

Citation	Vandamme, D., Pohl, P.I., Beuckels, A., Foubert, I., Brady, P.V., Hewson, J.C., Muylaert, K., Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite, Bioresource Technology (2015), doi: http://dx.doi.org/10.1016/j.biortech.2015.08.042
Archived version	Author manuscript: the content is identical to the content of the published paper, but without the final typesetting by the publisher
Published version	http://dx.doi.org/10.1016/j.biortech.2015.08.042
Journal homepage	http://www.journals.elsevier.com/bioresource-technology/
Author contact	your email <u>dries.vandamme@xxx.kuleuven.be</u> your phone number + 32 (0)56 24 60 41
IR	url in Lirias https://lirias.kuleuven.be/handle/123456789/504316

(article begins on next page)

Accepted Manuscript

Alkaline flocculation of *Phaeodactylum tricornutum* induced by brucite and calcite

Dries Vandamme, Philip I. Pohl, Annelies Beuckels, Imogen Foubert, Patrick V. Brady, John C. Hewson, Koenraad Muylaert

PII:	\$0960-8524(15)01148-7
DOI:	http://dx.doi.org/10.1016/j.biortech.2015.08.042
Reference:	BITE 15395
To appear in:	Bioresource Technology
Received Date:	11 July 2015
Revised Date:	7 August 2015
Accepted Date:	8 August 2015

Please cite this article as: Vandamme, D., Pohl, P.I., Beuckels, A., Foubert, I., Brady, P.V., Hewson, J.C., Muylaert, K., Alkaline flocculation of *Phaeodactylum tricornutum* induced by brucite and calcite, *Bioresource Technology* (2015), doi: http://dx.doi.org/10.1016/j.biortech.2015.08.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Alkaline flocculation of *Phaeodactylum tricornutum* induced by brucite and
- 2 calcite
- 3
- 4 Dries Vandamme^{1*}, Philip I. Pohl², Annelies Beuckels¹, Imogen Foubert^{3,4}, Patrick V.
- 5 Brady², John C. Hewson², Koenraad Muylaert¹
- 6
- ¹KU Leuven Kulak, Laboratory Aquatic Biology, E. Sabbelaan 53, 8500 Kortrijk,
- 8 Belgium
- 9 ²Sandia National Laboratories, Albuquerque, NM, USA.
- 10 ³KU Leuven Kulak, Research Unit Food & Lipids, Department of Molecular and
- 11 Microbial Systems Kulak, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
- 12 ⁴Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven
- 13 Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
- 14
- 15 *Corresponding Author: <u>dries.vandamme@kuleuven-kulak.be</u>
- 16 Tel: +32 56 24 60 41
- 17

Abstract

20	Alkaline flocculation holds great potential as a low-cost harvesting method for marine
21	microalgae biomass production. Alkaline flocculation is induced by an increase in pH
22	and is related to precipitation of calcium and magnesium salts. In this study, we used
23	the diatom <i>Phaeodactylum tricornutum</i> as model organism to study alkaline
24	flocculation of marine microalgae cultured in seawater medium. Flocculation started
25	when pH was increased to 10 and flocculation efficiency reached 90% when pH was
26	10.5, which was consistent with precipitation modeling for brucite or $Mg(OH)_2$.
27	Compared to freshwater species, more magnesium is needed to achieve flocculation
28	(> 7.5 mM). Zeta potential measurements suggest that brucite precipitation caused
29	flocculation by charge neutralization. When calcium concentration was 12.5 mM,
30	flocculation was also observed at a pH of 10. Zeta potential remained negative up to
31	pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping
32	coagulation mechanism.
33	
34	Keywords: coagulation, marine algae, enmeshment, biomass, autoflocculation,
35	ballasted flocculation
36	G
37	

38 Introduction

39

40	Microalgae are a promising new source of biomass for production of food, animal
41	feed, biofuels and feedstocks for the chemical industry (Draaisma et al., 2013; Foley
42	et al., 2011). Production of microalgal biomass is still very expensive and energy-
43	intensive and is therefore only economically feasible for high-value products such as
44	nutritional supplements or fine chemicals (Guedes et al., 2011). The high cost and
45	energy demand of microalgal biomass production is to a large extent due to the cost of
46	harvesting (Barros et al., 2015; Show et al., 2013).
47	
48	Flocculation is seen as a promising way to reduce the cost and energy inputs of
49	harvesting of microalgae as it may allow a first separation of the biomass from the
50	culture medium by simple gravity sedimentation (Benemann et al., 1980; Molina
51	Grima et al., 2003; Schlesinger et al., 2012). In recent years, several methods for
52	flocculating microalgae have been developed, including chemical flocculation using
53	metal coagulants or cationic polymer flocculants , electro-coagulation-flocculation
54	using aluminum electrodes, microbial flocculation using bacteria or fungi and the use
55	of magnetic nanoparticles (Vandamme et al., 2013).
56	G

