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Abstract

The dθ-median is a much more robust estimator of the location of a random
interval than the mean. We show that under general conditions the sample
dθ-median is a strongly consistent estimator of the dθ-median.
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1. Introduction

In this data driven era, the amount and complexity of the available data
grows at an almost incredible speed. Therefore, there is a high need to
develop novel tools to cope with complex data structures, such as incom-
plete/missing data, functional data, interval valued or fuzzy data, and several
other types of data.

Interval-valued data may arise for different reasons. The data may come
from intrinsically interval-valued random elements (e.g. the daily fluctua-
tion of the systolic blood pressure) or from random elements derived from an
underlying real-valued random variable to preserve a level of confidentiality
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(e.g. when indicating an interval containing the real salary) or due to mea-
surement imprecision (e.g. censored data), or from aggregation of a typically
large dataset, etc. In this work no assumption about the source of the data
is needed.

Interval-valued data are a type of complex data that requires specific
statistical techniques. The main issue is that the space of intervals is only
semilinear, but not linear due to the lack of the opposite of an interval.
Therefore, although intervals can be identified with two-dimensional vectors
(with first component the mid-point/centre and second component the non-
negative spread/radius), it is not advisable to treat them as regular bivariate
data. Indeed, common assumptions for multivariate techniques do not hold
in this case.

Statistical procedures for random interval-valued data have already been
proposed in the literature for different purposes, such as regression analy-
sis (e.g. Gil et al., 2002); testing hypotheses (e.g. González-Rodŕıguez et
al., 2012), clustering (e.g. D’Urso and Giordani et al., 2006), principal com-
ponent analysis (e.g. D’Urso and Giordani, 2004) and modelling distributions
(see Brito and Duarte Silva, 2012).

A common location measure in this setting is the Aumann mean (Au-
mann, 1965). It is supported by several valuable properties and is also co-
herent with the interval arithmetic. The main disadvantage is that it is
strongly influenced by outliers or small data changes, which can make it un-
reliable as a measure of the location of a random interval. In fact, it inherits
this drawback from the standard real/vectorial-valued case.

In the real case, the most popular robust alternative is the median. For
multivariate data the spatial median (or L1-median, as introduced by We-
ber 1909) is a popular robust alternative. It is defined as the point in multi-
variate space with minimal average Euclidean distance to the observations.
For more details and extensions, see for instance Gower (1974), Brown (1983),
Milasevic and Ducharme (1987), Zuo (2013).

Sinova and Van Aelst (2014) adapted the spatial median to interval-valued
data (see also Sinova et al. 2013), by using on this space as L2 distance the
versatile generalized metric introduced by Bertoluzza et al. (1995). The
resulting dθ-median estimator has been shown to be robust with high break-
down point and good finite-sample properties. In this paper we show another
important property of the estimator, which is its strong consistency.
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2. The dθ-median of a random interval

Let Kc(R) denote the class of nonempty compact intervals. Any interval
K in the space Kc(R) can be characterized in terms of either its infimum
and supremum, K = [inf K, supK], or its mid-point and spread or radius,
K = [midK − sprK,midK + sprK], where

midK =
inf K + supK

2
, sprK =

supK − inf K

2
≥ 0.

The usual interval arithmetic provides the addition, i.e. K + K ′ = [inf K +
inf K ′, supK + supK ′] with K,K ′ ∈ Kc(R) and the product by a scalar, i.e.
γ ·K = [γ ·midK − |γ| · sprK, γ ·midK + |γ| · sprK] with K ∈ Kc(R) and
γ ∈ R. With these two operations the space Kc(R) is only semilinear, so
statistical techniques for interval-valued data will be based on distances.

The dθ metric (Bertoluzza et al., 1995, Gil et al., 2002) can be defined
as:

dθ(K,K
′) =

√
(midK −midK ′)2 + θ · (sprK − sprK ′)2,

where K,K ′ ∈ Kc(R) and θ ∈ (0,∞). A random interval can be defined as a
Borel measurable mapping X : Ω→ Kc(R), where (Ω,A, P ) is a probability
space, with respect to A and the Borel σ-field generated by the topology
induced on Kc(R) by the dθ metric.

The well-known Aumann mean value is the interval, if it exists, given by

E[X] = [E(midX)− E(sprX), E(midX) + E(sprX)].

