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Cryopreservation or preservation of biological tissue for the long term at ultra-low temperatures is 

gaining interest for several reasons. The technique is an important tool for the conservation of genetic 

resources using a minimum of space and maintenance and thereby provides an alternative for live 

breeding. Cryopreservation has many applications in biotechnology, biomedicine, agriculture, 

aquaculture and biodiversity conservation. The best-known medical application is probably the use of 

cryopreserved sperm and egg cells to overcome fertility issues. Another example is the use of 

cryopreserved bone marrow stem cells or blood cells to cure leukemia and melanomas (Mazur et al., 

2008). In addition, the construction of cryobanks may be an important supporting tool to preserve the 

biodiversity of the planet, as an increased number of species are going extinct or are endangered. 

According to the red list of the International Union for Conservation of Nature (IUCN) 23.000 of the 

76.000 species they have assessed are threatened with extinction, including 26% of all mammals, 

13.5% of all birds and up to 40% of all flowering plants (IUCN 2014). The extinction of a species also 

means a loss of their putative applications in for instance food- or pharmaceutical industry. In order to 

prevent the loss of his potential, big projects have been developed over the past decades to store the 

remaining biodiversity. For example, Kew’s Millennium Seed Bank stores almost 2 billion species of 

plant seed, which corresponds to 13% of the world’s wild plant species. The Svalbard Global Seed 

Vault, established in 2008 and located on Spitsbergen, stores every variety of all of earth's 21 major 

food crops. Additionally, cryobanks would be very useful to maintain the genetic material of the 

enormous amount of mutant strains of model organisms, such as mice, fruit flies, Daphnia and 

zebrafish that have been created for scientific research. Unfortunately, for many of these animals an 

optimized protocol is not yet available (Mazur et al., 2008). 

A well-established model organism in ecological and evolutionary biological research is the water flea 

Daphnia and especially D. magna as it is one of the most widely used model organism in 

ecotoxicology (Lampert, 2006; 2011; Walker et al., 2012; Walker, 2014). For example, in the US over 

20.000 ecotoxicological studies of pesticide-related chemicals have been conducted on Daphnia, 

whereof almost 18.000 used Daphnia magna (PAN pesticides database). Publication of the first 

complete Daphnia genome by the ‘Daphnia genome consortium’ (http://daphnia.cgb.indiana.edu/; 

Colbourne et al., 2011) led to an even more intensive use of Daphnia as an eco-genetical model 

organism and an official recognition as model species for biomedical research 

(http://www.nih.gov/science/models; Tautz, 2011; Seda and Petrusek, 2011). Daphnia show a wide 

geographical distribution, they are easy to culture and handle and they have short generation times 

(Benzie, 2005; Lampert, 2006; Seda and Petrusek, 2011). Additionally, Daphnia are a keystone 

species in aquatic ecosystems due to their central link in the food web, as a grazer of phytoplankton 

and as preferred prey for macro-invertebrates and fishes (Carpenter et al. 1987; Lampert, 2006; Miner 

et al., 2012).  
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Another key asset of Daphnia that has been central to the wide use as a model organism is their 

parthenogenetic reproduction cycle, altering sexual and asexual reproduction (Hebert, 1978; Benzie, 

2005; Figure 4). Asexual reproduction gives researchers the opportunity to work with large numbers 

of genetically identical individuals (De Meester et al., 2004). This allows analysis of the effects of 

multiple traits on the same set of clones and straightforward analysis of genotype x genotype and 

genotype x environment interactions and phenotypic plasticity (Tollrian and Leese, 2010; Simon et al., 

2011). Dormant eggs form an archive in the sediment were they can stay viable for decades (Hairston 

et al., 1995; De Meester et al., 2004) and are used in resurrection ecology to reconstruct the 

evolutionary changes of the past (Kerfoot et al., 1999; Cousyn, 2001; Angeler, 2007; Decaestecker, 

2007), while clones are the ideal tool to explore the capacity for evolution in real-time experimental 

approaches (Van Doorslaer et al., 2009; 2010; Jansen et al., 2015). 

For many of the above mentioned applications, using genetically well characterized lines is important. 

To date, maintenance of the clonal lines can only be achieved through continuous culturing. This is a 

labor-intensive process and entails the risk of losing important lines because of contamination, disease 

or accidents. It would be a big step forward if these clonal lineages could be stored safely by 

cryopreservation, the long-term preservation of living organisms at ultra-low temperatures of liquid 

nitrogen (-196°C). Also for Daphnia, being an aquatic organism, so far there are no successful 

protocols for cryopreservation, such a protocol would be an enormous help as it would allow increase 

repeatability in time and space and reliability. 

1 Cryopreservation 

1.1 Introduction 

In cryobiology three categories of cold temperatures are distinguished. Chilling temperatures above 

0°C constitute the first category, which are already detrimental for many animals, especially 

homeotherms, and cold sensitive plants but will be survived by most organisms, depending on the 

length of exposure. The second category consists of temperatures between 0°C and -40°C. In this 

range cells may incur freeze damage and only few organisms are able to withstand these temperatures. 

At temperatures lower than -40°C cryopreservation can occur, because of a drastically decreased 

metabolic rate at these very low temperatures (Wolfe and Bryant, 2001). For long term storage it is 

preferable to store biological tissues at temperatures below the glass transition temperature of water 

(between -120°C and -130°C), since then all metabolic processes are arrested (Hodgson, 1994). If cells 

can reach these temperatures undamaged, samples can in principal be retained indefinitely as 

preservation of cells at such temperatures is not harmful per se. The biggest challenge for the 

cryopreservation of cells is, therefore, spanning the critical cooling process to achieve these 

temperatures without damage.  



  Introduction 

3 

 

1.2 Cryopreservation protocols 

Cryopreservation can be performed in different ways. Broadly protocols are divided in two groups: 

conventional or two-step methods (2.2.1) and vitrification protocols (2.2.2). To get familiar with some 

common terms used in cryobiology a glossary was added in Box I. 

 

1.2.1 Conventional cryopreservation 

Conventional protocols use a step-wise approach to freeze the samples, in which ice crystals are 

tolerated but strictly controlled via the cooling rate. First, cells are slowly cooled and kept at a constant 

subzero temperature for a while, allowing for freeze-dehydration to occur. Subsequently samples are 

rapidly cooled to -196°C by plunging them in liquid nitrogen. During the first step of slow cooling 

intracellular ice crystal formation is avoided by adequate osmotic dehydration, while in the second 

step of rapid cooling the damage caused by toxic concentrations of the internal solutes is avoided by 

minimizing the exposure time (Farrant et al., 1977).  

One major factor determining whether cells will survive conventional cryopreservation is the cooling 

rate (Figure 1). Both too slow and too high cooling rates have adverse effects on the survival of cells, 

Box I: Definitions related to cryopreservation 

Supercooling: a situation in which a liquid is cooled few degrees under its freezing point without a 

solid phase transition (Wolfe and Bryant, 1999) 

Nucleation: the start of ice crystal formation and solid phase transition  

 Homogeneous nucleation: water molecule(s) as nucleus of the ice crystal 

 Heterogeneous nucleation: other molecule(s) as nucleus of the ice crystal (Wolfe and 

Bryant, 1999) 

Glass transition: transition to a glass, this is no phase transition. A glass is a metastable amorphous 

state of a liquid characterized by an extreme high viscosity (>10
14

 Pa.s) (Wolfe and Bryant, 

1999). 

Vitrification: the process of glass formation, achieved by adequate rapid cooling. 

Droplet vitrification: In this technique, the tissue to be preserved is placed in in a drop of 

vitrification solution on aluminum foil strips prior to plunging in liquid nitrogen. 

The method is based on advantages high thermal conductivity of aluminum 

increasing the cooling and thawing rates (Kulus and Zalewska, 2014). 
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so an optimal cooling rate has to be found that can be different for every cell type and every organism 

(Leibo and Mazur, 1971; Mazur, 1984). 

 

Figure 1: Inverted U-curve of cell survival at different cooling rates. At slow cooling rates 

cells are mainly affected by high concentrations of intracellular solutes and at rapid cooling 

rates intracellular ice formation is the most damaging factor (Muldrew et al., 2004). 

Slow cooling can be defined as the cooling rate at which cells are able to lose just enough water so that 

the intracellular solution can stay in osmotic equilibrium with the extracellular medium. As 

temperatures decreases, ice crystals are initially formed in the extracellular solution which can have 

several negative effects on the survival of cells. First, extracellular ice crystals can mechanically 

damage important cell components, like the cell membrane, especially in multicellular tissues (Taylor 

and Pegg, 1983; Pegg, 1987). Second, due to the osmotic equilibrium across the membrane, cells 

become progressively dehydrated with an increasing concentration of intracellular solutes as a 

consequence. A higher viscosity of the cytoplasm, for example due to penetrating cryoprotectants (see 

Box II), can mitigate the damage caused by slow cooling, as osmotic equilibrium can be achieved 

while less dehydration of the cell is needed (Muldrew et al., 2004). Not only the toxic concentrations 

of solutes are a threat, but also the strong decrease in volume caused by the dehydration. This can lead 

to a phenomenon called ‘expansion-induced lyses’ in which cells can burst upon thawing because they 

lost a proportion of their plasma membrane via endocytosis during the freezing process (Muldrew et 

al., 2004). Apart from the above, there are some more problems caused by severe cell dehydration 

involving the cell membrane. As it is impossible for ice crystals to form in the interlamellar water, due 

to an intrinsic higher chemical potential compared to the extracellular matrix, this water is attracted to 

the extracellular ice crystals. However, this would force the membrane to compress and cause it to 

undergo a ‘gel-liquid crystal’ phase transition (Figure 2A). Implications of this transformation are a 

reduced membrane permeability and increased risk of leakage upon thawing. Moreover, low hydration 

forces the membrane components to segregate based on their hydration degree, leading to clearly 

divided groups of lipids and protein free membrane parts (Figure 2B), which undermines proper 

membrane functioning (Wolfe and Bryant, 1999; 2001).  
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Figure 2: Effects of dehydration on the cell membrane. A) shows a ‘gel-liquid crystal’ phase 

transition and B) shows a phase separation. In figure 2B grey circles represent proteins and 

shapes of the phospholipid head groups depict hydration degree (Wolfe and Bryant, 1999; 

2001) 

Which of the responses occur and to what extent depends on the lipid composition of the membrane. 

Cold-acclimated organisms tend to have a higher degree of unsaturation in the fatty acids of their 

phospholipids to prevent the transition to a gel phase (Farkas et al., 1984; Pruitt, 1990; Schlechtriem et 

al., 2006). 

As is shown in figure 1 also fast cooling can have harmful effects on the survival of cells undergoing 

cryopreservation. At rapid cooling rates cells are not able to maintain osmotic equilibrium across the 

membrane because the rate at which ice crystals are formed is higher than the rate at which a cell can 

lose water. Consequently, more supercooled intracellular water has the opportunity to form damaging 

intracellular ice crystals (Mazur, 2004; Muldrew et al., 2004) 

1.2.2 Vitrification protocols 

Vitrification protocols are aiming at ice-free cryopreservation of biological tissues by the formation of 

a glass. This can be achieved by a fast cooling rate and high viscosity (Fahy et al., 1984). Viscosity 

increases as cooling progresses, while the vitrification temperature (Tg) raises and the temperature at 

which homogeneous nucleation (Th) occurs decreases (Figure 3). At a certain concentration (Cv) the 

formation of ice crystals in impossible and a glass is formed (Fahy et al., 1984; 2004). 

Thermodynamically a glass is a liquid, but as molecular motions are inhibited by the high viscosity (> 

10
14

 Pa.s), it has properties of a solid without undergoing a phase transitions (MacFarlane, 1987; 

Wolfe and Bryant, 1999). Both the temperature of vitrification and homogeneous nucleation are 

dependent on the cooling rate. The graph in figure 3 is made for the minimal cooling rate needed for 

vitrification (10°C min
-1

). Cooling rates applied in vitrification protocols are usually much higher, for 

example a sample that is plunged directly into liquid nitrogen (-196°C) is cooled at 2500°C min
-1

 

(Towill and Bonnart, 2003). At these extreme fast cooling rates, vitrification (i.e. the crossing between 

Tg and Th), occurs at much lower concentrations of the solutes. This is important because in practice it 

is very hard to reach high concentrations of intracellular solutes without damaging the cells (See Box 

A) B) 
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II; Fuller, 2004). These high and potentially toxic concentrations of solutes are the biggest challenge to 

achieve successful vitrification of cells. 

 

Figure 3: Phase diagram of glycerol in water. Tm is the melting temperature, Th is the 

temperature of homogeneous nucleation, Td is the devitrification temperature and Tg is the 

vitrification temperature. Cv is the minimum concentration needed for vitrification, CNDV is the 

concentration where devitrification no longer takes place, Cu is the maximum concentration 

that can achieved during freezing, N is the point where Td vanishes and V is the point where 

vitrification starts (Fahy et al. 2004). 

The vitrification approach has many advantages relative to the conventional freezing protocols. First 

of all, vitrification avoids the damaging effects of intracellular and extracellular ice crystals. Secondly, 

as cooling happens faster cells are exposed to the high concentrations of solutes for shorter periods of 

time. Third, there is no need for an optimum cooling and warming temperature in vitrification 

protocols. In order for vitrification to take place cooling only has to be fast enough to prevent 

crystallization. In contrast to the controlled freezing of conventional protocols, this can be achieved 

without specialized freezing equipment, as plunging into liquid nitrogen suffices. For these reason it is 

believed that vitrification is the most suitable cryopreservation technique for multicellular tissues, like 

embryos (Rall, 1987; Kulus and Zalewska, 2014). 

Generally vitrification protocols consist of multiple consecutive steps divided in two main parts. The 

first part of the protocol aims to concentrate the cellular solutes and the second part involves the 

freezing and thawing (Kulus and Zalewska, 2014). In principal there are two ways to increase the 

cellular viscosity: water can be withdrawn from the cells or additives can be added to the cellular 

solution. Dehydration can be achieved by air drying or osmotically, via the exposure to a vitrification 

solution consisting of non-penetrating cryoprotectant substances (See Box II). In addition, cells can be 

loaded with extra solutes by exposure to penetrating cryoprotectant substances entering the cell trough 

the cell membrane (See Box II) or by an adaptive metabolism. Changing the culturing conditions, for 

instance temperature or food, can lead to higher incorporations of certain cryoprotective substance.  
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1.3 Cryopreservation of aquatic organisms: an additional challenge 

Cryopreservation of aquatic species is particularly challenging because of their high water content, 

high chilling sensitivity (See Box III for Daphnia; Zhang, 2004; Zhang and Rawson, 1995) and high 

sensitivity towards toxic components (Coors and De Meester, 2008; Coors et al., 2009). Although 

many successful cryopreservation protocols of reproductive tissue of aquatic invertebrates are 

published (Table 1), only limited numbers of them deal with the preservation of embryos or whole 

individuals (Gwo, 2000, Zhang, 2004). Although many attempts, also for fish embryos there are no 

successful cryopreservation protocols yet (Zhang, 2004; Mauger et al., 2006; Tsai et al., 2009; Neves 

et al., 2014). 

Table 1: Overview of successful cryopreservation protocols for reproductive materials of 

aquatic species 

Species Reproductive material References 

Fish 

 

Reviewed in: 

200 species including: spermatozoa Zhang, 2004;  

Salmonids 

 

Tiersch and Mazik, 2000; 

Cyprenids 

 

Suquet, 2000 

Perciformes 

 

Suquet, 2000 

Echinoderms 

  Sea urchin spermatozoa Dunn and Mclachlan, 1973 

Sea urchin embryo Bellas and Paredes, 2011 

San dollar spermatozoa Dunn and Mclachlan, 1973 

Molluscs 

  Pacific oyster spermatozoa Adams, 2004 

Pacific oyster embryo Chao et al., 1997; Paredes et al., 2013 

Blue mussel embryo Paredes et al., 2013 

Greenshell mussel embryo Paredes et al., 2012 

Crustacea 

  White shrimp spermatozoa Castelo-Branco et al., 2015 

Marine shrimp spermatozoa Diwan and Joseph, 2000 

Mud crab spermatozoa Bhavanishankar and Subramoniam, 1997 

Rotifer embryo Toledo and Kurokura, 1990 
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Box II: Cryoprotectants 

A cryoprotectant is defined as a chemical substance enhancing the survival of cells to freezing and 

thawing. They are added to cells before the process of cryopreservation is applied (Fuller, 2004; 

Muldrew et al., 2004). Cryoprotectants have the capacity to reduce ice crystal formation and ice crystal 

growth for two reasons. The first reason is that they simply do not fit in the tight structure of an ice 

crystal and therefor physically disturb ice crystal formation. Secondly, they increase the viscosity of 

the solution and thereby decrease the mobility of water molecules and slow down the process of ice 

crystal formation (Wolfe and Bryant, 1999).  

Cryoprotectants can be divided in two classes: penetrating and non-penetrating cryoprotectants. 

Penetrating cryoprotectants are small molecules that are able to penetrate through the cell membrane 

with low cellular toxicity. Apart from the above mentioned general functions of cryoprotectants, some 

of these penetrating substances have the ability to interact with and stabilize macromolecules, such as 

proteins and phospholipids. Additionally, penetrating cryoprotectants can have a mild anti-bacterial 

effect and they can act as a radical scavenger and secondary solvent for salts, mitigating toxic effects 

caused by the increasing concentration during cooling (Fuller, 2004; Muldrew et al., 2004). Examples 

of penetrating cryoprotectants are glycerol, dimethyl sulfoxide, methanol, propylene glycol and 

ethylene glycol (Denniston et al., 2000). Non-penetrating cryoprotectants are unable to enter the cell 

through the plasma membrane, accordingly fulfilling their function outside the cell. Because of their 

high osmotic coefficient they are used to dehydrate cells before freezing, by osmotically withdrawing 

intracellular water (Fuller, 2004; Muldrew et al., 2004). Sugars, sugar alcohols and polymers belong to 

the category of non-penetrating cryoprotectants.  

Cryoprotectants have to be used carefully, especially when applied at high concentrations. Both non-

penetrating and penetrating cryoprotectants can cause lethal cell volume changes due to osmotic 

dehydration. Penetration of cryoprotectants into the cell is a time consuming process, too slow in order 

to maintain osmotic equilibrium across the membrane. Consequently, during freezing water is 

extracted from the cells and during thawing water is penetrating in the cells faster than cryoprotectants 

leave the cells. This can be eliminated by stepwise administration of the cryoprotectants (Fuller, 2004).  
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2 Daphnia reproduction cycle: dormant and subitaneous eggs 

The life cycle of many Cladocera (Figure 4) is characterized by an alternation between sexual and 

asexual reproduction, called cyclical parthenogenesis (Bell, 1982; Hebert, 1987).  

 

Figure 4: Schematic overview of the cyclic parthenogenetic reproduction of Daphnia as an 

example of a cladoceran life cycle. (Drawing by Kathleen Van der Gucht) 

During favorable conditions, water fleas reproduce asexually. Asexual eggs develop immediately 

within a short period of time (3-4 days for D. magna at 20°C), accounting for a fast population growth 

during the growing season. At the end of the growing season females start to produce males and sexual 

eggs, although there are some obligate parthenogenetic populations (Hebert and Crease, 1983; Hebert 

et al., 1988; Colbourne et al., 1997). The switch to sexual reproduction is determined by 

environmental cues (reviewed in Alekseev and Starobogatov, 1996; Gyllström and Hansson, 2004). 

