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Abstract 

Whether neuroimaging findings support discriminable neural correlates of 

emotion categories is a longstanding controversy. Two recent meta-analyses 

arrived at opposite conclusions, with one supporting (Vytal and Hamann, 2010) 

and the other opposing this proposition (Lindquist, et al., 2012). To obtain direct 

evidence regarding this issue, we compared activations for four emotions within 

a single fMRI design. Angry, happy, fearful, sad and neutral stimuli were 

presented as dynamic body expressions. In addition, observers categorized 

motion morphs between neutral and emotional stimuli in a behavioral 

experiment to determine their relative sensitivities. Brain-behavior correlations 

revealed a large brain network that was identical for all four tested emotions. 

This network consisted predominantly of regions located within the default 

mode network and the salience network. Despite showing brain-behavior 

correlations for all emotions, MVPA analyses indicated that several nodes of this 

emotion general network contained information capable of discriminating 

between individual emotions. However, significant discrimination was not 

limited to the emotional network, but was also observed in several regions 

within the action observation network. Taken together, our results favor the 

position that one common emotional brain network supports the visual 

processing and discrimination of emotional stimuli. 
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Introduction 

Basic emotion theory assumes the existence of a limited set of emotions that are 

universal, biologically inherited and associated with a distinctive physiological 

pattern for each emotion (Ekman, 1992; Tracy and Randles, 2011). Indeed, initial 

neuroimaging research investigating the processing of anger, fear, happiness or 

sadness suggested that their respective neural correlates could be localized in 

distinct anatomical locations or networks in the brain (Blair, et al., 1999; Morris, 

et al., 1996; Phillips, et al., 1998; Phillips, et al., 1997), which was taken as 

support for basic emotion theory. More recently, a competing model, termed the 

conceptual act theory of emotion, has been put forward. In contrast to the basic 

emotion view, the latter hypothesizes that the same brain networks would be 

engaged during a variety of emotions. Discrete emotions are constructed from 

these networks that are in themselves not specific to those emotions (Barrett, 

2006; Lindquist and Barrett, 2012). Neuroimaging support for one or the other 

theory is contradictory. While one recent meta-analysis supported the view that 

different emotions involve distinct arrays of cortical and subcortical structures 

(Vytal and Hamann, 2010), others have reported mixed results regarding 

specificity (Murphy, et al., 2003; Phan, et al., 2002) and another concluded that 

brain regions demonstrate remarkably consistent increases in activity during a 

variety of emotional states (Lindquist, et al., 2012).  

In any event, meta-analyses alone are inadequate for testing the predictions of 

the two outlined emotion models, because they rely on absolute differences in 

activations between conditions. Yet, brain-behavior correlation studies, as well 

as multivariate pattern classification approaches can reveal aspects of neural 

function even in the absence of a main effect. Therefore, in order to gain direct 
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support for one of the two hypotheses, studies need to investigate the processing 

of several emotions within the same design, allowing for a detailed analysis of 

commonalities and differences. At present, there is little direct evidence 

regarding specific neural correlates of emotions, because the very few 

investigations using within-study designs have focused on specific brain regions 

(van der Gaag, et al., 2007), did not contrast activations for different emotions 

against one another (Damasio, et al., 2000; Tettamanti, et al., 2012), or did not 

address the question of specificity (Kim, et al., 2015; Peelen, et al., 2010).  

To bridge this gap, we investigated the processing of neutral and emotionally 

expressive (angry, happy, fearful, sad) gaits within the same event-related fMRI 

study. The stimuli were presented as avatars, animated with 3D motion-tracking 

data. Numerous studies have shown that human observers readily recognize the 

emotions expressed in body movement (see de Gelder, 2006 for review), even 

with impoverished stimuli such as point-light displays or avatars (Atkinson, et 

al., 2004; Dittrich, et al., 1996; Pollick, et al., 2001; Roether, et al., 2009). These 

stimuli allowed us to search for emotion-specific signals within regions 

commonly associated with the processing of emotional stimuli such as the 

amygdala, insula, orbitofrontal or cingulate cortex, but also within the more 

general action observation network, comprising regions in occipito-temporal, 

parietal and premotor cortex (Grafton, 2009; Rizzolatti and Craighero, 2004).   

Recent results indicated that accommodating for individual differences in 

emotion processing can reveal aspects of neural function that are not detectable 

using standard subtraction methods (see Calder, et al., 2011 for review). 

Therefore, instead of focusing on group differences in absolute brain activations 

between emotional and neutral stimuli, we correlated brain activations with the 
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subject’s perceptual sensitivity for emotional stimuli, as determined in a 

behavioral experiment using morphed stimuli. Using this design, we localized an 

emotional brain network composed of regions showing reliable brain – behavior 

correlations. Subsequently, we investigated whether some regions correlate 

more strongly with one emotion compared to the others, whether the fine-

grained fMRI activation within the regions allowed discrimination between 

emotions, and how these regions are connected with the action observation 

network.  

 

Methods 

Participants 

Sixteen volunteers (8 females, mean age 25 years, range 23-32 years) 

participated in the experiment. All participants were right-handed, had normal 

or corrected-to-normal visual acuity and no history of mental illness or 

neurological diseases. The study was approved by the Ethical Committee of KU 

Leuven Medical School and all volunteers gave their written informed consent in 

accordance with the Helsinki Declaration prior to the experiment.  

 

Stimuli 

Stimuli were generated from motion-capture data of lay actors performing 

emotionally neutral gaits and four emotionally expressive gaits after a mood 

induction procedure (angry, happy, fearful, sad). A single, complete gait cycle 

was selected from the recording, defined as the interval between two successive 

heel strikes of the same foot. Details about the recording process can be found in 

(Roether, et al., 2009). The motion-capture data was used to animate a custom-
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built volumetric puppet model rendered in MATLAB. The model was composed 

of three-dimensional geometric shape primitives (Fig. 1). The puppet’s anatomy 

was actor-specific, but scaled to a common height. In order to eliminate 

translational movement of the stimulus, the horizontal, but not the vertical 

translation of the center of the hip joint was removed, resulting in a natural-

looking walk as though performed on a treadmill. Extended psychophysical 

testing ensured that the affect of the final stimuli could be easily identified 

(Roether, et al., 2009). These stimuli will subsequently be referred to as 

prototypical neutral or emotional stimuli and were used in the fMRI experiment. 

The complete stimulus set for the fMRI experiment contained 30 stimuli, six 

examples of neutral prototypes (6 different actors) and six angry, happy, fearful 

and sad prototypes, respectively.  

The stimuli used in the behavioral experiment were motion morphs between 

neutral and emotional prototypes used in the fMRI experiment. By morphing, we 

created a continuum of expressions ranging from almost neutral (90% neutral 

prototype and 10 % emotional prototype) to almost emotional (10% neutral 

prototype and 90 % emotional prototype). Morphing was based on spatio-

temporal morphable models (Giese and Poggio, 2000), a method which 

generates morphs by linearly combining prototypical movements exploiting a 

spatio- temporal correspondence algorithm. The method has previously been 

shown to produce morphs with high degrees of realism for rather dissimilar 

movements (Jastorff, et al., 2006). Each continuum between neutral and 

emotional was represented by nine different stimuli with the weights of the 

neutral prototype set to the values of 0.9, 0.75, 0.65, 0.57, 0.5, 0.43, 0.35, 0.25 
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and 0.1. The weight of each emotional prototype was always chosen such that 

the sum of the morphing weights was equal to one (Fig 1B).  