A simple and inexpensive way of inducing flocculation is by spontaneous flocculation
at high pH, which is referred to as autoflocculation or alkaline flocculation (Sukenik
and Shelef, 1984). Studies in the 1980's demonstrated that autoflocculation was
related to precipitation of calcium phosphate (Lavoie and Noüe, 1987; Sukenik et al.,
1985). Autoflocculation by calcium phosphate precipitation, however, only occurs

62 when phosphate concentrations are high (> 0.35 mM), making this method only

63 useful in phosphate-rich wastewaters (Beuckels et al., 2013).

64

65	When phosphate concentrations are low, autoflocculation can still be induced by
66	precipitation of calcite (calcium carbonate) and/or brucite (magnesium hydroxide). In
67	wastewater treatment, this method of flocculation is induced by addition of slaked
68	lime and is known as lime softening (Ayoub et al., 1986; Elmaleh, 1996). In a
69	previous study, we elucidated the relative contribution of calcium and magnesium
70	precipitation to alkaline flocculation for the freshwater microalgae Chlorella vulgaris
71	(Vandamme et al., 2012). Although both calcium and magnesium precipitated during
72	alkaline flocculation, flocculation could be induced in media containing only
73	magnesium but not in media containing only calcium. This suggested that, in
74	freshwater media, alkaline flocculation is induced by precipitation of magnesium
75	hydroxide or brucite but not by precipitation of calcite.

76

77 Autoflocculation has also been observed in seawater. In seawater, concentrations of 78 calcium and magnesium are much higher than in freshwater. Therefore, the relative 79 importance of calcite and brucite in inducing flocculation may be different. The fact 80 that flocculation starts at a lower pH in seawater than in freshwater suggest that the 81 underlying mechanism may indeed be different (Sales and Abreu, 2014; Spilling et 82 al., 2011). Experiments with Dunaliella suggested that flocculation at high pH was 83 mainly related to brucite precipitation (Besson and Guiraud, 2013). Because 84 Dunaliella is grown in hypersaline media, the alkaline flocculation mechanism may 85 be different in regular seawater media.

87 The aim of this study was to understand the role of calcium and magnesium salts in 88 alkaline flocculation of microalgae in seawater media. Therefore, we combined 89 precipitation and surface speciation modeling with jar test flocculation experiments 90 for the model marine microalgae *Phaeodactylum tricornutum*. We elucidated the 91 relative importance of calcite and brucite by investigating flocculation as a function of 92 pH in artificial seawater medium containing only calcium, only magnesium or both 93 cations. Additionally, zeta potential measurements were conducted to study alkaline 94 flocculation in medium with variable concentrations of calcium and magnesium. MAN 95

96

97 Materials and methods

98

99	Precipitation model and surface speciation for brucite and calcite in seawater
100	The concentrations of magnesium (hydroxide) and calcium (carbonate) were
101	modelled as function of pH in seawater to understand the calcium and magnesium
102	speciation during alkaline flocculation. The concentrations of total dissolved
103	magnesium, total dissolved calcium, (bi)carbonate, calcite as CaCO ₃ xH ₂ O(s) and
104	brucite as Mg(OH) ₂ (active) were modelled as functions of pH using Visual Minteq
105	3.0 (KTH, Department of Sustainable Development, Environmental Science and
106	Engineering, Stockholm, Sweden). The nominal composition of synthetic seawater
107	medium (Table 1) was entered using a temperature of 25°C.
108	The surface speciation of brucite and calcite was modeled through simple protonation
109	and deprotonation reactions described in Brady et al. (2014). Calculations were
110	carried out using the speciation code PHREEQC (Parkhurst and Appelo, 1999). The
111	surface site was assumed to be 10 sites nm ⁻² (Pokrovsky, 2004). The surface area was
112	set to $10^4 \text{ m}^2 \text{ mol}^{-1}$.
113	

- 114 Culturing of microalgae
- 115

Phaeodactylum tricornutum (Pt 86, UGent Belgium) was cultivated in dechlorinated
deionized water to which 30 g L⁻¹ synthetic sea salt (Homarsel, Zoutman, Belgium)
was added. This synthetic seawater (Table 1) was enriched with inorganic nutrients
according to the concentrations of the Wright's Cryptophyte medium (Guillard and
Lorenzen, 1972). *Chlorella vulgaris* was cultivated in freshwater medium (Table 1).
Both species were cultured in 30 L bubble column photobioreactors that were mixed

122 by sparging with 0.2 μ m-filtered air (5 L min⁻¹). The pH was controlled at 8.5 by

123 addition of CO₂-enriched air (2–3%) using a pH-stat system. Growth of the

124 microalgae in the photobioreactor was monitored by measuring the absorbance at

125 750 nm. Flocculation experiments were conducted at the end of the exponential

126 growth phase when microalgal density was approximately 0.4 g L^{-1} dry weight.

