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Research Highlights 

• This is the first meta-analysis on the association of non-symbolic and symbolic magnitude 

comparison with mathematical competence. 

• The meta-analysis synthesized 284 effect sizes from 17.201 participants by means of a 

random-effects two-level regression model. 

• Associations with mathematical competence were stronger for symbolic than for non-

symbolic measures. 

• Measures of comparison and mathematical competence strongly moderated the 

comparison-competence association. 
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Abstract 

Many studies have investigated the association between numerical magnitude processing 

skills, as assessed by the numerical magnitude comparison task, and broader mathematical 

competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied 

considerably in their strengths. It remains unclear whether and to what extent the strength of 

these associations differs systematically between non-symbolic and symbolic magnitude 

comparison tasks and whether age, magnitude comparison measures or mathematical 

competence measures are additional moderators. We investigated these questions by means of 

a meta-analysis. The literature search yielded 45 articles reporting 284 effect sizes found with 

17.201 participants. Effect sizes were combined by means of a two-level random-effects 

regression model. The effect size was significantly higher for the symbolic (r = .302, 95% CI 

[.243, .361]) than for the non-symbolic (r = .241, 95% CI [.198, .284]) magnitude comparison 

task and decreased very slightly with age. The correlation was higher for solution rates and 

Weber fractions than for alternative measures of comparison proficiency. It was higher for 

mathematical competencies that rely more heavily on the processing of magnitudes (i.e. 

mental arithmetic and early mathematical abilities) than for others. The results support the 

view that magnitude processing is reliably associated with mathematical competence over the 

lifespan in a wide range of tasks, measures and mathematical subdomains. The association is 

stronger for symbolic than for non-symbolic numerical magnitude processing. So symbolic 

magnitude processing might be a more eligible candidate to be targeted by diagnostic 

screening instruments and interventions for school aged children and adults. 

 

Keywords: magnitude comparison, mental magnitude representation, approximate number 

system, mathematical competence, meta-analysis 
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Associations of Non-Symbolic and Symbolic Numerical Magnitude Processing with 

Mathematical Competence: A Meta-analysis 

A wealth of empirical studies investigated the association between the processing of 

numerical magnitudes and broader mathematical competence. These studies have far-reaching 

implications because numbers are of fundamental importance in our society. For example, 

numerical skills are strong predictors of success in school (Duncan et al., 2007), of medical 

decision making (Reyna, Nelson, Han, & Dieckmann, 2009), and of valuations of monetary 

amounts (Schley & Peters, 2014). They are associated with socioeconomic status (Ritchie & 

Bates, 2013) and mortgage default (Gerardi, Goette, & Meier, 2013).  

While previous studies have converged on the conclusion that numerical magnitude 

processing is an important foundation for higher-level mathematical competence, studies are 

heterogeneous in respect to whether the processing of non-symbolic magnitude 

representations (i.e., dots), symbolic magnitude representations (i.e., digits), or both are 

relevant for the learning of more advanced mathematical competence. Moreover, it has been 

suggested that the association between magnitude processing and broader mathematical 

competence might also be moderated by participant age (e.g., Inglis, Attridge, Batchelor, & 

Gilmore, 2011; Rousselle & Noël, 2008), by measures of magnitude comparison skills (e.g., 

Price, Palmer, Battista, & Ansari, 2012), or by measures of mathematical competence (e.g., 

De Smedt, Noël, Gilmore, & Ansari, 2013). This hampers the integration of empirical 

findings across studies in narrative reviews of the literature (De Smedt et al., 2013; Feigenson, 

Libertus, & Halberda, 2013). 

Meta-analyses quantitatively integrate findings across studies and allow for explicit tests 

of moderating influences of third variables. Therefore, meta-analyses can substantially 

advance our understanding of the associations between numerical magnitude processing and 

broader mathematical competence. Two recent meta-analyses have investigated the 

associations between non-symbolic numerical magnitude processing and mathematical 
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competence. Chen and Li (2014) included 47 effect sizes and found an overall correlation of r 

= .20, 95% CI [.14, .26] for cross-sectional studies. Fazio, Bailey, Thompson, and Siegler 

(2014) included 34 effect sizes and found an overall correlation of r = .22, 95% CI [.20, .25].  

These two meta-analyses provided strong evidence for a weak but reliable association 

between non-symbolic magnitude processing and mathematical competence, but they were 

limited in their scope. They included only one effect size from each sample. So it was not 

possible to analyze differences between effect sizes found with the same sample, for example, 

accuracy versus speed of the same participants. Even more crucially, these meta-analyses only 

included findings obtained with non-symbolic magnitude processing tasks. No conclusions 

about differences between non-symbolic and symbolic magnitude processing could be drawn. 

The current meta-analysis closes this gap in the research literature. A better understanding of 

how non-symbolic and symbolic magnitude processing relate to broader mathematical 

competence might provide helpful background information for educational interventions 

aiming at improving learners’ numerical processing skills as preparation for more advanced 

mathematical learning (De Smedt et al., 2013; Feigenson et al., 2013). At a theoretical level, it 

will aid us to evaluate the importance of evolutionary older non-symbolic magnitude 

representations, which we share with many other species (Cantlon, 2012), compared to 

uniquely human symbolic representations of numbers.  

The current study therefore included effect sizes from non-symbolic and from symbolic 

numerical magnitude processing tasks. We used a two-level regression model with effect sizes 

(level 1) nested under independent samples (level 2), so that all effect sizes from all samples 

could be included. This yielded a database of 284 effect sizes and allowed us to estimate the 

overall effect sizes along with the moderating influences of a non-symbolic vs. symbolic task 

format, participant age, comparison measures and mathematical competence measures. 