 

Procedure 

Behavioral testing:  Motion morphs between prototypical neutral and emotional 

stimuli were used for behavioral testing. The full stimulus set included 216 

stimuli (9 morph levels x 4 emotions x 6 actors). This set was shown twice 

during the experiment, resulting in 432 trials. The presentation order of the 

stimuli was randomly selected for each subject.  

Stimuli were displayed on an LCD screen (60 Hz frame rate; 1600x1200 pixels 

resolution) that was viewed binocularly from a distance of 40 cm, leading to a 

stimulus size of about 7 degrees visual angle. Stimulus presentation and 

recording of the participants’ responses was implemented with the MATLAB 

Psychophysics Toolbox (Brainard, 1997). The stimuli were shown as puppet 

models (Fig. 1) on a uniform gray background.  

The experiment started with a demonstration session where subjects were 

allowed to familiarize themselves with the stimuli for 10 trials. A single trial 

consisted of the presentation of a motion morph at the center of the screen for 

10 seconds. No fixation requirements were imposed. The subject had to first 

answer whether the stimulus was emotional or neutral, and, dependent on this 

answer, categorize the emotion as happy, angry, fearful or sad. Subjects were 

told to respond as soon as they had made their decisions but we did not 

emphasize responding quickly. If the subject answered within the 10 seconds, 

stimulus presentation was stopped immediately, otherwise, it halted after 10 

seconds and a uniform gray screen was shown until the subject entered a 
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response. After a 1.5 second intertrial interval, the next trial started. No feedback 

regarding performance was provided during the behavioral testing.  

Functional imaging: Only prototypical neutral or emotional stimuli were shown 

during imaging. The stimulus set was composed of 30 stimuli, belonging to 5 

different conditions (4 emotions * 6 actors + 1 neutral * 6 actors) presented on a 

black background. This set was shown twice within a single run, once at 6 and 

once at 4.5 degrees visual angle. Two different sizes were chosen to render low-

level features, i.e. retinal position, less informative with regard to categorization 

between the conditions. One run contained 60 stimulus events (6 stimuli x 2 

sizes x 4 emotions + 6 stimuli x 2 sizes x 1 neutral) and 12 baseline fixation 

events (condition 6), presented in a rapid event-related design. The 6 conditions 

were shown in a pseudo-random order with controlled history, so that each 

condition was preceded equally often by an exemplar of all other conditions 

within any given run (Jastorff, et al., 2009). A small red square (0.2°) was 

superimposed onto all individual stimuli. This fixation dot remained constant at 

the center of the display, but the center of mass of the puppet was randomly 

offset up to 1 degree from the fixation point to reduce low-level retinotopic 

effects. For any given movement, the offset was constant throughout the video. 

Each walking pattern was presented for two gait cycles. Depending on the given 

stimulus, the presentation lasted between ~2 and ~4 seconds. Fixation events 

showed the fixation dot on an otherwise black screen and lasted 3 seconds. For 

the subject, these fixation events were undistinguishable from the period of the 

ISI. The ISI was variable between 2300 ms and 5000 ms, determined by an 

exponential function (Dale, 1999). During this period subjects were asked to 

respond as to whether the preceding stimulus was emotional or neutral by 
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pressing a button on a MR-compatible button box placed in each hand of the 

subject. Half of the subjects responded using their right thumb for the emotional 

response, the other half responded with the left thumb to indicate an emotional 

stimulus. Importantly, subjects were not asked to identify the specific emotion 

shown. No response was required after the fixation condition. A single run lasted 

200 seconds and 8 runs were scanned in one session. Every run started with the 

acquisition of four dummy volumes to assure that the MR- signal had reached its 

steady state.  

In addition to the 8 experimental runs, we also acquired one resting state fMRI 

scan lasting 425 seconds. During acquisition, subjects were asked to close their 

eyes and not to think of anything in particular. 

 

Presentation and data collection 

The stimuli were presented using a liquid crystal display projector (Barco 

Reality 6400i; 1024x768, 60Hz refresh frequency; Barco) illuminating a 

translucent screen positioned in the bore of the magnet at a distance of 36 cm 

from the point of observation. Participants viewed the stimuli through a mirror 

tilted at 45deg that was attached to the head coil. Throughout the scanning 

session, participants’ eye movements were monitored with an ASL eye tracking 

system 5000 (60 Hz; Applied Science Laboratories). 

Scanning was performed with a 3T MR scanner (Intera; Philips Medical Systems) 

using a 32 channel head coil, located at the University Hospital of KU Leuven. 

Functional Images were acquired using gradient-echo planar imaging with the 

following parameters: 37 horizontal slices (3 mm slice thickness; 0,3 mm gap), 

repetition time (TR), 2 s; time of echo (TE), 30 ms; flip angle, 90º; 80x 80 matrix 
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with 2,75 x 2,75 mm in plane resolution, and SENSE reduction factor of 2. The 

resting state scan was performed with slightly different parameters: 31 

horizontal slices (4 mm slice thickness; 0,3 mm gap), repetition time (TR), 1.7 s; 

time of echo (TE), 33 ms; flip angle, 90º; 64x 64 matrix with 3,59 x 3,59 mm in 

plane resolution, and SENSE reduction factor of 2. 

A three-dimensional, high resolution, T1-weighted image covering the entire 

brain was also acquired during the scanning session and used for anatomical 

reference (TE/TR 4,6/9, 7ms; inversion time, 900 ms; slice thickness, 1,2 mm; 

256 x 256 matrix; 182 coronal slices; SENSE reduction factor, 2,5).  

 

Data analysis 

To investigate brain-behavior correlations, we first determined the 

perceptual sensitivity of each individual subject for our emotional body 

expressions. Next, we performed a random effects group analysis to 

determine brain regions that reliably correlated with perceptual 

sensitivity in the group. After having determined this ‘general emotion 

network’ (GEN), we investigated whether regions within this network 

contain information that could reliably discriminate between the 

presented emotions using muli-voxel pattern analyses (MVPA). This 

analysis was carried out in each subjects’ native (i.e. non normalized) space 

to maximize sensitivity. In order to investigate discrimination performance 

outside the general emotion network, we also performed a searchlight 

analysis (Kriegeskorte, et al., 2006), taking into account all voxels in the 

brain. Finally, we performed a resting-state analysis to investigate 
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connections within the GEN and between the GEN and the action 

observation network. 

