelevant,
in relation to a story b, and an event E. By r ≤b E, we denote that r was applied
in b before E occurred.

Table 1: Spectrum of definitions

Irrelevant Intrinsic
r ∈ Lawsb r ∈ Nec(b)

∅ Dependence Hall07
∃d : (d = b up to E) ∧ r ≥d E BV12 BV07

r ≮b E ∨ rb <b r Production Production07

In order to illustrate the working of the definitions and to highlight their
differences, we present an example:

Assassin decides to poison the meal of a victim, who subsequently Dies
right before dessert. However, Murderer decided to murder the victim
as well, so he poisoned the dessert. If Assassin had failed to do his job,
then Backup would have done so all the same.

The causal laws that form the context of this story are give by the following
theory:

(Assassin : p)← .

(Murderer : q)← .

(Backup : r)← ¬Assassin.

Dies← Assassin.

Dies← Backup.

Dies←Murderer.

In this story, did Assassin cause Dies? We leave it to the reader to verify
that in this case the left intrinsicness condition from the table applies to the
first two non-deterministic laws, whereas the right one only applies to the first.
The second irrelevance condition only applies to the last law, whereas the third
one applies to the last two laws and to the third. This results in the following
probabilities representing the causal status of Assassin:

Production BV12 Hall07 Dependence
1 1− r (1− r) ∗ (1− q) 0

Different motivations can be provided for these answers:

– Production: Assassin brought about the death of the victim all by himself,
hence he is the full cause.



– BV12: If Assassin hadn’t killed him, then that omission itself would not
have lead to victim’s death with a probability of (1− r). Hence, Assassin is
a cause of the death to this extent.

– Hall07: Ignoring the actually redundant Murderer, if Assassin doesn’t kill
him, then there is a (1 − r) ∗ (1 − q) probability that the victim will die.
Hence he is the cause to that extent.

– Dependence: The victim would have died anyway, so Assassin is not a
cause at all.

Rather than saying that only one of these answers is correct, we prefer to
think of them as answering different questions, all of which have their use in some
context or other. (Eg., to determine responsibility, understand Assassin’s state
of mind, minimize the chance of murders, etc.) More generally, the definitions
could be characterized by describing which events are allowed to happen in the
counterfactual worlds they take into consideration to judge causation.

– Production: Only those events – i.e., applications of laws – which led to E,
and not differently – i.e., with the same outcome as in the actual story.

– BV12: Those events which led to E, and not differently, and also those
events which were prevented from happening by these.

– Hall07: Any event can happen, as long as those events that were essential
to lead to E do not happen differently.

– Dependence: Any event can happen, as long as those events that did ac-
tually happen do not happen differently.

5 Conclusion

In this paper we have used the formal language of CP-logic to formulate a general
definition of actual causation, which we used to express four specific definitions:
a proposal of our own, and three definitions based on the work of Hall. By mov-
ing from the deterministic context of neuron diagrams to the non-deterministic
context of CP-logic, the latter definitions improve on the original ones in two
ways: they can deal with a wider class of examples, and they allow for a graded
judgment of actual causation in the form of a conditional probability. Further,
comparison between the definitions is facilitated by presenting them as vari-
ous ways of filling in two central concepts. We have illustrated the flexibility of
CP-logic in expressing different definitions, opening the path to other proposals
beyond the ones here discussed.

6 Appendices

To facilitate the proof of the first theorem, we introduce the following lemma.

Lemma 1. Given a neuron diagram D with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T , and a story



b, that we get when applying the translation discussed earlier. Then a neuron
diagram R is a reduction of D in which both C and E occur iff its translation d
– another branch of T – is a (C,E)-reduction of b.

Proof. Assume we have a reduction R of a neuron diagram D, and b is the
story corresponding to D. As R is simply a different assignment of the variables
occurring in D, brought about by the same equations that existed for D, this
reduction corresponds to another branch d of T , in which C and E hold in its
leaf. Moreover, R can be constructed starting from D by changing some of the
exogenous variables, say U ′, from their actual values to their default value, and
then updating the endogenous variables in accordance with the deterministic
equations. It being a reduction, this caused no new variables to take on their
deviant value in comparison to D. Let r be a law that occurs in d.

If r is non-deterministic, it must be one of the laws representing an exogenous
variable V , i.e., a law with an empty body, and hence it was also applied in b. R
being a reduction, either V has the same value in R as in the original diagram,
or it has its default value. In the former case, this means that rd = rb, in the
latter case rd = 0, both of which satisfy the requirement for d being a reduction.