In our meta-analysis we focused on the comparison task, which is the most frequently 

used task to assess numerical magnitude processing (Ansari, 2008; Dehaene, Dupoux, & 
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Mehler, 1990; Moyer & Landauer, 1967). In this task, two dot arrays (non-symbolic) or two 

numbers presented in the form of Arabic digits (symbolic) are presented and the participant 

has to indicate the one with the larger (or the smaller) numerical magnitude. The numerosities 

can be presented simultaneously or sequentially, and either both of them change from trial to 

trial or one is a fixed standard against which the other numerosity has to be compared. 

A narrative review of the literature suggests that the association between numerical 

magnitude processing and broader mathematical competence might be more robust and 

consistent for studies with the symbolic magnitude processing tasks than for studies with the 

non-symbolic task (De Smedt et al., 2013). In that review, 13 out of 17 empirical studies 

(76%) observed a significant correlation between symbolic magnitude comparison and 

mathematical competence, whereas only 11 out of 25 studies (44%) found a significant 

correlation between non-symbolic magnitude comparison and mathematical competence. 

However, such comparisons are of limited use because they take neither effect size 

differences nor standard errors nor sample size differences between studies into account, 

which further highlights the need for including both non-symbolic and symbolic associations 

in a meta-analysis on these questions. 

It remains an open question whether the association between numerical magnitude 

processing and mathematical competence is moderated by age (Inglis et al., 2011; Rousselle 

& Noël, 2008). One possibility is that processing of numerical magnitudes as assessed by the 

comparison task merely provides a starting point for mathematical development so that the 

correlation between the two constructs decreases with age as environmental influences keep 

accumulating (Inglis et al., 2011). This is plausible because processing of whole-number 

magnitudes plays a central role in elementary school mathematics with its focus on arithmetic, 

but is less important for understanding more advanced mathematical concepts in higher 

school grades where variables and their abstract interrelations become more important than 

concrete numerical magnitudes (Schneider, Grabner, & Paetsch, 2009). Alternatively, it has 
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been proposed that magnitude processing gives people a number sense which is an integral 

aspect of nearly all mathematical thinking, so that these constructs should be linked 

throughout the lifespan (Halberda, Lya, Wilmer, Naiman, & Germine, 2012; Libertus, Odic, 

& Halberda, 2012). The two previous meta-analyses investigated the moderating effect of age, 

yet with inconsistent results. Chen and Li (2014) found no moderating effect of age. However, 

they only compared children younger than 12 years with adults older than 17 years. Fazio et 

al. (2014) found that participant age moderated the size of the comparison-competence 

correlation, with the correlation being larger for children younger than 6 (r = .40) than for 

students between 6 and 18 years (r = .17) and adults (r = .21) who did not differ. For the 

symbolic magnitude comparison task no meta-analytic results have been published so far. 

Another possible moderator of the association between numerical magnitude comparison 

and mathematical competence is the comparison measure, that is, the operationalization of 

performance on the comparison task. Typically, proficiency on the comparison task is 

measured as solution rate or solution time. Solution times are often preferred over solution 

rates because the latter can yield ceiling effects in older children and adults and thus might 

lead to an underestimation of the true correlation between comparison and competence (cf. 

Berch, 2005; Holloway & Ansari, 2009). Alternatively to these general indices, researchers 

often calculate more specific measures. Performance on the non-symbolic tasks is often 

characterized by a ratio-effect: The closer the ratio of the compared dot arrays is to 1, the 

more difficult it is to discriminate the dot arrays. This effect can also be described by the 

Weber fraction (W), which is the smallest ratio of two numerosities that a person can reliably 

judge as larger or smaller (Halberda, Mazzocco, & Feigenson, 2008). Performance on the 

symbolic task is often quantified by computing the distance effect, which indicates that 

accuracy increases and reaction time decreases as the numerical distance (i.e. the difference) 

between two numbers decreases. This distance effect has been computed either as a 

standardized difference score for small vs. large numerical distances (e.g., Holloway & 
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Ansari, 2009) or as the slope of a regression in which reaction time is predicted by numerical 

distance (e.g., De Smedt, Verschaffel, & Ghesquière, 2009; Schneider et al., 2009). The 

distance effect was originally interpreted as an index of the overlap between different 

analogue representations of magnitude (Cohen Kadosh et al., 2005; Dehaene, 1997; Moyer & 

Landauer, 1967), yet alternative explanations that point to the role of more general decisional 

processes have been put forward (Holloway & Ansari, 2008; Van Opstal, Gevers, De Moor, 

& Verguts, 2008). The ratio-effect and distance effect are conceptually similar (Bartelet, 

Vaessen, Blomert, & Ansari, 2014). The inter-correlations of alternative operationalizations 

of magnitude comparison skills have been found to be much lower than expected in some 

samples, suggesting that the measures might tap into partly different aspects of comparison 

skills (Gilmore, Attridge, & Inglis, 2011). Relatedly, these measures also differ in their 

reliabilities (Inglis & Gilmore, 2014; Price et al., 2012). It is thus plausible to assume that 

they also differ in their associations with broader mathematical competence. 

A further moderator of the comparison-competence association might be the measure of 

mathematical competence. Most mathematical competence measures have in common that 

they quantify proficiency as solution rate. However, mathematical competence measures 

differ strongly in their content and this might lead to different associations with magnitude 

processing. For example, it is plausible to assume that numerical magnitude processing skills 

are important for counting and whole-number arithmetic (Gilmore, McCarthy, & Spelke, 

2007; Libertus, Feigenson, & Halberda, 2011). In contrast, in subdomains such as algebra, 

numerical magnitudes still play a role, but are arguably less relevant than understanding 

abstract mathematical concepts, such as variables and equivalence (cf. Schneider, Rittle-

Johnson, & Star, 2011). It is hard to see how numerical magnitude processing could directly 

support such non-numerical mathematical concepts. In line with this, algebraic competence 

correlates higher with an understanding of abstract mathematical concepts than with whole-

number processing (Booth & Newton, 2012). We thus expect that the comparison-competence 
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correlation is higher in mathematical subdomains where the mental processing of numerical 

magnitudes is more important (e.g. mental arithmetic) and lower in other mathematical 

subdomains, for example, algebra and geometry. 