Behavioral data: We analyzed the responses of every subject separately for each 

emotion and morph level, averaged over the 6 actors. During the behavioral 

experiment, subjects had to categorize not only whether the stimulus was 

‘neutral’ or ‘emotional’, but also, where they responded ‘emotional’, which 

emotion was expressed. The goal of this experiment was to determine each 

subject’s ambiguity point (AP), the morph level, at which they answered equally 

often ‘neutral’ and ‘emotional’. To assure that subjects indeed categorized the 

emotion correctly for 50% of the trials, we took their response to the second 

question into account to determine APs. Thus, in cases where they wrongly 

classified the emotion, their response was not counted as emotional, but as 

neutral. We opted for this procedure because we wanted to maximize our 

sensitivity for identifying emotion-specific processing. Had we taken only 

the first answer into account, we would not have been able to determine 

the AP for ‘angry’, but only that for ‘emotional’. Nevertheless, APs 

calculated with and without taking their correct answers into account were 

highly correlated (r = 0.94). APs were determined after fitting the data by 

sigmoidals. Subsequently, these values formed the basis of our brain-behavior 

correlation analyses. 

Functional imaging: Data analysis was performed in two processing streams 

using the SPM12b software package (Wellcome Department of Cognitive 

Neurology, London, UK) running under MATLAB (The Mathworks, Inc., Natick, 

MA). For the random effects group analyses, the preprocessing steps involved: 

(1) slice time correction, (2) realignment of the images, (3) coregistration of the 
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anatomical image and the mean functional image, (4) spatial normalization of all 

images to a standard stereotaxic space (MNI) with a voxel size of 2x2x2mm and 

(5) smoothing of the resulting images with an isotropic Gaussian kernel of 8 mm. 

For the native space analyses, the first three steps were identical, followed by 

smoothing with a 3 mm kernel. A 3 mm kernel was chosen because it is in the 

range of our native resolution and will correct interpolation errors resulting 

from the realignment process and from the 0.3mm gap between slices during 

acquisition. 

For every participant, the onset and duration of each condition was modeled by a 

General Linear Model (GLM). The design matrix was composed of six regressors 

modeling the six conditions (4 emotions + neutral + baseline) plus six 

regressors obtained from the motion correction in the realignment process. The 

latter variables were included to account for voxel intensity variations due to 

head movement. To exclude variance related to the subjects’ response, two 

additional regressors were included, modeling the button presses during the 

ISIs. All regressors were convolved with the canonical hemodynamic response 

function. Subsequently, we calculated contrast images for each participant for 

every stimulus condition versus baseline fixation, each of the four emotional 

conditions versus the neutral condition and the average of all four emotional 

conditions versus the neutral condition. Brain-behavior correlations (‘emotion 

network’) at the group level (normalized data) were determined by multiple 

regression analyses using the subjects’ APs as covariate. 

ROIs, dividing the emotion network into separate clusters, were defined in an 

unsupervised way using a watershed image segmentation algorithm (Meyer, 

1991). This algorithm finds local maxima and “grows” regions around these 
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maxima incorporating neighboring voxels, one voxel at a time, in 

decreasing order of voxel intensity (i.e. t-value), and as long as all of the 

labeled neighbors of a given voxel have the same label. To increase the 

number of voxels within each ROI for multi-voxel pattern analyses, we used a 

more liberal threshold of p < 0.01 uncorrected for the brain-behavior 

correlation. Prior to applying the watershed algorithm, we smoothed the t-map 

with a 4mm Gaussian kernel. This step reduced the number of partitions from 

231 (without smoothing) to 65. Subsequent ROI analyses within the emotion 

network were carried out in each subject’s native space. Thus, we mapped the 

group ROIs back to native space using the deformations utility of SPM12b.  

 

Classification of the emotion based on Support Vector Machines (SVM) 

Instead of including a single regressor per emotion, we also performed an 

analysis in the subject’s native space modeling each emotional stimulus as a 

separate condition (24 t-images; 4 emotions x 6 actors). A linear SVM (Cortes 

and Vapnik, 1995) was used to assess the classification performance across the 

four emotions, based on the t-scores.  

For the ROI-based SVM analysis, the t-scores of all voxels of a given ROI for a 

particular stimulus were concatenated across subjects, resulting in a single 

activation vector per stimulus and per ROI across subjects (Caspari, et al., 2014). 

The length of this vector was given by the sum of the voxels included in the ROI 

over subjects. The activations of 4 stimuli of each emotion were used for training 

the SVM (= training set, 16 stimuli). The remaining 2 stimuli of each emotion 

were used as a test set (8 stimuli). This analysis was repeated each time with 

differently composed training and test sets for all possible combinations. The 
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SVM analysis was run using the CoSMoMVPA toolbox. As a control, the analysis 

was performed with shuffled category labels (10000 permutations), where all 

stimuli were randomly assigned to the 4 emotions.  

For the searchlight analysis, SVM analyses were performed for each subject 

separately using a searchlight radius of 3 voxels. After subtracting chance level 

(0.25) from each voxel of the final classification images, these were normalized 

to MNI space and smoothed with a kernel of 4mm. Subsequently, we performed a 

random effects analysis over the 16 subjects. To identify regions with significant 

classification performance within the action observation network (AON), the 

final searchlight map was masked with the group result of the contrast all stimuli 

versus fixation baseline at p < 0.01 uncorrected. Clusters showing significant 

classification within the AON were determined by 3DClustSim (AFNI), correcting 

for multiple comparisons using Monte Carlo Simulations. Similarly, significant 

clusters within the general emotion network (GEN) were determined by masking 

the searchlight group image with the GEN at p < 0.01 uncorrected, followed by 

correction for multiple comparisons using 3DClustSim. 

 

Resting-state fMRI analysis 

Spatial and temporal preprocessing of resting-state data was performed using 

SPM12b together with the REST toolbox (Beijing Normal University, Beijing, 

China). Spatial preprocessing steps involved: (1) slice time correction, (2) 

realignment of the images, (3) coregistration of the anatomical image and the 

mean functional image and (4) spatial normalization of all images to MNI space 

with a voxel size of 2x2x2mm. Temporal preprocessing steps involved: (1) 

detrending, (2) band-pass filtering covering the frequency band from 0.01Hz to 
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0.1Hz, (3) linear regression to remove the covariate signals, including 

cerebrospinal fluid signal, white matter signal and six rigid-body motion 

parameters.  

ROIs for correlation analysis were defined as spheres of 5mm radius. The center 

of the sphere was the voxel with the highest t-score obtained from the group 

searchlight SVM analysis. We defined 34 seed ROIs. Fifteen of these related to 

main nodes of the action observation network showing significant classification 

in the searchlight analysis. Nineteen were derived from the general emotion 

network by inclusively masking the group searchlight classification results with 

the ROIs of the general emotion network. After extraction of the timecourses of 

the 34 seed ROIs, we calculated the pairwise Pearson’s correlation coefficient 

between all seed regions independently for each subject. Subsequently, the 

correlations were Fisher z-transformed and significant functional connectivity 

was assessed by performing t-tests on the pairwise correlations across subjects. 

We also performed hierarchical clustering (Wards method) on the final 

functional connectivity matrix to group the 34 seed regions into separate 

clusters depending on their connectivity profile. The distance matrix used for 

clustering was derived from the t-score of the pairwise correlations minus the 

maximum t-score across all seeds. In other words, seeds with high correlations 

(high t-values) would have small distance values and seeds with low correlations 

(low t-values) would have large distance values.  

