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Summary/Abstract 

Bactericidal antibiotics quickly kill the majority of a bacterial population. However, a 

small fraction of cells typically survives through entering the so-called persister state. 

Persister cells are increasingly being viewed as a major cause of the recurrence of 

chronic infectious disease and could be an important factor in the emergence of 

antibiotic resistance. The phenomenon of persistence was first described in the 

1940s, but remained poorly understood for decades afterwards. Only recently, a 

series of breakthrough discoveries has started to shed light on persister physiology 

and the molecular and genetic underpinnings of persister formation. We here provide 

an overview of the key studies that have paved the way for the current boom in 

persistence research, with a special focus on the technological and methodological 

advances that have enabled this progress. 
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The Early Days 

The first report on the survival of a small fraction of streptococci cells following 

treatment with penicillin dates from 1942 [1]. Two years later, Joseph Bigger 

established that addition of penicillin to staphylococci does not result in complete 

sterilization of all cells in a clonal population. One out of a million cells survived even 

prolonged treatment with antibiotics. He appropriately named the surviving cells 

persisters [2]. More recently, it was shown that in most bacterial species, the majority 

of cells is efficiently killed by relatively low concentrations of bactericidal antibiotics. 

However, killing shows a biphasic pattern and beyond a certain threshold, further 

increasing the concentration of the antibacterial does not result in complete clearing 

of the culture (Figure 1) [3]. 

 

(FIGURE 1 HERE) 

 

For forty years following its discovery, the persistence phenomenon was largely 

neglected, at least by molecular geneticists. This was partly due to the fact that the 

clinical relevance of persister cells was not clear. In contrast, the threat posed by 

inherited antibiotic resistance was generally recognized, adding incentives to 

resistance research. The problem was compounded by technical challenges that 

inevitably accompany the study of a transient phenotype that is associated with only 

a very small fraction of cells.  

A breakthrough discovery came in the early 1980s, from research carried out by 

Harris Moyed during a sabbatical leave in the lab of Alexander Tomasz [4]. 

Mutagenesis of E. coli populations with ethyl methanesulfonate (EMS) led to the 

identification of three high persistent (hip) mutants exhibiting 10- to 10,000-fold 



increased persister fractions upon incubation with penicillin [4,5]. Moyed’s pioneering 

work led to the identification of two mutants hit in the hipA locus that up until now 

remains the best-studied persister gene [6-10]. Furthermore, because of their 

increased persister fraction, hipA mutants have frequently been used as a tool in 

persistence research. Crucially and for the first time, hipA mutants enabled the direct 

observation of persister cells. Using a combination of microfluidics and live cell 

microscopy, Nathalie Balaban recorded how persisters survived killing by antibiotics 

through dormancy and subsequent resuscitation [11]. In addition, the hipBA locus is 

a representative for other toxin-antitoxin (TA) loci that are now intensively studied in 

relation to persistence. TA modules consist of a stable toxin, typically targeting 

essential cellular functions, and an unstable antitoxin, which counteracts the activity 

of its cognate toxin [12,13]. TA systems were originally identified on plasmids, where 

they play a role in plasmid maintenance, yet a significant number of TA loci are 

chromosomally encoded and these have been implicated in persistence [14]. 

Examples include RelE [6], MqsR [15-17], TisB [18,19], MazF [20] and YafQ [21].  

Interestingly, with the notable exception of Salmonella persisters residing within 

macrophage vacuoles [22], deletion of a single toxin generally does not affect 

persistence. This can partly be explained by redundancy of TA systems in most 

bacteria. Deletion of multiple TA systems, on the other hand, causes a decrease in E. 

coli persistence [23].  

 

The Rise of Persistence Research 

Following the discovery of hipA, persistence as a field of study steadily gained 

attention. This was partly due to the acknowledgement of its clinical significance 

(summarized by [24]). In 1944, Bigger already alluded to the role of persisters in the 



resuscitation of chronic infections [2]. Decades later, Kim Lewis postulated that 

persisters might contribute to the recalcitrance of biofilm infections [25,26]. This is of 

particular interest as biofilms are known to withstand antibiotic treatment, thereby 

causing chronic infections [27]. Subsequently, mathematical modelling demonstrated 

that persistence could extend the duration of antibiotic treatment, thereby causing 

treatment failure and promoting the emergence of resistance [28]. Finally, two studies 

have unambiguously demonstrated that prolonged antimicrobial therapy selects for 

high-persistent strains of Candida albicans during candidiasis and of Pseudomonas 

aeruginosa during cystic fibrosis lung infections [29,30]. In addition, the role of 

persister cells in the development of resistance is becoming increasingly clear [31]. 

Apart from providing incentives to further intensify persistence research, these 

findings also promoted the search for anti-persister therapies. At present, several 

strategies have been described, but their in vivo effectiveness remains to be 

investigated. Examples include the use of resonant activation [32], electrochemical 

currents [33], cadaverine [34], metabolites [35,36], antimicrobial peptides [37], 

brominated furanones [38-41] and activated ClpP [42] (summarized by [43]).  