Indications of deteriorating conditions triggering sexual reproduction of D. magna are a shorter 

photoperiod, lower temperatures, crowding, decreasing food level and the presence of predation 

Apart from this osmotic toxicity, depending on its chemical characteristics cryoprotectants can also 

be chemically toxic depending on the temperature and exposure time. To overcome this problem 

mixtures are used, combining the beneficial effects of the different cryoprotectants and reducing 

the negative effects linked to the high concentrations of individual cryoprotectants needed for 

successful cryopreservation (Fuller, 2004; Muldrew et al., 2004). There are even some synergistic 

combinations, such as sugars and ethylene glycol. Sugars lower the vitrification temperature of 

ethylene glycol-based vitrification solutions (Kuleshova et al., 1999). Additionally, sugars, and 

some other components, have the advantages that they are cellular metabolites naturally 

synthesized by many organisms when exposed to stress, making them less toxic at high 

concentrations (Kuleshova et al., 1999; Fuller, 2004).  
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(Hobaek and Larsson, 1990; Kleiven et al., 1992; Alekseev and Lampert, 2001). Most cladoceran 

species deposit their sexual eggs in a protective envelope, called ephippium (Figure 5), although there 

are also some species that shed their eggs freely (Zaffagnini, 1987; Fryer, 1996,). The ephippium 

contains one or two eggs and is formed by a part of the maternal carapace (chitine) with divergent 

shapes for different species. Pigmentation with melanin provides a brown color (Zaffagnini, 1987; 

Fryer, 1996; Hairston and Càceres, 1996).  

 

Figure 5: A) Female Daphnia magna bearing ephippium and B) Dissected ephippium of D. 

magna: outer protective envelope, inner protective envelope and two dormant eggs. 

In contrast to asexual eggs, sexual eggs undergo a period of dormancy before they hatch in spring 

(Carvalho and Wolf, 1989; Càceres, 1998). Dormancy encompasses a wide spectrum of physiological 

states characterized by a strong reduction of metabolism (Brendonck and De Meester, 2003). Dormant 

eggs form a sediment egg bank analogous to plant seed banks (De Stasio, 1989; Hairston and Càceres, 

1996). The densities of these egg banks vary between 10
3
 and 10

6
 eggs m

-2
 (Hairston, 1996; Cousyn 

and De Meester, 1998; Brendonck and De Meester, 2003) and they can have a major impact on 

ecological and evolutionary dynamics (Càceres, 1997; Brendonck and de Meester, 2003; Gyllström 

and Hansson, 2004). Due to their ability to survive harsh environmental conditions and digestion by 

fish and/or birds dormant eggs are the ideal vector for dispersal in space and time (Proctor, 1964; 

Mellors, 1975; Hairston et al., 1995; Radzikowski, 2013). In contrast, earlier studies reported no 

survival of subitaneous eggs digested by fish (Saint-Jean and Pagano, 1995; Bartholmeé et al., 2005). 

Additionally, results from exploratory experiments performed by myself showed low drought and 

freeze resistance of subitaneous eggs compared to dormant eggs (See Box III). 
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Box III: Resistance of dormant and subitaneous Daphna eggs to drought and freezing 

To our knowledge there are only very limited quantitative data available on the limits of drought and 

freeze tolerance of dormant and subitaneous eggs of Daphnia. Radzikowski (2013) reports that dry 

dormant eggs are able to withstand -84°C for 3 hours and Doma (1979) reports that dormant eggs can 

survive 24 hours of air-drying. Therefore, we compared the difference in dehydration and freezing 

tolerance of sexual and asexual eggs.  

Material and methods 

EGG COLLECTION 

Sexual eggs of D. magna were collected from ‘Langerode vijver’, a pond in Neerijse, Belgium 

(0°49’42.32”N, 4°38’21.49”O). Individual eggs were placed on a thincert
TM

 (Ref 665 638, Greiner 

Bio-one, Germany) and fifty replicate eggs were subjected to each of the different treatments (see 

below).  

Asexual eggs were collected from 10 clones that were hatched from the sediment bank of ‘Langerode 

vijver’ by exposing the dormant eggs to hatching stimuli (De Meester & Jager, 1993) and 

subsequently they were cultured under standard laboratory conditions (20°C and 16h light/8h dark 

cyclus) for several generations. All cultures were fed 150.000 cells ml
-1

 of the green alga Scenedesmus 

obliquus, which corresponds to approximately 2.5 mg C l
-1

. Fifty replicate individual asexual eggs in 

the first stage of embryonic development (according to Kast-Hutcheson et al. 2001) were placed on 

thincerts
TM

 (Ref 665 638, Greiner Bio-one, Germany) and exposed to the experimental conditions (see 

below). Clones and clutches were randomized over the treatments. 

EXPERIMENTAL METHODS 

The resistance to air-drying of sexual and asexual eggs was compared by exposing eggs to the air for 

different periods of time: 0 min (control), 2 min, 5 min, 10 min, 30 min, 12 h, 24 h. The resistance of 

sexual and asexual eggs towards freezing was tested with and without prior air-drying for 24 h. The 

asexual eggs because drying resulted in damage and disappearance of the eggs, making it impossible 

to weigh them after air-drying. 

DATA ANALYSIS 

The effects of the different treatments on the hatching success of the eggs were tested using 

generalized linear models (GLM) with a logit-link function and a binomial distribution, followed by 

sequential Bonferroni-correction (Holm 1979) to correct for multiple testing. To test whether 

differences between clones have an effect on the survival of the eggs when they were exposed to air- 
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drying, we used a generalized linear mixed model. All analyses were performed using the packages 

car, lme4 and multcomp in the statistical software R (version 3.0.2). 

Results 

There is a significant difference between the desiccation resistance of sexual and asexual eggs (Table 

1). Sexual eggs can withstand air-drying for 24 hours without significant loss of survival, while for 

asexual eggs survival at all drying times from 5 minutes onward is significantly lower than in the 

control conditions (Figure 1). Asexual eggs were derived from 10 different clones, but this diverse 

genetic background does not affect survival of the eggs during the experiment (p = 0.3577).  

Table 1: Results of GLM comparing the survival of 

sexual and asexual eggs of Daphnia magna (egg 

type) exposed to air-drying for different periods of 

time (drying time).  

 

Variables Df Chi
2
 P-value 

Egg type 1 433.83 <2.2 E
-16

 

Drying time 7 66.71 6.8 E
-12

 

Egg type : drying time 7 43.15 3.121 E
-07

 

 

There were no asexual eggs surviving one of the freezing treatments, while sexual eggs were capable 

of surviving -20°C without significant loss of survival and almost 20% even survived -196°C. During 

the process of air-drying the eggs lose water. Twenty sexual eggs weigh at the start of the experiment 

on average 0.32 mg and lose 0.20 mg during 24 hours of air-drying, corresponding to 61.75% of the 

egg weight that evaporates. This loss of water has a beneficial effect on the survival of sexual eggs 

exposed to severe freezing conditions, such as -80°C and -196°C (Figure 2, Table 2).

Table 2: Results of GLM of the effects of freezing 

conditions (freezing temperature), a priori drying 

(pre drying) and their interaction on the hatching 

success of sexual eggs of Daphnia magna. 

Variables Df Chi
2
 P-value 

Freezing temperature 3 46.607 4.123 E
-10

 

Pre drying 1 21.889 2.889 E
-06

 

Freezing t°: pre drying 3 31.666 6.154 E
-07
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Figure 1: Effect of time of exposure to air-drying 

on the survival of sexual (black bars) and asexual 

eggs (grey bars) of Daphnia magna. Distinct letters 

indicate significant differences (n = 121, p < 0.05, 

generalized linear model, followed by sequential 

Bonferroni-correction).

 

 

Figure 2: Effect of exposure to freezing 

temperatures with (grey bars) or without (black 

bars) prior 24 h air-drying on the survival of sexual 

eggs of Daphnia magna. Distinct letters indicate 

significant differences (n = 28, p < 0.05, 

generalized linear model, followed by sequential 

Bonferroni-correction). 

Discussion 

Our results confirm the expected differences between sexual and asexual eggs of Daphnia magna 

regarding the adaptive resistance towards drought and freezing required during diapause. Sexual eggs 

are used as a means of dispersal in time and space, so they often encounter stressful environments and 

must be able to survive for long periods of time (Hairston et al., 1995; Brendonck & De Meester, 

2003). Our results showed a high resistance of sexual eggs, they can withstand dehydration via air-

drying for 24h and severe freezing temperatures as low as -196°C. Asexual eggs, which are typically 

produced during favorable conditions, only survive air-drying for 2 minutes and do not survive any 

freezing conditions. 

Survival of the sexual eggs under freezing conditions that Daphnia encounter in their natural habitat 

(until -20°C) is not affected by the water content of the eggs, but survival at lower temperatures (-80°C 

and -196°C) rises substantially as water content decreases. A lower amount of water and a higher 

viscosity reduce the formation of damaging intracellular ice crystals (Bryant and Wolfe, 1999; Mazur, 

2004;). 



  Introduction 

14 

 

2.1 Adaptation to dormancy  

The long term survival of dormant stages due to a high level of stress resistance requires some 

adaptations. Diapause is characterized by a low metabolic rate (Hahn and Denlinger, 2007; Storey and 

Storey, 2007) and energy used for cellular metabolism in active states can now be redirected to other 

processes, such as the production of stress protectant cellular metabolites (Denlinger, 2002; Lopes et 

al., 2004; Tunnacliffe and Wise, 2007; Tunnacliffe et al., 2010) and the production of morphological 

protective structures (Liu et al., 2009). We identified adaptation at the level of protective envelopes, 

yolk structure and biochemical composition. 

2.1.1 The epphippial case and protective membrane structures 

For many cladocerans, the most obvious difference between subitaneous and dormant eggs is the fact 

that dormant eggs are deposited in a protective envelope, the ephippium, while subitaneous eggs are 

shed freely or in the brood pouch of the female (Zaffagnini, 1987; Fryer, 1996). Additional to the 

ephippium (Figure 5), dormant eggs are additionally individually covered by an outer envelope 

(Figure 6). Subitaneous eggs are surrounded by an outer wall of only 0.35 µm thick and a plasma 

membrane, whereas dormant eggs have an outer wall of 2.2 µm thick, comprising of 2 layers, and a 

plasma membrane (Seidman and Larsen, 1979; Zaffagnini, 1987). Both the ephippium and the outer 

envelope protect dormant eggs against mechanical damage and abiotic factors like drying, freezing, 

UV radiation or chemicals (Seidman and Larsen, 1979; Kawasaki et al., 2004).  

 

Figure 6: Scanning electron microscopy of dormant egg envelope (A and B) and subitaneous 

egg envelope (C). 

2.1.2 Yolk structure 

These envelopes slow down the process of desiccation, but cannot prevent it. Consequently, dormant 

eggs themselves need additional mechanism to cope with drought and freezing. A first mechanism to 

survive these conditions is probably the structure of the egg yolk. Resistant eggs tend to have a more 

homogeneous finely grained yolk structure without vacuoles, while non-resistant eggs have vacuoles 
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and the structure of the yolk is irregular with more pronounced granulation (Makrushin, 1978). 

Zaffagnini (1987) observed similar properties in the eggs of Daphnia. The cytoplasm of asexual eggs 

contains yolk globules, while the cytoplasm of sexual eggs is characterized by pronounced 

granulation.  

2.1.3 Biochemical composition 

Dormant stages accumulate stress protectant substance, of which part of the current knowledge is 

summarized in Table 2.  

Table 2: Cryoprotective components found in dormant stages of several invertebrates 

Biochemical component Species References 

Lipids 

  PUFA Daphnia pulicaria Abrusan et al., 2007 

Sugars and sugar alcohols 

  Trehalose Anguina tritici Womersley and Smith, 1981 

 Artemia franciscana Clegg, 1965 

 

Bombyx mori Ikeda et al., 1993 

 Cristatella mucedo Hengherr and Schill, 2011 

 

Ditylenchus dipsaci Womersley and Smith, 1981 

 

Daphnia magna Hengherr et al., 2011 

 

Daphnia pulex Hengherr et al., 2011 

 

Polypedilum vanderplanki Kikawada et al., 2005;  

 

 Watanabe et al., 2002 

 

Triops longicaudatus Hengherr et al., 2011 

 Triops cancriformis Hengherr et al., 2011 

 Triops australiensis Hengherr et al., 2011 

 Steinermena feltiae Solomon et al., 2000 

Glycerol Artemia franciscana Clegg et al., 1997 

 Bombyx mori Denlinger, 2002 

 

Daphnia magna Pauwels et al. 2007b 

 Pangrellus redivivus Womersley and Smith, 1981 

 

Turbatrix aceti Womersley and Smith, 1981 

Proteins 

  Hsp 60 Daphnia magna Pauwels et al. 2007b 

Hsp 26, 70, Artemin Artemia franciscana Clegg and Campagna, 2006 

 

Paratemia Clegg and Campagna, 2006 

LEA proteins Review Tunnacliffe et al., 2010 

 Adineta ricciae Pouchnkina-Stantcheva et al., 2007 

 Artemia franciscana  Watts et al., 1994 

 

Aphelenchus avenae Browne et al., 2000 
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3 Objectives and outline thesis 

There are many applications using specific clonal lines of Daphnia, so it would be good if these clonal 

lines can be safely stored and repeatedly used with minimal effort in terms of maintenance. Therefor 

the main goal of this thesis was to develop a cryopreservation protocol for asexual eggs of Daphnia 

magna, the most widely used Daphnia species. Aquatic organisms tend to be very sensitive to cold 

temperatures due their high water content. The advantage of working with Daphnia for this research is 

that they can alter between sexual and asexual reproduction, meaning that they besides the production 

of sensitive asexual eggs are also able to produce drought and freezing resistant sexual eggs. Their 

resistance to extreme freezing temperatures up to -196°C (See Box III) makes them suitable for 

techniques like cryopreservation, but as dormant eggs are already able to stay viable for decades it is 

not necessary to develop special protocols to preserve them. However, the features used by dormant 

eggs to cope with drought and low temperatures can provide valuable information for the development 

of a cryopreservation protocol for the asexual eggs. 

To achieve this we first wanted to increase our knowledge on the physiology of sexual eggs compared 

to asexual eggs. Second, we tried to establish a suitable protocol for cryopreservation and third we 

combine both and test the capacity of manipulated asexual eggs to survive cryopreservation (Figure 7). 

 

Figure 7: Overview of the experiments conducted in this study distributed over two parts and 

five chapters. 
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In the first part of this thesis we study the biochemical composition of asexual eggs and decapsulated 

(no ephippium, see Figure 5) sexual eggs of D. magna. We compare the composition of fatty acids, 

sugars and polyamines between sexual and asexual eggs (Chapter 1-3). Additionally, we look at the 

plasticity of these traits under different food conditions in an attempt to alter the biochemical 

composition of asexual eggs towards a higher content of putative cryoprotectant substances and 

consequently a higher stress resistance (Chapter 1-3). Apart from the differences between the two 

types of eggs, Daphnia populations also show a big genetic variation resulting in variable egg 

characteristics (De Meester et al., 2004; Pauwels et al., 2007). In chapter 4 we study the naturally 

occurring differences in biochemical composition of parthenogenetic eggs and life history 

characteristics of their hatchlings between genetic lines of different seasons (winter vs. summer 

conditions) and their responses to temperature changes.  

The second part of the thesis deals with the development of the cryopreservation protocol (Chapter 5). 

Because of the multicellular nature of asexual eggs, we have chosen to use a vitrification protocol as it 

is currently considered the most suitable method for freezing of embryos (Kulus and Zalewska, 2014; 

Fahy and Wowk, 2015). More specifically we will use droplet-vitrification, in this method the eggs are 

placed in a drop of vitrification solution on an aluminum “spoon” to be plunged in liquid nitrogen 

(Kulus and Zalewska, 2014). Prior to the freezing step, the viscosity in the eggs had to be maximized. 

We tried to attain this via loading with a penetrating cryoprotectant, glycerol, and osmotic dehydration 

in a vitrifying solution. Both steps needed optimization in terms of exposure time and concentration in 

order to avoid toxic effects and mortality before freezing occurs. Finally, the ‘enhanced’ more stress 

resistant asexual eggs, in terms of fatty acid and sugar composition, derived from the experiments in 

part one are subjected to the vitrification protocol.  
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Abstract 

In the cyclical parthenogenetic Daphnia asexual eggs develop immediately and enable fast population 

growth, while sexual eggs are dormant and can survive harmful conditions. We studied whether this 

different function is reflected in different fatty acid profiles and explored the capacity of D. magna to 

adjust fatty acid provisioning of its eggs depending on food resources. We quantified neutral- and 

phospholipid content of sexual and asexual eggs produced under different food conditions and 

compared these too eggs collected from a natural pond. In eggs obtained under different laboratory 

food regimes, total concentration of neutral fatty acids per unit biomass was not affected by food 

source or egg type. Both egg types contained lower amounts of fatty acids in the neutral fraction when 

produced in nature than under laboratory conditions. Fatty acid concentration in the phospholipid 

fraction was lower in sexual than asexual eggs. Fatty acid composition of eggs largely reflected that of 

the food of the mothers, albeit with small modifications. Sexual eggs produced on S. obliquus diet (no 

C20-PUFA), contained higher concentrations of EPA and ARA in both fractions than asexual eggs. 
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1 Introduction 

Like many aquatic organisms inhabiting inland waters, the cladoceran Daphnia produces eggs that 

develop immediately and eggs that first go through a dormant stage, the latter as a strategy to cope 

with temporarily harsh periods (Brendonck and De Meester, 2003). Most Daphnia species are cyclical 

parthenogens, with the dormant eggs being produced sexually while the subitaneous eggs are produced 

parthenogenetically. Asexual eggs are typically produced during favourable conditions and allow for 

rapid population growth. By the end of the growing season, when the animals are exposed to 

deteriorating environmental conditions, Daphnia start producing sexual eggs. Sexual eggs are encased 

in a protective envelope, the ephippium, and are deposited in the sediment where they form a dormant 

egg bank. These eggs can stay viable for decades and are resistant to desiccation, extreme 

temperatures and digestion by animals (Decaestecker et al., 2009; Frisch et al., 2014).  

Sexual and asexual eggs have very different functions during the life cycle (Brendonck and De 

Meester, 2003). Dormant eggs are used to disperse in space and time, consequently the hatchlings 

from sexual eggs experience different growth conditions compared to hatchlings from asexual eggs, 

which are more likely to encounter similar conditions as the parental generation. The resulting 

offspring differ in life history traits (Cáceres, 1998; Arbaciauskas and Lampert, 2003) and it is 

conceivable that this is reflected in differences in the biochemistry of the eggs.  

Dormant eggs require special adaptations to survive drought and freezing during diapause, and these 

adaptations may include different resource allocation strategies. In agreement with the requirements 

for dormancy, Pauwels et al. (2007) reported that sexual eggs of Daphnia magna contain more 

glycerol and heat shock proteins than asexual eggs. Both glycerol and heat shock proteins play a key 

role in the protection of cell metabolism during stress conditions and have also been found in 

anhydrobiotic cysts of other diapausing organisms, such as Artemia fransicana (Clegg et al., 1997) 

and certain insects (Denlinger, 2002). Early studies have reported morphological differences between 

parthenogenetic and dormant eggs. For instance, oocytes of sexual eggs do not contain free lipid 

droplets and are enclosed in three membranes, while the oocytes of asexual eggs do contain lipid 

bodies and only have two membranes (Zaffagnini, 1987). Based on these histological observations, 

sexual oocytes are expected to contain higher amounts of triglycerides, the main energy storage 

molecules in Daphnia (Peters, 1987). However, Pauwels et al. (Pauwels et al., 2007) did not find 

significant differences in triglyceride concentrations between sexual and asexual eggs of Daphnia 

magna. In another study, dormant eggs of Daphnia pulicaria contained much more fatty acids, 

especially polyunsaturated fatty acids (PUFA), than parthenogenetic eggs (Abrusan et al., 2007). 
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The biochemical composition of parthenogenetic eggs of Daphnia has been shown to be highly 

plastic. Predation pressure as well as both food quantity and quality in the maternal generation have a 

strong influence on the biochemical composition of the eggs (Gliwicz and Guisande, 1992; Stibor, 

2002; Wacker and Martin-Creuzburg, 2007; Schlotz et al., 2013). When exposed to low food quantity, 

Daphnia females have been reported to produce smaller clutches with larger eggs and a higher content 

of protein, lipid and carbon (Gliwicz and Guisande, 1992). In contrast, Tessier et al. (Tessier et 

al.,1983) observed that females reproducing under low food conditions allocate less maternal lipids to 

each egg than females of the same genotype (i.e. clone) under high food conditions, and that neonates 

hatching from eggs with a higher triglyceride content survive longer under starvation. Besides food 

quantity, resource allocation into the eggs can be affected by food quality. Sterols (Von Elert et al., 

2003; Martin-Creuzburg et al., 2005) and polyunsaturated fatty acids (Brett, 1993; Müller-Navarra et 

al., 2000; Von Elert, 2002; Persson and Vrede, 2006) are both important determinants of biochemical 

food quality for Daphnia. When exposed to poor food quality conditions, total fatty acid 

concentrations are reduced in both somatic tissue and parthenogenetic eggs, while the concentration of 

cholesterol is constant in eggs but lowered in somatic tissue (Wacker and Martin-Creuzburg, 2007). 