Against this background, the aim of the current meta-analysis was to statistically integrate 

the available evidence on the association between numerical magnitude processing and 

broader mathematical competence with a special focus on differences between non-symbolic 

and symbolic magnitude comparison tasks. In addition to task format, we included age, 

comparison measure and mathematical competence measure as potential moderators in our 

analyses and tested to what extent they explained the heterogeneity of the effect sizes reported 

in the literature. 

Method 

Literature Search and Inclusion Criteria 

We searched the title, abstract, and keywords of all articles in the literature database 

PsycINFO in October 2014 with the search string (("math* achievement" or "math* 

competence" or "math* skill*" or "math* abilit*" or "math* performance" or "arithmetic*" or 

"num* skill*") and ("magnitude representation*" or "distance effect*" or "approximate 

number system" or "numerical cognition" or "number sense" or "number acuity" or "digit 

comparison*" or "number comparison*")) and limited the results to empirical studies with 

non-disordered human populations that had been published in a peer-reviewed journal in 

English language.  

Two trained raters judged independently of each other for each article whether it was to be 

included in the meta-analysis. Disagreements were solved by discussion. The inclusion of 

studies and of effect sizes within studies into our database was determined by the following 

criteria: (1) The study reported original empirical findings (i.e. not a re-analysis of already 

reported findings or a review). (2) The study included at least one numerical magnitude 

comparison task, which required the participants on each trial to indicate the larger or the 
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smaller of two numerical magnitudes. The numerical magnitudes could be presented 

sequentially or simultaneously, and as dot arrays or Arabic numerals. The magnitudes could 

include one-digit and multi-digit integers, but not negative numbers or non-whole numbers. 

Participants’ behavior on the task had to be coded as solution rate, solution time, distance 

effect with solution rates, distance effect with solution times, ratio effect with solution rates, 

ratio effect with solution times, or Weber fraction. (3) The study additionally included at least 

one measure of mathematical competence other than magnitude comparison, such as the 

TEMA test of early mathematical ability (Ginsburg & Baroody, 2003), a mental or written 

arithmetic task, a curriculum-based or a more general standardized test of mathematics, 

school grades in mathematics, a numerical reasoning test, or a mathematical problem solving 

task. Measures that are usually interpreted as assessing basic numerical processing (e.g., 

ordering of magnitudes, same-different judgments, odd-even judgments, naming of numerical 

magnitudes, number line estimation) were not considered as measures of mathematical 

competence because they are conceptually too closely related to magnitude comparison. (4) 

The study reports at least one standardized effect size of the strength and the direction of the 

bivariate relation between a magnitude comparison measure and a mathematical competence 

measure. The study also reports the sample size for this effect. Effect sizes from multivariate 

analyses (multifactorial ANOVAs, multiple regressions, or partial correlations) were not 

included, because their outcomes depend on all variables included in the respective model, 

which limits the comparability. Authors who exclusively reported multivariate results in a 

study were asked by email to provide the corresponding Pearson correlations, which were 

then included in the meta-analysis. (5) The study reported at least one effect size for a sample 

with a majority of normally developing participants, who had not been diagnosed with 

dyscalculia or mathematical learning difficulties.  

Meta-analyses can be biased by the file-drawer problem, that is, by the fact that 

statistically significant results have a higher probability of getting published than statistically 
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non-significant results. The authors of some meta-analyses try to solve this problem by 

searching for and including unpublished studies. We did not do this here, because the quality 

of unpublished studies is hard to assess and because researchers usually obtain only a non-

representative set of unpublished studies (e.g., mostly from their home country or from their 

own research community) that does not increase the quality of the meta-analytic results 

(Ferguson & Brannick, 2011). Instead, we accounted for publication bias by using statistical 

methods, which are described in the results section. 

Coding and Analyses 

Each study included in the meta-analysis was read by two raters who coded the relevant 

effect sizes and study characteristics independently of each other. Disagreements were 

resolved by discussion. When the sample mean age was not reported we tried to estimate it 

based on other information in the article, for example, students’ grade levels. When 

information vital for coding was missing or was reported in an ambiguous way in an article, 

the corresponding author was asked to clarify by email. 

Meta-analyses can only statistically combine effect sizes when their signs have the same 

meaning. We expected a positive relation between magnitude comparison and mathematical 

competence. All effects sizes were recoded prior to our analyses so that effects in line with 

our expectation had a positive sign and effect sizes that did not had a negative sign. 

Age group was coded as below 6 years of age (i.e. before the onset of formal school 

instruction on whole numbers in most countries), between 6 and 9 years (i.e. during whole-

numbers instruction in elementary school) or above 9 years (i.e. after whole-number 

instruction). The sample mean age was additionally coded as a continuous score, but only 

when the age range in a sample was five years or less. 

Correlations are biased by measurement error. The lower the reliability of the measures is, 

the higher is the degree of random noise in the empirical data and the lower is the correlation 

between two variables, independent of the actual strength of the association of the underlying 
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constructs. For this reason, when the reliability of the measures was reported in the original 

study, we modified the correlations using Spearman’s correction for attenuation (Hunter & 

Schmidt, 2004, p. 96). When reliabilities of standardized tests were not reported, we took 

them from the test manuals. In case of missing reliabilities the reported correlations were not 

corrected. 