Between-network hubs were identified following previous work (Sporns, et al., 

2007). A seed region had to fulfill two criteria in order to be defined as a 

between-network hub: first, the number of connections of the seed should 

exceed the mean connections within the network by one standard deviation at 

Page 15 of 51

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 16

the significance level of p < 0.00001; second, the participation index should 

exceed 0.3. The participation index of seed region j is defined as:  P(j) = 1-

(Ki(j)/Kt(j))2-(Ko(j)/Kt(j))2, where Ki is the number of within-network 

connections of the seed region j, Ko is the number of between-network 

connections of the seed region j, and Kt is the total number of network 

connections of the seed region j, such that Kt(j) = Ki(j)+Ko(j).  

 

Results 

Behavioral results 

Prior to the fMRI scanning sessions, subjects categorized test stimuli morphed 

between “neutral” and “emotional” in a psychophysical session. One trial 

consisted of the presentation of one test stimulus. Here, the subject had to first 

answer whether the stimulus was emotional or neutral, and, depending on this 

answer, subsequently categorize the emotion as happy, angry, fearful or sad. By 

parametrically varying the contribution of the emotional prototype to the morph, 

we tested categorization at nine different morph levels (fig. 1). Figure 2A shows 

the average responses across subjects at the different morph levels fitted by a 

sigmoid curve. This curve represents the proportions of ‘emotional’ responses as 

a function of the morphing weight of the emotional prototype. Average reaction 

times across subjects and emotion categories ranged from 3.3 seconds to 2.1 

seconds and were slowest for the 10, 25 and 35% morph level and fastest for the 

90% morph level. We also fitted the response curves for each subject 

individually to determine the ‘ambiguity point’ (AP), i.e. the morph level at which 

subjects gave neutral and emotional responses equally often. The 16 crosses in 

Figure 2A illustrate the individual APs. Whereas the ambiguity point for the 
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group was at 37% morph level, the APs for the individual subjects varied 

considerably, with a minimum of 23% and a maximum of 57%. The individual 

values were subsequently used for correlation with fMRI activation. 

Figure 2B plots the response curves for the individual emotions. The APs for the 

four emotions varied significantly (1-way repeated measures ANOVA: F(4,12) = 75, 

p < 0.001) with the lowest average AP for sad (33%) followed by happy (34%), 

fear (39%) and angry (44%). Nevertheless, differences in APs across emotions 

are not very informative, as they depend on the prototypes of the 4 emotions 

used for morphing. More interesting however, would be whether a subject more 

sensitive to angry walks compared to the group, would also be more sensitive to 

the other emotions compared to the group. Pairwise testing for positive 

correlations between thresholds of the four emotions showed significant 

correlations for five comparisons (all p < 0.05, Bonferroni corrected) and only 

one non-significant correlation between the thresholds for fearful and sad walks 

(p = 0.09). Thus, indeed, subjects more sensitive to one emotion were in general 

also more sensitive to the other emotions compared to the entire group. 

 

Correlation between brain activation and emotion sensitivity: 

Differing from most previous studies, our intention was not to investigate, where 

in the brain emotional stimuli lead to significantly increased activation compared 

to neutral stimuli. Rather, we wanted to identify brain regions in which 

activation correlated with individual perceptual thresholds for emotion 

recognition. Our reasoning was that subjects more sensitive to the 

emotional content might exhibit stronger fMRI activation for an emotional 

stimulus compared to a neutral one, whereas this difference might be 
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smaller for subjects less sensitive to the emotional content. Having 

determined the ambiguity point for each subject psychophysically, we correlated 

brain activation for the contrast emotional stimuli versus neutral stimuli with 

the subjects’ individual average AP (crosses in Fig 2A). Figure 3 illustrates brain 

regions that were more strongly activated in the contrast emotional versus 

neutral for subjects with low AP values and showed weaker activation in this 

contrast for subjects with a higher AP values. In other words, in these regions, 

activation for emotional compared to neutral stimuli was stronger, in proportion 

to how sensitive the subject was in the emotion recognition task. For illustration 

purposes, t-maps in Figure 3A are thresholded at p < 0.01 uncorrected with a 

cluster extent threshold of 30 voxels. These correspond to the yellow voxels in 

Figure 3B. The red voxels in Figure 3B reach significance at p < 0.001 

uncorrected. Significant correlation was observed in cortical, subcortical and 

cerebellar regions (see Table 1). Most prominent correlations were present 

bilaterally in the temporo-parietal junction, the precuneus, along the superior 

frontal sulcus, the medial orbitofrontal cortex, in the left medial and anterior 

temporal lobe, the left lingual gyrus, the right parahippocampal gryrus, the right 

amygdala and the right putamen.  

 

Distinct networks for individual emotions? 

Our correlation analysis used the individual APs averaged across emotions, as 

well as the average brain activation of all emotional stimuli compared to neutral 

stimuli. Thus, the network shown in Figure 3 might be a general network for 

emotion as outlined in the introduction. On the other hand, emotion-specific 

nodes, showing strong brain – behavior correlations for only one of the emotions 
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might be present within subparts or even outside of the general emotion 

network. To test this hypothesis, we correlated individual APs for one emotion 

with the brain activation of the same emotion versus neutral stimuli. As this 

procedure results in only four different maps, one for each emotion, we could not 

compare them statistically at the second level. Rather, to identify emotion-

specific nodes, we thresholded one of the maps at p < 0.001 and exclusively 

masked the resulting image with the other three maps thresholded at p < 0.05. 

Thus, remaining voxels would show strong brain – behavior correlations for one 

emotion, but only weak or no correlations for the other emotions. 

Figure 4 shows the general emotion network in yellow (same as Figure 3) and 

voxels more strongly correlated with happy in the caudate nucleus (blue) and 

sad in the left parahippocampal gyrus and the left medial temporal lobe (green) 

compared to the other emotions. We obtained no voxels predominantly 

correlating with angry or fearful stimuli at a cluster level of 15 voxels. This level 

was chosen because a cluster containing less than 15 voxels seemed 

unlikely to play a significant role in emotion processing. Our result indicates 

that the general emotion network seems indeed to be involved in the processing 

of all four emotions, as none of the nodes showed a predominant correlation 

with only one of the emotions. At the same time, voxels predominantly 

correlating with happy or sad stimuli were located in close proximity to this 

general network, extending it somewhat. 

To confirm this interpretation, we also plotted the conjunction map of all four 

brain-behavior correlation maps thresholded at p < 0.05 uncorrected. In Figure 

5, white indicates spatial overlap for all four emotion maps. Yellow indicates 

spatial overlap for three of the four maps. Orange indicates spatial overlap for 
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two of the maps and red indicates no spatial overlap. Indeed, most of the general 

emotion network is depicted in white/yellow, illustrating that these regions 

show significant brain-behavior correlations for the majority of emotions tested.  

 

Information about individual emotions within the general network? 

If we assume that the general network is involved in the processing of emotional 

body expressions regardless of the emotion displayed, then how are the subjects 

able to discriminate between the emotions? In other words, does the network, or 

specific nodes of the network, contain information to discriminate between the 

four emotions?  