If r is deterministic, the precondition for r has to be fulfilled in d, causing
some variable V to take on its deviant value. The same must hold true of the
precondition for the equation for V , and thus V takes on its deviant value in R
as well, implying it did so in D too. Therefore there must have been some law
applied in b that made V take on its deviant value as well. From this it follows
that d is a (C,E)-reduction of b.

Now assume we have a theory T and a story b that form the translation of a
neuron diagram D, such that C and E hold in b, and that d is a (C,E)-reduction
of b. As the leaf of d contains an assignment to all of the variables that satisfies
the equations of M , there is a neuron diagram R that corresponds to d. We can
easily go over all the previous steps in the other direction, to conclude that R is
a reduction of D in which C and E are true.

Theorem 1. Given a neuron diagram with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T and story b
that we get when applying the translation discussed above. Then C is an actual
cause of E in the diagram according to Hall’s definition iff C is an actual cause
of E in b and T according to Definition 3.

Proof. We start with the implication from left to right. Assume we have a neuron
diagram D, in which both C and E fire. This translates into a theory T and a
story b, for which C and E hold in its leaf. Further, assume there is a reduction R
of this diagram, in which both C and E continue to hold, and in this reduction,
if C = 0; then E = 0. By the above lemma, this translates into a (C,E)-reduction
of b, say d.

In R, if C = 0; then E = 0. The conditional C = 0 is interpreted as a counter-
factual locution, and corresponds to do(¬C). As there are no non-deterministic
laws with non-empty preconditions, T d is simply the deterministic theory that



determines the same assignment as R, meaning PTd(¬E|do(¬C)) = 1, which
concludes this part of the proof.

Now assume we have a theory T and a story b that form the translation of a
neuron diagram D, such that C and E hold in b, and that d is a (C,E)-reduction
of b for which the given inequality holds. By the above lemma, the translation
of d, say R, is reduction of D in which C and E occur. As mentioned in the
previous paragraph, T d simply corresponds to an assignment of values to the
variables occurring in D that follows its equations. Since R describes this same
assignment, in R too if C = 0; then E = 0. This concludes the proof.

Theorem 2. If (∃d ∈ Red
(C,E)
b : PTd(¬E|do(¬C)) > 0) then PTNec(b)(¬E|do(¬C)) >

0. If b is simple, then the reverse implication holds as well.

Proof. We start with proving the first implication. Assume we have a d ∈
Red

(C,E)
b such that PTd(¬E|do(¬C)) > 0. This implies that there is at least

one branch e of a probability tree of T d|do(¬C) for which ¬E holds in its leaf.
We prove by induction on the length of e that this implies the existence of a
similar branch e′ of a probability tree of TNec(b)|do(¬C) for which ¬E holds in
its leaf, which is what is required to establish the theorem.

Base case: if e consists of a single node – i.e., the root node where all atoms
are false – then this means that no laws of T d|do(¬C) can be applied. Since
the bodies of the laws in TNec(b)|do(¬C) are identical to those of the laws in
T d|do(¬C), we simply have e′ = e.

Induction case: Assume we have a sub-branch en of e with length n > 1,
starting from the root node, and that we also have a structurally identical sub-
branch e′n. By it being structurally identical we mean that they are identical
except for the fact that they may have different probabilities along the edges.

If en = e, then no more laws can be applied in the final node of en. This
must then hold for the final node of e′n as well, so we are finished. Otherwise,
we know that there is a sub-branch en+1 which extends en along e with a node
O. Assume that the law which was applied to get to O is r.

If r is deterministic, then r occurs in T d|do(¬C) exactly as it does in TNec(b)|do(¬C).
Since both branches are structurally identical, e′n can be extended in the exact
same manner as en, so there has to be a probability tree of TNec(b)|do(¬C) in
which there is a sub-branch e′n+1 with the desired properties. So assume r is
non-deterministic.

First assume r 6∈ Lawsd. This implies that r 6∈ Nec(b). So as in the deter-
ministic case, r occurs in T d|do(¬C) exactly as it does in TNec(b)|do(¬C), and
the branch can be extended in the same manner.

Now assume r ∈ Lawsd. If also r ∈ Nec(b), we know that rd = rb = rNec and
hence the previous argument holds. Remains the possibility that r 6∈ Nec(b). As
in the deterministic case, because r can be applied in the final node of e′n there
has to be a probability tree of TNec(b)|do(¬C) with a sub-branch like e′n where
r is applied next.