127

128 General setup of flocculation experiments

129

- 130 Alkaline flocculation was assessed using jar test experiments. 100 mL jars were
- stirred using a magnetic stirrer and pH was adjusted between 9 and 12 by addition of

132 0.5 M sodium hydroxide. The microalgal suspension was mixed intensively

133 (1000 rpm) for 10 min during and just after pH adjustment, followed by a gentle

134 mixing (250 rpm) for another 20 min. The suspension was subsequently allowed to

settle for 30 min. The flocculation efficiency was estimated by comparing absorbance

136 at 750 nm between the pH-adjusted treatment and a control treatment. Samples for

137 analysis of optical density were collected in the middle of the clarified zone. The

138 flocculation efficiency η_a was calculated as:

139
$$\eta_a = \frac{OD_i - OD_f}{OD_i}$$
 (Eq. 1)

where OD_i is the optical density of the control suspension after 30 min sedimentation
without pH adjustment, and OD_f is the optical density of the suspension after pH
adjustment. Each test was carried out in duplicate.

143

144 The role of magnesium and calcium in flocculation

146 The relative importance of calcium and magnesium in alkaline flocculation was 147 investigated by testing whether alkaline flocculation could be induced in media with 148 varying concentrations of calcium or magnesium. *Phaeodactylum* was separated from 149 the medium using centrifugation at 4,000 g and resuspended in fresh prepared 150 synthetic seawater medium lacking calcium chloride and magnesium sulphate. 151 Preliminary tests had shown that *Phaeodactylum* formed a stable suspension after 152 resuspension in its original medium and that centrifugation and resuspension had no 153 effect on alkaline flocculation. To investigate the role of calcium chloride in alkaline 154 flocculation, CaCl₂.2H₂O was added in a concentration between 0 and 12.5 mM. To 155 investigate the role of magnesium, magnesium sulphate (MgSO₄,7H₂O) was added in 156 concentration between 0 and 80 mM. The maximum concentrations used are in the 157 order of magnitude of the concentrations of these cations occurring in seawater. The 158 flocculation efficiency of *Phaeodactylum* cells in these synthetic media was assessed 159 at three pH levels (9.5; 10; 10.5) using jar tests as described above.

160

161 To evaluate whether magnesium or calcium had precipitated during flocculation, the 162 concentrations of magnesium and calcium were analyzed after flocculation in the 163 supernatant and in the biomass pellet using ICP-MS (Agilent 7700x ICP-MS) based 164 on a method previously used in (Vandamme et al., 2015). In short, supernatant and 165 biomass pellet were separated using centrifugation at 3,005g and both fractions were 166 stored at -20 °C. Prior to analysis, samples from the supernatant were diluted and 167 acidified using nitric acid (70%) to a final concentration of 0.1M. The samples from 168 the biomass pellet were acidified with 10 ml concentrated HNO3 (70%) and after 48 169 h the clear solution was diluted 20 times with deionized water.

170

 magnesium hydroxide, the influence of additional mixing time was tested fo <i>Phaeodactylum</i> resupended as previously described in synthetic seawater me containing 5 mM of bicarbonate and lacking sulfates and magnesium. Jar tes conducted as previously described and mixing time was varied from 35 till 9 	or edium sts were 95 min in
 Phaeodactylum resupended as previously described in synthetic seawater me containing 5 mM of bicarbonate and lacking sulfates and magnesium. Jar tes conducted as previously described and mixing time was varied from 35 till 9 	edium sts were 95 min in
 174 containing 5 mM of bicarbonate and lacking sulfates and magnesium. Jar tes 175 conducted as previously described and mixing time was varied from 35 till 9 	sts were 95 min in
175 conducted as previously described and mixing time was varied from 35 till 9	95 min in
	2
176 triplicate. Flocculation efficiency was determined as previous described.	
177	
178 Zeta potential measurements)
179	
180 The surface charge <i>Phaeodactylum</i> cells was assessed by the zeta potential b	based on
181 electrophoretic mobility using a Malvern Zetasizer Nano. Zeta potential was	3
182 calculated using the Smoluchowski equation. Zeta potential was measured at	t different
183 pH levels in media containing either calcium bicarbonate or magnesium sulp	phate at
184 concentrations of 7.5 mM. The pH was increased stepwise from 8 to 11.5 us	sing
185 sodium hydroxide (0.5 M). The zeta potential was evaluated at room temperature at	ature in
186 the electrophoresis cell. For each data point, triplicate cultures were taken fo	or
187 measurements and for each data, approximately, 25 readings were done. The	e average
188 values were then reported.	
G	