Not only the concentration but also the fatty acid composition of the eggs is strongly determined by 

the maternal dietary supply (Schlotz et al., 2013). It is generally accepted that arthropods are unable or 

at least have limited capabilities to synthesize PUFA de novo from low molecular weight precursors 

(Leonard et al., 2004). Five PUFA have been frequently discussed as being essential, of which three 

are n-3 fatty acids (i.e. α-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3) and 

docosahexaenoic acid (DHA, 22:6n-3)) and two are n-6 fatty acids (i.e. linoleic (LIN, 18:2n-6) and 

arachidonic acid (ARA, 20:4n-6)) (Von Elert, 2002; Kainz et al., 2004; Martin-Creuzburg et al., 

2010). PUFA play important roles in cell growth and proliferation and are precursors for other 

important molecules. For instance, EPA and ARA are precursors for prostaglandins and other 

eicosanoids, which are important mediators in reproduction, the immune system and ion transport 

physiology (Stanley, 2006; Heckmann et al., 2008). Along with sterols and proteins, PUFA-containing 

phospholipids define the physical characteristics of cell membranes (Stillwell and Wassall, 2003; 

Valentine and Valentine, 2004). Both the saturation degree and the length of the fatty acid chains 

within phospholipids influence membrane flexibility and permeability (Pruitt, 1990). 

In this study, we explored whether the cladoceran D. magna is capable of adjusting fatty acid 

allocation towards both asexual and sexual eggs as a function of the fatty acid profile of the food of 

the mother. Previous studies on the allocation of fatty acids to eggs in Daphnia as a function of food 

quality focused on parthenogenetic eggs only, while the one study that compared fatty acid content of 

sexual and asexual eggs in Daphnia focused on one diet only (Abrusan et al., 2007). Here we 

compared the plasticity of fatty acid concentration and composition in asexual and sexual eggs of D. 
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magna, whose mothers were reared on two algae differing strongly in their fatty acid profile and in 

asexual and sexual eggs produced by mothers in a natural pond. Because of the distinct functions 

between lipid classes, we separated the total lipid fraction into neutral lipids and phospholipids prior to 

fatty acid analyses, to distinguish between fatty acids that are primarily used as energy resources and 

fatty acids that are primarily used as cell membrane components, respectively. We expected that 

sexual eggs contain more neutral lipids than asexual eggs, as they are able to survive for decades. 

Regarding phospholipids, we expected to find a higher plasticity in fatty acid profiles in asexual eggs 

than in sexual eggs as the latter may require a certain fatty acid composition to be able to withstand 

harsh environmental conditions. 

2 Material and methods 

2.1 Cultivation and preparation of the food 

In our laboratory experiments, we used the green alga Scenedesmus obliquus (SAG 276-3a) and the 

eustigmatophyte Nannochloropsis limnetica (SAG 18.99) to rear Daphnia magna. These two algae are 

characterised by highly distinct fatty acid profiles, i.e. S. obliquus lacks PUFA with more than 18 

carbon atoms, while N. limnetica contains high concentrations of C20-PUFA, especially 

eicosapentaenoic acid (Martin-Creuzburg et al., 2009; Von Elert, 2002). 

Algae were grown in batch cultures at 18°C in aerated 10 liter vessels with illumination at 170 µmol 

quanta m
-2 

s
-1

 and harvested in the late-exponential growth phase. S. obliquus was grown in a medium 

consisting of 10 mL L
-1

 of enriched seawater (ES) nutrients (Provasoli, 1968), 5 mL L
-1

 of Walne 

nutrients (Walne, 1965) and the vitamins B1, B12 and H dissolved in dechlorinated tap water. N. 

limnetica was grown in modified Woods Hole (WC) medium with the vitamins B1, B12 and H 

(Guillard, 1975). Food suspensions were prepared by concentrating the cells via centrifugation (2500g, 

5 min) followed by resuspension in tap water. Cell densities of the food suspensions were counted 

with an Attune
®
 acoustic focusing cytometer (Life technologies, Carlsbad, CA, USA).  

2.2 Egg collection 

To compare the biochemical composition of sexual and asexual eggs of D. magna produced under 

different conditions, we collected sexual and asexual eggs produced by animals in a natural pond and 

sexual and asexual eggs derived from females fed either S. obliquus or N. limnetica in the laboratory. 

The laboratory animals were themselves derived from the same pond as from which the other eggs 

were collected.  
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2.2.1 Eggs collected from a natural population 

Dormant eggs of D. magna were collected from ‘Langerode vijver’, a pond in Neerijse, Belgium 

(0°49’42.32”N, 4°38’21.49”E). The upper 5-10 cm of the sediment, corresponding to the active egg 

bank (Càceres, 1998), was taken during the winter of 2011-2012, when the eggs are in diapause and 

before the spring hatching peak occurred. Ephippia were collected by sieving the sediment over first 1 

mm and then 250 µm mesh-sized sieves. To prevent hatching of the eggs during this process, eggs 

were kept in the dark and placed on ice. When the sieving was finished, all collected ephippia were 

stored in the dark at 4°C, awaiting further analyses. Ephippia were manually isolated from the 

sediment fraction and decapsulated to collect four replicate samples consisting of 100 sexual eggs for 

fatty acid analysis. These manipulations were performed in a room with only red light (700nm), to 

prevent unwanted light exposure of the dormant eggs. Samples were stored at -80°C to stop all 

biochemical processes in the cells. 

Asexual eggs from the pond ‘Langerode vijver’ were collected directly from the brood pouch of 

animals sampled during the growing season following our winter sampling for dormant eggs. Four 

samples consisting of 100 parthenogenetic eggs in the first stage of daphnid embryonic development 

(according to Kast-Hutcheson et al. 2001) were collected by dissection of the females brood chamber 

and stored at -80°C before freeze drying. 

2.2.2 Laboratory cultured eggs 

We conducted an experiment in the laboratory to generate sexual and asexual eggs from females 

cultured under different food conditions. Therefore, from the sediment bank of ‘Langerode vijver’, 10 

clones were hatched by exposing the dormant eggs to hatching stimuli, i.e. a relatively high 

temperature (20°C), a long-day photoperiod (16L:8D) and fresh medium (tap water dechlorinated and 

aged for 24h) (De Meester and Jager, 1993). Hatched animals were reared in 0.5 L jars (density: 20 

individuals per liter) filled with aged tap water (aerated for 24h prior to use) under standard conditions 

(20 ± 2 °C and a photoperiod of 16L:8D) for several generations. All cultures were fed 150.000 cells 

mL
-1

 of S. obliquus, which corresponds to approximately 2.5 mg C L
-1

. After this preconditioning 

phase, the second clutch of a new generation was subjected to the different experimental conditions.  

To obtain asexual eggs, per treatment four replicate one liter jars per clone (10 clones), with 15 

individuals in each jar, were cultured under standard conditions (20 ± 2 °C and a photoperiod of 

16L:8D). In the first treatment all cultures were fed with S. obliquus, whereas in the second treatment 

all cultures were fed with N. limnetica (both at an algal cell density of 150.000 cells ml
-1

). In both 

treatments, jars were cleaned every two days and food was renewed daily to keep algal concentration 

above the incipient limiting level. Females bearing their third clutch were dissected to collect asexual 
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eggs in the first stage of daphnid embryonic development (according to Kast-Hutcheson et al., 2001). 

From each replicate, one sample of 100 eggs (10 eggs per clone) was collected and stored at -80°C. In 

total, eight samples (four replicates per treatment) were put in storage. 

Lastly, we induced sexual reproduction using the same clones and under the same food conditions as 

described above, namely the algae S. obliquus and N. limnetica. To obtain starting material we reared 

20 individuals of the same 10 clones as used for the production of the asexual eggs under standard 

conditions, i.e. 20 ± 2 °C, a photoperiod of 16L:8D and an algal cell density of 150.000 cells mL
-1

 . 

After they had released their second clutch, four animals of every clone were mixed in a one liter jar 

(replicated 4 times) and feeding level was raised to 250.000 cells mL
-1

. The photoperiod was switched 

from long-day (16L:8D) during five days to short-day (8L:16D) photoperiod during two days, as this 

stimulates sexual reproduction in Daphnia (De Meester and Jager, 1993). Once a week half the 

medium was renewed and all dormant eggs were collected. Dormant eggs were stored in Eppendorf 

tubes in the dark at 4°C for at least one month. After storage, these laboratory-derived ephippia were 

decapsulated and four replicate samples consisting of 100 sexual eggs each were collected for each 

treatment. The eight samples were stored at -80°C. 

In total, 24 samples (2 types of eggs: sexual vs. asexual eggs, 3 treatments: eggs collected from a 

natural population and S. obliquus- and N. limnetica-fed laboratory animals; four replicates per 

treatment) were freeze dried, weighed (dry mass) and transferred to Eppendorf tubes until further 

analysis. To reduce lipid peroxidation, egg samples were overlaid with gaseous nitrogen.  

2.3 Chemical analysis 

2.3.1 Analysis of food quality 

To analyse the fatty acid composition of the laboratory-reared algal food source, three replicate 

samples of 9.5 mg carbon (10mL) for S. obliquus and 2.9 mg carbon (15mL) for N. limnetica were 

filtered on precombusted (5h, 550°C) GF/F filters (Whatman, 25mm). For determination of the food 

composition of the animals in the pond, three random seston samples of 200mL, corresponding to 0.66 

mg carbon, were taken from ‘Langerode vijver’ and filtered on precombusted GF/F filters. 

The fatty acid composition of the food sources was analysed as described in Martin-Creuzburg et al. 

(2010). Briefly, loaded filters were deposited in 7 mL of a mixture of dichloromethane and methanol 

(2:1) and stored at -20°C. Total lipids were extracted three times (sonication for 30min) with 

dichloromethane:methanol (2:1). Pooled cell-free extracts were evaporated to dryness using nitrogen. 

The lipid extracts were transesterified with 4 mL of 3 N methanolic HCl (60°C, 15 min) and 100 µL of 

internal standard (20 µg mL
-1

 17:0 ME and 25 µg mL
-1

 23:0 ME) was added. After cooling down to 
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room temperature, the fatty acid methyl esters (FAME) were further extracted and analysed as 

described for the egg samples. The absolute amount of each FAME was normalized to the carbon 

content of the food suspensions. 

As expected, the fatty acid profiles of the food sources differed considerably (Figure 1, Table 1). N. 

limnetica was rich in C20:5n-3 (42.7%) and C20:4n-6 (4.4%). In contrast, no PUFA with more than 18 

carbon atoms were detected in S. obliquus. The major fatty acid identified in S. obliquus was 18:3n-3 

(59.5%). The lake seston contained significantly smaller quantities of all fatty acids, but low 

concentrations of LIN, ALA, ARA and EPA were detected. Docosahexaenoic acid was not present in 

any of the samples.  

 

Figure 1: Fatty acid composition of Scenedesmus obliquus (white bars), Nannochloropsis 

limnetica (hatched bars) and seston of lake ‘Langerode vijver’ (dark grey bars), expressed in 

µg mg
-1

 carbon. Given are means of three replicates; error bars indicate one standard error. 
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Table 1: Abundances of key fatty acids in Scenedesmus obliquus, Nannochloropsis limnetica 

and seston of lake ‘Langerode vijver’. The total concentration (µg mg
-1

 carbon) and the 

percentages of saturated fatty acids (SFA), mono unsaturated fatty acids (MUFA), 

polyunsaturated fatty acids (PUFA) and essential fatty acids are listed. Data are means of three 

replicates. 

Fatty acid N. limnetica S. obliquus Lake seston 

∑ FA 209.97 229.13 31.8 

SFA 19.82% 18.19% 46.65% 

MUFA 28.67% 11.48% 38.84% 

(n-3) PUFA 43.09% 63.06% 10.48% 

(n-6) PUFA 8.19% 7.27% 4.03% 

C18:2 n-6 3.48% 7.27% 2.76% 

C18:3 n-3 0.38% 59.51% 6.27% 

C20:4 n-6 4.40% nd 0.09% 

C20:5 n-3 42.71% nd 2.45% 

C22:6 n-3 nd nd nd 

 

2.4 Analysis of egg samples 

Egg samples were analysed using a combination of the methods described in Zhu et al. (2006) and 

Martin-Creuzburg et al. (2010). In a first step, lipid classes were separated. Total lipids were divided 

into several classes based on the charge of the head group. Sterols and glycerides have a less polar 

head group, while glycolipids, phospholipids and sphingolipids contain a more polar head group. In a 

second step, the composition of the liberated fatty acid chains was analysed.  

Freeze-dried egg samples were homogenized in 1 mL of isopropanol. The mixture was sonicated for 

30 min at 4°C. After centrifugation at 10.000 g for 10 min, the supernatant was collected in a glass 

tube and the residue was extracted again with 1 mL of CHCl3:MeOH (2:1) during sonification for 

another 30 min at 4°C. After centrifugation at 10.000 g for 10 min, both supernatants were combined, 

and 2 mL of CHCl3 and 1 mL of a 0.88% KCl solution were added. The mixture was thoroughly 

shaken and centrifuged at 4000 g for 15 min. The upper aqueous layer was aspired and 1 mL of 

MeOH:0.88% KCl (1:1) was added. After vortexing and centrifugation at 4000 g for 15 min, the upper 

phase was aspired together with the interphase. The lower phase was evaporated at 40°C under a 

stream of N2. The residue (lipid extracts) was dissolved in 2 mL of CHCl3:acetic acid (100:1) and 

applied to a silica gel column, wetted with CHCl3:acetic acid (100:1), to separate the different lipid 

classes. First, 5.53 mL of CHCl3 was applied to the column for eluting neutral lipids, such as sterols 

and glycerides (fraction 1). Secondly, 2.67 mL of acetone, followed by 2.67 mL of 
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acetone:MeOH:acetic acid (100:5:1) were applied to the column for eluting glycolipids and 

sphingolipids (fraction 2). Then 4 mL of a MeOH:CHCl3:H2O mixture (100:50:40) was applied to the 

column for eluting the phospholipids. To this fraction, 2.25 mL of CHCl3 and 3 mL of H2O were 

added. The mixture was vortexed and centrifuged at 4000 g for 2 min. The upper water phase was 

removed and the lower CHCl3 phase containing the phospholipids was used for further analysis 

(fraction 3). All fractions were evaporated under a N2 stream at 40°C (Zhu et al., 2006). 

For fatty acid analysis, the dried samples were resuspended in 4 mL of 3 N methanolic HCl (Sigma-

Aldrich) together with 100 µL of internal standard (20 µg mL
-1

 17:0 ME + 25 µg mL
-1

 23:0 ME) and 

subsequently incubated for 20 min at 60°C in a sealed vial to transesterify fatty acids into methyl 

esters. After cooling, FAME were extracted three times with 1.5-2 mL isohexane. The fraction of 

isohexane was evaporated to dryness under a N2 stream and the extraction procedure was repeated 

again with 100 µL isohexane. Afterwards, the isohexane was evaporated under a N2 stream at 45°C 

and the FAME were resuspended in a volume of 10 µL isohexane. FAME were analysed by gas 

chromatography (GC; Hewlett-Packard 6890™) equipped with a flame ionization detector (FID) and a 

DB-225 (J&W Scientific, 30 m × 0.25 mm inner diameter × 0.25 μm film) capillary column for 

FAME analysis. Details of GC configurations are given elsewhere (Martin-Creuzburg et al., 2010). 

FAME were identified by comparison of retention times with those of reference compounds (Sigma-

Aldrich). Fatty acids were quantified by comparison with internal standards and by using multipoint 

standard calibration curves determined for each FAME from mixtures of known composition (Sigma-

Aldrich). The absolute amount of each FAME was normalized to the egg dry mass and the egg number 

(Martin-Creuzburg et al., 2010). 

2.5 Data analysis 

Data were analysed using the statistical software CANOCO for windows for PCA and the packages 

car and phia in R (version 3.0.2) for two-way ANOVA, MANOVA and contrast analyses. To visualize 

the fatty acid distribution, ordination diagrams of principal component analysis (PCA) were made with 

the interaction factor between food source and egg type plotted as supplementary variable. Effects of 

the food sources (S. obliquus, N. limnetica, lake seston) and egg types (sexual and asexual eggs) on the 

concentrations of the individual fatty acids of the different lipid classes were tested using a 

multivariate analysis of variance (MANOVA). To test for the effect of egg type within the different 

food sources and for differences among the laboratory treatments and between these treatments and 

the natural conditions, contrast analyses were performed. Total amounts of fatty acids were compared 

between food sources and egg types using two-way analyses of variance (ANOVA); lipid classes were 

analysed separately. The statistical analyses were performed on both data sets, i.e. the dry mass related 

data set and the per egg related data set. 
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3 Results 

Overall, the fatty acid profile of both sexual and asexual eggs reflected the fatty acid profile of the 

food sources encountered by the mothers (Figure 2, see addendum). For example, C18:3n-3 (ALA) 

and C20:5n-3 (EPA), the principal PUFA in S. obliquus and N. limnetica, respectively (Table 1), were 

the principal PUFA in the eggs of mothers reared on these algae (Table 2).  

 

Figure 2: Ordination diagrams of the Principal component analyses (PCA) of the fatty acid 

composition (upper panel: fraction of neutral lipids; lower panel: fraction of phospholipids) of 

sexual and parthenogenetic (Parth) eggs of Daphnia magna fed Nannochloropsis limnetica 

(Nanno) or Scenedesmus obliquus (Scene), and of sexual and parthenogenetic eggs directly 

isolated from a natural pond (Lake). Concentrations of the different fatty acids (ng mg
-1

 dry 

weight) were the dependent variables, while type of food (Nannochloropsis limnetica, 

Scenedesmus obliquus, lake seston) and egg type (resting versus parthenogenetic) were the 

independent variable.  
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Table 2: Fatty acid composition of sexual and asexual eggs of Daphnia magna produced on 

Nannochloropsis limnetica or Scenedesmus obliquus, and of sexual and asexual eggs directly 

isolated from a natural lake. The total concentration (µg mg
-1

 dry mass) and the percentages of 

saturated fatty acids (SFA), mono unsaturated fatty acids (MUFA), polyunsaturated fatty acids 

(PUFA) and essential fatty acids of neutral lipid and phospholipid fractions are given. Data are 

means of four replicates. 