To address this question, we performed multi-voxel pattern analysis with the 

nodes of the network as ROIs. By design, this network was not biased towards 

any of the emotions, neither in terms of fMRI activation, nor with respect to the 

task or the motor response. The network was determined by correlating the 

subject’s average AP across emotions with his/her fMRI activation averaged 

across emotions compared to neutral stimuli. Also, within each run, a specific 

emotion was shown at two different sizes, rendering retinal position unreliable 

as a means of classification. The subjects’ task was to categorize the stimuli in 

neutral and emotional, not to discriminate between emotions, and the 

buttonpress response was identical for all emotions.  

65 ROIs were identified from the general emotion network in an unsupervised 

manner using a watershed image segmentation algorithm (see Methods). To 

investigate if fMRI activation patterns within the ROIs contained reliable 

information about the specific emotion presented, we determined how well a 

stimulus could be classified as belonging to one of the four emotion categories. 
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By training support vector machines (SVMs) with 2/3 of the stimuli and 

subsequently applying the trained model to classify the remaining 1/3, we 

explicitly tested for stimulus generalization, an essential feature of 

categorization. Significant classification was determined by permutation testing 

(10000 permutations) and results were corrected for 65 comparisons. 

Results of the SVM analysis are shown in Figure 6. Highlighted are those 10 ROIs 

that showed significant (p < 0.05 Bonferroni corrected) classification 

performance averaged over the four emotions, and at the same time revealed 

significant classification performance for each of the four emotions (p < 0.05 

uncorrected). Thus, fMRI activation patterns within these ROIs contained 

information, which could reliably discriminate among all four emotions. The 

average classification matrix over the 10 ROIs is displayed in Figure 6C. Average 

correct classification ranged between 55% (fear) and 68% (anger) along the 

diagonal, all clearly above the 25% expected by chance. Main confusions 

occurred between angry and happy (22%), happy and fearful (17%) and fearful 

and sad (19%).  

We also investigated whether some of the ROIs would contain information that 

could correctly classify only one emotion, but not the other three. This was 

tested by requiring significant (Bonferroni corrected) classification performance 

for one emotion and non-significant (uncorrected) classification performance for 

the other three emotions. However, none of our ROIs met these criteria. 

Taken together, MVPA analyses indicated that several nodes within the general 

emotion network contain information capable of reliably discriminating all four 

emotions from one another. This result was obtained despite the fact that these 

ROIs show similar brain-behavior correlations for all four emotions.  
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Are regions outside the general emotion network sensitive to the specific emotion 

presented? 

To our surprise, the general emotion network was almost entirely composed of 

areas outside the classical action observation network (AON). As the stimuli 

presented were dynamic full body movements, we expected that the action 

observation network might process information of value for emotion 

categorization. To address this question, we performed a whole brain searchlight 

analysis within each subject and investigated above chance classification at the 

second level (see Methods). We also determined the AON by contrasting the 

average of all dynamic body stimuli with fixation baseline at the second level and 

thresholded the resulting t-map at p < 0.01 uncorrected as mask of the AON. 

Subsequently, we inclusively masked the second level classification map with the 

AON mask to identify regions within the AON showing significant classification 

performance. Figure 7A illustrates brain regions of the AON showing significant 

(p < 0.05 FWE cluster level correction) above chance level classification across 

participants. Main clusters were observed bilaterally in the posterior inferior 

temporal sulcus, the middle temporal gyrus and the superior temporal sulcus, 

the parahippocampal gyrus, the intraparietal sulcus, the precentral sulcus and 

the insula. Predominantly right hemispheric clusters were located in the cuneus, 

the fusiform gyrus, the posterior cingulate cortex and the inferior frontal sulcus. 

In order to investigate whether the searchlight analysis would also confirm our 

initial ROI classification analysis, we inclusively masked the searchlight results 

with the general emotion network (GEN) thresholded at p < 0.01 uncorrected. As 

expected, significant voxels (p < 0.05 FWE cluster level correction) were located 
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predominantly within the ROIs showing significant classification performance in 

our earlier ROI analysis, as indicated by the close correspondence of the maps 

shown in Figure 7B and Figure 6A. However, whereas our ROI classification 

analysis indicated significant classification performance in 10 out of the 65 ROIs 

of the GEN, the searchlight analysis revealed 19 local maxima (Table 2). This 

difference might arise from the fact that for the ROI classification analysis, all 

voxels of a given ROI were contributing to the classification, whereas the 

searchlight analysis performed individual tests for each voxel including only its 

direct neighborhood.  

 

Connectivity between the action observation network and the general emotion 

network. 

Presumably, our dynamic body expressions were initially processed within the 

action observation network (AON). In a final analysis step, we investigated how 

information about the different walking patterns might be relayed to the areas of 

the general emotion network (GEN). To this end, we tested connectivity between 

main nodes of the AON showing significant classification (Fig 7A) and the local 

maxima within the GEN displaying significant classification (Fig 7B) using 

resting-state fMRI. We selected 15 seed regions from the AON and 19 seed 

regions from the GEN (see Methods and Table 2). The centers of the seed regions 

were the voxels showing the highest group classification performance in the 

searchlight analysis. 

We assessed relative similarities among the 34 seed regions using hierarchical 

clustering (Figure 8A). This analysis resulted in four main clusters. The first 

cluster showed partial overlap with the salience network (Seeley, et al., 2007) 
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and comprised seeds in the right anterior cingulate cortex, the right inferior 

frontal sulcus and bilateral anterior insula. The second cluster contained 

predominantly seed regions from the GEN and showed overlap with the default 

mode or mentalizing network (Buckner, et al., 2008). Regions included were the 

medial prefrontal cortex, bilateral temporo-parietal junction, right precuneus 

and the anterior superior temporal sulcus. The third cluster was probably the 

most interesting one regarding information flow between regions of the AON 

and the GEN, as it contained six emotional seed regions and five action 

observation seed regions. This ‘mixed’ network consisted of seeds in the 

parahippocampal gyrus (bilateral), the amygdala (bilateral), the left anterior 

cingulate cortex and the right medial orbitofrontal cortex from the GEN and 

seeds in the right fusiform gyrus, bilateral precentral sulcus, the right 

supplementary motor area and the right inferior orbitofrontal cortex from the 

AON. The fourth cluster contained mainly seeds from the action observation 

network including the bilateral superior and inferior posterior temporal sulci, 

left fusiform gyrus and left middle superior temporal sulcus and showed overlap 

with the somatomotor and dorsal attention network (Corbetta, et al., 2008). 

Similarities between the clusters and their respective resting state 

networks as defined by Yeo et al. (2011) are illustrated in supplementary 

figures. 

In addition, we also assessed which seed regions showed strong connectivity 

between the emotion and the action observation networks. Such between-group 

hubs were defined in a manner analogous to that of previous studies (see 

Methods; Sporns, et al., 2007). Figure 8B illustrates the seed regions from the 

AON in blue and the GEN in red. Seeds shown with white markers fulfill the 
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criteria for a between-group hub. The sum of the connections is illustrated by the 

size of the marker. Blue lines represent connections within the AON, red lines 

connections within the GEN and pink lines connections between the networks. 