189 Results and discussion190

191 Modeling of brucite and calcite precipitation and surface complexation

193	Precipitation of magnesium as brucite (magnesium hydroxide) is predicted to start
194	when pH exceeds 10. At pH 10.5, residual concentration of Mg^{2+} in the seawater is
195	below 40 mM (Fig 1A). As brucite precipitation is quadratic in OH ⁻ , most of the
196	available Mg^{2+} is predicted to be precipitated as brucite at pH ≥ 11 . The surface
197	charge of brucite crystals is determined by the pH of the medium. As the isoelectric
198	point of brucite is 11, the surface charge of brucite precipitates is positive up to a pH
199	of 11 (Fig 1C). As a result, brucite precipitation should be capable of causing
200	coagulation of microalgae through charge neutralisation in the pH range 10 to 11.
201	
202	Precipitation of calcium as calcite (calcium carbonate) is predicted to start when pH
203	exceeds 8.5. Ca ²⁺ concentration in seawater is approximately 9 to 12 mM while
204	carbonate concentration is variable but rarely exceeds 5 mM in seawaters (Feely et al.,
205	2004). Therefore, calcite precipitation in seawater is limited by carbonate availability.
206	As a result, only a fraction of the calcium present in seawater will precipitate as
207	calcite. Calcite precipitation increases with increasing pH and reaches a maximum at
208	pH 11 (Fig 1B). Over this pH range, the concentration of carbonate increases as a
209	result of conversion of bicarbonate to carbonate by increasing pH ($pK_{a2} = 8.95$ in
210	seawater 25°C). The surface charge of calcite precipitates is determined by adsorption
211	of calcium, magnesium, carbonate and sulphates on the surface of calcite crystals
212	(Brady et al., 2014). The calcite surface in seawater is dominated by sorbed Mg,
213	$>CO_3Mg^+$, below pH 11, and $>CO_3^-$ groups at pH > 11 (Fig 1D). When seawater

concentrations of calcium and magnesium are present, the overall surface charge is

215 predicted to be positive at pH < 11.

216

217 Flocculation of Phaeodactylum tricornutum in synthetic seawater medium as a

218 function of pH, magnesium and calcium concentrations.

219

220 When alkaline flocculation was induced in synthetic seawater containing both

221 calcium and magnesium, flocculation started as soon as pH was 10 and reached over

222 90% when pH was 10.5 (Fig 2). This was at a lower pH than in freshwater, where

flocculation occurred at a pH of 11 (Vandamme et al., 2012). Similar results have

been reported in recent studies in experiments with the marine microalgae

225 Nannochloropsis, where flocculation was initiated at a pH of 10 to 10.5 (Sales and

Abreu, 2014; Şirin et al., 2013). At a pH of 10.5, the total dissolved magnesium

227 concentration remaining in the medium was 70 mM and the total dissolved calcium

concentration was 8.5 mM, which indicates that only 10.5 mM magnesium and 0.6

229 mM calcium had precipitated during flocculation. The amount of precipitation of both

230 magnesium and calcium is significantly less than the equilibrium expected (cf. Fig 1).

231 In general, brucite precipitation is expected to be relatively rapid so that the fact that

equilibrium levels are not reached will motivated further investigation of the effectsof mixing time below (cf. Fig. 5).

234

We then evaluated whether alkaline flocculation could be induced in synthetic

seawater lacking either calcium, or magnesium or both (Fig 3). In these experiments,

237 we also monitored zeta potential to evaluate whether flocculation might be associated

with changes in the surface charge of microalgal cells. No flocculation occurred at