 
 Neutral lipid fraction 

 

Asexual eggs Sexual eggs 

  N. limnetica S. obliquus Lake seston N. limnetica S. obliquus Lake seston 

∑ FA 51.07 +/- 11.65 51.7 +/- 6.19 18.03 +/- 2.99 37.61 +/- 17.7 43.67 +/- 12.3 24.97 +/- 3.41 

SFA 4.18% 29.10% 13.38% 2.29% 2.29% 5.26% 

MUFA 35.32% 14.56% 29.01% 30.69% 30.69% 23.74% 

(n-3) PUFA 50.94% 47.15% 43.88% 52.52% 52.52% 55.61% 

(n-6) PUFA 9.56% 9.19% 13.73% 14.50% 14.50% 15.40% 

C18:2 n-6 4.34% 8.79% 7.27% 6.40% 11.62% 5.39% 

C18:3 n-3 0.95% 63.40% 17.99% 0.94% 52.22% 13.24% 

C20:4 n-6 4.63% 0.17% 5.44% 6.97% 0.69% 8.62% 

C20:5 n-3 48.98% nd 22.32% 50.76% 1.45% 38.43% 

C22:6 n-3 nd nd nd nd nd nd 

  

 
Phospholipid fraction 

 

Asexual eggs Sexual eggs 

  N. limnetica S. obliquus Lake seston N. limnetica S. obliquus Lake seston 

∑ FA 29.43 +/- 3.60 30.02 +/- 7.63 20.64 +/- 1.57 14.46 +/- 2.56 15.37 +/- 5.98 15.33 +/- 6.65 

SFA 21.05% 18.78% 23.60% 16.29% 22.26% 22.68% 

MUFA 30.62% 21.22% 29.49% 41.81% 29.87% 41.90% 

(n-3) PUFA 38.22% 46.82% 34.16% 30.68% 33.47% 26.24% 

(n-6) PUFA 10.11% 13.18% 12.75% 11.22% 14.39% 9.17% 

C18:2 n-6 3.66% 12.56% 5.22% 5.76% 12.10% 3.88% 

C18:3 n-3 6.12% 44.14% 8.72% nd 27.91% 6.29% 

C20:4 n-6 5.06% 0.21% 7.22% 5.45% 2.30% 5.30% 

C20:5 n-3 36.49% 0.21% 23.51% 30.68% 3.48% 18.01% 

C22:6 n-3 nd nd nd nd nd nd 

In none of the egg samples fatty acids were observed in fraction 2, which is supposed to contain the 

fatty acids derived from glycolipids and sphingolipids. For fatty acid concentrations in the other lipid 

classes distinct patterns were found (Figure 3). There is a significant interaction between food sources 

and egg type on fatty acid concentration for fatty acids derived from the neutral lipid fraction 

(fraction 1) and from the phospholipid fraction (fraction 3) (Table 3; the MANOVA on the amount of 

fatty acids per egg gave similar results, see Table 1, Appendix 1). The main effect of food type is also 

highly significant for both the neutral lipid and the phospholipid fraction. Egg type is highly 
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significant for phospholipids but marginally non-significant for neutral lipids (Table 3). Given the 

significant interaction effects, we also explored the impact of egg type for each food class separately 

through independent contrasts. Contrast analysis revealed a significant effect of egg type for each food 

condition (Table 4). Likewise, the fatty acid composition of the neutral and phospholipid fraction 

differed significantly among the eggs from the Nannochloropsis and Scenedesmus fed laboratory 

cultures and among the eggs obtained in the laboratory cultures and from the natural lake (Table 4).  

 

Figure 3: Fatty acid composition of sexual (grey bars) and asexual eggs (black bars) of 

Daphnia magna (ng mg
-1

 dry mass) produced on Nannochloropsis limnetica (A and B) and 

Scenedesmus obliquus (c and d), and of sexual and asexual eggs directly isolated from a natural 

pond (LRV) (E and F). The lipids were separated into a neutral lipid fraction (A, C, and E) and 

a phospholipid fraction (B, D, and F). Data are means of four replicates; error bars indicate one 

standard error. 
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Table 3: Results of MANOVA comparing the fatty acid composition of sexual and asexual D. 

magna eggs produced on Nannochloropsis limnetica and Scenedesmus obliquus, and of sexual 

and asexual eggs directly isolated from a natural lake. Concentrations of the different fatty 

acids (ng mg
-1

 dry weight) were the dependent variables and type of food (Nannochloropsis 

limnetica, Scenedesmus obliquus, lake seston) and type of egg (sexual vs. asexual eggs) were 

the independent variables. Data sets for neutral lipids and phospholipids were analysed 

separately. 

Neutral lipid fraction Phospholipid fraction 

Variables Df F value P value Variables Df F value P value 

Food 2 37.259 5.80E-10 Food 2 165.503 4.88E-15 

Egg type 1 3.142 0.069 Egg type 1 18.864 0.0004 

Food x egg type 2 6.177 0.0002 Food x egg type 2 16.271 2.95E-07 

 

Table 4: Results of contrast analyses following the MANOVA (Table 3) comparing the fatty 

acid composition of sexual and asexual D. magna eggs produced on Nannochloropsis limnetica 

and Scenedesmus obliquus, and of sexual and asexual eggs directly isolated from a natural lake. 

Upper part of the table contrasts both egg types for every food source; the lower part of the 

table contrasts the laboratory treatments with each other and both together against eggs isolated 

from the natural lake. Data on neutral lipid and phospholipid fractions were analysed 

separately. 

Neutral lipid fraction Phospholipid fraction 

Variables Df F value P value Variables Df F value P value 

Egg type under 

Scenedesmus 1 11.82 0.003 

Egg type under 

Scenedesmus 1 11.816 0.003 

Egg type under 

Nannochloropsis 1 3.855 0.041 

Egg type under 

Nannochloropsis 1 32.961 0.0004 

Egg type when isolated 

from lake 1 13.113 0.003 

Egg type when isolated 

from lake 1 7.284 0.007 

Nanno vs Scene 1 15.495 0.002 Nanno vs Scene 1 12.226 0.002 

Lake vs Lab 1 10.151 0.003 Lake vs Lab 1 20.971 0.0005 

 

The total concentration of lipids in the neutral fraction expressed per mg dry weight of the eggs is only 

influenced by food type, not by egg type (Table 5). Posthoc tests (Tukey’s HSD) revealed no 

significant difference between the two laboratory treatments (p = 0.1), but the eggs from the laboratory 

cultures had significantly higher concentrations of fatty acids of neutral lipids than eggs isolated from 

nature (p < p = 0.009). When the data are expressed as concentrations of fatty acids per egg, we also 

observed a significant difference in the concentration of fatty acids extracted from the neutral fraction 

(Table 3, Appendix 1). The concentration of fatty acids derived from phospholipids in the eggs was 
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not affected by the food conditions the mothers were exposed to, but did differ between the two types 

of egg both for the amount of per unit biomass (Table 5) and per egg (Table 3, Appendix 1). There 

was also a significant food x egg type interaction for the total amount of phospholipids per egg (Table 

3, Appendix 1). In the laboratory treatments, where high concentrations of dietary fatty acids were 

provided (Table 1), the total concentration of phospholipid-derived fatty acids was twice as high in the 

asexual eggs compared to the dormant eggs. The asexual eggs sampled from the lake contained 1.35 

times more phospholipid-derived fatty acids than the dormant eggs sampled from the sediment 

(Table 2). Sexual and asexual eggs did not only differ in their total concentration of phospholipids; we 

also observed higher concentrations of almost every fatty acid we measured in the asexual compared 

to the sexual eggs. There are only two exceptions, namely C20:4n-6 and C20:5n-3, which were 

detected in higher concentrations in the sexual eggs of mothers reared on a S. obliquus diet (Figure 3, 

Table 2). 

Table 5: Results of ANOVA comparing the total fatty acid concentrations of sexual and 

asexual D. magna eggs produced on Nannochloropsis limnetica and Scenedesmus obliquus, 

and of sexual and asexual eggs directly isolated from a natural lake. Concentrations of the total 

fatty acid contents (ng mg
-1

) were the dependent variables and type of food (Nannochloropsis 

limnetica, Scenedesmus obliquus, lake seston) and type of egg (sexual vs. asexual eggs) were 

the independent variables. Data sets for neutral lipids and phospholipids were analysed 

separately. 

Neutral lipid fraction Phospholipid fraction 

Variables Df F value P value Variables Df F value P value 

Food 2 8.395 0.003 Food 2 2.156 0.145 

Egg type 1 0.73 0.404 Egg type 1 33.792 1.66E-05 

Food x egg type 2 1.154 0.338 Food x egg type 2 2.529 0.108 

 

4 Discussion 

D. magna females take up considerable amounts of fatty acids from their food and accumulate them as 

triacylglycerols or phospholipids (Goulden and Place, 1990; Becker and Boersma, 2005). Less than 

2% of the accumulated fatty acids in daphnids have been reported to be synthesized de novo (Goulden 

and Place, 1990). Consequently, the fatty acid composition of somatic tissue (Von Elert, 2002; Brett et 

al., 2006; Martin-Creuzburg et al., 2010) and eggs (Abrusan et al., 2007; Schlotz et al., 2013) tend to 

strongly reflect that of their diet. This is confirmed by our data showing that in the laboratory 

treatments, in which the animals were cultured under standardized conditions and provided with high 

food concentrations, both kind of eggs contained fatty acids in relative abundances reflecting those of 
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the maternal food. This shows that food quality has important consequences for both energy storage 

(neutral lipids) and membrane composition (with phospholipids as their main component) in both 

sexual and asexual eggs.  

In addition, we found that the concentrations and composition of fatty acids in both neutral lipids and 

phospholipids differed between the two egg types. As the main energy storage molecule in Daphnia, 

triglycerides (representing neutral lipids) are vital for proper development and for survival under 

starvation (Tessier et al., 1983; Peters, 1987). Although we observed slight differences in the 

composition of the fatty acids of these neutral lipids per mg dry weight between asexual and sexual 

eggs, we did not find differences in the concentration of the total amount of neutral lipids between egg 

types. On a per egg basis, the total amount of neutral lipids was found to be lower in sexual than in 

asexual eggs, reflecting that sexual eggs (7.7 µg) were lighter than asexual eggs (9.4 µg). Pauwels et 

al. (2007) did not find differences in the amount of triglycerides per egg between sexual eggs collected 

from the sediment and asexual eggs of mothers reared on S. obliquus in the laboratory, but their result 

might have been influenced by the fact that the two egg types had a different history. Asexual eggs 

always contained more phospholipid-bound fatty acids than sexual eggs when they were produced 

under the same conditions. The higher concentrations of fatty acids (neutral and phospholipid fraction) 

we observed in asexual compared to sexual eggs is inconsistent with the results of Abrusan et al. 

(2007), who reported that the total fatty acid content in sexual eggs of D. pulicaria is much higher than 

in asexual eggs when produced on a S. obliquus diet.  

Asexual eggs facilitate fast population growth and are produced under favourable conditions, while 

sexual eggs are the vector for dispersal in time and space. As a result, in contrast to asexual eggs, 

sexual eggs often encounter stressful environments and must be able to survive for long periods 

(Hairston et al., 1995; De Meester et al., 2004). This is expected to be associated with a higher 

concentration of energy storage molecules and with a specific fatty acid composition of the 

membranes. The results of Pauwels et al. (2007) and Abrusan et al. (2007) reporting differences in 

biochemical composition between dormant and parthenogenetic eggs are consistent with these 

expectations, as are the results of Arbaciauskas and Lampert (2003), who showed that the offspring 

from dormant and parthenogenetic eggs differ in life history traits. In accordance with Abrusan et al. 

(2007), we found that D. magna maintain a certain concentration of long-chain PUFA in their sexual 

eggs even when they are not provided by the food. In both neutral lipids and phospholipids, we found 

ARA (C20:4 n-6) and EPA (C20:5 n-3) in higher concentrations in sexual eggs than in asexual eggs 

when they were produced on a S. obliquus diet, which lacks both ARA and EPA. It is already known 

that ARA and EPA, presumably in their capacity to serve as eicosanoid precursors (Stanley, 2006), are 

important for reproduction in Daphnia (Becker and Boersma, 2005; Wacker and Martin-Creuzburg, 

2007; Martin-Creuzburg et al., 2010). The higher allocation of ARA and EPA together with the 
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finding that EPA supplementation increases resting egg production (Abrusan et al., 2007), suggests 

that C20 PUFA are very important to produce viable resting eggs. It is well-established that these 

long-chain PUFA are important in maintaining the integrity of cell membranes. Crustacea are capable 

of adapting the fluidity of their membranes by changing the proportions of saturated and unsaturated 

fatty acids (Priutt, 1990). In addition, PUFA are crucial for acclimatization to cold temperatures (Hazel 

and Williams, 1990; Masclaux et al., 2009) and supplementation of a C20-PUFA deficient diet (S. 

obliquus) with ARA or EPA has been shown to increase population growth rates, in particular at 

colder temperatures, suggesting that PUFA requirements of Daphnia magna increase with decreasing 

temperature (Martin-Creuzburg et al., 2012). The above functions might play a crucial role in the 

survival of sexual eggs during harmful conditions and as asexual eggs do not need to cope with these 

stressors this might also explain the higher allocation of EPA and ARA towards sexual eggs.  

The amount and composition of fatty acids in the field differed considerably from that of laboratory 

grown algae, which contained high levels of key fatty acids, and these differences are reflected in the 

fatty acids retrieved from the eggs. For fatty acids derived from phospholipids, there were no 

significant differences between the concentrations in eggs collected from the pond and those produced 

in the laboratory. Total fatty acid concentration of the neutral fraction was lower in eggs collected 

from the pond than in eggs produced in the laboratory. In accordance with Tessier et al. (Tessier et al., 

1983), these results suggest that the allocation of neutral lipids, i.e. energy reserves, into the eggs 

increases with the dietary lipid availability. The differences may, however, in part also be due to other 

conditions that differed in the field compared to the laboratory. For example, temperature encountered 

by the mothers may have an influence on the fatty acid composition of somatic tissues (Sperfeld and 

Wacker, 2011; Martin-Creuzburg et al., 2012) and, as a consequence, potentially also on the allocation 

of fatty acids into the eggs. In addition, food conditions in the field may have differed during periods 

of dormant egg production and the active growth period. In a lake there are typically two peaks of 

dormant egg production during conditions of low food quantity (clear water phases) following a 

population peak, while asexual eggs may be produced during more favourable conditions (Sommer et 

al., 1986; Alekseev and Lampert, 2001). During these clear water phases the lake seston is dominated 

by PUFA-rich algae, mostly diatoms and cryptophytes (Alghren et al., 1992; Müller-Navarra et al., 

2004; Hartwich et al., 2012), and consequently there might be a higher dietary PUFA availability 

during the production of sexual eggs than during asexual reproduction.  

We conclude that both food quality and distinct allocation strategies influence the fatty acid 

composition of asexual and sexual eggs of Daphnia, with asexual eggs in general having higher 

concentrations of fatty acids than sexual eggs. The fatty acid composition of both asexual and sexual 

eggs largely reflected the fatty acid profile of the maternal food, but with an enrichment of specific 

long-chain PUFA, especially ARA and EPA, in the sexual eggs when the mothers were fed a diet 
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lacking long-chain PUFA. We propose that these PUFA, presumably together with other factors, such 

as heat shock proteins and glycerol (Pauwels et al., 2007), are involved in mediating the striking 

resistance of Daphnia dormant eggs to harsh environmental conditions, including exposure to cold 

temperatures. 
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Appendix 1 

Table 1: Results of MANOVA comparing the fatty acid composition of sexual and asexual D. 

magna eggs produced on Nannochloropsis limnetica and Scenedesmus obliquus, and of sexual 

and asexual eggs directly isolated from a natural lake. Concentrations of the different fatty 

acids (ng egg
-1

) were the dependent variables and type of food (Nannochloropsis limnetica, 

Scenedesmus obliquus, lake seston) and type of egg (sexual vs. asexual eggs) were the 

independent variables. Data sets for neutral lipids and phospholipids were analysed separately. 

Neutral lipid fraction Phospholipid fraction 

Variables Df F value P value Variables Df F value P value 

Food 2 32.784 1.55E-09 Food 2 89.769 6.13E-13 

Egg type 1 3.027 0.075 Egg type 1 25.478 0.0001 

Food x egg type 2 5.666 0.0004 Food x egg type 2 15.099 5.08E-07 

 

Table 2: Results of contrast analyses following the MANOVA (Table 1, Appendix 1) 

comparing the fatty acid composition of sexual and asexual D. magna eggs produced on 

Nannochloropsis limnetica and Scenedesmus obliquus, and of sexual and asexual eggs directly 

isolated from a natural lake. Upper part of the table contrasts both egg types for every food 

source; the lower part of the table contrasts the laboratory treatments with each other and both 

together against eggs isolated from the natural lake. Data on neutral lipid and phospholipid 

fractions were analysed separately. 

Neutral lipid fraction Phospholipid fraction 

Variables Df F value P value Variables Df F value P value 

Egg type under 

Scenedesmus 1 10.769 0.005 

Egg type under 

Scenedesmus 1 14.718 0.002 

Egg type under 

Nannochloropsis 1 3.814 0.042 

Egg type under 

Nannochloropsis 1 81.713 7.48E-06 

Egg type when isolated 

from lake 1 11.929 0.005 

Egg type when isolated 

from lake 1 7.040 0.008 

Nanno vs Scene 1 13.345 0.002 Nanno vs Scene 1 60.682 1.39E-05 

Lake vs Lab 1 10.139 0.003 Lake vs Lab 1 17.311 0.0005 

 

  



Chapter I  Fatty acids in D. magna eggs 

53 

 

Table 3: Results of ANOVA comparing the total fatty acid concentrations of sexual and 

asexual D. magna eggs produced on Nannochloropsis limnetica and Scenedesmus obliquus, 

and of sexual and asexual eggs directly isolated from a natural lake. Concentrations of the total 

fatty acid contents (ng egg
-1

) were the dependent variables and type of food (Nannochloropsis 

limnetica, Scenedesmus obliquus, lake seston) and type of egg (sexual vs. asexual eggs) were 

the independent variables. Data sets for neutral lipids and phospholipids were analysed 

separately. 

Neutral lipid fraction Phospholipid fraction 

Variables Df F value P value Variables Df F value P value 

Food 2 9.392 0.002 Food 2 2.474 0.112 

Egg type 1 4.843 0.041 Egg type 1 38.088 7.95E-06 

Food x egg type 2 3.6176 0.048 Food x egg type 2 5.897 0.011 
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Figure  1: Fatty acid composition of sexual (grey bars) and asexual eggs (black bars) of 

Daphnia magna (ng egg
-1

) produced on Nannochloropsis limnetica (A and B) and 

Scenedesmus obliquus (c and d), and of sexual and asexual eggs directly isolated from a natural 

pond (LRV) (E and F). The lipids were separated into a neutral lipid fraction (A, C, and E) and 

a phospholipid fraction (B, D, and F). Data are means of four replicates; error bars indicate one 

standard error. 
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Addendum 

 

Figure 1: Fatty acid composition of food organisms (white bars) expressed in ng mg
-1

 carbon 

and of asexual (black bars) and sexual eggs (grey bars) expressed in ng mg
-1

 egg dry mass, 

illustrating the similar pattern found in the maternal food and the produced eggs. Data are 

means of four replicates; error bars indicate one standard error. 
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Abstract  

Like many other aquatic organisms, the water flea Daphnia magna has to cope with fluctuating 

environmental conditions and challenges to colonize new habitats. The production of dormant eggs 

that are resistant to drying and freezing is important in helping them to overcome these problems. 

During favorable conditions, cyclic parthenogenetic Daphnia produce asexual eggs that develop 

immediately, whereas they switch to the production of sexual eggs when conditions start to 

deteriorate. These sexual eggs are dormant, can survive extreme environmental conditions and form a 

dormant egg bank where they can stay viable for decades. Resistance to drought and freezing requires 

special adaptations. Trehalose is an important compound for increasing desiccation tolerance in many 

anhydrobiotic organisms. We therefore compared sugar profiles of sexual and asexual eggs of D. 

magna. Trehalose accounts for 4.15% of the dry weight of sexual eggs, while asexual eggs only 

contain 0.006% trehalose, an almost 700 times difference. We tested whether we could increase the 

amount of trehalose in the asexual eggs by supplementation of the maternal food with trehalose 

containing liposomes. While supplementation lead to a tendency for higher levels of trehalose in the 

asexual eggs compared to control conditions, the difference was not significant and levels remained 

>200 times lower than those of sexual eggs. We also compared trehalose content in young and older 

dormant eggs and found no significant differences. Finally, we monitored concentrations of trehalose 

as the sexual egg develops, and found that the developing eggs start to metabolize trehalose at 18h of 

development.  
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1 Introduction 

As desiccation presents a serious stress for all organisms, some have developed a strategy to cope with 

it. Several species can tolerate extreme desiccation by interrupting their life cycle at a certain stage and 

temporally enter a so-called anhydrobiotic state. This state is defined as an extremely dehydrated 

ametabolic state in which organisms retain the ability to resume life after rehydration (Alpert, 2006). 