Moreover, it is the Fréchet expectation with respect to the dθ metric, i.e.,
it is the unique interval that minimizes, over K ∈ Kc(R), the expression
E[(dθ(X,K))2].

In Sinova and Van Aelst (2014) the dθ-median of a random interval X is
defined as the interval(s) Mθ[X] ∈ Kc(R) such that

E(dθ(X,Mθ[X])) = min
K∈Kc(R)

E(dθ(X,K)),

whenever the involved expectations exist. Analogously, the sample dθ-median
statistic is defined as follows.

Let (X1, . . . , Xn) be iid random intervals associated with a probability
space (Ω,A, P ) and with realizations xn = (x1, . . . , xn). The sample dθ-

median (or medians) M̂θ[X]n is (are) the random interval that for any xn is
(are) the solution(s) of the following optimization problem:
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min
K∈Kc(R)

1

n

n∑
i=1

dθ(xi, K) = min
(y,z)∈R×[0,∞)

1

n

n∑
i=1

√
(midxi − y)2 + θ · (sprxi − z)2

Sinova and Van Aelst (2014) showed the existence of the sample dθ-median
estimator and its uniqueness whenever not all the two-dimensional sample
points {(midxi, sprxi)}ni=1 are collinear. Moreover, the robustness was shown
by its finite sample breakdown point (Donoho and Huber, 1983), which is
given by 1

n
· bn+1

2
c, where b·c denotes the floor function.

3. Consistency of the sample dθ-median

In this section we investigate the strong consistency of the sample dθ-
median under general conditions.

Theorem 1. Let X be a random interval associated with a probability space
(Ω,A, P ) such that the dθ-median exists and is unique. Then, the sample
dθ-median is a strongly consistent estimator of the dθ-median, that is,

lim
n→∞

dθ(M̂θ[X]n,Mθ[X]) = 0 a.s.[P ].

Proof. Sufficient conditions for the strong consistency of an estimator are
given in Huber (1967). We will check that these conditions, detailed below,
are satisfied in our case and, hence, the theorem follows directly from Huber’s
general result.

First, note that the interval space (R×[0,∞) with the topology induced by
the dθ-metric) is a locally compact space with a countable base and (Ω,A, P )
is a probability space.

Let ρ(ω, (y, z)) be the following real-valued function on Ω× (R× [0,∞)):

ρ : Ω× (R× [0,∞)) −→ R
(ω, (y, z)) 7−→ dθ(X(ω), [y − z, y + z]).

Assuming that ω1, ω2 . . . are independent Ω-valued random elements with
common probability distribution P , the sequence of functions {Tn}n∈N, de-

fined as Tn(ω1, . . . , ωn) = M̂θ[(X(ω1), . . . , X(ωn))]n, satisfies that

1

n

n∑
i=1

dθ(X(ωi), Tn(ω1, . . . , ωn))− inf
(y,z)∈R×[0,∞)

1

n

n∑
i=1

dθ(X(ωi), [y−z, y+z]) −→
n→∞

0

almost surely (obviously because of the definition of the sample dθ-median).
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We now recall the sufficient conditions for the strong consistency in Hu-
ber (1967).

Condition (A-1). For each fixed (y0, z0) ∈ R× [0,∞), the function

ρ0 : Ω −→ R
ω 7−→ ρ(ω, (y0, z0)) = dθ(X(ω), [y0 − z0, y0 + z0])

is A-measurable and separable in Doob’s sense, i.e. there is a P-null set
N and a countable subset S ⊂ R × [0,∞) such that for every open set
U ⊂ R× [0,∞) and every closed interval A, the sets

V1 = {ω : ρ(ω, (y, z)) ∈ A, ∀(y, z) ∈ U}

V2 = {ω : ρ(ω, (y, z)) ∈ A,∀(y, z) ∈ U ∩ S}

differ by at most a subset of N .

Condition (A-2). The function ρ is a.s. lower semicontinuous in (y0, z0), i.e.

inf
(y,z)∈U

ρ(ω, (y, z)) −→ ρ(ω, (y0, z0)), (1)

as the neighborhood U of (y0, z0) shrinks to {(y0, z0)}.
Condition (A-3). There is a measurable function a : Ω→ R such that

E[ρ(ω, (y, z))− a(ω)]− <∞ for all (y, z) ∈ R× [0,∞),

E[ρ(ω, (y, z))− a(ω)]+ <∞ for some (y, z) ∈ R× [0,∞).