239	any of the pH levels tested when both calcium and magnesium were lacking in the
240	medium. Also, zeta potential remained constant when pH was increased (Fig 4A).
241	
242	In medium lacking calcium, flocculation could be induced when magnesium was
243	added to the medium. Flocculation efficiencies higher than 80% were observed at the
244	same pH as in the medium containing both calcium and magnesium (pH 10.5; Fig
245	3A). When magnesium concentration in the medium was 0.15 mM or higher,
246	moderate flocculation occurred at pH 10.5 (flocculation efficiency of about 40%).
247	When magnesium concentration was 7.5 mM or higher, the flocculation efficiency
248	increased to about 90% at pH 10.5. In medium with 7.5 mM magnesium, the zeta
249	potential increased from negative to positive values when pH was increased above pH
250	10.5 (Fig 4B). As predicted by precipitation and surface complexation modeling, our
251	experimental observations confirm that alkaline flocculation can be induced in
252	medium containing only magnesium, and that flocculation is at least partly mediated
253	by charge neutralization. In a previous study, we demonstrated that magnesium
254	hydroxide precipitation can cause flocculation of the freshwater microalgae Chlorella
255	vulgaris (Vandamme et al., 2012). For Chlorella, however, a lower magnesium
256	concentration was required to induce alkaline flocculation than for Phaeodactylum. It
257	is unlikely that this difference is due to differences in biomass concentrations, as
258	biomass concentrations were comparable for both species (0.4 mg L ⁻¹ in <i>Chlorella</i>
259	versus 0.3 mg L ⁻¹ in <i>Phaeodactylum</i>). The observed difference may be due to
260	differences in cell properties between Chlorella and Phaeodactylum and/or due to an
261	effect of the ionic strength of the medium (freshwater versus seawater) (Ayoub et al.,
262	1986).
263	

264	In medium lacking magnesium, flocculation occurred when calcium was added to the
265	medium. When calcium concentration was 2.5 and 5 mM, flocculation only occurred
266	at pH 10.5 (Fig 3B). When calcium concentration was 12.5 mM (the normal
267	concentration in seawater medium) flocculation was also observed at a pH of 10, but
268	the flocculation efficiency was lower than when pH was 10.5. This is in agreement
269	with the 50% flocculation efficiency observed at pH 10 when calcium is present in
270	sufficient concentration in artificial seawater medium (Fig 2). In medium containing
271	7.5 mM calcium, the zeta potential remained negative up to pH 11.5 (Fig 4C).
272	Calculations using the results of Brady et al. (2014) as in Fig. 1 suggest that in the
273	absence of magnesium, the calcite surface remains negative, although the magnitude
274	of the negative charge varies significantly with the Ca^{+}/CO_{3}^{-2} ratio. For the solutions
275	studied here where calcium concentrations go from 1.25 to 12.5 the reduction in the
276	calcite surface charge is reduced by more than an order of magnitude, making
277	interaction between precipitated calcite and the anionic algal surface more favorable.
278	Our experimental results showed that alkaline flocculation can also be induced in
279	water containing calcium but lacking magnesium. Flocculation must have been due to
280	calcite precipitation and not calcium phosphate precipitation as phosphate
281	concentrations in the medium were very low (<0.05 mM). While our model predicted
282	that calcite precipitation is initiated at pH 8.5, our experiments showed that
283	flocculation only occurred at a pH of 10, or an even higher pH when calcium
284	concentrations were lower than those typically occurring in seawater. This
285	discrepancy could be related to kinetic aspects of calcite formation, which is not
286	included in our model (Shaojun and Mucci, 1993). Therefore we additionally tested
287	the influence of mixing time on flocculation efficiency as a function of pH in
288	synthetic seawater containing 5 mM of bicarbonate and lacking magnesium and

289	sulfates (Fig 5). At pH 8, no flocculation was observed even for 95 min of mixing. At
290	pH 9, flocculation efficiency was 34% for 35 min of mixing and increased up to 70%
291	for 50 min of mixing. This increase in flocculation efficiency at pH 9 is now in
292	correspondence with the predictions for calcite precipitations (Fig 1B). This
293	additional experiment showed that in contrast to brucite, calcite mediated flocculation
294	requires longer mixing than 30 minutes, which is traditionally used in jar tests
295	(Bratby, 2006).
296	
297	Relative importance of calcite and brucite
298	
299	When pH of <i>Phaeodactylum</i> cultures in synthetic seawater medium is increased,
300	alkaline flocculation occured at a pH of 10 -10.5 (Fig 2). In this pH window,
301	precipitation of both calcite and brucite may contribute to flocculation. Theoretically,
302	calcite could precipitate at a lower pH of 8.5 but it was demonstrated that longer
303	mixing was needed to obtain satisfactory flocculation in relation to precipitation
304	model (Fig 5). In outdoor microalgal cultures, pH increases gradually due to
305	photosynthetic activity and pH variation is stabilized by supply of carbon dioxide.
306	Due to exchange with the atmosphere and conversion of carbon dioxide to carbonates,
307	calcite concentrations may slowly increase and induce flocculation. Measurements of
308	zeta potential indicated that alkaline flocculation of <i>Phaeodactylum</i> in medium
309	lacking magnesium was not associated with a reversal of the surface charge (Fig 4C).
310	This suggests that calcite precipitates were either uncharged or negatively charged
311	and flocculation occurred through a sweeping mechanism rather than charge
312	neutralization. The surface charge of calcite crystals, however, depends on the
313	presence of both calcium and magnesium in solution (Brady et al. 2014). The medium