Among a variety of species, ranging from unicellular organisms (Potts, 1994) to plants (Pampurova 

and Van Dijck, 2014), invertebrates having this ability include rotifers, nematodes, insect larvae, 

tardigrades, chironomid larvae, statoblasts of freshwater bryozoans and a range of aquatic crustaceans 

(Clegg, 1965; Madin and Crowe, 1975; Womersley and Smith, 1981; Watanabe et al., 2002; 

Tunnacliffe and Lapinski, 2003; Kikawada et al., 2005; Hengherr et al., 2008; Hengherr and Schill, 

2011; Welnicz et al., 2011;). 

Tolerance of severe dehydration is often associated with the presence or accumulation of the non-

reducing disaccharide trehalose (Clegg, 2001), which is especially important for long term survival 

upon desiccation (Tapia and Koshland, 2014). In anhydrobiotic cysts of the crustacean Artemia 

franciscana, the nematode Aphelencus avenae and the chironomid larvae Polypedilum vanderplankii, 

the concentration of trehalose can reach levels as high as 15% of their dry weight (Clegg, 1965; 

Watanabe et al., 2002; Kikawada et al., 2005). Trehalose serves as an energy and carbon reserve, and 

during dehydration it is able to stabilize proteins in their native state, to preserve the integrity of 

membranes, and to protect from damage by oxygen radicals (Benaroudj et al. 2001; Elbein et al., 

2003; Crowe, 2007). There are many postulated mechanisms of action for trehalose, but these are not 

mutually exclusive (Crowe et al., 2001; Sakurai et al., 2008). The water replacement hypothesis states 

that trehalose forms hydrogen bonds with macromolecules, replacing the water molecules during 

dehydration thereby stabilizing proteins and membranes (Crowe et al., 1987).Trehalose can also lower 

the phase transition temperature of the membrane by interacting with the polar head groups of the 

phospholipids, as is shown for the anhydrobiotic cysts of Artemia (Hontoria et al., 1998). A second 

hypothesizes suggests that the sugar trehalose has the capacity to form a biological glass that protects 

all macromolecules within its matrix (Sun and Leopold, 1997). Glassy states have not exclusively been 

found when high concentrations of trehalose are present. Several species of tardigrades and Triops 

accumulate only low amounts of trehalose (<1% dry weight) and still undergo vitrification (the 

process of forming a glass) during dehydration (Hengherr et al., 2008; Hengherr et al., 2011). 

The invertebrate model organism Daphnia magna faces several challenges concerning desiccation. In 

their natural habitat they often encounter fluctuating environmental conditions and populations that 

inhabit temporary waters have to cope with a regular or occasional dry period. In addition, inland 

water bodies present a challenge with respect to the colonization of new habitats, as there are often no 

direct water connections between suitable habitats. Despite these challenges, many Daphnia species 
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are widely dispersed over a broad geographical range (Hebert, 1978) and are able to colonize even 

small isolated ponds. They cope with these problems of dispersal in time and space through their 

cyclic parthenogenetic reproduction cycle. Daphnia alternates the production of asexual eggs that 

develop immediately and sexual eggs that first go through a dormant stage (Brendonck and De 

Meester, 2003). These sexual eggs are encased in a protective envelope, the ephippium, and are 

deposited in the sediment where they form a dormant egg bank and can stay viable for decades (De 

Meester et al., 2004). After hatching, they reproduce asexually as long as the conditions are favorable, 

which allows for rapid population growth. By the end of the growing season, when the animals are 

exposed to deteriorating environmental conditions, Daphnia start again producing sexual, dormant 

eggs (De Meester et al., 2004; Hebert, 1978). Sexual eggs require special adaptations in order to be 

resistant to desiccation, extreme temperatures and digestion by animals during diapause and passive 

dispersal (Brendonck and De Meester, 2003; Radzikowski, 2013).  

The resistance to desiccation and freezing during diapause requires special adaptations. Pauwels et al. 

(2007) reported that the dormant eggs of Daphnia magna contain more glycerol and heat shock 

proteins than asexual eggs. They both play a role in the protection of cell metabolism under stress 

conditions and both have also been found in anhydrobiotic cysts of Artemia fransicana (Clegg, 1997) 

and certain insects (Denlinger, 2002). Another compound important for desiccation tolerance of 

anhydrobiotic organisms and dormant stages is trehalose. Hengherr et al. (2011) reported trehalose in 

the dormant eggs of D. magna, D. pulex and referred to its role in the dehydration tolerance of these 

eggs. In the present study, we compare sugar concentrations in sexual and asexual eggs of Daphnia 

magna that were cultured under standardized laboratory conditions. Second, we assess whether 

trehalose levels in asexual eggs can be increased by feeding the Daphnia trehalose-loaded liposomes. 

Third, we compare trehalose content of young and older dormant eggs isolated from nature to quantify 

whether trehalose levels decline with age. Finally, we determine how long trehalose concentrations in 

sexual eggs stay high in developing embryos and when they start to metabolize trehalose, by 

quantifying trehalose content in sexual eggs at pre-set times after the eggs start developing.  

2 Material and methods 

2.1 Cultivation of algae 

For all the experiments we used the green alga Scenedesmus obliquus, which is well-assimilated by 

Daphnia (Von Elert, 2002). Algae were cultivated in batch in aerated 10l vessels with illumination at 

170 µmoles m
-2

s
-1

 at 18°C and harvested in the late-exponential growth phase. The culturing medium 

consisted of 10 ml l
-1

 of enriched seawater nutrients (Provasoli, 1968), 5 ml l
-1

 of Walne nutrients 

(Walne, 1965) and the vitamins B1, B12 and H. Food suspensions were prepared by concentrating the 

cells via centrifugation (4000rpm, 5min) followed by resuspension in tap water. Cell densities of the 
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food suspensions were counted with an Attune® acoustic focusing cytometer (Life technologies, 

Carlsbad, CA, USA). To analyse the sugar composition of the algal food source, 3 replicate samples of 

50ml of a 1,000,000 cells ml
-1

 suspension of S. obliquus were freeze-dried and 1g dry weight was used 

for the analysis. 

2.2 Sugar profiles of sexual and asexual eggs 

To compare the biochemical composition between sexual and asexual eggs, we conducted an 

experiment in the laboratory to produce these eggs under experimental conditions that generate the 

same food quality. To obtain asexual eggs, per treatment five replicate 1L jars were set up for each of 

the 10 clones hatched from the sediment egg bank of ‘Langerode vijver’, a pond in Neerijse, Belgium 

(0°49’42.32”N, 4°38’21.49”O). In each jar, 15 individuals were cultured under standard conditions 

(20 ± 2°C and a photoperiod of 16L:8D). All cultures were fed with S. obliquus at an algal cell density 

of 150.000 cells ml
-1

. Jars were cleaned every two days and food was renewed daily to keep algal 

concentration above the incipient limiting level. Females bearing their third clutch were dissected to 

collect asexual eggs in the first stage of daphnid embryonic development (according to Kast-

Hutcheson et al. (2001)). From each of the five replicates, one sample of 100 eggs (10 eggs per clone) 

was collected and stored at -80°C.  

We also induced sexual reproduction using the same clones. For this we reared 20 individuals per 

clone under standard conditions (20 ± 2°C, a photoperiod of 16L:8D and an algal cell density of 

150.000 cells ml
-1

). After they had released their second clutch, the densities were raised to 40 animals 

(four per clone) in a one liter jar to induce crowding. The feeding level was raised to 250.000 cells 

ml
1
. This was done in five replicates. The photoperiod was switched between long-day (16L:8D) 

during five days and short-day (8L:16D) photoperiod during two days, as this stimulates sexual 

reproduction in Daphnia (De Meester and Jager, 1993). Once a week half the medium was renewed 

and all dormant eggs were collected. For every replicate, dormant eggs were stored in Eppendorf tubes 

in the dark at 4°C for at least one month. After storage, these laboratory-derived ephippia were 

decapsulated and five replicate samples consisting of 100 decapsulated sexual eggs each were 

collected for the sugar analysis and stored at -80°C. All samples were freeze-dried and the dry weight 

was determined. 

Samples were homogenized in 200 µl of ethanol 80%. After 15 min of incubation at room temperature 

they were centrifuged for 10 min at 14000 rpm. The supernatans was collected and vacuum-dried 

(AES2010, Savant). Afterwards the samples were resuspended in 200µl ultrapure Milli-Q water. To 

purify the sugars, the samples were added to a Dowex column (1:2 v/v 50WX8:1X8; Sigma-Aldrich). 

1.2 ml of ultrapure Milli-Q water was used as an eluent, of which 500 µl was transferred to a HPLC 

vial for the AS50 autosampler (Dionex). Samples were analysed using a Carbopac PA-100 column 
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(Dionex), ED50 electrochemical detector (Dionex) and eluted with 100 mM NaOH using a GS50 

gradient pump (Dionex). Trehalose and Glucose standards were determined in parallel to calculate the 

sugar concentrations in the samples. 

Using the package car of the statistical software R (version 3.0.2) the effects of egg type (sexual and 

asexual eggs) on the concentration of individual sugars was tested with a one-way analysis of variance 

(ANOVA).  

2.3  Sugar profile of asexual eggs after trehalose supplementation 

We compared sugar profiles of asexual eggs from mothers that were supplemented in different 

amounts with trehalose in their food. We used four different trehalose supplementation treatments that 

represent factorial combinations of liposomes containing different concentrations of trehalose (2.5 mg 

ml
-1

 (L1) and 5 mg ml
-1

 (L2)) and being provided at two different concentrations (densities of 0.25 µl 

ml
-1

 (low) and 0.5 µl ml
-1

 (high)). The fifth treatment was a control in which no trehalose containing 

liposomes were added. For each treatment, three replicates of each time ten Daphnia were reared 

individually in 200 ml jars (replicated 3 times) under the same conditions as described above for the 

asexual eggs. For each replicate one sample of 100 asexual eggs in the first stage of daphnid 

embryonic development (according to Kast-Hutcheson et al. (2001)) was collected. In total, 15 

samples (5 treatments x 3 replicates of 100 eggs) were freeze-dried and stored at -80°C. 

Algae were supplemented with trehalose containing liposomes, using a protocol described in Martin-

Creuzburg et al. (2009). The liposomes bilayer consisted of 1-palmitoyl-2-oleoyl-phosphatidylglycerol 

(POPG) and 1-palmitoyl-2-oleoyl-phosphatidylcholin (POPC; Sigma-Aldrich). Trehalose containing 

liposomes were prepared by adding 2.66 ml of trehalose stock solution to 6 mg POPG and 14 mg 

POPC dissolved in ethanol. Two different stock solutions were used containing trehalose 

concentrations of 2.5 mg ml
-1

 or 5 mg ml
-1

 ethanol. The resulting solutions were dried using a speed 

vac, dissolved in 12 ml buffer (20 mmol l
-1

 NaPi, 150 mmol l
-1

 NaCl, pH 7.0) and incubated on a 

rotary shaker (100 rpm) for 30 min. Subsequently, the liposome suspensions were sonicated in an 

ultrasonic bath. Excess free trehalose was removed by washing the liposomes in fresh buffer using an 

ultra-speed centrifuge (150 000 g, 90 min, 4°C). Afterwards the liposomes were resuspended in 20 ml 

of the liposome buffer. Prior to the addition of liposomes to the experimental beakers, the liposome 

stock suspensions were sonicated again (2 min). The liposome stock suspensions contained 

approximately 1X10
6
 liposomes ml

-1
 with a mean diameter of 6.6 µm. For the analysis of the sugar 

composition of these liposomes 3 replicate samples of 1 ml of the stock solution were used. 

Chemical analysis was carried out as explained above. 
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For data-analysis, we used the package car of the statistical software R (version 3.0.2) and carried out 

a two-way ANOVA to test for differences between the effects of the food treatments (n=4) and a one-

way ANOVA to test for the difference between the control conditions and the trehalose supplemented 

conditions on the concentration of individual sugars.  

2.4 Sugar concentrations of young and old sexual eggs during diapause and early 

development 

Several sediment cores, with a diameter of 15 cm and a maximum length of 20 cm, were taken from 

shallow lake ‘Langerodevijver’. The cores were cut into sediment slices of 1 cm and stored in the dark 

at 4°C until further processing. “Young” and “old” ephippia were collected from the upper (1-8 cm, 

hatching rate: 70 - 100%) and lower (11-18 cm, hatching rate: < 40%) layers of the cores, respectively. 

The cores were not dated but with an average sedimentation rate of 0.3 – 1 cm per year in this type of 

eutrophic shallow systems, the dormant eggs in the lower section (11-18 cm) of the core are expected 

to be older than 15 years and likely more than 20 years old (Decaestecker et al. 2004). The young and 

old dormant eggs were decapsulated and four biological replicates of 100 young/old eggs were 

collected. Excess water was removed from the samples before freezing in liquid nitrogen and storage 

at -80°C. During all steps of sample acquisition precautions were taken to preserve the dormant state 

of the eggs. The sediment was stored in the dark at 4°C and the ephippia were collected and 

decapsulated on ice and illuminated only by monochromatic red light (λ = 620–750 nm). 

Chemical analyses were performed using the same protocol as outlined above. 

Using the package car of the statistical software R (version 3.0.2) the effect of egg type (old and young 

sexual eggs) on the concentrations of individual sugars was tested with a one-way ANOVA.  

To study changes in trehalose content during dormancy termination and early development, 1600 

young dormant eggs from the upper (1-8 cm, hatching rate: 70 – 100%) layers of the sediment core 

were exposed to standard hatching stimuli (20 ± 1°C, high light intensity, long day photoperiod: 

16L/8D) (De Meester and Jager, 1993) for different periods of time (0, 2, 8 or 18 hours; a maximum 

exposure time of 18 hours was chosen because the eggs do not show morphological signs of 

differentiation until that time). The dormant eggs were decapsulated before exposure and the 

experiment was carried out in four biological replicates of 100 eggs per treatment. After exposure the 

eggs were collected, excess water was removed, the samples were frozen in liquid nitrogen and stored 

at -80°C. 

Chemical analyses were again performed as outlined above. 
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The effect of time of development of sexual eggs (0h-2h-8h-18h) on the individual sugar 

concentrations was tested with a one-way ANOVA using the package car of the statistical software R 

(version 3.0.2). Differences between specific development times were tested with Tukey HSD posthoc 

tests. 

3 Results 

3.1 Sugar profile of sexual and asexual eggs 

Both in the algae and egg samples, only two sugars were detected: glucose and trehalose. One gram of 

freeze-dried Scenedesmus obliquus contained 0.3 mmol trehalose and 1.69 mmol glucose. 

In our experiment, in which sexual and asexual eggs were produced by the same clones reared on the 

same food, there is no significant difference between the glucose concentrations of sexual and asexual 

eggs of D. magna (p = 0.1392). Sexual eggs, however, contain higher concentrations of trehalose than 

asexual eggs (analysis per mg dry weight, p = 4.882E
-07

; Figure 1). When the data are expressed as the 

amounts of sugars per egg, the differences are equally strong (pglucose = 0.7145, ptrehlaose = 1.836E
-07

; 

Figure 1). 

 

Figure 1: Sugar composition of sexual (black bars) and asexual eggs (grey bars) of Daphnia 

magna (Left panel: nmol mg
-1

 egg dry weight; right panel: nmol egg
-1

) produced on 

Scenedesmus obiquus. Data are means of five replicates; error bars indicate one standard error. 

* indicates significant differences within one sugar type (p < 0.05, ANOVA). 

3.2  Sugar profile of asexual eggs after trehalose supplementation 

The liposomes used in this experiment contained 0.043 mg ml
-1

 (L1) and 0.12 mg ml
-1

 (L2) trehalose. 

Supplementing the food given to the Daphnia with trehalose containing liposomes resulted in a 

* 

* 
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tendency for increased trehalose concentrations in the eggs (Figure 2). The difference is, however, not 

significant (p = 0.1475; also not for glucose: p = 0.1704). There are no significant differences in 

trehalose concentrations of the eggs among the four liposome treatments (plipo food conc = 0.9544, plipo type 

= 0.8290).   

 

Figure 2: Sugar composition of asexual eggs of Daphnia magna (nmol egg
-1

) produced on 

Scenedesmus obliquus (control) or on S. obliquus supplemented with liposomes containing 2.5 

mg ml
-1

 (L1) or 5 mg ml
-1

 (L2) trehalose. The liposomes were fed to the Daphnia at a low 

(0.25 µl ml
-1

) or high (0.5 µl ml
-1

) concentration. Data are means of three replicates; error bars 

indicate one standard error. There are no significant differences among the treatments (p < 

0.05, ANOVA). 

3.3 Sugars of young and old sexual eggs during diapause and early development 

We found no significant differences in sugar composition between old and young resting eggs (Figure 

3; pglucose = 0.1271, ptrehlaose = 0.7711).  

For glucose the time of development has no influence on the concentration (p = 0.7708), but the 

concentration of trehalose significantly decreases at 18h of development (Table 1, Figure 3). 
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Figure 3: Trehalose concentration in old (black bars) and young (white bars) sexual eggs of 

Daphnia magna (nmol egg
-1

) directly isolated from a natural pond. Hatched bars represent 

young eggs at different times of development. Data are means of five replicates; error bars 

indicate one standard error. * indicates significant differences within one sugar type (p < 0.05, 

ANOVA, followed by Tukey HSD posthoc test). 

Table 1: Results of one-way ANOVA of the effect of time of development (0-2-8-18h) on the 

trehalose concentration in sexual eggs of Daphnia magna followed by a Tukey HSD posthoc 

test. 

A) ANOVA 
    Variable Df F value P value 

 Time of development 3 10.882 0.001 
  

B) Tukey HSD Post hoc test 
   Time of development 0h 2h 8h 18h 

0h *** *** *** *** 

2h 1 *** *** *** 

8h 0.6875 0.68747 *** *** 

18h 0.00636 0.00618 0.00115 *** 

 

For this experiment we used sexual eggs directly derived from a natural pond, while in the previous 

experiment (section 3.1) we determined sugar composition of sexual eggs reared in the laboratory. To 

see if these environmental conditions have an influence on the sugar content of the eggs per unit mass 

we compared sugar concentrations of eggs from the laboratory and the field (Figure 4). We found that 

there is no difference in the trehalose concentration of eggs generated in the lab and those isolated 

* 
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from the natural dormant egg bank (p = 0.3438). These two categories of eggs do, however, differ in 

their glucose concentrations (p = 5.538E
-08

). 

  

Figure 4: Sugar composition of sexual eggs of Daphnia magna generated under standard 

laboratory conditions with Scenedesmus obiquus as food (black bars) and collected directly 

from a pond (grey bars) (nmol egg
-1

). Data are means of four replicates; error bars indicate one 

standard error. * indicates significant differences within one sugar type (p < 0.05, ANOVA). 

4 Discussion 

Sexual eggs are used as a vector for dispersal in time and space, so they often encounter stressful 

environments and must be able to survive for long periods of time (Hairston et al., 1995; Brendonck 

and De Meester, 2003). The results of earlier studies (Abrusan et al., 2007; Putman et al., 2015 

(Chapter 1)) reported differences in the fatty acid composition between dormant and parthenogenetic 

eggs that are consistent with the differences in tolerance to drought and freezing of these two types of 

eggs. D. magna maintain a certain concentration of polyunsaturated fatty acids (PUFA) in their sexual 

eggs even when these are produced on a PUFA deficient diet. Especially the concentrations of 

eicosapentaenoic acid and arachidonic acid are higher in sexual eggs than in asexual eggs. Long chain 

PUFA are known to be able to maintain the integrity and fluidity of cell membranes (Pruitt, 1990) and 

are crucial for acclimatization to cold temperatures (Hazel and Williams, 1990; Masclaux et al., 2009). 