Thus, γ((y, z)) = E[ρ(ω, (y, z))− a(ω)] is well-defined for all (y, z).

Condition (A-4). There is a (y0, z0) ∈ R× [0,∞) such that γ((y, z))
> γ((y0, z0)) for all (y, z) 6= (y0, z0).

Condition (A-5). There is a continuous function b((y, z)) > 0 such that

• for some integrable h, inf
(y,z)∈R×[0,∞)

ρ(ω,(w,z))−a(ω)
b((y,z))

≥ h(ω).

• lim inf
(y,z)→∞

b((y, z)) > γ((y0, z0)).

• E
[

lim inf
(y,z)→∞

ρ(ω,(y,z))−a(ω)
b((y,z))

]
≥ 1.
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We now verify these conditions.

(A-1) For each fixed (y0, z0) ∈ R × [0,∞), the function ρ0 is A-measurable
because midX and sprX are measurable functions since X is a random
interval. ρ0 is also separable in Doob’s sense: choose S = Q × (Q ∩ [0,∞))
as countable subset, then for every open set U ⊂ R× [0,∞) and every closed
interval A, it can be seen that the following sets coincide.

V1 = {ω : ρ0(ω) ∈ A, ∀(y, z) ∈ U}, V2 = {ω : ρ0(ω) ∈ A,∀(y, z) ∈ U ∩ S}

Obviously, V1 ⊆ V2. By reductio ad absurdum, suppose that V2∩V c
1 6= ∅. Let

ω0 ∈ V2 ∩ V c
1 :

• Since ω0 ∈ V2, ρ(ω0, (y, z)) ∈ A for all (y, z) ∈ U ∩ S;

• Since ω0 ∈ V c
1 , there exists (y0, z0) ∈ U such that ρ(ω0, (y0, z0)) ∈ Ac.

Ac is an open set, so there exists a ball of radius r > 0 such that

(ρ(ω0, (y0, z0))− r, ρ(ω0, (y0, z0)) + r) ⊆ Ac.

Now, notice that for a fixed ω ∈ Ω, the following function is continuous:

ρω : R× [0,∞) −→ R
(y, z) 7−→ ρ(ω, (y, z)).

Thus, B = ρ−1
ω0

(ρ(ω0, (y0, z0))−r, ρ(ω0, (y0, z0))+r) is an open set of R×[0,∞)
and U ∩ B 6= ∅. S is a dense set of R × [0,∞), so U ∩ B ∩ S 6= ∅. Let
(y′, z′) ∈ U ∩B ∩ S. Then, (y′, z′) ∈ U ∩ S, so ρ(ω0, (y

′, z′)) ∈ A. But also,

ρ(ω0, (y
′, z′)) ∈ (ρ(ω0, (y0, z0))− r, ρ(ω0, (y0, z0)) + r) ⊂ Ac.

This is a contradiction, so the conclusion is that also V2 ⊆ V1, which proofs
this condition.

(A-2) Let ω be any element of Ω and let (y0, z0) be any (fixed) point of
R × [0,∞). First, note that (1) is fulfilled for a sequence of neighborhoods
{Un}n∈N of (y0, z0) with Un ⊇ Un+1 for all n. Since{

inf
(y,z)∈Un

dθ(X(ω), [y − z, y + z])

}
n∈N

is a monotonically increasing sequence and (y0, z0) ∈ ∩n∈NUn, the sequence is
bounded by dθ(X(ω), [y0−z0, y0+z0]) and, thus, it converges to its supremum.
We now show that this supremum is indeed dθ(X(ω), [y0 − z0, y0 + z0]).
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By reductio ad absurdum, suppose there is a smaller upper bound c =
dθ(X(ω), [y0 − z0, y0 + z0]) − ε, for an arbitrary ε > 0. Let Un0 denote a
neighborhood of (y0, z0) such that Un0 ⊆ C = B((y0, z0), ε

2
). It follows that

c < inf
(y,z)∈Un0

dθ(X(ω), [y − z, y + z]), so c cannot be the supremum. Indeed,

inf
(y,z)∈Un0

dθ(X(ω), [y − z, y + z]) ≥ inf
(y,z)∈C

dθ(X(ω), [y − z, y + z])

≥ inf
(y,z)∈C

[dθ(X(ω), [y0 − z0, y0 + z0])− dθ([y − z, y + z], [y0 − z0, y0 + z0])]

= dθ(X(ω), [y0 − z0, y0 + z0])− sup
(y,z)∈C

dθ([y − z, y + z], [y0 − z0, y0 + z0])

> dθ(X(ω), [y0 − z0, y0 + z0])− ε = c.