314	that was used in our experiment for Figs. 4C and 5 lacked magnesium, and in the
315	absence of magnesium the calcite surface charge is expected to be negative; similar
316	behavior is seen in Fig. 1D for pH values where magnesium precipitates as brucite.
317	As discussed around Fig. 1D, the calcite surface charge is a balance between sorption
318	of cations as $> CO_3Ca^+$ and $> CO_3Mg^+$ versus $>CO_3^-$ surface groups, and the lack of
319	Mg shifts the balance to negative.
320	
321	According to our experiments, flocculation by precipitation of brucite occurred in a
322	very narrow pH interval of 10 to 10.5. This is a consequence of the strong
323	dependence of brucite precipitation on OH as well as the relatively rapid kinetics
324	associated with brucite precipitation. As a pH of 10.5 is near the limit of the process
325	of bicarbonate utilization in photosynthesis (Prins and Elzenga, 1989), addition of
326	base may be required to induce flocculation by brucite precipitation; however, this
327	might be mitigated by the buffering associated with brucite precipitation. The
328	magnesium hydroxide that is formed is positively charged and will cause immediate
329	flocculation through charge neutralization and possibly also through a sweeping
330	mechanism. Although the high ionic strength of seawater results in higher magnesium
331	requirements to induce flocculation when compared to freshwater, this is not a
332	limiting factor due to the high magnesium concentration in seawater. This makes
333	brucite mediated flocculation an easier process to control compared to calcite
334 335	mediated flocculation.
336	Ayoub et al. 1986 concluded that seawater induced microalgal flocculation was
337	independent of microalgal biomass concentration, while in freshwater conditions
338	there was a linear behavior reported between magnesium and biomass concentration

339	for alkaline flocculation associated with brucite precipitation (García-Pérez et al.,					
340	2014). However, present results in marine conditions showed that brucite-mediated					
341	flocculation was mainly caused by charge neutralization. By this, one could expect a					
342	linear behavior of Mg dosage with biomass concentration which is in line with the					
343	observation made by García-Pérez et al. (2014). While for calcite, one could expect a					
344	independent behavior between calcium dosage and biomass concentration because					
345	calcite-mediated flocculation was mainly caused by sweeping, which is in line with					
346	the conclusions made by Ayoub et al. 1986. This suggests that flocculation conditions					
347	and process strategy could be adapted based on the initial biomass concentration. The					
348	effect of microalgae biomass concentration on the flocculation efficiency, pH,					
349	calcium and magnesium concentration in marine conditions disserves therefore					
350	further detailed study.					
351						
352	Conclusions					
353						
354	This study demonstrates that alkaline flocculation can be induced in a narrow pH					
355	range of 10-10.5 for the marine diatom Phaeodactylum tricornutum by the					
356	precipitation of brucite. A higher dosage of magnesium was needed to obtain similar					
357	flocculation efficiency compared to freshwater conditions. Alkaline flocculation was					
358	also induced in medium lacking magnesium. The precipitation of calcite was slower					
359	compared to brucite but it caused alkaline flocculation as well. This process was					
360	based on a sweeping mechanism, while brucite mainly caused alkaline flocculation					
361	based on a charge neutralization mechanism.					

362

363 Acknowledgements

364

365	The research presented in this paper was financially supported by the Research				
366	Foundation Flanders Belgium (FWO Postdoctoral Fellowship D. Vandamme, FWO				
367	Ph.D. fellowship A. Beuckels). We thank Sina Salim, Prof. Marjan Vermuë and Prof.				
368	Rene Wijffels, Bio-process Engineering, WUR, Wageningen for the usage of the				
369	Malvern Zetasizer during our experiments. We thank Kristin Coorevits and Prof. Erik				
370	Smolders, Division of Soil and Water Management, KU Leuven for the ICP-MS				
371	analysis. We thank Saul García-Pérez and Manel Azzabi for their contribution to this				
372	work. This work at Sandia National Laboratories was partially supported by the				
373	Laboratory Directed Research and Development program and was partially supported				
374	by the BioEnergy Technology Office, U.S. Department of Energy under Award				
375	9.1.1.3_DE-EE0005995. Sandia National Laboratories is a multi-program laboratory				
376	managed and operated by Sandia Corporation, a wholly owned subsidiary of				
377	Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear				
378	Security Administration under contract DE-AC04-94AL85000.				
379					

