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Specific heat of (C6H»NH3)CnBr3 and (C6H»NH3)CnC13 within series analysis of finite-chain data
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The in-plane specific heat of the title compounds has been estimated by analysis of the finite-chain

data in the framework of new polynomial extrapolations, displaying better convergence properties
for 1/N~O. Final results are consistent with those we found previously for the linear and parabol-
ic extrapolations, as well as reveal an agreement with experiment and recent quantum transfer-
matrix simulations.

There are physical systems which are built up from
magnetic chains and display a magnetic order at very low

temperatures. The following compounds are well-known

examples: (CD3)4NMnC13 (Refs. 1 and 2) (denoted as

TMMC), CsNiF3 (Refs. 3 and 4}, and (C6NH3CuBr3) and

(C6NH3CuC13, referred to as CHAB and CHAC, respec-

tively.
Magnetic S =

—,
' chains have been the subject of exten-

sive theoretical investigations, especially CHAB, which
contains easy-plane anisotropy. Such a syste~ can be
mapped ' onto a sine-Gordon (SG) model when an exter-
nal field is applied in the easy plane provided that the
spins are considered as classical vectors, their motion is
confined to the easy plane, and the discreteness of the lat-
tice is neglected. In view of the unknown effects of the
various approximations underlying the SG model, quan-
tum statistics have been recently applied in the frame-
work of numerical simulations ' and the
renormalization-group (RG) approach. ' '

As to the simulations for CHAB, various approaches
have been used. First, the thermodynamical properties of
the macroscopic chains have been estimated from extra-
polations of the numerical results for finite
chains. ' ' ' ' Second, with recourse to the Trotter
formula, ' the partition function of the quantum chain
has been mapped onto a classical counterpart of the two-
dimensional lattice of the Ising spins. The resulting clas-
sical system is then analyzed using Monte Carlo ' or
transfer-matrix techniques. ' ' The simulations in
question give a coherent description of CHAB in the
framework of the anisotropic Heisenberg model

~= —2 g ( J„S;S,"+, +Jy S,~S(+, +J,S S;+, }

—gpsB g S,

where J„/k&=J~/k&=63+3 K, J, /k&=60. 25 K, and

g =2.01. In particular, the recent quantum transfer-
matrix method' (QTM) confirms the extrapolated finite-
size results, ' ' ' so that we want to reconsider our pre-
vious finite-chain (N ~12) data, ' constituting an exten-

(2)

where the Bk are obtained by minimizing the mean-
square deviation

[A~ —A~(n)] /M, M=X~ N, +1, —(3)

and y~= f (1/X), with a function f (x) fulfilling the
property f (0)=0. The parameter Bo is clearly the esti-
mate for A in these methods. Apart from the magnitude
of 5, the quality of this analysis can be estimated from
the rate of convergence obtained for the 8k when the
lowest index N, is changed.

The polynomial extrapolations which have been per-
formed so far' ' ' ' ' ' correspond to the choice

sion of those' found for N ~ 11, by recourse to a new ex-
trapolation scheme.

The aim of this work is twofold: an improvement of
our asymptotic analysis based previously' on polynomial
extrapolations (linear and parabolic in 1/N) for CHAB
and CHAC as well as an evaluation of the low-field
specific heat in order to resolve the discrepancy' in the
peak positions of the excess specific heat AC for CHAB.

For a given value of 8 and T, our finite-size data form
a series Az, where 2 N~12. In order to study the
N~ ~ limit A of the series Az, different techniques can
be used. In the ideal situation of optimal convergence of
the series, one would expect all methods to lead to the
same result. Unfortunately, our data belong to this
category only in the high-temperature region. Since the
analytic form of the N dependence of Az is unknown,
there is no a priori way to prefer one method to another.
One has to compare the inherent quality criteria of the
different methods in order to arrive at an acceptable
guess for the value of A. Even then, the conclusion is not
always very decisive.

The series Az have been mainly analyzed in terms of
polynomial expansions. These methods suppose that the
A z may be approximated by expressions of the form
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y~= 1/N. Because of the limited number of AN values

(Nz = 12), the results may not be improved by increasing
the order n of the polynomial as the higher-order
coefficients B& do not always remain small. In practice,
the series have been analyzed by linear (n = 1) and quad-
ratic (n =2}fits.

Obvious choices are also simple powers

f(x)=x (a) 0), or f(x)=1/ln(x). One tries to obtain
a better convergence by first transforming the variable
1/N into y~=f (1/N) and then by fitting the data A~
with a low-order polynoinial of the form (2). In our case,
however, the best results in terms of acceptable estimates
with low 6 were obtained with form

f (x)=(e "—1)/a,
or f (x)=x/(1 —ax). In each case, a is a free parameter
again determined by minimizing 6 . Although formally
equivalent to the previous method (expansions in powers
of 1/N), it has the advantage of allowing the incorpora-
tion of higher-order terms in a low-order expansion.