Now, we extend this result to general sequences {Un}n∈N. Consider the
suprema and the infima radii reached in every neighborhood, namely,

rn = sup
(y,z)∈Un

dθ([y0 − z0, y0 + z0], [y − z, y + z]),

sn = inf
(y,z)∈Un

dθ([y0 − z0, y0 + z0], [y − z, y + z]).

It follows that rn −→
n→∞

0, since {Un}n∈N shrinks to {(y0, z0)}. Hence, also

sn −→
n→∞

0 since 0 ≤ sn ≤ rn for all n ∈ N.

Choose ε > 0 arbitrarily. As rn −→
n→∞

0, there exists n1 ∈ N such that for

all n > n1, rn < ε. Then, Un ⊆ B((y0, z0), rn) and

inf
(y,z)∈Un

dθ(X(ω), [y − z, y + z]) ≥ inf
(y,z)∈B((y0,z0),rn)

dθ(X(ω), [y − z, y + z])

≥ dθ(X(ω), [y0−z0, y0 +z0])− sup
(y,z)∈B((y0,z0),rn)

dθ([y0−z0, y0 +z0], [y−z, y+z])

> dθ(X(ω), [y0 − z0, y0 + z0])− ε.

Analogously, as sn −→
n→∞

0, there exists n2 ∈ N such that for all n > n2,

sn < ε. Therefore, Un ⊇ B((y0, z0), sn) and

inf
(y,z)∈Un

dθ(X(ω), [y − z, y + z]) ≤ inf
(y,z)∈B((y0,z0),sn)

dθ(X(ω), [y − z, y + z])

≤ dθ(X(ω), [y0−z0, y0 +z0])+ inf
(y,z)∈B((y0,z0),sn)

dθ([y−z, y+z], [y0−z0, y0 +z0])

< dθ(X(ω), [y0 − z0, y0 + z0]) + ε.
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So for any ε > 0, there exists n0 = max{n1, n2} s.t. for all n > n0,∣∣∣∣ inf
(y,z)∈Un

dθ(X(ω), [y − z, y + z])− dθ(X(ω), [y0 − z0, y0 + z0])

∣∣∣∣ < ε. That is,

the considered sequence converges to dθ(X(ω), [y0− z0, y0 + z0]), which com-
pletes the proof of (1).

(A-3) Let a be the measurable function (see (A-1)):

a : Ω −→ R
ω 7−→ dθ(X(ω), [0, 0]) =

√
(midX(ω))2 + θ · (sprX(ω))2.

For any (y, z) ∈ R× [0,∞), we then have that E[ρ(ω, (y, z))− a(ω)]−

=

∫
Ω

−min{dθ(X(ω), [y − z, y + z])− dθ(X(ω), [0, 0]), 0} dP (ω)

=

∫
{ω ∈ Ω : dθ(X(ω), [0, 0])
> dθ(X(ω), [y − z, y + z])}

[
dθ(X(ω), [0, 0])− dθ(X(ω), [y − z, y + z])

]
dP (ω).

By the triangular inequality,

≤
∫
{ω ∈ Ω : dθ(X(ω), [0, 0])
> dθ(X(ω), [y − z, y + z])}

[
dθ(X(ω), [y − z, y + z]) + dθ([y − z, y + z], [0, 0])

−dθ(X(ω), [y − z, y + z])
]
dP (ω)

= dθ([y−z, y+z], [0, 0])·P
(
ω : dθ(X(ω), [0, 0]) > dθ(X(ω), [y−z, y+z])

)
<∞.

Analogously, E[ρ(ω, (y, z))− a(ω)]+

=

∫
Ω

max{dθ(X(ω), [y − z, y + z])− dθ(X(ω), [0, 0]), 0} dP (ω)

≤ dθ([0, 0], [y−z, y+z])·P
(
ω : dθ(X(ω), [0, 0]) ≤ dθ(X(ω), [y−z, y+z])

)
<∞,

for all (y, z) ∈ R × [0,∞). So, with this choice for the function a, both
inequalities in condition (A-3) hold.