 \wedge

380 **References**

382	Ayoub, G.M., Lee, S.I., Koopman, B., 1986. Seawater induced algal flocculation.
383	Water Res. 20, 1265–1271.
384 385	Barros, A.I., Gonçalves, A.L., Simões, M., Pires, J.C.M., 2015. Harvesting techniques applied to microalgae: A review. Renew. Sustain. Energy Rev. 41, 1489–1500.
386	Benemann, J.R., Koopman, B., Eisenberg, D., Goebel, R., 1980. Development of
387	microalgal harvesting and high-rate pond technologies in California, in: Shelef,
388	G., Soeder, C. (Eds.), Algae Biomass. Elsevier, pp. 457–94.
389 390	Besson, A., Guiraud, P., 2013. High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina. Bioresour. Technol. 147C, 464–470.
391	Beuckels, A., Depraetere, O., Vandamme, D., Foubert, I., Smolders, E., Muylaert, K.,
392	2013. Influence of organic matter on flocculation of Chlorella vulgaris by
393	calcium phosphate precipitation. Biomass and Bioenergy 54, 107–114.
394 395	Brady, P. V, Pohl, P.I., Hewson, J.C., 2014. A coordination chemistry model of algal autoflocculation. Algal Res. 5, 226–230.
396	Bratby, J., 2006. Coagulation and flocculation in water and wastewater treatment.
397	IWA Publishing, London, UK.
398	Draaisma, R.B., Wijffels, R.H., Slegers, P.M.E., Brentner, L.B., Roy, A., Barbosa,
399	M.J., 2013. Food commodities from microalgae. Curr. Opin. Biotechnol. 24,
400	169–77.
401 402	Elmaleh, S., 1996. Suspended solids abatement by pH increase—upgrading of an oxidation pond effluent. Water Res. 30, 2357–2362.
403	Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J., Millero,
404	F.J., 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans.
405	Science 305, 362–6.
406 407	Foley, P.M., Beach, E.S., Zimmerman, J.B., 2011. Algae as a source of renewable chemicals: opportunities and challenges. Green Chem. 13, 1399.
408 409 410	 García-Pérez, J.S., Beuckels, A., Vandamme, D., Depraetere, O., Foubert, I., Parra, R., Muylaert, K., 2014. Influence of magnesium concentration, biomass concentration and pH on flocculation of Chlorella vulgaris. Algal Res. 3, 24–29.
411	Guedes, C., Amaro, H.M., Malcata, F.X., 2011. Microalgae as sources of high added-
412	value compoundsa brief review of recent work. Biotechnol. Prog. 27, 597–613.
413 414	Guillard, R.R.L., Lorenzen, C.L., 1972. Yellow-green algae with chlorophyllide c. J. Phycol. 8, 1–14.

415	Lavoie, A., Noüe, J., 1987. Harvesting of scenedesmus obliquus in wastewaters:
416	Auto- or bioflocculation? Biotechnol. Bioeng. 30, 852–859.
417	Molina Grima, E., Belarbi, E.H., Acién Fernández, F.G., Robles Medina, A., Chisti,
418	Y., 2003. Recovery of microalgal biomass and metabolites: process options and
419	economics. Biotechnol. Adv. 20, 491–515.
420 421 422	Parkhurst, D.L., Appelo, A.J., 1999. User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.
423 424 425	Pokrovsky, O., 2004. Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control. Geochim. Cosmochim. Acta 68, 31–45.
426 427	Prins, H.B. a., Elzenga, J.T.M., 1989. Bicarbonate utilization: Function and mechanism. Aquat. Bot. 34, 59–83.
428 429	Sales, R., Abreu, P.C., 2014. Use of Natural pH Variation to Increase the Flocculation of the Marine Microalgae Nannochloropsis oculata. Appl. Biochem. Biotechnol.
430	Schlesinger, A., Eisenstadt, D., Bar-Gil, A., Carmely, H., Einbinder, S., Gressel, J.,
431	2012. Inexpensive non-toxic flocculation of microalgae contradicts theories;
432	overcoming a major hurdle to bulk algal production. Biotechnol. Adv. 30, 1023–
433	30.
434	Shaojun, Z., Mucci, A., 1993. Calcite precipitation in seawater using a constant
435	addition technique: A new overall reaction kinetic expression. Geochim.
436	Cosmochim. Acta 57, 1409–1417.
437	Show, KY., Lee, DJ., Chang, JS., 2013. Algal biomass dehydration. Bioresour.
438	Technol. 135, 720–9.
439	Şirin, S., Clavero, E., Salvadó, J., 2013. Potential pre-concentration methods for
440	Nannochloropsis gaditana and a comparative study of pre-concentrated sample
441	properties. Bioresour. Technol. 132, 293–304.
442	Spilling, K., Seppälä, J., Tamminen, T., 2011. Inducing autoflocculation in the diatom
443	Phaeodactylum tricornutum through CO2 regulation. J. Appl. Phycol. 23, 959–
444	966.
445 446	Sukenik, A., Schröder, W., Lauer, J., Shelef, G., Soeder, C., 1985. Coprecipitation of microalgal biomass with calcium and phosphate ions. Water Res. 19, 127–129.
447 448	Sukenik, A., Shelef, G., 1984. Algal autoflocculation-verification and proposed mechanism. Biotechnol. Bioeng. 26, 142–147.
449	Vandamme, D., Beuckels, A., Markou, G., Foubert, I., Muylaert, K., 2015. Reversible
450	Flocculation of Microalgae using Magnesium Hydroxide. BioEnergy Res. 8,
451	716–725.