The thickness of the lines indicates the strength of the correlation. Four seeds 

from the emotion network were defined as between-group hubs: right amygdala, 

right insula, the left putamen and the left middle STS. Also, four seeds from the 

action observation network fulfilled the definition of a between-group hub: right 

anterior insula, right precentral sulcus, right anterior cingulate cortex and right 

fusiform gyrus. 

 

Discussion: 

This work investigated the processing of neutral and emotionally-expressive 

(angry, happy, fearful, sad) gaits within a single functional imaging study to 

directly test the predictions of the basic emotion and conceptual act theories of 

emotion with respect to distinct or shared neural correlates of emotions. In 

agreement with the conceptual act theory, we obtained significant brain-

behavior correlations for all four emotions within the same network. 

Moreover, none of the nodes of this network seemed to be preferentially 

involved in the processing of any single emotion. Nevertheless, multi-voxel 

activity patterns within several nodes of this common network contained 

reliable information about the emotion category presented. Emotion category 

information was not limited to the localized emotion network, but was also 

present in several regions of the action observation network. Finally, functional 

connectivity analysis revealed strong functional links between regions of the 

action observation network and the localized emotional network.  
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Two recent meta-analyses summarizing the available literature on emotion 

processing arrived at opposite conclusions regarding whether emotions are 

associated with both consistent and discriminable regional brain activations. 

Vytal and Hamann (2010) argued in favor, whereas Lindquist and colleagues 

(2012) argued against this viewpoint. One of the main differences in the studies 

was that the first performed a pairwise comparison between emotion categories 

(e.g. happy vs. sad, happy vs. fear etc.) whereas the latter compared activation 

for one emotion with the average across all other emotions (e.g. fear perception 

vs. perception of all other emotion categories). Our criterion for emotion 

specificity was that the area should show strong brain-behavior correlation for 

one emotion and only weak correlations for the remaining three emotions. In our 

view, this region would qualify for having a consistent relationship with one 

emotion as its activation compared to neutral stimuli correlates with the 

subject’s perceptual sensitivity for that emotion. It would also qualify for having 

a discriminable role for this one emotion, as it would be the only emotion with 

which this area would show brain-behavior correlations. In summary, our 

results are more compatible with the conclusions drawn by Lindquist et al. 

(2012).  

Instead of discriminable emotion circuits, we obtained brain – behavior 

correlations common to all four of the emotions investigated, in a large brain 

network spanning cortical and subcortical areas. This result is compatible with 

the conceptual act theory of emotion (Barrett, 2006; Lindquist and Barrett, 

2012), which would predict that a) multiple brain regions belonging to different 

brain networks support the perception of a single emotion and that b) one 

network supports the perception of multiple emotion categories. Our emotion 
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network, comprising similar regions as the ‘neural reference space’ for 

emotion (Lindquist, et al., 2012), showed strong overlap with two previously 

defined functional networks, the default mode or mentalizing network and the 

salience network. The default mode network comprises regions along the 

anterior and posterior midline, the lateral parietal cortex, prefrontal cortex, and 

the medial temporal lobe and has been implicated among others in theory of 

mind and affective decision making (Buckner, et al., 2008; Ochsner, et al., 2004; 

Schilbach, et al., 2008). The salience network involves anterior cingulate and 

fronto-insular cortices and has extensive connections with subcortical and limbic 

structures such as the putamen or amygdala (Seeley, et al., 2007). Alterations in 

functional connectivity within both networks have been associated with diseases 

featuring social-emotional deficits such as autism, schizophrenia or behavioral 

variant frontotemporal dementia (von dem Hagen, et al., 2013; Woodward, et al., 

2011; Zhou, et al., 2010).  

One of the main findings that distinguishes our work from previous studies 

testing the predictions of different emotion theories using meta-analyses 

(Lindquist, et al., 2012; Murphy, et al., 2003; Phan, et al., 2002; Vytal and 

Hamann, 2010) or analysis of resting state data (Touroutoglou, et al., 2015) is 

that we obtained emotion-specific activity patterns at a finer level in several 

regions within the emotion network. This indicates that, despite being involved 

in the processing of all emotions, individual emotions indeed elicit distinct 

distributed activation patterns. These differences, however, do not manifest 

themselves in significant activation differences between emotions and are thus 

not picked up using univariate methods or meta-analyses. It is conceivable that 

this finer-grained organization relates to emotion-specific subnetworks within 
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the general network. Alternatively, it could indicate that the regions involved 

interact in distinct spatial (Tettamanti, et al., 2012) or temporal (Costa, et al., 

2014) patterns during the perception of one emotion compared to another. This 

might lead to the emotion-specific activation patterns that can be used by the 

brain to categorize emotions. Such patterns, even though possibly different 

across individuals, could explain why we are able to interpret our perceptions or 

feelings despite such broad activation within distributed networks. Whereas the 

existence of subnetworks would be in line with basic emotion theory, qualifying 

as distinctive neural correlates for each emotion, the flexible interaction of 

regions, depending on the perceived stimulus, would be more in line with the 

conceptual act theory of emotion. Future studies specifically comparing the 

functional connectivity patterns across different emotions might help to shed 

light on this question. 

Our study links nicely with two previous studies investigating supramodel 

representations of emotions using whole-brain searchlight analyses (Kim, et al., 

2015; Peelen, et al., 2010). Together, these studies highlighted five brain regions 

(MPFC, PPC, precuneus, temporo-parietal junction and STS) that contained 

information concerning several emotions, independent of presentation modality 

(face, body, sound or abstract pattern). All these regions (apart from the STS) are 

located within our general emotion network and contain information sufficient 

to discriminate between our stimuli (Table 2). We thus believe that the network 

localized in the present study is not specific to body processing, but is involved in 

the processing of emotions in general.  

We did not obtain significant brain-behavior correlations within the action 

observation network (Grafton, 2009; Rizzolatti and Craighero, 2004). This is in 
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agreement with a current meta-analysis concluding that both networks are 

rarely activated concurrently (Van Overwalle and Baetens, 2009). Nevertheless, 

several studies propose that the action observation network contributes to 

emotion perception through a mechanism termed embodied simulation 

(Blakemore and Decety, 2001; Gallese, et al., 2004; Niedenthal, et al., 2010). 

Undoubtedly, identification of body posture or specific kinematics of the 

emotionally expressive gaits as subserved by the action observation network 

provides valuable information for emotion perception. Our MVPA searchlight 

results demonstrate that this information is available in several nodes of the 

AON, which allowed reliable discrimination between emotion categories. 

Central to interactions between regions involved in action observation and 

mentalizing would be areas with a high degree of connectivity between the two 

networks. Our resting-state analysis identified four such hubs within the AON: 

the right anterior insula, the right anterior cingulate cortex, the right precentral 

sulcus and the right fusiform gyrus. These findings match nicely with previously 

published imaging data investigating links between action observation and social 

cognition. Studies of the direct experience and observation of pain or emotion 

showed overlapping activations within the anterior insula and the anterior 

cingulate cortex (Carr, et al., 2003; Singer, et al., 2004). Modulation of activity in 

the fusiform gyrus by observation of emotional bodies has been consistently 

reported (de Gelder, et al., 2004; Grosbras and Paus, 2006) and was proposed to 

be induced by discrete projections from the amygdala (Peelen, et al., 2007). 