Additionally, Pauwels et al. (2007) reported that sexual eggs contain more glycerol and heat shock 

proteins than asexual eggs. They both fulfil a protective role in the cell during stress conditions and are 

also found in cysts of Artemia fransicana (Clegg et al., 1997). In accordance with these findings, our 

results in addition show that there are also substantial differences in the sugar composition of sexual 

and asexual eggs of Daphnia magna. Sexual eggs contain almost 700 times more trehalose per mg dry 

weight then asexual eggs produced under the same laboratory conditions. This seems to be an adaptive 

strategy to increase biochemical components improving resistance of dormant eggs, as the 
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concentrations of trehalose in parthenogenetic eggs remained several hundred times lower than those 

of sexual eggs irrespective of the amount of trehalose supplied by the food. Also similar amounts of 

trehalose were allocated to sexual eggs in nature as under standardized good food quality laboratory 

conditions.  

The concentrations of trehalose we found in the resting eggs of Daphnia magna are slightly higher 

than those detected by Hengherr et al. (2011), but they are still low compared to anhydrobiotic cysts of 

Artemia franciscana, Aphelencus avenae and Polypedilum vanderplankii (Clegg, 1965; Watanabe et 

al., 2002; Kikawada et al., 2005). Also at relatively low concentrations, trehalose can play a valuable 

role in the ability of eggs or even adult organisms to survive desiccation. Comparable trehalose 

concentrations as the ones reported by us have also been found in anhydrobiotic organisms like 

monogonont rotifers and several tardigrade species (Caprioli, 2004; Hengherr et al., 2008) and in 

resting stages of Triops and freshwater Bryozoans (Hengerr et al., 2011; Hengherr and Schill, 2011). 

Low concentrations of this non-reducing disaccharide can still promote the formation of a glass, but it 

was shown by Hengherr et al. (2011) that for D. pulex there are no signs of a vitreous state during 

desiccation in resting eggs, so we can rule out the vitrification hypothesis (Hengerr et al., 2011; 

Hengherr and Schill, 2011). Yet there are some others ways in which trehalose can promote survival 

under drought and freezing conditions. Stabilization of membranes and proteins can be achieved by 

the formation of hydrogen bounds between the hydroxyl group of trehalose and the positively charged 

ends of proteins and phospholipids (Elbein, 2003). A synergism with other stress proteins, like Hsp 26 

and Hsp 104, can also help to protect cells under stressful conditions (Elliott et al., 1996; Crowe et al., 

2001; Viner and Clegg, 2001). Trehalose also has an important function as an energy storage molecule 

(Elbein et al., 2003). In accordance with the results for A. franciscana and C. mucedo the amount of 

trehalose declines during the early development of the resting stages, while during dormancy the level 

of trehalose remains constant, indicating that the developing organism uses trehalose as an early 

energy source (Clegg, 1965; Hengherr and Schill, 2011).  

We conclude that the dormant eggs of D. magna have a much higher concentration of trehalose than 

the subitaneously developing parthenogenetic eggs, in line with the higher resistance to drying and 

freezing of the former. These differences in concentrations are very pronounced (x700) and are not 

very sensitive to food supply (no differences among dormant eggs isolated from nature and produced 

in the laboratory, no significant effect of trehalose supplementation during culture on trehalose levels 

of parthenogenetic eggs). Soon after development is initiated, the sexual eggs also start to metabolize 

the trehalose. This evidence adds to the biochemical properties that make sexual eggs more resistant, 

and which include higher concentrations of specific polyunsaturated fatty acids (Abrusan et al., 2007; 

Putman et al, 2015 (Chapter 1)) and glycerol and heat shock proteins (Pauwels et al., 2007). 
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Addendum: plasticity of sugar content under different food conditions 

 

Figure 1: Sugar composition of algae Scenedesmus obliquus (open bars) and Nannochloropsis 

limnetica (hatched bars). Data are means of three replicates; error bars indicate one standard 

error. * indicates significant differences within one sugar type (p < 0.05, ANOVA). 

Table 1: Results of MANOVA (A) and ANOVA (B and C) of the differences in sugar 

composition between the algae Scenedesmus obliquus and Nannochloropsis limnetica used as 

food organisms to culture Daphnia magna. 

A) MANOVA 
   Variable Df Approx F P-value 

Food organisms 1 84.759 0.002293 

    B) ANOVA Trehalose 
  Variable Df F-value P-value 

Food organisms 1 9.2535 0.03833 

    B) ANOVA Glucose 
  Variable Df F-value P-value 

Food organisms 1 46.997 0.002375 
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Figure 2: Sugar composition of sexual (dark grey bars) and asexual eggs (light grey bars) of 

Daphnia magna produced on Scenedesmus obiquus (open bars) or Nannochloropsis limnetica 

(hatched bars). Data are means of five replicates; error bars indicate one standard error. 

Table 2: Results of MANOVA comparing the sugar composition of sexual and asexual eggs of 

D. magna (eggtype) produced on Scenedesmus obliquus or Nannochloropsis limnetica 

(foodtype). 

Variable Df Approx F P-value 

Foodtype 1 2.282 0.1364 

Eggtype 1 157.453 8.566*E-11 

Foodtype:Eggtype 1 1.414 0.2738 
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Abstract 

Like many other organisms, the water flea Daphnia is characterized by a cyclic parthenogenetic 

reproduction cycle, in which phases of asexual reproduction are alternated with phases of sexual 

reproduction. Asexual eggs are produced under favorable conditions, develop immediately and enable 

fast population growth. In contrast, sexual reproduction takes place when conditions deteriorate and 

results in dormant eggs that can stay viable for decades. To achieve this long term survival, sexual 

eggs are able to cope with various stressors, such as drought and frost. This resistance requires special 

adaptations in terms of biochemistry. Polyamines easily bind to negatively charged macromolecules, 

such as DNA, RNA, phospholipids and proteins, enabling them to fulfill important functions in the 

cell metabolism during early development and to stabilize these structures under stress conditions. 

Along with other protective molecules, such as glycerol, trehalose and heat shock proteins, polyamines 

can enable eggs to survive harmful conditions encountered by sexual eggs during dormancy. We 

therefor compared the polyamine content of sexual and asexual eggs of Daphnia magna and checked 

for plasticity of this treat under different food conditions. Although the concentrations change with the 

food regimes, asexual eggs always contained higher amounts of diaminopropane and lower amounts of 

putrescine and spermidine per unit biomass in comparison with sexual eggs. Due to this high 

concentration of diaminopropane, one asexual egg contains a higher amount of polyamines compared 

to one sexual egg, however when data are expressed per mg dry weight there is nog difference in total 

polyamine concentration between the two egg types. 
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1 Introduction 

Many organisms exhibit a facultative sexual life cycle, allowing them to combine the advantages of 

sexual and asexual reproduction (Schön et al., 2009). A well-documented, broadly studied facultative 

sexual species is the cladoceran Daphnia magna (De Meester et al., 2004; Miner et al., 2012). D. 

magna is a cyclic parthenogen that reproduces parthenogenetically during favourable conditions. 

Sexual eggs are produced when conditions deteriorate by the end of the growing season. The resulting 

fertilized eggs are encapsulated in a protective envelope, the ephippium, and are deposited in the 

sediment where they form a dormant egg bank. Generally, resting eggs are resistant to a multitude of 

stressors, such as desiccation, extreme temperatures and digestions by animals (Madin and Crowe et 

al., 1975; Clegg, 2005; Hengherr and Schill, 2011; Radzikowksi, 2013). This striking resistance allows 

them to survive harmful environmental conditions and disperse in space and time (Brendonck and De 

Meester, 2003). It has been shown that offspring from dormant eggs and subitaneous eggs have 

different life history strategies (Arbaciauskas, 1998; Càceres, 1998; Arbaciauskas and Lampert, 2003). 

These differences in both resistance to drought and freezing and in life history traits of hatchlings are 

likely to be a reflection of a distinct biochemical content of the eggs. 

The striking resistance of dormant eggs to drought and freezing requires specific morphological and 

physiological adaptations, which may require different resource allocation strategies by the mother. 

For example, the disaccharide trehalose is an important factor in cold and drought tolerance of many 

anhydrobiotic organisms (Clegg,1965; 2001; Hengherr et al., 2011) and in previous work we have 

shown that trehalose content is much higher in sexual eggs compared to asexual eggs of Daphnia 

magna (Putman et al., subm. (Chapter 2)). Trehalose has a wide variety of functions, ranging from 

energy and carbon reserve to stabilizing proteins in their native state and preserving the integrity of 

membranes (Crowe et al. 2001; Elbein et al., 2003; Crowe, 2007). Two other biochemical components 

that have been found to play an important role in the protection of cell metabolism under stress 

conditions in anhydrobiotic cysts of Artemia franciscana (Clegg et al., 1997) and certain insects 

(Denlinger, 2002; Lencioni, 2004; Steinberg et al, 2012) are glycerol and heat shock proteins. In line 

with the expectations, Pauwels et al. (2007) reported that sexual, dormant eggs of Daphnia magna 

contain higher levels of glycerol and heat shock proteins than asexual, subitaneous eggs. The integrity 

and fluidity of the cell membrane is considered to be another crucial factor in cold and drought 

tolerance. Cell membranes are mainly composed of phospholipids, and the fluidity of the membrane is 

thus strongly dependent on the composition of the phospholipids and, more particularly, on the 

polyunsaturated fatty acids forming the phospholipid hydrophobic tails (Hazel and Williams, 1990; 

Pruitt, 1990; Masclaux et al., 2009). It has been reported that the fatty acid content differs between 

sexual and asexual eggs of Daphnia (Abrusan et al., 2007). Although asexual eggs contain a higher 

amount of phospholipids compared to sexual eggs, sexual eggs seem to require a certain minimum 
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amount of polyunsaturated fatty acids. Indeed, sexual eggs contain higher concentrations of long chain 

polyunsaturated fatty acids than asexual eggs, even under conditions where the diet lacked these 

polyunsaturated fatty acids (Abrusan et al., 2007; Putman et al., 2015 (Chapter 1)).  

In plants, polyamine metabolism is also strongly involved in the resistance to abiotic stress, such as 

osmotic stress, pollutants, drought stress and cold acclimatisation (Kushad and Yelensky, 1987; Seki 

et al., 2007; Groppa and Benavides, 2008; Alcàzar et al., 2011). For instance, an increase of the 

putriscine level is correlated with higher survival of banana meristems after cryopreservation, and thus 

exposure to extreme freezing temperatures (Ramon et al., 2002).Polyamines are small polycations that 

are ubiquitously present in living cells (Pegg and McCann, 1982). The most common polyamines are 

putrescine (PUT), spermidine (SPD) and spermine (SPM). Among invertebrates (including the 

crustaceans) additional widely distributed polyamines have been described, including nor-spermidine 

(NSPD), nor-spermine (NSPM) and diaminopropane (DAP) (Stillway and Walle, 1977; Zappia et al., 

1978; Hamana et al., 1991a; Hamana et al., 1991b). Polyamines easily interact with negatively 

charged cell structures and polymers such as DNA, RNA, phospholipids and proteins. In this way, 

polyamines aid to preserve the physiological integrity of these macromolecules under stress 

conditions. In addition, polyamines are involved in numerous crucial cellular functions such as cell 

division, cell growth, apoptosis, ion transport and protein synthesis (Pegg and McCann, 1982; Tabor 

and Tabor, 1984; Schuber, 1989; Igarashi and Kashiwagi, 2010). It has also been shown that 

polyamines are important for embryonic growth and differentiation in some arthropods (Callaerts et 

al., 1992; Watts et al., 1994).  

Despite the widely documented positive influence of polyamines on stress resistance in plants, studies 

on animal taxa are rather scarce and for invertebrates limited to reports of changes in polyamine 

concentrations and their cellular functions during development and differentiation. In this study, we 

compare the polyamine content of sexual and asexual eggs of the water flea Daphnia magna. We 

expect that the highly resistant sexual egg contains higher concentrations of polyamines than the much 

less resistant asexual egg. Polyamines in dormant eggs might contribute to the maintenance of the 

integrity of cellular macromolecules and cellular structures. We also explore the plasticity in 

polyamine concentrations in both egg types when cultured under different food conditions, as it is 

known that the biochemical composition of Daphnia eggs is highly plastic, and it is expected that 

maternal resource allocation strategies and their plasticity might differ between the different egg types 

(Gliwicz and Guisande, 1992; Stibor, 2002; Wacker and Martin-Creuzburg, 2007; Putman et al., 2015 

(Chapter 1)). 
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2 Material and methods 

2.1 Cultivation and preparation of the food 

For our experiments, we used the green alga Scenedesmus obliquus (SO) and the eustigmatophyte 

Nannochloropsis limnetica (NL) as food sources. These are both well-assimilated by Daphnia, but 

they differ qualitatively, amongst others in terms of long-chain polyunsaturated fatty acids (SO: Von 

Elert, 2002; NL: Martin-Creuzburg et al., 2009; Putman et al., 2015 (Chapter 1)). 

Algae were cultivated in batch in aerated 10 liter vessels with constant illumination at 168.33 µmoles 

m
-2

s
-1

 at 18°C and harvested in the late-exponential growth phase. S. obliquus (SAG 276-3a) was 

grown in a medium consisting of 10 ml l
-1

 of enriched seawater (ES) nutrients (Provasoli, 1968), 5 ml 

l
-1

 of Walne nutrients (Walne, 1965) and the vitamins B1, B12 and H dissolved in dechlorinated tap 

water. N. limnetica (SAG 18.99) was grown in modified Woods Hole (WC) medium with the vitamins 

B1, B12 and H (Guillard, 1975). Food suspensions were prepared by concentrating the cells via 

centrifugation (4000 rpm, 5 min) followed by resuspension in tap water. Cell densities of the food 

suspensions were counted with an Attune® acoustic focusing cytometer (Life technologies, Carlsbad, 

CA, USA).  

To analyze the polyamine composition of the algal food source, 3 replicate samples of 50ml S. 

obliquus and N. limnetica were freeze-dried and 1g dry weight of each were used for the analysis. 

2.2 Egg collection 

To compare the polyamine content of both types of eggs, we conducted a laboratory experiment to 

generate sexual and asexual eggs from females cultured under the same conditions only differing in 

their food source. We hatched 10 individuals from dormant eggs extracted from the dormant egg bank 

of the D. magna population in ‘Langerode vijver’, a pond in Neerijse, Belgium (0°49’42.32”N, 

4°38’21.49”E). These animals were hatched by exposing the dormant eggs to hatching stimuli, i.e. a 

relatively high temperature (20°C), a long-day photoperiod (16L:8D) and fresh medium (tap water 

dechlorinated and aged for 24h) (De Meester and Jager, 1993). As these individuals hatched from 

sexual eggs, they constitute 10 different genotypes, i.e. 10 different clonal lineages. Hatched lineages 

were reared separately in 0.5 liter jars (density: 20 individuals of a single clonal lineage per liter) filled 

with aged tap water (aerated for 24h prior to use) under standardized conditions (20 ± 2 °C and a 

photoperiod of 16L:8D) for several generations. All cultures were fed 150.000 cells ml
-1

 of the green 

alga Scenedesmus obliquus, which corresponds to approximately 2.5 mg C l
-1

. After this 

preconditioning phase, the second clutch of a new generation was subjected to the different 

experimental conditions. 
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To obtain asexual eggs, five replicate 1 liter jars per clone (with 10 clones in total), with 15 individuals 

of a single clone in each jar, were cultured under standard conditions (20 ± 2 °C and a photoperiod of 

16L:8D) under two different food treatments. Cultures were either fed with S. obliquus or with N. 

limnetica, both at an algal cell density of 150.000 cells ml
-1

. In both food treatments, jars were cleaned 

every two days and food was renewed daily to keep algal concentration above the incipient limiting 

level, the critical concentration which corresponds to the minimal food concentration above which 

feeding rates stay constant. Females bearing their third clutch were dissected to collect asexual eggs in 

the first stage of embryonic development (identified following Kast-Hutcheson et al., 2001). From 

each replicate, one sample of 150 eggs (i.e. 15 eggs per clone) was collected and stored at -80°C. In 

total, ten samples (five replicates x two food treatments) were collected. 

We induced sexual reproduction using the same clones and food treatments as described above. 

Cultures were started by inoculating 20 neonates of a given clone under standard conditions (20 ± 2 

°C, a photoperiod of 16L:8D and an algal cell density of 150.000 cells ml
-1

). After the clones released 

second clutch, four individuals of each clone were put together in a 1 liter jar (replicated 5 times) and 

feeding level was raised to 250.000 cells ml
-1

 replenished every day. The photoperiod was switched 

between long-day (16L:8D) photoperiod during five days and short-day (8L:16D) photoperiod during 

two days, as this has been shown to stimulate sexual reproduction in Daphnia (De Meester and Jager, 

1993). Once a week half the medium was renewed and all dormant eggs were collected. No hatching 

of dormant eggs occurred in these cultures, as a period of cold or drought is needed to break diapause 

of the dormant eggs. For every replicate, dormant eggs were stored in Eppendorf tubes in the dark at 

4°C for at least one month. After storage, these laboratory-derived ephippia were decapsulated (i.e. the 

protective envelope was removed) and five replicate samples consisting of 150 sexual eggs were 

collected for the polyamine analysis for each treatment. The ten samples were stored at -80°C. 

In total, twenty samples (i.e. sexual or asexual eggs x S. obliquus or N. limnetica x five replicates per 

treatment) were freeze-dried and weighted (dry mass) before polyamine analysis.  

2.3 Polyamine analysis 

For the analysis of the polyamines we modified the protocol described by Walter and Geuns (1987). 

All freeze-dried samples (20 egg samples and 6 algae samples) were first homogenized in 250 µl 4% 

perchloric acid containing 2 mg l
-1

 1.7-diaminoheptane-2-HCl as an internal standard. After vortexing, 

samples were incubated at 4°C for one hour to extract the polyamines, after which the samples were 

centrifuged for 1 min at 13000 rpm and 50 µl of supernatant was collected. One hundred microliter 

0.4M borate:NaOH buffer (pH 11) and 100 µl dansyl chloride solution (7 mg ml
-1

 acetone) were 

added. The solution was vortexed and heated to 60°C for 15 min in the dark. Then 0.6 ml toluene was 

added and the mixture was vortexed and centrifuged. The upper phase was transferred to a new tube 
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and 0.6 ml hexane was added. For purification of the polyamines, the samples were applied to a silica 

column that contained 250 mg silica gel 60 (Sigma-Aldrich). Before the samples were added, the 

columns were first rinsed with 250 µl toluene followed by 250 µl toluene/triethylamine (10:3 v/v). The 

samples were eluted with two times 0.3 ml ethylacetate. The eluent was evaporated in a vacuum 

centrifuge and the residue was dissolved in 250 µl methanol, of which 10 µl was injected in the HPLC. 

The high-perfomance liquid chromatographer (Shimadzu, Kyoto, Japan) was equipped with a 

fluorescence detector (RF-10A XL, exc.: 340mm, em.: 510 mm) and a column of 10 cm x 3 mm inner 

diameter containing 5 µm octadecyl-silica. The solvent and the column were heated to 50°C and the 

solvent flowed at a speed of 1.5 ml min
-1

. The total analysis time per sample was 10 min, of which 

during the first two minutes the solvent consisted of 58% acetonitrile; from min 2 to 7.5 min this 

increased gradually from 58% to 91% followed by rinsing with 58% acetonitrile from 7.6 min to 10 

min.  

2.4 Data analysis 

The absolute amount of each polyamine was normalized to the egg dry mass and egg number. Using 

the packages car and multcomp of the statistical software R version 3.0.2 (The R Foundation for 

Statistical Computing) the effects of the food source (S. obliquus and N. limnetica) and egg type 

(sexual and asexual eggs) on the concentrations of polyamines in eggs and algae were tested separately 

with a multivariate analysis of variance (MANOVA). For each polyamine, we also performed a 

separate analysis of variance (ANOVA) with the same variables. 