(A-4) The dθ-median exists and is unique, so that

(midMθ[X], sprMθ[X]) = arg min
(y,z)∈R×[0,∞)

E [dθ(X(ω), [y − z, y + z])]

= arg min
(y,z)∈R×[0,∞)

E [dθ(X(ω), [y − z, y + z])]− E [dθ(X(ω), [0, 0])]
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= arg min
(y,z)∈R×[0,∞)

γ((y, z)).

Thus, (y0, z0) := (midMθ[X], sprMθ[X]) fulfills this condition.

(A-5) Consider the continuous function b((y, z)) > 0 defined as

b : R× [0,∞) −→ R
(y, z) 7−→ dθ([y − z, y + z], [0, 0]) + 1.

• For the integrable function h(ω) := −1, it then holds that

inf
(y,z)∈R×[0,∞)

dθ(X(ω), [y − z, y + z])− dθ(X(ω), [0, 0])

dθ([y − z, y + z], [0, 0]) + 1
≥ −1

because using the triangular inequality,

≥ inf
(y,z)∈R×[0,∞)

dθ(X(ω), [0, 0])− dθ([y − z, y + z], [0, 0])− dθ(X(ω), [0, 0])

dθ([y − z, y + z], [0, 0]) + 1

= inf
(y,z)∈R×[0,∞)

−dθ([y − z, y + z], [0, 0])

dθ([y − z, y + z], [0, 0]) + 1
≥ −1.

• The condition lim inf
(y,z)→∞

b((y, z)) > γ((y0, z0)) is satisfied. Let {(yn, zn)} ⊂

R × [0,∞) be any sequence with (yn, zn) −→
n→∞

∞ in the sense that

dθ([yn − zn, yn + zn], [0, 0]) −→
n→∞

∞, and set

M = E [dθ(X(ω), [y0 − z0, y0 + z0])− dθ(X(ω), [0, 0])] = γ((y0, z0)) ∈ R,

where (y0, z0) represents the minimum in (A-4). Then, there exists
n0 ∈ N such that for all n ≥ n0, dθ([yn− zn, yn + zn], [0, 0]) > M. Thus,

inf
k≥n0

b((yk, zk)) = inf
k≥n0

(dθ([yk − zk, yk + zk], [0, 0]) + 1) ≥M + 1,

so lim inf
n→∞

b((yn, zn)) = lim
n→∞

(inf
k≥n

b((yk, zk))) ≥M +1 > M = γ((y0, z0)).

• It also holds that

E

[
lim inf
(y,z)→∞

dθ(X(ω), [y − z, y + z])− dθ(X(ω), [0, 0])

b((y, z))

]
≥ 1, (2)

because we have that

lim inf
(y,z)→∞

dθ(X(ω), [y − z, y + z])− dθ(X(ω), [0, 0])

dθ([y − z, y + z], [0, 0]) + 1
≥ 1,
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Indeed, for any ω ∈ Ω

lim inf
(y,z)→∞

dθ(X(ω), [y − z, y + z])− dθ(X(ω), [0, 0])

dθ([y − z, y + z], [0, 0]) + 1

= lim
n→∞

(
inf
k≥n

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1

)
.

The sequence{
inf
k≥n

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1

}
n∈N

(3)

is monotonically increasing with upper bound 1, since for all k ∈ N,
using the triangular inequality,

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1

≤ dθ([yk − zk, yk + zk], [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1
≤ 1.

Hence, the sequence (3) converges to its supremum:

lim
n→∞

(
inf
k≥n

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1

)
= sup

n

(
inf
k≥n

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1

)
Finally, it will be checked this supremum is at least equal to 1. By
reductio ad absurdum, we suppose that

sup
n

(
inf
k≥n

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1

)
= 1− ε,

for some ε > 0. We need to show that we can find an n∗ ∈ N such that

inf
k≥n∗

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1
> 1− ε. (4)

Recall that (yn, zn) −→
n→
∞, so for any M ∈ R, there exists n∗ ∈ N such

that for all n ≥ n∗, dθ([yn − zn, yn + zn], [0, 0]) > M . Then,

dθ([yn−zn, yn+zn], X(ω)) ≥ dθ([yn−zn, yn+zn], [0, 0])−dθ(X(ω), [0, 0])
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> M − dθ(X(ω), [0, 0]).