Effect sizes were weighted with the inverse of the standard error and combined using a 

random-effects model, which is adequate for inhomogeneous sets of effect sizes (e.g., Hedges 

& Vevea, 1998), in the statistical analysis software MPlus 7.1 (Muthén & Muthén, 1998-

2012). The standard random-effects model requires the independence of all effect sizes. This 

was not the case in our data set because, for example, some studies reported several effect 

sizes found with the same sample. We solved this problem by implementing the random-

effects model as a two-level model, in which effect sizes (level 1) were nested under 

independent samples (level 2). The use of two-level models for conducting meta-analyses is 

well understood from a statistical point of view and has been described as an elegant way of 

synthesizing clustered effect sizes (Hox, 2002, pp. 139-156; Van den Noortgate & Onghena, 

2003). Correlations are the dependent variable of our meta-analysis. Sometimes, correlations 

are Fisher Z transformed before being used as interval-scale variables. We did not do this in 

our analyses, because newer studies found that meta-analyses on correlations lead to more 

accurate results without this transformation (Hunter & Schmidt, 2004, pp. 82/83). All reported 

confidence intervals (CI) are at the 95% level. 

We entered all moderator variables as level-1 predictors of effect sizes into our two-level 

model, because their values can differ between effect sizes within independent samples. The 

only exception was age, which we modeled as level-1 predictor as well as level-2 predictor 

because our database included longitudinal studies, where age varies within independent 

samples, as well as cross-sectional studies, where age varies between independent samples.  
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Results 

Study Characteristics  

The PsycINFO search returned 237 articles, 41 of which fulfilled the inclusion criteria 

(inter-rater agreement: 89% of the articles). Four additional articles (Brankaer, Ghesquiere, & 

Smedt, 2014; Halberda et al., 2008; Lyons, Price, Vaessen, Blomert, & Ansari, 2014; 

Reigosa-Crespo et al., 2013) were included in the meta-analysis because they were relevant, 

yet they were not listed in PsycINFO or were published shortly after we conducted the 

standardized literature search. The 45 articles (marked by an asterisk in the reference list) 

reported results from 79 independent samples with 284 relevant effect sizes and 17.201 

participants in total. Inter-rater agreement was 99% for the coding of the effect sizes and 98% 

for the coding of study characteristics.  

Of the 45 articles, 82% had been published in 2011 or later indicating a rapid increase of 

research on the topic of this meta-analysis over the last years. Of the 284 effect sizes, 69% 

had been found with the non-symbolic magnitude comparison task and 31% with the 

symbolic magnitude comparison task. Of the studies using the non-symbolic task version, 

32% also included numerosities in the subitizing range (i.e., one, two, and three dots), 

whereas 68% exclusively used numerosities greater three. Magnitude comparison measures 

were solution time (28%), solution rate (25%), Weber fraction (24%), distance effect with 

solution times (14%), ratio effect with solution times (4%), distance effect with solution rates 

(3%), and ratio effect with solution rates (2%). The competence measures were written 

arithmetic tasks (29%), curriculum-based tests (22%), mental arithmetic tasks (18%), tests of 

early mathematical ability (13%) and other tasks (18%) involving, for example, number 

decomposition, mathematical reasoning, or geometry. Reliability indices were available for 

25% of magnitude comparison measures and 61% of mathematical competence measures. 

After correction, there was no statistically significant difference between effect sizes that were 

corrected for reliability and effect sizes that could not be corrected (p = .843, R2 = .001, for 
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reliabilities of magnitude comparison measures; p = .424, R2 = .013 for reliabilities of 

competence measures). The majority of the participants (56%) was between 6 and 9 years old; 

10% were younger and 34% older. The sample mean ages could be coded for 255 effect sizes 

and ranged from 3 to 35 years, even though some studies also included much older 

participants (Halberda et al., 2012).  

Overall Effect for Numerical Magnitude Comparison 

The meta-analytic results are displayed in Table 1. The overall correlation between 

numerical magnitude comparison and mathematical competence according to the two-level 

random-effects model was r = .278 with a confidence interval ranging from .241 to .315. The 

I2 value of .418 indicates that 41.8% of the variance of the effect sizes is between the level-2 

units, that is, between the 79 independent samples in our database. The I2 value is 

significantly different from zero with p < .001, which indicates a statistically significant 

amount of heterogeneity and implies that the magnitude comparison-competence relation is 

moderated by third variables. 

Duval and Tweedie’s trim-and-fill method indicates the absence of publication bias in our 

database. In this method, fictitious effect sizes are added to the left side of the effect size 

distribution until this distribution is symmetric and a new overall effect size can be computed 

for the symmetric distribution. Since our effect size distribution was already symmetric (see 

Figure 1), the trim-and-fill method left our results unchanged. In line with this, Rosenthal’s 

fail-safe N had the value of 9,101. Only if this extremely high number of unpublished studies 

with null results existed the comparison-competence relation would cease to be significant at 

the 5% level. Thus, the file-drawer problem is negligible in our case. The analyses also 

demonstrated that the results are not biased by an overly strong influence of specific samples. 

In a sensitivity analysis with the leave-one-out method the omission of a sample never 

changed the overall correlation by more than Δr = ±.008 points with the exception of the 

study by Träff (2013). Leaving this study out would change the overall correlation by Δr = -
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.012. Träff found three effect sizes between 0.470 and 0.670 with 134 students from Grades 4 

to 6 who solved the symbolic magnitude comparison task. 

 

 

Figure 1. Funnel plot of the 284 effect sizes. The inclined lines indicate the 95% confidence 

interval. 

 

Non-symbolic vs. symbolic comparison 

 The correlation between non-symbolic magnitude comparison and mathematical 

competence was r = .241, CI [.198, .284]. The correlation between symbolic magnitude 

comparison and mathematical competence was higher with r = .302, CI [.243, .361]. Task 

format (non-symbolic vs. symbolic) modeled as a level-1 predictor of the correlation 

coefficients was significantly related (p < .001) to the correlation coefficients and explained 

9% of their variance. This indicates a small but statistically significant difference between 

correlations found with non-symbolic or with symbolic magnitude comparison.  
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Table 1. Number of effect sizes (k), correlation (r), 95% confidence interval, heterogeneity 

index (I2) and p value for the test of heterogeneity. 