Assume rd = A. Since A was the outcome of r in d, the law r as it appears in
T – and also in TNec(b)|do(¬C) – contains A in its head with some probability



attached to it. Therefore the final node of e′n in the said probability tree has
one child-node which contains A, extending e′n into a sub-branch e′n+1 with the
desired properties. This concludes this part of the proof.

Now we prove that if b is simple, the reverse implication holds as well.
Assume PTNec(b)(¬E|do(¬C)) > 0. This implies that there is at least one

branch e of a probability tree of TNec(b)|do(¬C) for which ¬E holds in its leaf.
We can repeat the first steps of the previous implication, so that we again arrive
at a law r which was applied to get to a node O.

The branch e′ we are considering occurs in a probability tree of a (C,E)-
reduction, say f . First assume r ∈ Nec(b). By definition, this implies that also
r ∈ Lawsf ∧ rNec = rf , and we can apply the reasoning from above. Likewise
as above, we can apply this reasoning to all other cases, except the one where
r 6∈ Nec(b), r is non-deterministic, and r ∈ Lawsf . Assume the law r has effect
A in the branch e we are considering. If rf = A, then we are back to our familiar
situation, so therefore assume rf = B, and A 6= B.

Since b is simple, A and B are the only two possible effects of r. Further,
remark that r ∈ Lawsb\Nec(b). This implies the existence of a (C,E)-reduction
g that is identical to f up to the application of r, but such that rg 6= rf , and
thus rg = A = re meaning there is a branch in a probability tree of g that is
structurally identical to e up to O. This concludes the proof of the theorem.

Theorem 3. If b is simple, then a non-deterministic law r is necessary iff there
is no (C,E)-reduction passing through a sibling of Nodebr.

Proof. Say the unique sibling of Nodebr is M . We start with the implication
from left to right, so we assume r is necessary. Assume rb = A, then there is no

d ∈ Red
(C,E)
b for which rd 6= A, hence there is no (C,E)-reduction which passes

through M .
Remains the implication from right to left. Assume we have a law r such that

there is no (C,E)-reduction passing through a sibling of Nodebr. We proceed with
a reductio ad absurdum, so we assume r is not necessary.

Clearly b is a (C,E)-reduction of itself, and also r ∈ Lawsb \Nec(b). Hence,
by b’s simplicity, there is a (C,E)-reduction e which is identical to b up to the
application of r, but for which re 6= rb. Thus e passes through the sibling of
Nodebr, contradicting the assumption that r is necessary. This concludes the
proof.

Theorem 4. Given a neuron diagram with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T , and a story b,
that we get when applying the translation discussed earlier. C is a producer of E
in the diagram according to Hall iff C is a producer of E in b and T according
to the CP-logic version stated here.

Proof. First we need to explain some terminology that Hall uses. A structure is
a temporal sequence of sets of events, which unfold according to the equations
of some neuron diagram. A branch, or a sub-branch, would be the corresponding
concept in CP-logic.



Two structures are said to match intrinsically when they are represented
in an identical manner. The reason why Hall uses this term, is because even
though we use the same variable for an event occurring in different circumstances,
strictly speaking they are not the same. This is mainly an ontological issue, which
need not detain us for our present purposes.

A set of events S is said to be sufficient for another event E, if the fact
that E occurs follows from the causal laws, together with the premisse that S
occurs at some time t, and no other events occur at this time. A set is minimally
sufficient if it is sufficient, and no proper subset is. To understand this, note that
the ambiguity of the relation between an event and the value of a variable that
we noted earlier, resurfaces here. In the context of neuron diagrams, events are
temporal, and occur during the time-period that a neuron fires, i.e, becomes true.
However, at any later time-point, the variable corresponding to this neuron will
remain to be true, implying that the value of the variable has shifted in meaning
from “the neuron fires” to “the neuron has fired”. Given this interpretation, it
is natural to translate Hall’s notion of an event into CP-logic as the application
of a law, making a variable true, as we have done.

A further detail to be cleared out, is that in the context of neuron diagrams
there can be simultaneous events, since multiple neurons can fire at the same
time. In CP-logic, in each node only one law is allowed to be applied, hence this
translates to two consecutive edges in a branch. Therefore it is not the case that
each node-edge pair in a branch corresponds to a separate time-point, but rather
sets of consecutive pairs – with variable size – do. Given such a set, then for each
variable that was the result of the application of a law belonging to it, it holds
that its corresponding event occurs at the next time-point, corresponding to the
next set of nodes further down the branch. All the variables occuring in the
bodies of the laws in this set, represent events that occur during this time-point.

Now we can state the precise definition of production as it occurs in [3, p.25].