Take M := 2
ε
− 1 + 4

ε
· dθ(X(ω), [0, 0]) ∈ R (for the fixed arbitrary

ω ∈ Ω), then for any k ≥ n∗, we have that

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

=
(

1− ε

2

)
dθ(X(ω), [yk − zk, yk + zk]) +

ε

2
dθ(X(ω), [yk − zk, yk + zk])

−dθ(X(ω), [0, 0])

≥
(

1− ε

2

)
dθ([yk − zk, yk + zk], [0, 0])−

(
1− ε

2

)
dθ(X(ω), [0, 0])

+
ε

2
dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

>
(

1− ε

2

)
dθ([yk − zk, yk + zk], [0, 0]) +

ε

2
(M − dθ(X(ω), [0, 0]))

−
(

2− ε

2

)
dθ(X(ω), [0, 0])

>
(

1− ε

2

)
dθ([yk−zk, yk+zk], [0, 0])+

ε

2

(
2

ε
− 1 +

(4

ε
− 1
)
dθ(X(ω), [0, 0])

)
−
(

2− ε

2

)
dθ(X(ω), [0, 0]) =

(
1− ε

2

)
dθ([yk−zk, yk +zk], [0, 0])+1− ε

2

=
(

1− ε

2

) (
dθ([yk − zk, yk + zk], [0, 0]) + 1

)
. �

Hence, for all k ≥ n∗,

dθ(X(ω), [yk − zk, yk + zk])− dθ(X(ω), [0, 0])

dθ([yk − zk, yk + zk], [0, 0]) + 1
≥ 1− ε

2
> 1− ε,

which implies (4) and thus the inequality (2) follows.Hence, the three
inequalities in condition (A-5) are satisfied, which completes the proof.

4. Concluding remarks

This paper complements the study of the properties of the dθ-median as
a robust estimator of the center of a random interval by showing its strong
consistency, which is one of the most important basic properties of an estima-
tor. This result open the door to further develop robust statistical inference
for random intervals based on the dθ-median.
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Authors are grateful to Maŕıa Ángeles Gil for her helpful suggestions
to improve this paper. The research by Sinova was partially supported
by/benefited from the Spanish Ministry of Science and Innovation Grant
MTM2009-09440-C02-01, the Ayuda del Programa de FPU AP2009-1197
from the Spanish Ministry of Education and the Ayuda para Estancias Breves
del Programa FPU EST12/00344. The research by Van Aelst was supported
by a grant of the Fund for Scientific Research-Flanders (FWO-Vlaanderen)
and by IAP research network grant nr. P7/06 of the Belgian government
(Belgian Science Policy). Their financial support is gratefully acknowledged.

[1] Aumann, R.J., 1965. Integrals of set-valued functions. J. Math. Anal.
Appl. 12, 1–12.

[2] Bertoluzza, C., Corral, N., Salas, A., 1995. On a new class of distances
between fuzzy numbers. Math. & Soft Comput. 2, 71–84.

[3] Brito, P., Duarte Silva, A.P., 2012. Modelling interval data with Normal
and Skew-Normal distributions. J. Appl. Stat. 39(1), 3–20.

[4] Brown, B.M., 1983. Statistical uses of the spatial median. J. Royal Stat.
Soc. Ser. B 45(1), 25–30.

[5] Donoho, D.L., Huber, P.J., 1983. The notion of breakdown point, in:
Bickel, P.J., Doksum, K., Hodges Jr, J.L. (Eds.), A Festschrift for Erich
L. Lehmann. Wadsworth, Belmont.

[6] D’Urso, P., Giordani, P., 2004. A least squares approach to principal
component analysis for interval valued data. Chemometr. Intell. Lab.
70(2), 179–192.

[7] D’Urso, P., Giordani, P., 2006. A robust fuzzy k-means clustering model
for interval valued data. Comput. Stat. 21(2), 251–269.

[8] Fagundes, R.A.A., De Souza, R.M.C.R., Cysneiros, F.J.A., 2013. Robust
regression with application to symbolic interval data. Eng. Appl. Art.
Intel. 26(1), 564–573.

[9] Gil, M.A., Lubiano, M.A., Montenegro, M., López-Garćıa, M.T., 2002.
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