Analysis k Correlation  Heterogeneity 

  r lower 
95% CI 

upper 
95% CI 

 I2 P 

Overall  284 .278 .241 .315  .418 < .001 

Task format        

Non-symbolic 195 .241 .198 .284  .478 < .001 

Symbolic 89 .302 .243 .361  .429 .002 

Age group        

Younger than 6 years 29 .305 .205 .402  .497 < .001 

6 to 9 years 158 .283 .222 .344  .455 < .001 

Older than 9 years 97 .280 .229 .331  .423 .016 

Magnitude comparison measure        

Solution rate 72 .316 .245 .387  .670 .002 

Solution time 79 .269 .216 .322  .511 .001 

Distance effect (solution rate) 1 7 -.081 -.185 .023  - - 

Distance effect (solution time) 41 .135 .080 .190  .085 .898 

Ratio effect (solution rate) 1 5 .140 -.080 .360  - - 

Ratio effect (solution time) 11 .142 .030 .254  .625 .105 

Weber fraction 69 .315 .248 .382  .409 .092 

Mathematical competence measure        

Early abilities (TEMA) 37 .413 .333 .493  .256 .016 

Mental arithmetic 52 .378 .321 .435  .155 .162 

Written arithmetic 81 .281 .189 .373  .483 < .001 

Curriculum-based 62 .205 .138 .272  .316 .104 

Other 52 .210 .159 .261  .235 .092 
1Estimated by a one-level regression model due to the small number of sampling units. 
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Accounting for the moderating effect of task format did not reduce the heterogeneity of 

the effect sizes. As shown in Table 1, there was still considerable heterogeneity of effect sizes  

when only effects found with non-symbolic tasks were considered (I2 = .478; p < .001) or 

when only effects found with symbolic tasks were considered (I2 = .429; p = .002). This 

suggests the effects of further moderating variables. Whether the non-symbolic task version 

included or excluded stimuli in the subitizing range (i.e., one, two or three dots) did not 

significantly affect the effect size (R2 = .038, p = .200). 

Age and Measures as Potential Moderators 

The correlation between magnitude comparison and competence was similar for persons 

younger than 6 years (r = .305), persons aged 6 to 9 years (r = .283), and persons older than 9 

years (r = .280). We modeled age group as dummy-coded level-1 predictor and dummy-coded 

level-2 predictor of effect sizes in separate analyses. Neither within-sample variations of age 

on level 1 (R2 = 0.004; p = .796) nor between-sample variations of age on level 2 (R2 = 0.007; 

p = .801) significantly moderated the effect sizes. In order to test for changes from 

adolescence to adulthood, we repeated our age-group comparison with adults as a fourth 

group. The mean effect sizes were: 5 years or younger: .31 [CI .21, .41], 6-9-years: .28 [CI 

.22, .34], 10-18-years (adolescents): .31 [CI .24, .39] and 19 years or older (adults): .26 [CI 

.20, 33]. Again, age group coded as a set of dummy variables did not predict the effect sizes 

(all ps > .60, R2 = .016). 

In addition, we conducted meta-regressions with years of age coded as continuous 

variable, because continuous variables are more sensitive to gradual changes. Age as level-1 

predictor of effect sizes had a small but significant effect (b = -.006, β = -.196, p = .013) and 

explained a variance proportion of R2 = .038. In contrast, age as level-2 predictor was 

unrelated of the effect sizes (b = -.003, β = -.178, p = .105) and explained a variance 

proportion of R2 = .032. Thus, the relationship between magnitude comparison and broader 

mathematical competence was very weakly moderated by age (see also Fig. 2). 
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As displayed in Table 1, the meta-analytic results differed strongly between magnitude 

comparison measures. Magnitude comparison measure as dummy-coded level-1 predictor 

explained a variance proportion of R2 = .142, p = .006. Thus, the magnitude comparison-

competence correlation was moderated by the type of magnitude comparison measure. The 

highest correlations with mathematical competence were found for solution rates and Weber 

fractions. The distance effect with solution rates and the ratio effect with solution rates were 

not correlated with mathematical competence, as is indicated by their confidence intervals, 

which include the zero. The I2 values in Table 1 demonstrate that effect sizes found only with 

solution rates or only with solution times still were heterogeneous and might be moderated by 

other variables.  

The meta-analytic results also differed strongly between measures of mathematical 

competence. Mathematical competence measure as dummy-coded level-1 predictor explained 

a variance proportion of R2 = .138, p = .003. The correlations were highest for early ability as 

assessed by the TEMA (r = .413) and for mental arithmetic (r = .378), both of which lay 

above the 95% confidence interval of the overall effect size in this meta-analysis. The 

correlations were lowest for curriculum-based measures (r = .205) and other measures (r = 

.210), both of which lay outside the 95% confidence interval found for the overall effect size 

in this meta-analysis (CI = .241 - .315). The mean effect size found with mental arithmetic 

tasks (r = .378) was descriptively higher than the mean effect size found with written 

arithmetic tasks (r = .281), but this difference did not reach statistical significance (R2 = .130; 

p = .089). 

Explorative Analyses of Moderator Interactions 

So far we reported the statistical main effects of moderator variables on the comparison-

competence association. This raises the question whether there are also interaction effects 

between the moderators. Analyzing this is not easy, because effect sizes (here k = 284), and 

not individual persons (here N = 17.201), are the unit of analysis in meta-analyses. Thus, the 
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statistical power of moderator-interaction tests in meta-analyses is usually limited. This was 

also the case in the present study. Obviously, the included 284 effect sizes did not allow us to 

delineate interaction effects of all 210 possible combinations of two task formats, three age 

groups, seven magnitude comparison measures, and five competence measures. We thus 

followed the advice of Hunter and Schmidt (2004, p. 426) and only conducted exploratory 

analyses of these interaction effects. Specifically, we investigated the mean correlations 

separately for all combinations of task format and age group (see Table 2). We then repeated 

these analyses separately only for those comparison measures and those competence measures 

for which a statistically significant amount of heterogeneity had been found in our previous 

analyses (see last column of Table 1), which is suggestive of further moderating effects.  