We begin as before, by supposing that E occurs at t′, and that t is an
earlier time such that at each time between t and t′, there is a unique
minimally sufficient set for E. But now we add the requirement that
whenever t0 and t1 are two such times (t0 < t1) and S0 and S1 the
corresponding minimally sufficient sets, then

– for each element of S1, there is at t0 a unique minimally sufficient
set; and

– the union of these minimally sufficient sets is S0.

...

Given some event E occurring at time t′ and given some earlier time t,
we will say that E has a pure causal history back to time t just in case
there is, at every time between t and t′, a unique minimally sufficient
set for E, and the collection of these sets meets the two foregoing con-
straints. We will call the structure consisting of the members of these
sets the “pure causal history” of E, back to time t. We will say that C
is a proximate cause of E just in case C and E belong to some structure



of events S for which there is at least one nomologically possible struc-
ture S′ such that (i) S′ intrinsically matches S; and (ii) S′ consists of
an E-duplicate, together with a pure causal history of this E-duplicate
back to some earlier time. (In easy cases, S will itself be the needed
duplicate structure.) Production, finally, is defined as the ancestral [i.e.,
the transitive closure] of proximate causation.

We will start with the implication from left to right. So assume we have
a neuron diagram D, in which C is a producer of E. Say T is the CP-logic
theory that is the translation of the equations of the diagram, and b is the
branch representing the story. We already know that C and E hold in the leaf
of b. We need to proof that PT ′(¬E|do(¬C)) > 0. The theory T ′ only contains
deterministic laws, and no disjunctions, hence all its laws are of the form: V ←
A∧A′ ∧ ...∧¬B ∧¬B′, where the number of positive literals in the conjunction
is at least one. Therefore any probability tree for T ′ consists out of only one
branch, determining a unique assignment for all the variables. Further, even
though the theory T may contain several laws in which a variable occurs in the
head, because of our irrelevance criterion T ′ contains exactly one law for every
variable that is true. So for every true variable in this assignment, there is a
unique chain of laws – neglecting the order – which needs to be applied to make
this variable true. For any such variable V , we will say that it depends on all of
the variables occurring positively in the body of a law in this chain. Clearly, if
any true variable changes its value in this assignment, then all variables which
depend on it become false.

As a first case, assume C is a proximate cause of E. We start by assuming
that circumstances are nice, meaning that D contains itself a structure S which
is a pure causal history of E. This means that in the actual story b, C is part of
a unique minimally sufficient set for E. From this it follows that in T ′, C figures
positively in one of the laws on which E depends. Hence, if we apply do(¬C),
then E will no longer hold.

Now assume that there is a structure S occurring in D, such that there
exists another diagram, say D′, in which this structure occurs as well, and forms
a pure causal history of E. This diagram corresponds to a branch of T , say
d, That means that in T ′

d – i.e., the theory T ′ constructed out d – C occurs
positively in the unique chain of laws which can make E true. But as all events
in S also occur in D, at the same moments as they do in D′, that means that
C must also occur positively in the unique chain of laws for E in the theory T ′

b.
Hence, E depends on C in the theory T ′

b as well.

Now look at the more general case, in which C occurs in a chain of proximate
causes, that leads up to E. I.e, in D, C is the proximate cause of some variable
V1, which in turn is the proximate cause of some variable V2, and so on until
we get to E. We know from the previous discussion, that this implies in T ′ that
do(¬C) then ¬V1, and do(¬V1) then ¬V2, and so on. Given what we know about
T ′, it directly follows that when we apply do(¬C), then ¬E. This concludes this
part of the proof.



We continue with the implication from right to left. So assume that we are
given again a neuron diagram and a corresponding story b, and that we know
PT ′(¬E|do(¬C)) > 0. From our earlier analysis of T ′, we know that this means
that C occurs positively in the unique chain of laws that can make E true
according to T ′. From this chain of laws, we start from the one causing E and
from there pick out a series that gets us to a law where C occurs positively in the
body. More concretely, we take a series of the form: E ← ...A∧ ..., A← ...D∧ ...,
and so on until we get at a law Z ← ...C ∧ .... By definition of production,
it suffices to prove that in this chain, each of the variables in the body is a
proximate cause of the variable in the head.

Take such a law V ← ...W ∧ .... At the time that this law is applied, W
clearly is a member of a sufficient set of events for V , which occurs at the next
time point. Say S0 is the set of all events that occur together with W that figure
in the body of this law, and S1 is the set {V } that occurs at the next time-point,
then the structure consisting precisely of S0 and S1 and nothing else forms a
pure causal history of V containing W . The same reasoning applies to all laws
of the chain. This concludes the proof.
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