Future studies investigating connectivity in more detail may shed light on the 

directionality of functional connections between hubs of the action observation 

and the mentalizing network. 
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Our study differed in one other aspect from most previous functional imaging 

work on visual emotion perception: We investigated brain-behavior correlations 

instead of absolute differences in brain activation. From the recent literature 

investigating individual differences in emotion processing it is apparent that 

correlation analyses can reveal aspects of neural function that are not detectable 

using standard subtraction methods (see Calder, et al., 2011 for review). The 

standard univariate approach tests whether neural activation in response to one 

condition is significantly higher than the activation associated with another. 

Significant correlation with a behavioral measure, however, can occur even in 

the absence of such a group effect. This can be observed because lower and 

higher scores on the behavioral dimension are associated with relative 

reductions and increases, respectively, in the neural response to the contrast of 

interest, producing an overall effect that does not statistically differ from zero 

(Calder, et al., 2011). We are confident that correlation between individual 

perceptual sensitivity to emotionally expressive gaits and neural activation 

contrasting emotional with neutral gaits provides a valid method for 

investigating emotion circuits in the brain. Our results, highlighting a similar 

emotion network compared to recent meta-analyses and reviews (Barrett, et al., 

2007; Lindquist, et al., 2012; Phan, et al., 2002; Vytal and Hamann, 2010), 

support this view.  

We used an explicit task, in which subjects had to respond as to whether the 

stimulus presented was emotional or neutral. Studies directly comparing explicit 

vs. implicit emotional processing reported mixed results. In one case, explicit 

processing elicited greater temporal activation whereas implicit processing 

increased activation in the amygdala (Critchley, et al., 2000). Other studies, 
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however, reported the opposite, with stronger amygdalar and hippocampal 

activity during the explicit task (Gur, et al., 2002; Habel, et al., 2007). We believe 

that our specific task requirements did not significantly affect our results, as 

nowhere during the scanning session did the subjects have to decide which 

emotion was presented. They were asked only to categorize the stimuli as neural 

or emotional. Therefore, our MVPA analyses, focusing only on emotional trials, 

were not influenced by task requirements, as the responses of the subjects were 

identical for all trials. For the same reason, semantic processing cannot have 

affected our results, as the semantic labeling of the stimuli was ‘emotion’, 

irrespective of whether the given stimulus was angry, happy, fearful or sad. 

Nevertheless, the behavioral data showed that subjects reached almost 100% 

correct performance for the 90% emotional morph. Thus, they were very well 

able to categorize the stimulus presented in the scanner. Moreover, our choice of 

correlation analyses instead of absolute subtraction methods makes it unlikely 

that unspecific task effects drove parts of the emotion network described. For 

this to be the case, the degree of task involvement would need to correlate with 

perceptual sensitivity for emotional stimuli. 

Taken together, our data favors the existence of a single, common brain network 

supporting the visual processing of emotional stimuli. Nevertheless, several 

nodes within this network contain information about the category of the 

emotion processed at the multi-voxel response pattern level. Whether this 

finding results from emotion-specific sub-networks within the general network, 

compatible with basic emotion theory, or from changes in connectivity strength 

specific to each emotion, compatible with the conceptual act theory of emotion, 

awaits further clarification. In general, neuroimaging research on emotions can 
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only establish associations with brain activations. To gain evidence for the 

necessity of a certain brain region or network for emotion recognition additional 

neuopsychological research is needed. 
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Figure Captions: 

 

Figure 1: Stimuli. A) Example frames taken from 4 prototypical stimuli displaying 

the emotions angry, happy, fearful and sad used in the functional imaging 

experiment. B) Illustration of the morphed stimuli indicating different morph 

levels between neutral and emotional (sad) gaits tested during the behavioral 

experiment. 

 

Figure 2: Behavioral results. A) Average ‘emotional’ responses across subjects 

and across emotions at the different morph levels (+/- sem) fitted by a sigmoid 

curve. Crosses indicate the individual ambiguity points of the 16 subjects. B) 

Average ‘emotional’ responses across subjects separate for each emotion at the 

different morph levels (+/- sem).  

 

Figure 3: General emotion network. Group results of the brain – behavior 

correlation analysis between the fMRI contrast all emotions versus neutral 

stimuli and the average perceptual ambiguity point determined in the behavioral 

experiment. Results are displayed on the rendered MNI brain template (A) and 

respective coronal sections (B). Yellow voxels in B: p < 0.01, red voxels in B: p < 

0.001. See Table 1 for anatomical locations and respective t-scores of the red 

voxels.  

 

Figure 4: Emotion-specific voxels. Yellow voxels indicate the general emotion 

network (same as Fig. 3). Green voxels show stronger brain-behavior 
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correlations for sad, and blue voxels show stronger brain-behavior correlations 

for happy compared to the other emotions.  

 

Figure 5: Conjunction map. Conjunction of all four brain-behavior correlation 

maps. White indicates spatial overlap for all four maps. Yellow indicates spatial 

overlap for three of the four maps. Orange indicates spatial overlap for two of the 

maps and red indicates no spatial overlap. 

 

Figure 6: SVM classification. Colored voxels in A) and B) indicate ROIs of the 

general emotion network showing significant SVM classification performance. C) 

Average percent correct classification across the 10 ROIs highlighted in A) and 

B). Chance level = 25%. Order of conditions from left to right and top to bottom: 

angry, happy, fearful and sad. 

 

Figure 7: Searchlight analysis. A) Regions of the action observation network with 

significant classification performance in the SVM searchlight analysis rendered 

on the MNI brain template. B) Regions of the general emotion network with 

significant classification performance. Searchlight results confirm the results of 

the ROI-based classification indicated by the similarity of Fig 6A and 7B. 

 

Figure 8: Resting-state fMRI analysis. A) Results of the clustering analysis based 

on the pairwise correlation between seed regions from the general emotion 

network and the action observation network. Numbers 1 to 34 refer to the 

numbers in Table 2 and indicate the location of the seed region. We obtained 4 

main clusters, color-coded in red, green, blue and pink respectively. Black labels 
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indicate seeds from the general emotion network and white labels indicated 

seeds from the action observation network. B) Illustration of significant 

functional connections within the action observation network (blue) and within 

the general emotion network (red). Significant functional connections between 

these two networks are shown in purple. White circles signal between group 

hubs. Numbers within each circle refer to the location of the seed region defined 

in Table 2. 
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Table 1: Main nodes of the emotion network 