The correlations in Table 2 range from .161 to .454. Some cells were empty so that we 

could not compute these cell means. Most other cell counts were relatively low, what led to  

 

Table 2. Correlations, 95% CI in square brackets, and number of effect sizes in round brackets 
by age group, task format and measure. 

Measure and  
task format 

< 6 years 6-9 years > 9 years 

All measures    

Non-symbolic .305  
[.205, .405] 

(k = 29) 

.224  
[.150, .298] 

(k = 92) 

.257  
[.206, .308] 

(k = 74) 

Symbolic  
 

(k = 0) 

.279 
[.210, .348] 

(k = 66) 

.347 
[.249, .445] 

(k = 23) 

Solution rate as magnitude comparison measure 

Non-symbolic  .393 
[.275, .511] 

(k = 10) 

.244 
[.117, .371] 

(k = 34) 

.330 
[.173, .487] 

(k = 10) 

Symbolic  
 

(k = 0) 

.250 
[.115, .385] 

(k = 14) 

.3561 
[.332, .380]  

(k = 4) 

Solution time as magnitude comparison measure 
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Non-symbolic .3571 
[.257, .457] 

(k = 4) 

.161 
[.085, .237] 

(k = 17) 

.165 
[.110, .220] 

(k = 22) 

Symbolic  
 

(k = 0) 

.343 
[.265, .421] 

(k = 24) 

.446 
[.344, .548] 

(k = 12) 

Early abilities (TEMA) as mathematical competence measure 

Non-symbolic .4461 
[.379, .513] 

(k = 19) 

.454 
[.323, .585] 

(k = 18) 

 
 

(k = 0) 

Symbolic  
 

(k = 0) 

 
 

(k = 0) 

 
 

(k = 0) 

Written arithmetic as mathematical competence measure 

Non-symbolic  
 

(k = 1) 

.288 
[.121, .455] 

(k = 33) 

.251 
[.096, .406] 

(k = 20) 

Symbolic  
 

(k = 0) 

.200 
[.067, .333] 

(k = 24) 

.4891 
[.377, .601] 

(k = 3) 
1Estimated using a one-level model due to a small number of sampling units. 

 

 

large confidence intervals. In some cases the cell counts were so low that the combined 

effect size for that cell had to be estimated based on a one-level regression model, which 

might underestimate within-study variance and, thus, might also underestimate the true range 

of the confidence interval (Van den Noortgate & Onghena, 2003).  

Figure 2 gives a more detailed account of age-related differences by displaying the 

distribution of effect sizes by age as continuous dimension and by presentation task format. 

Each dot represents one of the 255 effect sizes for which age could be coded. The dot size is 

proportional to the sample size. In our view, the figure visualizes that there is no strong 

interaction between age, sample size and task format. 

Overall, the results presented in this section demonstrated that there are no strong 

interaction effects between the moderating variables. Due to a lack of statistical power it 
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remains an open question whether smaller interaction effects exist. Differences between 

single cells in Table 2 should not be over interpreted. 

 

 

Figure 2. Distribution of the effect sizes (Pearson correlations) by age and task format. Dot 

size is proportional to the sample size. 

 

Discussion 

The current meta-analysis synthesized the published findings on the associations between 

non-symbolic or symbolic numerical magnitude comparison and mathematical competence. 

The strength of the association was r = .278, CI [.241, .315], averaged over all 284 effect 

sizes. In other words, the variance of magnitude comparison proficiency and the variance of 

mathematical competence overlap by about 8%. Whereas a variance proportion of this size is 

generally considered as indicating a weak effect, the effect size is remarkably high given how 

different magnitude comparison tasks and mathematical competence measures are both on a 

surface level and on the level of the concepts and strategies required for solving the respective 

task. As expected, there was a statistically significantly amount of heterogeneity in the data, 
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which indicates that the association between magnitude comparison and mathematical 

competence is moderated by third variables.  

Non-symbolic vs. Symbolic Magnitude Comparison 

Task format moderated the association between magnitude comparison and mathematical 

competence. The average effect size found in our meta-analysis was significantly higher for 

symbolic magnitude comparison (.302, CI [.243, .361]) than for non-symbolic magnitude 

comparison (.241, CI [.198, .284]). This is in line with suggestions made by De Smedt et al. 

(2013) in their narrative review of the literature, who raised the possibility that the association 

between magnitude processing and broader mathematical competence might be more robust 

for studies with the symbolic magnitude processing tasks than for studies with the non-

symbolic task. The current meta-analytic findings imply that symbolic magnitude processing 

is among the most eligible candidates to be targeted in intervention and diagnostic screening 

instruments for school-aged children at risk for mathematical difficulties. Before the onset of 

symbolic number knowledge in children, non-symbolic magnitude processing measures could 

be used to detect at-risk children, which could allow for earlier detection and possibly 

intervention. 

The higher associations for symbolic than for non-symbolic comparison can be explained 

by the fact that measures of mathematical competence almost exclusively require the 

interpretation and transformation of texts and Arabic numerals, i.e. information presented in a 

symbolic from. Therefore, the symbolic comparison task is more similar to mathematical 

competence measures than the non-symbolic comparison task and might also involve more 

similar cognitive processes, such as symbol-referent mappings (Grabner, Ansari, Koschutnig, 

Reishofer, & Ebner, 2013; Grabner, Reishofer, Koschutnig, & Ebner, 2011).  