3 Results 

S. obliquus and N. limnetica differ qualitatively in their polyamine content (p <0.001): S. obliquus 

contains much more putriscine (p <0.001), while N. limnetica contains more spermidine (p <0.001) 

(Figure 1). While in the algae we only detected the polyamines putriscine and spermidine, analyses of 

the egg samples also revealed diaminopropane at relatively high concentrations, spermidine was only 

detected at low concentrations in egg samples (Figure 2).  
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Figure 1: Polyamine content of Scenedesmus obliquus (open bars) and Nannochloropsis 

limnetica (hatched bars) expressed in nmol mg
-1

 dry weight. Bars represent the mean of three 

replicate samples; error bars indicate one standard error. PUT = Putrescine; SPD= spermidine 

 

Figure 2: Polyamine content of sexual (light gray bars) and asexual eggs (dark gray bars) of D. 

magna that were cultured on S. obliquus (open bars) and N. limnetica (hatched bars). Data are 

expressed in nmol mg
-1

 dry weight in panel A and in pmol egg
-1

 in panel B. Bars represent 

means of five replicate samples; error bars indicate one standard error. DAP = 

Diaminoporpane; PUT = Putrescine; SPD = spermidine 

The complete polyamine composition per mg egg (measured as dry weight) shows a significant food x 

egg type interaction (p=0.0006). Separate analysis on the individual polyamines revealed that this 
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interaction is only significant for DAP (p=0.003). Levels of DAP in sexual eggs are higher when eggs 

were produced on a diet of S. obliquus compared to a diet of N. limnetica, while the opposite pattern is 

observed for asexual eggs. When we analyze the polyamine composition expressed as polyamines per 

egg, the food x egg type interaction is not significant (Table 1).  

Table 1: Results of MANOVA (for all polyamines) and ANOVA (for separate polyamines) 

comparing the polyamine content of sexual and asexual eggs (factor ‘egg type’) of D. magna 

when cultured on different diets (N. limnetica vs. S. obliquus) (factor ‘food’). Concentrations 

of the different polyamines were the dependent variables and type of food and egg type (sexual 

vs. asexual eggs) were the independent variables. 

Polyamines per mg egg dry weight Polyamines per egg 

Variables Df F value P value Variables Df F value P value 

All polyamines All polyamines 

Food 1 4.21 0.03 Food 1 32.53 1.45E-06 

Egg type 1 755.77 1.03E-15 Egg type 1 763.17 9.60E-16 

Food x egg type 1 10.99 0.0006 Food x egg type 1 2.44 0.11 

DAP DAP 

Food 1 1.77 0.20 Food 1 24.74 0.0001 

Egg type 1 160.18 9.48E-10 Egg type 1 363.78 1.99E-12 

Food x egg type 1 11.97 0.003 Food x egg type 1 0.27 0.61 

PUT PUT 

Food 1 8.09 0.01 Food 1 68.89 3.43E-07 

Egg type 1 130.42 4.20E-09 Egg type 1 1.19 0.29 

Food x egg type 1 0.71 0.41 Food x egg type 1 0.22 0.64 

SPD SPD 

Food 1 0.43 0.52 Food 1 7.78 0.01 

Egg type 1 281.40 1.41E-11 Egg type 1 152.79 1.34E-09 

Food x egg type 1 1.66 0.22 Food x egg type 1 2.91 0.11 

 

There is a highly significant effect of egg type for all polyamines together and for each of the three 

polyamines separately on their concentrations per mg dry weight. For diaminopropane, the 

concentrations per mg dry weight in asexual eggs is higher than in sexual eggs, while putriscine and 

spermidine occur in higher concentrations per mg dry weight in the sexual than in the asexual eggs 

(Table 1, Figure 2a). Polyamine content of the food source only influenced the content of putriscine 

when measured per mg egg dry weight. In contrast, when we analyze the concentrations per egg, egg 

type is highly significant for DAP and SPD but not for PUT, while the effect of food type is highly 

significant for all three polyamines (Figure 2b). This difference in PUT level can simply be explained 

by the fact that sexual eggs (6.4 µg) are lighter than asexual eggs (8.8 µg). 
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The different proportions of PUT in sexual and asexual eggs, due to their weight discrepancies, also 

influence the effect of the egg type on the total concentration of polyamines per egg (Table 2). When 

data are expressed per mg there is no significant difference between the egg types (p = 0.15278), while 

there is a significant difference when data are expressed per egg (p = 3.055*E
-09

). One asexual egg 

contains more polyamines than one sexual eggs, mostly due to a higher level of DAP (Figure 2). 

Additionally, eggs produced under a diet of S. obliquus contain more polyamines per egg than eggs 

produces under a N. limnetica diet (p = 1.057*E
-05

). For the data expressed per mg dry weight we 

found that asexual eggs contained more polyamines than sexual eggs when produced under a maternal 

diet of N. limnetica, the opposite was found when both egg types where mothers were fed S. obliquus 

(p = 0.02362).  

Table 2: Results of ANOVA comparing the total polyamine concentration of sexual and 

asexual eggs (factor ‘egg type’) of D. magna when cultured on different diets (N. limnetica vs. 

S. obliquus) (factor ‘food’). Concentrations of the different polyamines were the dependent 

variables and type of food and egg type (sexual vs. asexual eggs) were the independent 

variables. 

Polyamines per mg egg dry weight Polyamines per egg 

Variables Df F value P value Variables Df F value P value 

Total concentration Total concentration 

Food 1 4.1993 0.05721 Food 1 39.6905 1.06E-05 

Egg type 1 2.2536 0.15278 Egg type 1 136.332 3.06E-09 

Food x egg type 1 6.2552 0.02362 Food x egg type 1 0.0808 0.7799 

 

4 Discussion 

Sexual and asexual eggs of the water flea Daphnia magna have very different ecological functions. 

Sexual eggs need to be resistant to various stressors, as they mainly function as a vector for dispersal 

in space and time. In contrast, asexual eggs do not need the biochemically costly resistance as they 

develop immediately in the favorable environment provided by the maternal brood pouch. To acquire 

enhanced resistance, sexual eggs contain multiple stress protectant molecules, including higher 

concentrations of trehalose, glycerol, heat shock proteins and polyunsaturated fatty acids than asexual 

eggs (Abrusan et al., 2007; Pauwels et al., 2007; Putman et al., 2015 (Chapter 1); Putman et al., subm. 

(Chapter 2)). Here we add that sexual eggs also differ from asexual eggs by having a higher 

concentration standardized by mg dry weight) of putriscine and spermidine but a lower concentration 

of diaminopropane. 
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The polyamines spermidine and its precursor putriscine are among the most abundant polyamines in 

eukaryotic cells and exert many essential functions in the cellular metabolism and stress protection 

(Pegg and McCann, 1982; Tabor and Tabor, 1984; Groppa and Benavides, 2008; Alcàzar et al., 2011). 

Increased levels of polyamines contribute to the survival of plants under conditions of drought and low 

or freezing temperatures (Kushad and Yelenosky, 1987; Ramon et al., 2002; Seki et al., 2007; Cuevas 

et al., 2008). In accordance with these previous studies, we hypothesized that the polyamine content of 

sexual eggs would be higher than polyamine content of asexual eggs and we found that levels of 

spermidine and putriscine were higher per mg dry weight in sexual eggs as compared to asexual eggs. 

It is well established that they fulfill their role during cell growth and proliferation by interacting with 

and stabilizing negatively charged macromolecules. However, their functions during stress responses 

remain open for debate. One of the hypotheses is that their binding properties to membranes enable 

them to maintain their fluidity and prevent them from leakage (Smith, 1985; Zheliaskova et al., 2000). 

Another hypothesis is that they have an antioxidant effect, combining their ability to act as a radical 

scavenger and to inhibit lipid peroxidation (Kitada et al., 1979; Bors et al., 1989; Ha et al., 1998). 

It has been shown that, also for arthropods, polyamines are important cellular components during early 

differentiation and embryonic growth (Callaerts et al., 1992; Pegg and McCann, 1982; Tabor and 

Tabor, 1984; Watts et al., 1994). Hatchlings from sexual eggs have a higher juvenile growth rate, have 

a larger body size at maturity and mature earlier compared to asexually produced juveniles 

(Arbaciauskas, 1998; Arbaciauskas and Lampert, 2003). This is likely achieved by a higher metabolic 

rate of sexual as compared to asexual offspring, and so this may be an alternative reason for the higher 

levels of putrescine and spermidine in sexual compared to asexual eggs. 

In contrast with putrescine and spermidine, diaminopropane concentrations are higher in asexual than 

in sexual eggs. Diaminopropane is a metabolite produced during the oxidation of the polyamines 

spermidine and spermine (Stillway and Walle, 1977; Smith, 1989). Probably, their high concentrations 

in asexual eggs reflect high metabolic activity associated with the start of development. This is in 

accordance with the results found in seeds of Cucumus savitis, where it was shown that catabolism of 

spermidine can account for a raise in the amount of diaminopropane during early developmental stages 

(Flayeh et al., 1984). Besides a catabolite of spermidine, diaminopropane is also a precursor for β-

alanine, nor-spermidine and nor-spermine, which play an important role in the stress tolerance of 

plants (Cona et al., 2006; Hamana et al., 1984). Nor-spermidine and nor-spermine have been shown to 

be common polyamines in Crustacea and other invertebrates (Hamana et al., 1989; Haman et al., 1991; 

Zappia et al., 1978). We did, however, not detect these polyamines in our samples. 

Maternal food conditions affected the polyamine content of the eggs. Although the differences are 

small, the higher putrescine content of S. obliquus compared to N. limnetica is reflected in the egg 

samples (when data are expressed per mg dry weight). This is consistent with earlier studies reporting 
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that the biochemical composition of the maternal diet is of great influence for the biochemical 

composition of the eggs (Wacker and Martin-Creuzburg, 2007; Schlotz et al., 2013; Putman et al., 

2015 (Chapter 1)). The allocation levels per egg for all three polyamines are higher when the mothers 

were cultured with S. obliquus as their food source. Even though S. obliquus contains an overload of 

putriscine (up to eight times more) and less spermidine as compared to N. limnetica, all clones 

invested higher levels of putriscine and spermidine in sexual eggs regardless of the polyamine content 

of their food source, so our data clearly indicate the importance of polyamines for sexual eggs.  

Allocation of polyamines to eggs of D. magna is mostly dependent on the type of egg (dormant versus 

subitaneous) and only minor on the maternal diet. In general, the sexual, stress resistant dormant eggs 

contain higher concentrations of polyamines than asexual eggs, except for the metabolite 

diaminopropane. Our results strongly suggest that polyamines, in addition to glycerol, heat shock 

proteins, trehalose and fatty acids, form another important piece in the puzzle of understanding the 

establishment of the striking resistance of sexual eggs to harsh environmental conditions, such as 

drought or cold temperatures. 
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Abstract 

The life cycle of the water flea Daphnia magna is characterized by an alternation of sexual and 

asexual reproduction. This mode of reproduction is an adaptation to the fluctuating environments in 

the water bodies these animals inhabit. Most Daphnia populations produce dormant eggs prior to the 

onset of winter in temperate zones and hatch from the dormant egg bank at the onset of the next 

growing season. Yet, in permanent habitats this strategy is most often accompanied by individuals that 

try to overwinter as parthenogenetic females. If successful, these genotypes have a head start and can 

increase their fitness substantially. We here tested whether these animals are a random subset of the 

population by comparing the life histories of their offspring with those of clones originating from the 

dormant egg bank at different temperatures (12-18-24 °C). Moreover, as overwintering females have 

been selected to cope with cold temperatures, we compared lipid composition of the parthenogenetic 

eggs of both types of genotypes produced under the same conditions as in the life history experiment. 

Our results show that there is no difference between the performance of actively overwintering clones 

and passively overwintering clones after two generations. However, when clones are cultured at 12°C 

for multiple generations, age at maturity and clutch release of actively overwintering clones is lower 

than that of passively overwintering clones. Although temperature did have a strong influence on the 

fatty acid composition, there were no differences in fatty acid composition between the two 

overwintering strategies. 
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1 Introduction 

Daphnia are keystone species in a wide geographical distribution of aquatic habitats and are a model 

system in ecology and evolutionary biology (Hebert, 1987; Lampert, 2006; Miner et al., 2012). One of 

the major reasons for their success is their cyclic parthenogenetic reproduction cycle. They alternate 

between the production of asexual eggs that develop immediately and the production of sexual eggs, 

which first go through a dormant state prior to development (Brendonck and De Meester, 2004). This 

life cycle allows them to combine the advantages of a fast population growth rate during periods of 

asexual reproduction with the advantages of sexual recombination (Decaestecker et al., 2009). In 

temperate zones, sexual reproduction occurs before the onset of winter so that the populations can 

survive as resistant, dormant eggs. However, due to the combined mode of reproduction Daphnia have 

the opportunity to choose between two options to survive the harmful conditions of the winter, i.e. as a 

parthenogenetic female or as a dormant egg. Although parthenogenetic females are sometimes able to 

survive the low temperatures encountered during winter due to a reduced metabolism enhancing the 

longevity at low food conditions (Dawidowicz and Loose, 1992; Lampert et al., 2014), it involves 

some risks such as the occurrence of catastrophic events like oxygen depletion under ice can take 

place. The advantage of surviving as a parthenogenetic female is that they are already large and are 

able to start reproducing as soon as the conditions improve during spring, so that they have an 

important head start compared to females that hatch from dormant eggs. On the other hand, 

overwintering as a dormant embryo offers more security as these eggs are able to survive severe stress 

conditions due to their biochemical composition and their protective envelope, the ephippium 

(Radzikowski, 2013; Putman et al., subm. (Chapter 2)). Hatchlings from dormant eggs have a higher 

juvenile growth rate and are larger at maturation at high food conditions compared to hatchlings from 

asexual eggs (Arbaciauskas, 2003), but they still have a disadvantage compared to the overwintering 

female in terms of offspring contribution to the population. These two strategies are not mutually 

exclusive, as a female Daphnia can switch back to asexual reproduction after the production of 

dormant egg(s) (Zaffagnini, 1987). Earlier studies show that, at least in permanent ponds, most 

females apply this mixed strategy, trying to survive the winter as parthenogenetic females after the 

production of some dormant eggs as insurance (Lampert et al., 2010; 2012; Lampert et al., 2014).  

The cold temperature experienced by Daphnia that try to overwinter as parthenogenetic females is 

likely to exert a strong selective pressure. According to the “temperature-size rule”, body size 

decreases with increasing temperature (Atkinson and Sibly, 1997; Angilletta et al., 2004). The ability 

to survive in an environment subjected to fluctuating temperatures depends to a large extent on the 

physiological plasticity of the membrane composition (Farkas et al., 1984; Hazel and Williams, 1990). 

Winter-active and cold-acclimated ectotherms accumulate polyunsaturated fatty acids (PUFA) in their 

body tissue and eggs to maintain membrane fluidity and functions (Farkas et al., 1984; Pruitt, 1990; 
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Schlechtriem et al., 2006; Sperfeld and Wacker, 2012). As a result, the Daphnia that survive the 

winter season may be expected not to be a random sample of the population but may have been 

selected for large body size and altered biochemical components of their cell so as to cope with cold 

temperatures. 

D. magna lives in highly fluctuating habitats and Van Doorslaer et al. (2010) showed that Daphnia can 

adapt to changing temperature conditions within one growing season. Additionally, Pajk et al. (2012) 

showed that intergenerational changes in temperature affect the fitness of the offspring. Maternal 

effects, transmission of information about environmental variability, are well known to strongly 

influence the quality of the offspring (Mousseau and Fox, 1998). In Daphnia it has been shown that 

predation pressure can affect offspring defense mechanisms (Agrawal et al., 1999) and egg 

biochemical composition (Stibor, 2002). Egg biochemical composition can also be influenced by the 

food quality and quantity (Gliwicz and Guisande, 1992; Wacker and Martin-Creuzburg, 2007; Putman 

et al., 2015). Even the mode of reproduction can be affected by maternal food composition and 

concentrations (La Montagne and Mc Cauley, 2001; Abrusan et al., 2007).  

Recent studies have shown that clonal diversity drastically decreases during winter conditions and 

only some parthenogenetic females do survive the winter (Lampert et al., 2012; Lampert et al., 2014). 

In addition, Carvalho et al. (1987) showed that winter-collected animals have a different fitness profile 

than summer-collected clones. Cold acclimated females can alter the fatty acid composition of their 

body tissue and eggs (Schlechtriem et al., 2006; Sperfeld and Wacker, 2012). Comparing the offspring 

from clones that hatched from the dormant egg bank with clones that survived winter as active females 

enabled us to identify whether overwintering clones are a random subset of the population or rather 

have been selected for specific trait values. Secondly, this comparison is also directly relevant to 

assess the profitability of the two strategies of overwintering. Early in the growing season, offspring 

from dormant eggs and overwintering females directly compete with each other in building up the 

spring population. Small differences in the intrinsic rate of increase between clones with different 

overwintering strategies might thus impact population structure. Arbaciauskas (1998) has shown that 

the life history of individuals that hatch from dormant eggs are adapted for fast population growth. 

Here, we compare offspring of parthenogenetic eggs of the two alternate overwintering strategies for 

both life history traits (body size, intrinsic rate of population growth) and fatty acid composition of 

their eggs.  

2 Material and methods 

To compare the life history characteristics and fatty acid composition of D. magna clones which are 

able to survive the harsh environmental conditions during the winter season (hereafter called 

“overwintering population/clones”) with those hatching in the spring (hereafter called “spring 
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hatchlings”) we selected 10 clones from each population from ‘Langerode vijver’ (LRV), a pond in 

Neerijse, Belgium (0°49’42.32”N, 4°38’21.49”E). The clones of the overwintering population were 

sampled during winter of 2012-2013 (average winter temperature was 5°C during the day and 1°C 

during the night). They were screened for genetic distinctiveness using 12 microsatellite markers 

(multiplexes M01 and M03 (Jansen et al., 2011)) and ten distinct clones were selected. Clones of the 

spring hatching population were hatched from a sample of the dormant egg bank of LRV, collected at 

the same time as the overwintering population. The superficial layer (upper 5 cm) of the sediment was 

sampled, as for this shallow eutrophic lake this corresponds to the active egg bank of recent years 

(Càceres, 1998; Decaestecker et al., 2004). To obtain ephippia the sediment sample was sieved over 

first a 1 mm and then a 250 µm mesh-sized sieve. Ephippia were manually isolated from the sieved 

sediment fraction and decapsulated. Hatching (10 clones) was stimulated by exposing the dormant 

eggs to a relatively high temperature (20°C), a long-day photoperiod (16L:8D) and fresh medium (tap 

water dechlorinated and aged for 24h) (De Meester and Jager, 1993). Hatchlings were cultured as 

clonal lineages in the laboratory. Hatchlings are all genetically unique, as dormant eggs are sexually 

produced. 

Animals of all clones (overwintering population and spring hatchlings) were reared with 4 individuals 

in a 210 ml jars filled with aged tap water (aerated for 24h prior to use) under standard conditions (20 

± 2 °C and a photoperiod of 16L:8D) for at least two generations to purge from prior environmental 

differences and maternal effects before the onset of the experiments. All cultures were fed 150.000 

cells ml
-1

 of S. obliquus, which corresponds to approximately 2.5 mg C L
-1

. 

2.1 Life table experiment 

For the life table experiment, four third-clutch juveniles (born within 12h) of all clones (overwintering 

population and spring hatchlings) were cultured individually in 210 ml jars filled with aged tap water 

and distributed over the three temperature treatments, i.e. 12°C, 18°C and 24°C. These animals (first 

generation) were monitored until the release of second clutch. Three of the second clutch neonates 

were divided over the same three temperatures, i.e. one neonate at 12°C, one at 18°C and one at 24°C. 

This second generation was also monitored until the release of their second clutch. In this way, we 

could compare life history traits among populations in relation to temperatures, and do so for animals 

cultured for one or for two generations on their temperature. Second, by transplanting the second 

generation animals across temperatures, we can also test for maternal effects (Lynch and Enis, 1983) 

All experimental animals were fed 150.000 cells ml
-1

 of Nannochloropsis limnetica, jars were cleaned 

and the medium was refreshed daily. 

During the experiment we determined the following life history characteristics: age and size at 

maturity, age at release of first and second clutch, number of offspring in first and second clutch and 
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the size of the offspring. Performance ‘r’ was calculated iteratively for each individual based on the 

timing of reproduction (x) and the number of offspring (mx) using the Euler-Lotka equation (1 = ∑e
-rx

 

lx mx); this was only done for animals that survived until release of second clutch. 