Our finite-size data can also be analyzed in the frame-
work of the Pade approximant method. ' This method
is based on the fact that our limit A can be obtained from

A =(1—z)F(z)i,

where
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FIG. 2. Excess specific heat b C(T,B)=C(T,B)—C(T,O) of
CHAB for B =1, 2, and 3 T. Open circles, solid circles, and
small crosses represent the experimental data. Bigger crosses
and points with error bars show present estimates.

F(z)= g A~z
N=0

or

(1 z)F(z)= A—o+ Q (AN —A~, )z
N=1

From the finite number of Az coefficients, one can
build (N, M) Pade approxirnants to (1 z)F(z), from—

which various estimates A (N, M} for A are obtained. A
straightforward quality criterion for this method is found
in the consistency of the Pade table A (N, M) Although.
consistent with the polynomial estimates, these numbers
are usually too much scattered so that we do not present
here explicitly the results found from this method.

The results presented below have been found from new
polynomial extrapolations based on the formula (2).

0.4
0= 3

Then the inherent quality criteria are well fulfilled in the
experimental region of temperatures and the variation of
the estimates is considerably diminished with respect to
those found from the Fade approximant method and sim-
ple linear or parabolic extrapolations in 1/N.

First, we calculate the zero-field specific heat for
CHAB. The value J/k~ =63+3 K was found' by fitting
the finite-size data extracted from the linear extrapola-
tions for the chains X 11 to the experimental data and
was then confirmed by the QTM simulations. ' In Fig. 1

the dashed curve represents the experimental zero-field
specific-heat data, whereas our present estimates are re-
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FIG. 1. Zero-field specific heat of CHAB. The dashed curve

represents the experimental results. Present theoretical results

are shown by solid circles with error bars.

FIG. 3. Field dependence of the reduced maximum excess
specific heat AC,„(B)/&8 for CHAB. Present results are
shown by rotated crosses. The other symbols are explained in
the text.
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FIG. 5. Zero-field specific heat of CHAC. The continuous
line shows the experimental data, and the symbols display our
estimates.
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FIG. 4. Reduced peak positions T,„(B)j&Bvs the magnet-

ic field 8 for CHAB. The notations are the same as Fig. 3.

ported by solid circles. The vertical intercepts show the
corresponding error bars. Our estimates are consistent
with the choice J/kz =63 K.

In Fig. 2 the CHAB high-field specific-heat data are re-
ported. The small symbols denoted by crosses and open
and solid circles show the experimental' excess specific
heat b, C(T,B). The bigger crosses and solid circles with
the error bars represent our estimates found from the po-
lynomial fitting (2). The convergence of the present ex-
trapolations is better than before, ' ' and the agreement
with experiment is improved. We encounter a good con-
vergence of the extrapolations for temperatures T ~ 10 K,
which contains the position of the peak for B =3 T, as
well as find agreement with recent QTM predictions. '

An interesting comparison with experiment can be also
made in the low-field region as far as the heights (Fig. 3)
and the positions (Fig. 4) of the peaks in the excess
specific heat are concerned. In Figs. 3 and 4 the experi-
mental excess specific heat measurements on CHAB (Ref.
8) are shown by open circles with error bars. The solid
lines described as n =3, RG, and SG refer to the classical
n =3 component model, the renormalization-group ap-
proach, ' and SG approach, respectively. The crosses
represent the quantum transfer-matrix' estimates, the

solid circles, the previous finite-size results' obtained
from the chains with X( 10, whereas our results are re-
ported by rotated crosses with error bars. The latter
show a substantial improvement for the peak positions
with respect to the former. Moreover, the present esti-
mates are somewhat superior to those found from the
QTM technique' (assuming, however, the value
J/k~ =55 K).

Finally, the zero-field specific heat is calculated for
S =

—,
' compound CHAC. From the ferromagnetic reso-

nance experiment it has been established that CHAC
can be described by the anisotropic Hamiltonian (I),
where J„/ks =45.52 K, J /ka =44.99 K, and
J, /k3=44. 49 K. In Fig. 5 the experimental curve is
drawn in the solid line with the sharp peak demonstrat-
ing the phase transition point to the three-dimensional
(3D) ordering. Our results are reported by the circles and
are consistent with the experimental findings (apart from
the vicinity of the transition temperature) as well as with
our previous' linear or parabolic predictions in I /N.

In conclusion, we have performed an asymptotic
analysis of finite-size data series by recourse to the poly-
nomial and Pade approximant extrapolations. We have
found that the former better fulfills the inherent quality
criteria, so that we have compared here the polynomial
estimates with the experimental results for CHAB and
CHAC. The series in question have been evaluated in
our preceding paper, ' except for those describing the
low-field behavior of CHAB (Figs. 3 and 4). The agree-
ment between our numerical calculations and both exper-
imental measurements and the QTM simulations has
been revealed.
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