It has recently been suggested that the association between non-symbolic numerical 

magnitude comparison and mathematical competence might be explained by more general 

non-numerical cognitive abilities, such as inhibitory control (Fuhs & McNeil, 2013; Gilmore 
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et al., 2013). A recent study contrasting the results of Fuhs and McNeil on the one hand and 

Gilmore and colleagues on the other hand, found that after controlling for inhibitory control 

the non-symbolic comparison-competence correlation was weaker but still greater zero 

(Keller & Libertus, 2015). In line with this, the meta-analysis by Chen and Li (2014) found 

that the overall effect size in studies controlling for general non-numerical cognitive abilities 

(.16 [.09, .24], k = 24) was significantly lower than the overall effect size in studies not 

controlling for them (.27 [.19, .35], k = 24). Both effect sizes were significantly different from 

zero, indicating that the correlation between magnitude comparison and mathematical 

competence cannot entirely be attributed to general non-numerical cognitive abilities. It is not 

yet known whether the same holds true for symbolic magnitude processing. So far, not many 

studies on non-symbolic as well as symbolic numerical magnitude comparison have included 

non-numerical cognitive variables in their analyses, and those who did varied considerably in 

the type of cognitive variable that was included, namely working memory (Träff, 2013), rapid 

automatized naming (Michele M. M. Mazzocco, Lisa Feigenson, & Justin Halberda, 2011), 

general processing speed (Bartelet et al., 2014; Vanbinst, Ghesquière, & Smedt, 2015), or 

attention (Libertus, Feigenson, & Halberda, 2013a). In our meta-analysis, we did not control 

for these non-numerical cognitive variables. As the number of studies that is including both 

numerical and non-numerical cognitive variables has been on the rise in current years, future 

meta-analyses should account for these non-numerical cognitive variables in greater detail.  

Another important issue for further research concerns the degree of overlap between non-

symbolic and symbolic magnitude processing in individuals. The dominant view assumes that 

symbolic representations are mapped onto non-symbolic ones, which are then further 

processed, in which case non-symbolic magnitude processing would be an important 

component of symbolic magnitude processing (see, e.g., Piazza, 2010, for a review). 

However, others (e.g., Bulthé, Smedt, & Beeck, 2014; Le Corre & Carey, 2007; Lyons, 

Ansari, & Beilock, 2012) have argued that non-symbolic and symbolic processes develop 
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independently from each other and might constitute different systems, whose associations 

with mathematical competence might differ. The present meta-analysis, which focusses on 

relations of both tasks with competence, leaves this issue unresolved. There is a need for 

future studies to longitudinally follow-up children’s development of non-symbolic and 

symbolic magnitude processing and how their association changes over time. 

For the non-symbolic magnitude comparison task, the result of the current meta-analysis 

is very close to the results of the two previous meta-analyses, which were .20, CI [.14, .26] 

(Chen & Li, 2014) and .22, CI [.20, .25] (Fazio et al., 2014). The minor differences between 

the results are likely due to three small methodological differences between the three meta-

analyses. First, the previous meta-analyses had coded only one effect size from each sample 

(Chen and Li 47 effect sizes; Fazio and colleagues 34 effect sizes) whereas our multilevel 

model allowed us to include all effect sizes from all samples, resulting in a total of 195 effect 

sizes for non-symbolic magnitude comparison. Second, we used an attenuation correction for 

the non-perfect reliabilities of the measures, which was not done in the previous two meta-

analyses. Finally, Chen and Li included correlations controlled for third variables whenever 

these were available, in order to confound the comparison-competence relation from the 

influences of third variables. We decided not to do this in the present study, because the 

combination of correlations controlled for conceptually different variables is hard to interpret. 

Despite these methodological differences, the findings from the three meta-analyses differ 

only slightly and the confidence intervals overlap to large extents. This demonstrates the 

robustness of the findings against methodological decisions made by the three groups of 

authors. 

Age as Moderator 

The association between numerical magnitude comparison and mathematical competence 

was only weakly moderated by age, as indicated by a very small decrease of the magnitude-

competence correlation with age. Neither our age group comparisons nor regressions with age 
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as continuous level-2 predictor were able to detect this effect. Only a regression with age as 

continuous level-1 predictor of effect sizes indicated a weak negative relation. This pattern of 

results is plausible, because the latter analysis has a higher statistical power than the former 

three analyses for two reasons. Analyses with age as continuous predictor have a higher 

sensitivity for gradual age-related changes than age-group comparisons; and methodological 

differences between studies are confounded with age effects on level 2 (i.e. studies differ in 

method and participant age), but not on level 1 (i.e. the same method is used in all age groups 

of the same study).  

The finding that the comparison-competence correlation decreases only slightly with 

participant age might be surprising, because the link between magnitude comparison and the 

content of mathematics instruction beyond the elementary-school years is far from obvious 

and is subject to ongoing discussions (Rips, Bloomfield, & Asmuth, 2008; Szücs, Soltész, & 

Goswami, 2009). However, our findings are consistent with the results of the previous two 

meta-analyses (Chen & Li, 2014; Fazio et al., 2014) and of the only large-scale study (N ≥ 

10,000) on the lifespan development of non-symbolic magnitude comparison so far (Halberda 

et al., 2012), all of which either found no moderating effect of age at all or only a relatively 

small moderating effect. The absence of an age effect might indicate that the association 

between magnitude processing and mathematical competence is stable over the life-span. 

Alternatively, it might be that this association is mainly driven by an effect of numerical 

magnitude processing on early mathematics development, which then cascades into future 

mathematics development throughout life. Most of the studies included in this meta-analysis 

were cross-sectional, and there is a need for longitudinal data to investigate this issue. These 

future studies will have to test whether any causal relations between magnitude processing 

and math competence are stable over the lifespan or whether these relations diminish while 

their academic and motivational consequences remain over the lifespan.  