Apart from increased interest due to the clinical importance of persistence, the 

development of novel techniques also caused persistence research to boom. An 

overview of these novel techniques is provided below. 

  

Screening approaches 

Over the years, several screening procedures have been developed that led to the 

identification of persister genes. In a first approach, a non-redundant E. coli knockout 

library was screened for mutants with altered persistence [44]. Persister cells of 

individual mutants were quantified by treating a stationary-phase culture with 



ofloxacin and plating the surviving cells on agar medium containing amdinocillin. As 

the number of spontaneous amdinocillin-resistant mutants is a fraction of the original 

number of cells, this obviates the need for dilution steps and greatly reduces the 

laborious task of screening several thousands of strains.  

A second screening approach employed a P. aeruginosa plasposon knock-out 

library. Individual mutants were grown until stationary phase and treated with either 

ofloxacin to kill non-persister cells or water, the latter serving as a control. 

Subsequently, samples were diluted and incubated in an automated plate reader 

(Bioscreen C, Oy Growth Curves Ab Ltd), allowing the optical density of 200 samples 

to be measured simultaneously as a function of time. Given the linear relationship 

between the number of cells in an inoculum and the lag phase, this allowed for the 

selection of mutants displaying altered persister levels [45].  

Both screenings led to the identification of a number of interesting persister genes 

including some global regulators. In addition, not a single mutant lacking persisters 

was identified. As a general conclusion, these screenings therefore provided 

evidence pointing to the multiplicity of persister formation mechanisms.  

In a final approach, a random overexpression library was generated in E. coli. Cells 

from the recombinant library were pooled and logarithmically growing cultures of 

library clones were exposed to multiple rounds of exposure to ampicillin. This led to 

the enrichment of mutants with increased probability of persister formation and 

ultimately to the identification of glpD as a genuine persister gene [46]. 

 

Single-cell studies 

As persistence is a phenotypic trait expressed in only a subfraction of a population, 

advances in single-cell research signified an era of vast new possibilities. First used 



by the Balaban group [11], transparent microfluidic devices proved instrumental for 

microscopic examination of persister cells [47-49]. The strength of this technique lies 

in the possibility to monitor individual cells for prolonged periods of time while 

adapting growth conditions. For example, normal growth conditions can be alternated 

with antibiotic treatments in order to kill non-persister cells. This allows to pinpoint 

persister cells surviving treatment. Subsequently, the history of persister cells can be 

traced back through the recorded images. Several studies have used this technique 

to demonstrate preexisting heterogeneity in bacterial populations [11], to characterize 

the dormant state of single persister [47], to monitor persistence formation following 

administration of indole [48] and to correlate high TA expression to cessation of 

growth [49].  

Also developed by the Balaban group, a colony-appearance assay was elaborated to 

quantify single-cell persister lag phases [50]. Experiments demonstrated that a 

threshold concentration of toxin molecules is required for induction of persistence. 

A major drawback of microfluidic devices, or more precisely of microscopy, is the 

limited number of cells that can be studied simultaneously. This can be circumvented 

by using flow cytometry, allowing thousands or even millions of cells to be evaluated 

in a high-throughput manner. A shortcoming of this technique is the inability to 

continuously monitor individual cells over time. Nonetheless, flow cytometry has been 

successfully used to study the kinetics of persister awakening [51]. In addition, while 

Bigger postulated that persisters are in a dormant, non-dividing state [2], flow 

cytometry has been used to demonstrate that dormancy is not a requirement for entry 

into the persister state [52]. Finally, a recent study performed by the Holden group 

showed how to characterize the dynamics of intracellular bacterial replication at the 

single cell level. They used a fluorescence dilution technique to quantify the number 



of replication cycles of internalized Salmonella [53]. This showed the existence of 

different Salmonella subpopulations in bone marrow-derived macrophages including 

a non-replicating but metabolically active subpopulation, comprising the persister 

cells, possibly capable of resuming growth and causing relapsing infections [22]. 

Similarly, the Bumann group exploited a DsRed variant called TIMERbac, which 

spontaneously changes color from green to green/orange over time, as a dynamic 

growth rate reporter to identify persister cells in vivo [54].  

 

Transcriptomics 

Insight into global transcriptional changes in persister cells came from several 

elegant studies by the Lewis group. To enrich for persisters, all three approaches 

conveniently employed the metabolic inactivity of these cells. In the first report, 

logarithmically growing populations of the high-persistence E. coli mutant hipA7 [4] 

were treated with ampicillin, thereby lysing non-persister cells. Isolated RNA was 

enriched for mRNA, labeled and hybridized to E. coli GeneChips [6]. Similarly, gene 

expression profiling of persisters was performed after treating an exponentially 

growing population of Mycobacterium tuberculosis with D-cycloserine and collecting 

surviving persister cells by centrifugation. Transcriptome analysis was performed by 

microarray hybridization [55]. The third study followed a slightly different approach. It 

was based on the assumption that persisters are dormant cells with low levels of 

protein synthesis and corresponding low levels of rRNA transcription. E. coli persister 

cells were isolated by linking the rrnB promoter to a gene encoding an unstable 

fluorescent protein. In so doing, persister cells are dim as compared to normal cells in 

the population, which allows for the isolation of persisters using Fluorescence 



Activated Cell Sorting (FACS). cDNA was prepared from purified RNA and  

hybridized to spotted E. coli DNA microarrays [56].  