- 452 Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., Muylaert, K., 2012.
- 453 Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and
- 454 calcium and practical implications. Bioresour. Technol. 105, 114-119.
- 455 Vandamme, D., Foubert, I., Muylaert, K., 2013. Flocculation as a low-cost method for
- 456 harvesting microalgae for bulk biomass production. Trends Biotechnol. 31, 233-9.

457

458

460 461	Figure Captions
462 463	Fig 1(A) Concentration of total dissolved magnesium (as Mg^{2+}) and precipitated
464	brucite (as Mg(OH) ₂ (active); (B) total dissolved calcium (as Ca ²⁺), bicarbonate
465	(as HCO ₃ ⁻) carbonate (as CO ₃ ²⁻) and precipitated calcite (as CaCO ₃ xH ₂ O (s)
466	modelled as function of pH in artificial seawater. (C) Brucite and (D) calcite
467	surface speciation modelled as function of pH in artificial seawater.
468 469	Fig 2 Flocculation efficiency of <i>Phaeodactylum tricornutum</i> in synthetic media as
470	function of pH (n = 2, 1σ)
471 472	Fig 3 Flocculation efficiency of <i>Phaeodactylum tricornutum</i> cells resuspended in
473	(A) synthetic seawater lacking calcium with varying concentrations of
474	magnesium and (B) lacking magnesium with varying concentrations of calcium
475	at pH levels 9.5, 10 and 10.5 (n = 2, 1σ)
476	
477	Fig 4 Zeta potential as function of pH for resuspended Phaeodactylum
478	tricornutum (A) lacking calcium and magnesium, (B) with 7.5 mM magnesium
479	sulphate and (C) with 7.5 mM calcium bicarbonate (n = 3, 1σ)
480	
481	Fig 5 Influence of mixing time on flocculation efficiency for Phaeodactylum
482	resuspended in synthetic seawater containing 5mM of bicarbonate lacking
483	magnesium and sulphates at pH 8,9,10 and 11 ($n = 2, 1\sigma$)
484	

Table 1. Concentrations of the main ions in the medium used to culture *Phaeodactylum tricornutum* (synthetic seawater) in comparison with Wright's Cryptophyte freshwater medium used for *Chlorella vulgaris*

Synthetic	Freshwater	-
seawater	(mM)	
$(\mathbf{m}\mathbf{M})$	()	
442.1	1.7	
338.6	1.9	
80.5	1.0	
9.1	2.7	
6.4	0.3	
5.0	0.15	
40.2	1.3	
43.0	0.8	
	Synthetic seawater (mM) 442.1 338.6 80.5 9.1 6.4 5.0 40.2 43.0	Synthetic Freshwater seawater (mM) (mM) 442.1 1.7 338.6 1.9 80.5 1.0 9.1 2.7 6.4 0.3 5.0 0.15 40.2 1.3 43.0 0.8

Figure 4

Highlights

- Both brucite and calcite are involved in alkaline flocculation in marine conditions •
- Flocculation efficiency reached 90% at pH 10.5 consistent with precipitation models •
- Mg precipitated as brucite caused flocculation dominantly by charge neutralization •
- Ca precipitated as calcite caused flocculation dominantly by sweeping flocculation •

do