Implications of the Findings 
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Our meta-analytic findings have at least three implications, the first of which concerns the 

measures used in this field of research. The choice of measures strongly influences the 

correlation between comparison and competence, even more so than the choice of a non-

symbolic or a symbolic task format. In our analyses, differences between measures of 

magnitude comparison skills explained about 14% of the variance of effect sizes found with 

these measures. Differences between measures of mathematical competence also explained 

about 14% of the variance of effect sizes. In contrast, task format explained only 9% of the 

variance. For the magnitude comparison measures, solution rates, solution times and Weber 

fractions led to substantially stronger effects than the use of the distance effect or of the ratio 

effect. One explanation for the lower values found with distance effects and ratio effects could 

be the fact that they are difference scores (or change rates). Difference scores and change 

rates tend to have lower reliabilities than sum scores at least under some circumstances. Their 

usefulness is subject of an ongoing methodological debate (May & Hittner, 2003; Williams & 

Zimmerman, 1996). Our results are also in line with findings of Price et al. (2012) who found 

Weber fractions to be more reliable than ratio effects. We did correct for non-perfect 

reliabilities of magnitude comparison measures in our meta-analysis, but only for those 25% 

of studies that reported the reliabilities of the magnitude comparison measures. Thus, different 

reliabilities can at least partly explain the different effect sizes found with different measures 

(see Dietrich, Huber, & Nuerk, 2015, for a review of magnitude comparison measures and 

their reliabilities). An additional explanation for the substantial correlation between accuracy 

measures of magnitude processing skills and mathematical competence tests is that both 

measures are based on solution rates and, thus, indicate the breadth of a persons’ numerical or 

mathematical knowledge. In contrast, ratio and distance effect quantify the precision of 
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mental magnitude representations and, thus, assess a slightly different construct than 

competence tests (Dietrich et al., 2015). 

For mathematical competence measures, the strongest effects were found with the TEMA 

and mental arithmetic as compared to written arithmetic, curriculum-based measures and 

various other tasks. Potential explanations for these differences are that the TEMA draws on 

numerical abilities that are conceptually close to magnitude comparison, such as counting or  

informal calculation (e.g. with fingers) (Libertus, Feigenson, & Halberda, 2013b). It is also 

important to note that one of the eight areas of the TEMA-3 involves number comparison, 

although not all children would receive all of the six comparison items. So at least a small part 

of the association might also be attributed to surface similarities between the test and the 

magnitude comparison task. In mental arithmetic, learners need to mentally represent the 

magnitudes of the two addends and the magnitude of the sum (DeStefano & LeFevre, 2004). 

A good understanding of the numbers in terms of their magnitudes can be helpful for 

choosing an efficient calculation strategy (e.g., Peters, Smedt, Torbeyns, Verschaffel, & 

Ghesquière, 2014). In contrast, written arithmetic merely requires learners to combine the two 

addends digit by digit by following a standard algorithm, and there is no need for mentally 

representing the magnitudes of the addends and the sum (Linsen, Verschaffel, Reynvoet, & 

Smedt, 2015). Curriculum-based measures typically include a broad variety of mathematical 

skills, not all of which depend on numerical magnitude processing (Schneider et al., 2009).   

The second implication of our findings is the need for studies with experimental designs, 

which allow tests of causal hypotheses about the relations between magnitude processing and 

mathematical competence. As our meta-analysis shows, there is an abundance of correlational 

studies. These studies leave unanswered whether numerical magnitude processing causally 

affects mathematical competence. There are some interventions studies in which numerical 

magnitude comparison skills have been successfully trained (see De Smedt et al., 2013, for a 

review). Some of these studies have indicated small but positive transfer effects to untrained 
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mathematical tasks (e.g., Obersteiner, Reiss, & Ufer, 2013; Ramani & Siegler, 2011; Siegler 

& Ramani, 2009). Park and Brannon (2013, 2014) showed that training adult’s approximate 

non-symbolic arithmetic skills improved their performance on a symbolic two- and three-digit 

addition and subtraction test. Hyde, Khanum, and Spelke (2014) reported that a brief training 

of non-symbolic numerical magnitude comparison improved 6-7-year-olds symbolic addition 

skills. These results suggest a causal influence of numerical magnitude processing on broader 

mathematical competence. However, other studies have failed to observe such transfer effects 

(Räsänen, Salminen, Wilson, Aunio, & Dehaene, 2009; Wilson, Dehaene, Dubois, & Fayol, 

2009), and some of the successful studies have been conducted with children from low-

income backgrounds or children with low numeracy. So the generalizability of findings on 

causal relations are not fully clear yet. It is also unclear whether, in addition to the possible 

influence of comparison on competence, there is also a causal influence in the opposite 

direction, so that gains in mathematical competence cause improvements in magnitude 

comparison skills. This hypothesis is supported by studies with adults which found positive 

effects of mathematics instruction on non-symbolic number comparison abilities (Nys et al., 

2013; Piazza, Pica, Izard, Spelke, & Dehaene, 2013). Future intervention studies should 

systematically test these alternative causal explanations for the correlations found in our meta-

analysis.  

Finally, Chen and Li (2014) have argued that, given the relatively small correlation 

between non-symbolic magnitude comparison and mathematical competence, many studies in 

this field of research were severely underpowered because they lacked the large sample sizes 

needed to detect small effects. Our analyses demonstrate that this issue is somewhat less 

problematic for the symbolic magnitude comparison task. According to power analyses 

conducted with G*Power 3 (Faul, Erdfelder, Lang, & Buchner, 2007), given the effect sizes 

found in our meta-analyses, a critical alpha error level of 5%, a statistical power of 80%, and 

one-sided testing, 102 participants are needed to detect the correlation between non-symbolic 
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magnitude comparison and math competence, but only 64 participants are needed to detect the 

correlation between symbolic magnitude comparison and mathematical competence. 
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