Based on the studies cited above, stress response pathways as well as TA loci were 

shown to be highly expressed in isolated persister cells. On the other hand, 

biosynthetic functions including energy production were downregulated [6,55,56].   

 

Experimental evolution 

The use of experimental evolution for elucidating antibacterial resistance 

mechanisms is a widely used method. A recent study by the Balaban group used this 

technique for enriching a  population with persisters by repeated exposure of a 

bacterial population to high concentrations of antibiotics. This resulted in evolved 

strains showing very high persister fractions caused by fixed specific genetic 

mutations. The increased survival appeared to be the result of an adjustment in the 

single cell lag-time distribution, which was correlated with the extent of the antibiotic 

exposure interval [57]. They implemented the ScanLag method, which allows the 

simultaneous measurement of lag times of hundreds of cells [58]. These findings 

resulted in a new theory regarding persister cells and their ability to adapt to high 

doses of drugs called tolerance by lag. 

 

Modeling  

Apart from these wet lab techniques, mathematical modeling has provided interesting 

insights [28,59-62] (summarized by [63]). Briefly, two main strategies can be 

discerned: the first one relies on estimating the switching rates between persister and 

non-persister growth states and assumes this process to take place continuously and 

stochastically (e.g. [11,28,59,61,64]). The balance between both switching rates 



provides a straightforward way to model a given persister level, although ignoring 

exactly what determines the switching rates. The second strategy focuses on the 

molecular mechanisms of persister formation by TA systems, with the ratio of (free) 

toxin over antitoxin ultimately determining, at the single-cell level, the decision to 

switch to the persister state (e.g. [60,65,66,50]). A crucial factor in this type of models 

is the generation of phenotypic bistability at the population level, typically requiring 

noisy gene expression and noise amplification through positive feedback 

mechanisms [67]. Both modeling strategies have their merits, and until a more 

integrated approach is presented, the choice between both will depend on the goal 

and specific focus of the study at hand. 

Mathematical modeling of persistence poses several advantages. Experiments that 

are not feasible in the lab can be simulated to predict the outcome. It also allows to 

explain empirically observed persister levels in terms of the parameters 

encompassed by the model, and why varying some parameters has more impact on 

persistence than others. Consequently, evolutionary forces that shape persister 

levels can be identified, which should help to devise strategies to avoid high persister 

levels emerging in the clinic. 

 

State of the Art and Future Perspectives 

Recently, the field of microbial persistence research has exploded, as evidenced by a 

host of publications in top-tier journals [10,22,23,35,48-50,54,68-70]. Currently, it is 

generally accepted that persister cells are present in a bacterial population preceding 

antibiotic treatment [71]. It is postulated that their formation results from noisy gene 

expression [72] as was first suggested by Kim Lewis [6]. However, over the years, 

several stimuli have been shown to induce persistence. For example, sub-inhibitory 



concentrations of fluoroquinolones are known to induce persistence via activation of 

the tisAB/istR TA locus [18,19]. Other examples include quorum sensing molecules 

[73,74], carbon source transitions [70] and nutrient deprivation leading to activation of 

the stringent response [75]. As was earlier described for HipA [76], a recent model 

ascribes TA-regulated persistence to stochastic fluctuations in cellular concentrations 

of the alarmone (p)ppGpp. High (p)ppGpp levels activate TA loci through a regulatory 

cascade requiring inorganic polyphosphate and Lon protease targeting protein toxins 

[49]. For an elaborate discussion on the role of these mechanisms in persistence, the 

reader is referred to some excellent reviews on the topic [3,77-81]. 

 

Adding to the significance of these studies is the recent observation of a 

phenotypically distinct subpopulation of transiently drug-tolerant persisters in cancer 

cell populations. These cells are held responsible for “fractional killing” upon 

chemotherapy [82]. Cell-to-cell variations in protein levels were suggested to 

contribute to this phenomenon in which each round of therapy kills some but not all of 

the cells in a tumor [83]. There is a striking analogy between bacterial and cancer 

cell-derived persistence as both phenomena reflect a transiently phenotypic 

heterogeneity causing multi-drug tolerance and recurrence of disease symptoms 

upon removal of treatment [84]. Added insight into bacterial persistence may 

therefore impact research areas far beyond infectious disease. 
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Figure captions 

 

Figure 1: Illustration of persistence. The majority of cells in a bacterial culture is 

efficiently killed by relatively low concentrations of antibiotics. However, beyond a 

certain threshold, a killing plateau is observed as only persister cells remain viable. 

When regrown in fresh medium, the surviving cells generate a population as sensitive 

to the antibiotic as the original population. 

 