Region Hem Coordinates t-score 

  X Y Z  

post. Cerebellum R 22 -76 -36 4.3 

Temporoparietal junction L -40 -72 32 4.3 

Precuneus R 14 -54 44 4.2 

Parahippocampal gyrus L -28 -50 -6 4.7 

Temporoparietal junction L -56 -50 36 5.1 

Post. cingulate L -6 -44 42 5.5 

Mid. middle temporal gyrus L -66 -40 2 4.1 

Mid. cingulate L 2 -26 44 5.0 

Ant. inferior temporal gyrus L -50 -8 -38 4.8 

Post. mid. frontal gyrus R 22 -6 44 5.1 

Ant. superior temporal sulcus L -62 -2 -20 6.8 

Putamen R 30 4 12 4.6 

Amygdala R 22 4 -12 4.3 

Nucleus accumbens R 2 6 -8 4.0 

Mid. frontal gyrus L -18 26 42 4.1 

Post. sup. frontal gyrus L -16 28 60 4.7 

Ant. cingulate R 22 32 22 6.4 

Ant. mid. frontal gyrus R 26 32 46 5.5 

Ant. sup. frontal gyrus L -24 40 44 4.1 

Ant. sup. frontal gyrus R 22 44 36 4.2 

Medial prefrontal cortex R 14 54 14 4.9 

Medial prefrontal cortex L -6 54 14 4.8 

Medial prefrontal cortex R 8 62 0 5.7 

 

Anatomical locations and respective t-scores for regions showing significant 

brain-behavior correlations (general emotion network, red voxels in Fig. 3) 
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Table 2: Resting state connectivity between emotion network and action 

observation network. 

ROI Region Hem. Coordinates AON/ Network 

   X Y Z GEN  

1 Temporoparietal junction L -52 -50 36 GEN 2 

2 Temporoparietal junction R 44 -60 30 GEN 2 

3 Temporoparietal junction L -40 -64 36 GEN 2 

4 Precuneus R 8 -50 36 GEN 2 

5 Parahippocampal gyrus L -28 -52 -4 GEN 3 

6 Parahippocampal gyrus R 32 -42 -8 GEN 3 

7 Mid. middle temporal sulcus L -60 -32 4 GEN 4 

8 Ant. superior temporal sulcus L -58 -12 -16 GEN 2 

9 Putamen L -26 -10 4 GEN 2 

10 Ant. insula R 36 4 12 GEN 1 

11 Amygdala R 18 2 -16 GEN 3 

12 Amygdala L -24 -6 -12 GEN 3 

13 Nucleus accumbens L -2 4 -8 GEN 3 

14 Post. superior frontal gyrus R 20 20 50 GEN 2 

15 Post. superior frontal gyrus L -14 24 58 GEN 2 

16 Ant. superior frontal gyrus L -18 38 28 GEN 2 

17 Ant. superior frontal gyrus R 22 40 40 GEN 2 

18 Medial prefrontal cortex R 14 44 -4 GEN 3 

19 Medial prefrontal cortex L -8 54 18 GEN 2 

20 Fusiform gyrus R 50 -46 -14 AON 3 

21 Fusiform gyrus L -36 -54 -14 AON 4 

22 Post. superior temporal sulcus L -46 -48 10 AON 4 

23 Post. superior temporal sulcus R 40 -50 8 AON 4 

24 Extrastriate Body Area L -46 -74 8 AON 4 

25 Extrastriate Body Area R 48 -74 8 AON 4 

26 Precentral sulcus L -26 -6 46 AON 3 

27 Precentral sulcus R 30 -12 48 AON 3 

28 Inferior frontal sulcus R 34 6 16 AON 1 

29 Supplementary motor area R 14 6 48 AON 3 

30 Ant. cingulate R 10 20 32 AON 1 

31 Ant. insula R 32 20 10 AON 1 

32 Ant. Insula L -32 14 14 AON 1 

33 Inferior orbitofrontal L -30 28 -4 AON 2 

34 Inferior orbitofrontal R 30 28 -10 AON 3 
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Seed regions of the general emotion network (GEN) and the action observation 

network (AON). Numbers correspond to the numbers shown in Figure 8. The 

different gray levels indicate the four different sub-networks defined in the 

cluster analysis (Fig. 8A). 
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Figure 1: Stimuli. A) Example frames taken from 4 prototypical stimuli displaying the emotions angry, 
happy, fearful and sad used in the functional imaging experiment. B) Illustration of the morphed stimuli 
indicating different morph levels between neutral and emotional (sad) gaits tested during the behavioral 

experiment.  
80x100mm (300 x 300 DPI)  
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Figure 2: Behavioral results. A) Average ‘emotional’ responses across subjects and across emotions at the 
different morph levels (+/- sem) fitted by a sigmoid curve. Crosses indicate the individual ambiguity points 
of the 16 subjects. B) Average ‘emotional’ responses across subjects separate for each emotion at the 

different morph levels (+/- sem).  
74x155mm (300 x 300 DPI)  
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Figure 3: General emotion network. Group results of the brain – behavior correlation analysis between the 
fMRI contrast all emotions versus neutral stimuli and the average perceptual ambiguity point determined in 
the behavioral experiment. Results are displayed on the rendered MNI brain template (A) and respective 

coronal sections (B). Yellow voxels in B: p < 0.01, red voxels in B: p < 0.001. See Table 1 for anatomical 
locations and respective t-scores of the red voxels.  

179x149mm (300 x 300 DPI)  
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Figure 4: Emotion specific voxels. Yellow voxels indicate the general emotion network (same as Fig. 3). 
Green voxels show stronger brain-behavior correlations for sad and blue voxels show stronger brain-

behavior correlations for happy compared to the other emotions.  

178x112mm (300 x 300 DPI)  
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Figure 5: Conjunction map. Conjunction of all four brain-behavior correlation maps. White indicates spatial 
overlap for all four maps. Yellow indicates spatial overlap for three of the four maps. Orange indicates 

spatial overlap for two of the maps and red indicates no spatial overlap.  

178x112mm (300 x 300 DPI)  
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Figure 6: SVM classification. Colored voxels in A) and B) indicate ROIs of the general emotion network 
showing significant SVM classification performance. C) Average percent correct classification across the 10 
ROIs highlighted in A) and B). Chance level = 25%. Order of conditions from left to right and top to bottom: 

angry, happy, fearful and sad.  
180x150mm (300 x 300 DPI)  
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Figure 7: Searchlight analysis. A) Regions of the action observation network with significant classification 
performance in the SVM searchlight analysis rendered on the MNI brain template. B) Regions of the general 
emotion network with significant classification performance. Searchlight results confirm the results of the 

ROI based classification indicated by the similarity of Fig 6A and 7B.  
80x120mm (300 x 300 DPI)  
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Figure 8: Resting state fMRI analysis. A) Results of the clustering analysis based on the pairwise correlation 
between seed regions from the general emotion network and the action observation network. Numbers 1 to 
34 refer to the numbers in Table 2 and indicate the location of the seed region. We obtained 4 main clusters, 
color coded in red, green, blue and pink respectively. Black labels indicate seeds from the general emotion 
network and white labels indicated seeds from the action observation network. B) Illustration of significant 
functional connections within the action observation network (blue) and within the general emotion network 
(red). Significant functional connections between both networks are shown in purple. White circles signal 
between group hubs. Numbers within each circle refer to the location of the seed region defined in Table 2.  

177x78mm (300 x 300 DPI)  
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