2.2 Fatty acid analysis 

For the second part we again raised third-clutch juveniles (born within 12h) of all clones (selected and 

non-selected population) in 210 ml jars filled with aged tap water and distributed them over the three 

temperature treatments, i.e. 12°C, 18°C and 24°C. Every jar contained 2 animals and we had 8 animals 

per clone per temperature. Animals were fed 150.000 cells ml
-1

 of Nannochloropsis limnetica and jars 

were cleaned and medium was refreshed daily. The second clutch of the animals was collected and for 

the both populations 4 samples of 100 eggs (10 eggs per clone) per temperature. Samples were freeze-

dried and stored at -80°C (2 populations x 3 temperatures x 4 replicates = 24 samples). 

The fatty acid composition of the egg samples was analyzed as described in Putman et al. (2015; 

(Chapter 1)). Briefly, lipids were first extracted from the samples and separated into several classes, 

based on the charge of their head group, by column chromatography using a silica column. The first 

fraction contains the nonpolar head groups, such as sterols and glycolipids, and was eluted with 5.53 

mL of CHCl3. A second fraction contains the slightly more polar sphingolipids and glycolipids and 

was eluted with 2.67 mL of acetone, followed by 2.67 mL of acetone:MeOH:acetic acid (100:5:1). A 

third fraction contains the phospholipids which have a polar head group and was eluted by 4 mL of a 

MeOH:CHCl3:H2O mixture (100:50:40). In a second step, the fatty acid tails were transesterified with 

4 mL of 3 N methanolic HCl (60°C, 15 min) and 100 µL of internal standard (20 µg mL
-1

 17:0 ME 

and 25 µg mL
-1

 23:0 ME) was added. After cooling down to room temperature, the fatty acid methyl 

esters (FAME) were further extracted and  analyzed by gas chromatography (GC; Hewlett-Packard 

6890™) equipped with a flame ionization detector (FID) and a DB-225 (J&W Scientific, 30 m × 0.25 

mm inner diameter × 0.25 μm film) capillary column for analysis of the FAME. The FAME were 

identified by comparison of retention times with those of reference compounds (Sigma-Aldrich). Fatty 

acids were quantified by comparison with internal standards and by using multipoint standard 

calibration curves determined for each FAME from mixtures of known composition (Sigma-Aldrich). 

The absolute amount of each FAME was normalized to the egg dry mass and the egg number. 

2.3 Cultivation and preparation of the food 

During the preconditioning phase we used the green alga Scenedesmus obliquus (SAG 276-3a) and 

during the experiments we used the eustigmatophyte Nannochloropsis limnetica (SAG 18.99) to rear 

Daphnia magna. These two algae are characterised by highly distinct fatty acid profiles, i.e. S. 

obliquus lacks PUFA with more than 18 carbon atoms, while N. limnetica contains high 
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concentrations of C20-PUFA, especially eicosapentaenoic acid (Martin-Creuzburg et al., 2009; 

Putman et al. 2015; Von Elert, 2002). We chose Nannochloropsis for the experiment because we 

wanted to optimize the fatty acid profile of the Daphnia.  

Algae were grown in batch cultures at 18°C in aerated 10 liter vessels with illumination at 170 µmol 

quanta m
-2 

s
-1

 and harvested in the late-exponential growth phase. S. obliquus was grown in a medium 

consisting of 10 ml L
-1

 of enriched seawater (ES) nutrients (Provasoli, 1968), 5 ml L
-1

 of Walne 

nutrients (Walne, 1965) and the vitamins B1, B12 and H dissolved in dechlorinated tap water. N. 

limnetica was grown in modified Woods Hole (WC) medium with the vitamins B1, B12 and H 

(Guillard, 1975). Food suspensions were prepared by concentrating the cells via centrifugation (2500g, 

5 min) followed by resuspension in tap water. Cell densities of the food suspensions were counted 

with an Attune® acoustic focusing flow cytometer (Life technologies, Carlsbad, CA, USA).  

2.4 Data analysis 

The results of the life table experiments were analyzed using a general linear mixed model (GLM), 

with the life history characteristics as dependent variables, clone identity as a random factor and 

temperature and population (overwintering population and spring hatchlings) as fixed independent 

variables. For the second generation of the life table we added the temperature of the first generation 

as an extra fixed independent variable. To check for difference between traits of significant factors and 

their interactions Tukey-Kramer post-hoc tests were performed. These analysis were performed in 

SAS 9.3 (SAS institute Inc., 2002-2010). 

Effects of population (overwintering population and spring hatchlings) and temperature on the fatty 

acid composition of the different lipid classes were tested using a multivariate analysis of variance 

(MANOVA). Total amounts of fatty acids and concentrations of single fatty acids were compared 

between populations and temperatures using two-way analyses of variance (ANOVA). Lipid classes 

were analyzed separately. In case of significant effects of temperature we ran a Tukey HSD post-hoc 

test to identify which temperatures lead to different FA concentrations. The statistical analyses were 

performed on concentration per unit dry mass as well as concentration per egg. These analyses were 

performed with the statistical software R (version 3.1.2; The R Foundation for Statistical Computing) 

using the packages car, multcomp and lme4. 
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3 Results 

3.1 Life table experiment 

For the first generation, performance ‘r’ is significantly lower for clones that overwintered compared 

to the spring hatched population, independent of the temperature they are raised on. Performance 

significantly increases with higher temperatures in both populations (Table 1, Figure 1).  

Age at maturity, age at 1
st
 clutch and at 2

nd
 clutch increase with decreasing temperatures but there is no 

difference between the populations (Table 1, only that for age at release of first clutch is shown in 

Figure 1). 

Clones from hatchlings in spring were larger at maturity than clones from the overwintering 

population. For both populations animals raised at 24°C were smallest at maturity (Table 1, Figure 1). 

There was a significant difference between the length of animals grown at 24°C and 18°C (p < 0.001) 

and animals grown at 24°C compared to 12°C (p = 0.035), while there was no significant difference 

between the size of animals cultured at 12°C and 18°C (p = 0.451).  

The cumulative number of offspring produced during 1
st
 and 2

nd
 clutch was lower for clones from the 

overwintering population than from the spring hatched population. According to the linear model, the 

number of offspring is also influenced by the temperature the animals are cultured on (Table 1, Figure 

1). Post-hoc tests revealed that there is a significant effect of temperature on the number of offspring 

for the spring hatched population but not for the overwintering population. Clones from the spring 

hatched population raised at 24°C produced significantly less neonates than clones from the same 

population raised at 12°C (p = 0.0138). 

Temperature had no significant influence on the size of the juveniles of 1
st
 and 2

nd
 clutch. Neonates 

were always larger in the spring hatched population than in the overwintering population (Table 1).  

In the second generation of the life table we found a strong significant influence of the second 

generation temperature (TempF2) on performance and a significant two-way interaction with the 

temperature of the first generation, but no effect of the population (Table 2). There was no significant 

difference between the performances of animals raised at the same temperature in their second 

generation (Table 3), all clones had the highest performance when raised at 24°C in their second 

generation, intermediate performance when raised at 18°C and lowest performance at 12°C (TK post-

hoc, all P < 0.0001; Figure 1). 
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Figure 1: Life history values of a overwintering population (left part) and spring hatchlings 

(right part) of D. magna cultured under different temperatures for two generations. Symbols 

represent the temperature encountered during the first generation and the fillings of the 

symbols represent the temperature during the second generation. Data are means of 10 clones 

and error bars indicate one standard error.  
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Table 1: Results of the first generation life table analyzed with a general linear mixed models testing for the effects of temperature (Temp), population (Pop) 

and their interaction on performance ‘r’, age at maturity, 1
st
 clutch and 2

nd
 clutch, size at maturity, cumulative number of offspring (1

st
 and 2

nd
 clutch) and 

the size of the juveniles of 1
st
 and 2

nd
 clutch. Clone was included as a random factor in all models. Significant differences indicated in bold (p < 0.05). 

  Performance 'r' Age at maturity Size at maturity Cumulative number offspring 

  Df F-value P-value Df F-value P-value Df F-value P-value Df F-value P-value 

Temperature 2 148.0756 <2 E-16 2 245.7012 <2 E-16 2 8.0488 0.0014 2 5.8459 0.0065 

Population 1 6.3967 0.0212 1 0.3818 0.5444 1 7.192 0.0152 1 6.8314 0.0177 

Temp:Pop 2 0.2238 0.8006 2 1.5045 0.2363 2 0.7517 0.4791 2 0.4075 0.6685 

  Age at 1st clutch Age at 2nd clutch Size juveniles 1st clutch Size juveniles 2nd clutch 

  Df F-value P-value Df F-value P-value Df F-value P-value Df F-value P-value 

Temperature 2 229.9612 <2 E-16 2 167.4636 <2 E-16 2 2.4572 0.1013 2 2.3699 0.1125 

Population 1 0.6415 0.4338 1 0.5616 0.4636 1 9.9749 0.0055 1 8.4101 0.0096 

Temp:Pop 2 0.2919 0.7487 2 1.977 0.1558 2 2.5621 0.0924 2 1.3603 0.2731 
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Table 2: Results of the second generation life table analyzed with a general linear mixed model testing for the effects of the temperature of the first 

generation (TempF1), temperature of the second generation (Temp F2), population (Pop) and their interactions on performance ‘r’, age at maturity, 1
st
 clutch 

and 2
nd

 clutch, size at maturity, cumulative number of offspring (1
st
 and 2

nd
 clutch) and the size of the juveniles of 1

st
 and 2

nd
 clutch. Clone was included as a 

random factor in all models. Significant differences indicated in bold (p < 0.05). 

  Performance 'r' Age at maturity Size at maturity Cumulative number offspring 

  Df F-value P-value Df F-value P-value Df F-value P-value Df F-value P-value 

Temp F1 2 1.07 0.3463 2 0.86 0.4269 2 1.42 0.2468 2 0.43 0.6502 

Temp F2 2 437.33 <0.0001 2 815.25 <0.0001 2 11.49 <0.0001 2 23.99 <0.0001 

Pop 1 0.14 0.7134 1 2.48 0.1184 1 295.01 <0.0001 1 18.52 <0.0001 

Temp F1:TempF2 4 3.65 0.0084 4 2.29 0.0652 4 0.8 0.5253 4 0.41 0.7997 

Temp F1:Pop 2 2.02 0.1383 2 1.39 0.2546 2 0.62 0.5426 2 0.6 0.5506 

Temp F2:Pop 2 2.08 0.1304 2 1.15 0.3209 2 1.83 0.1662 2 2.6 0.0796 

Temp F1:TempF2:Pop 4 2.2 0.0751 4 4.1 0.0041 4 0.53 0.7122 4 0.39 0.818 

  Age at 1st clutch Age at 2nd clutch Size juveniles 1st clutch Size juveniles 2nd clutch 

  Df F-value P-value Df F-value P-value Df F-value P-value Df F-value P-value 

Temp F1 2 1.54 0.2207 2 1.98 0.1448 2 0.56 0.5704 2 2.06 0.1335 

Temp F2 2 929.47 <0.0001 2 1748.75 <0.0001 2 0.41 0.6617 2 1.27 0.2864 

Pop 1 0 0.9666 1 0.98 0.325 1 75.23 <0.0001 1 46.1 <0.0001 

Temp F1:TempF2 4 15.15 <0.0001 4 22.1 <0.0001 4 1.39 0.2428 4 1.36 0.2549 

Temp F1:Pop 2 1 0.3734 2 2.79 0.0673 2 1.05 0.3527 2 0.08 0.919 

Temp F2:Pop 2 0.14 0.8709 2 0.54 0.5829 2 0.71 0.4962 2 0.25 0.7819 

Temp F1:TempF2:Pop 4 5.7 0.0004 4 8.01 <0.0001 4 1.39 0.2442 4 1.75 0.1477 
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Table 3: Results of a Tukey-Kramer post-hoc on the significant effect of the interaction 

between the first and second generation temperature on the performance, analyzed by a general 

linear mixed model. We show P-values for all combinations within the same second generation 

temperature. 

  TempF1-TempF2 vs. TempF1-TempF2 P-value 

F2 12°C 12-12 18-12 0.6064 

 
12-12 24-12 0.2605 

  18-12 24-12 0.9999 

F2 18°C 12-18 18-18 0.4011 

 
12-18 24-18 0.7646 

  18-18 24-18 0.9984 

F2 24°C 12-24 18-24 0.8239 

 
12-24 24-24 0.9995 

 
18-24 24-24 0.933 

Age at maturity is significantly affected by temperature of the second generation and the three-way 

interaction between first and second generation temperature and population (Table 2). Age at 1
st
 and 

2
nd

 clutch likewise show a significant three-way interaction between temperature of the 1
st
 and 2

nd
 

generation and population (Table 2). The lower the temperature the longer it takes to mature and 

release clutches and, comparable with the performance, this is independent of the temperature of the 

maternal generation. TK post–hoc test revealed that there are only significant differences between the 

populations for clones that were cultured at 12°C for two consecutive generations (PAge at maturity = 

0.0057, PAge at 1st clutch = 0.0114, PAge at 2nd clutch = 0.0592), clones from the overwintering population 

needed less time to mature or release brood. 

Size at maturity is only influenced by population and temperature of the second generation (Table 2). 

Similar to our observation for the first generation, clones that overwintered as a parthenogenetic 

female are always smaller at maturity, independent of the culturing temperature in both generations, 

and animals raised at 24°C in their second generation tend to be smaller than those raised at 12°C or 

18°C in their second generation (Figure 1). 

The same pattern was found for the cumulative number of offspring (Table 2, Figure 1): the number of 

offspring is always lower for the overwintering population and clones at 24°C produce less offspring, 

in both populations (Figure 2). 

Juveniles of the overwintering population are always smaller than those of the spring hatched 

population, independent of the F1 and F2 temperature (Table 2). 
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Figure 2: Tukey-Kramer LS means comparisons of the second generation temperatures in the 

general linear model for cumulative number of offspring. 

3.2 Fatty acid analysis 

In none of the samples we observed fatty acids in the second fraction, which is supposed to contain the 

fatty acids of sphingolipids and glycolipids (in accordance with Putman et al., 2015).  

The fatty acid compositions of the neutral lipid fraction (fraction 1, Figure 3) and the phospholipid 

fraction (fraction 3) are affected by temperature (MANOVA, Table 4) but not by population.  

Targeted analyses for each fatty acid separately did show tendencies for differences (Table 6, p < 

0.05). However, differences disappeared after correction for multiple testing. Temperature only 

affected the total concentration of fatty acids derived of phospholipids, with more fatty acids with 

decreasing temperature particularly for the overwintering population (Table 5 and 6). Only a few fatty 

acids were influenced by temperature (Table 6). Especially EPA (C20:5 n-3) strongly increases with 

decreasing temperature, while ALA (C18:3 n-3) increases with increasing temperature (Figure 3). 

All results mentioned above are based on the data expressed per mg dry weight. Analysis of the data 

per egg gave almost identical results. 
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Figure 3: Fatty acid composition (µg mg
-1

 dry weight) of the neutral lipid and phospholipid 

fractions of asexual eggs of a selected (A) and non-selected (B) population of D. magna 

produced under different temperatures. Data are means of 4 replicates and error bars indicate 

one standard error. 

Table 4: Results of MANOVA testing for the effects of temperature (Temp), population (Pop) 

and their interaction on the fatty acid composition (ng mg
-1

 dry weight) of asexual eggs of D. 

magna. Datasets for neutral lipids and phospholipids were analyzed separately. Significant 

differences indicated in bold (p > 0.05). 

  Neutral lipids Phospholipids 

  Df Approx F P-value Df Approx F P-value 

Temperature 2 2.9230 0.0122 2 2.2826 0.0400 

Population 1 1.7208 0.2255 1 2.2802 0.1259 

Temp:Pop 2 0.5697 0.8953 2 2.0745 0.0602 

 

 



Chapter 4  Overwintering strategies 

110 

 

Table 5: Fatty acid composition of asexual eggs of a overwintering and spring hatched 

population of D. magna produced under different temperatures. The total concentration and the 

concentration of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), 

polyunsaturated fatty acids (PUFA) (µg mg
-1

 dry weight) and the percentages of essential fatty 

acids are given. Data are means of four replicates. 

 

Neutral lipids 

 

Overwintering population Spring hatched population 

  24°C 18°C 12°C 24°C 18°C 12°C 

∑ FA 20.85 +/- 3.14 27.94 +/- 5.22 28.07 +/- 1.98 21.04 +/- 5.37 20.36 +/- 1.47 24.98 +/- 0.85 

SFA 9.74 +/- 1.82 11.87 +/- 1.82 12.38 +/- 1.45 11.12 +/- 2.74 10.17 +/- 1.03 9.07 +/- 0.56 

MUFA 1.34 +/- 0.11 3.32 +/- 2.03 2.68 +/- 0.34 1.72 +/- 0.60 1.65 +/- 0.40 2.85 +/- 0.30 

(n-3) PUFA 7.52 +/- 0.98 9.56 +/- 3.15 10.30 +/- 1.41 7.23 +/- 2.14 7.41 +/- 0.95 11.40 +/- 0.38 

(n-6) PUFA 2.25 +/- 1.62 3.18 +/- 1.61 2.71 +/- 1.33 0.97 +/-0.26 1.13 +/- 0.14 1.66 +/- 0.07 

C18:2 n-6 8.85% 24.21% 5.84% 2.47% 3.45% 1.69% 

C18:3 n-3 14.73% 13.47% 3.81% 15.47% 3.41% 0.33% 

C20:4 n-6 1.96% 6.67% 3.81% 2.14% 6.21% 4.96% 

C20:5 n-3 21.21% 46.15% 32.84% 18.58% 60.79% 45.12% 

C22:6 n-3 nd nd nd nd nd nd 

       

 

Phospholipids 

 

Overwintering population Spring hatched population 

  24°C 18°C 12°C 24°C 18°C 12°C 

∑ FA 28.35+/-2.45 26.56+/-2.06 35.11+/-0.64 25.18+/-4.78 21.19+/-1.65 31.59+/-2.79 

SFA 6.74 +/- 1.13 7.95 +/- 2.18 8.39 +/- 1.31 4.80 +/-  0.91 4.27 +/- 0.60 8.39 +/- 1.31 

MUFA 7.75 +/- 1.63 7.59 +/- 1.57 10.85 +/- 0.52 6.81 +/- 1.67 6.57 +/- 0.56 9.56 +/- 0.79 

(n-3) PUFA 12.46 +/- 2.12 9.76 +/- 1.17 13.88 +/- 1.40 12.28 +/- 2.47 9.22 +/- 0.53 13.76 +/- 1.56 

(n-6) PUFA 1.40 +/- 0.40 1.25 +/- 0.28 1.99 +/- 0.33 1.29 +/- 0.33 1.13 +/- 0.08 2.29 +/-0.37 

C18:2 n-6 1.01% 5.07% 0.98% 1.86% 0.43% 1.86% 

C18:3 n-3 6.95% 7.51% 1.33% 15.85% 0.00% 1.45% 

C20:4 n-6 3.91% 8.39% 4.69% 3.25% 4.27% 5.40% 

C20:5 n-3 36.29% 48.86% 37.63% 31.96% 31.86% 41.57% 

C22:6 n-3 nd nd nd nd nd nd 

  



Chapter 4  Overwintering strategies 

111 

 

Table 6: Results of ANOVA testing for the effects of temperature (Temp), population (Pop) 

and their interaction on the fatty acid composition (ng mg
-1

 dry weight) of asexual eggs of D. 

magna. Datasets for neutral lipids and phospholipids were analyzed separately. Significant 

differences after Holm-Bonferroni corrections indicated in bold (p < 0.05). 

 
  Neutral lipids Phospholipids 

Fatty acids Variables Df F value P value Df F value P value 

C14:0 Temp 2 0.8442 0.4462 2 0.0503 0.6132 

 

Pop 1 2.0462 0.1697 1 4.4948 0.0482 

 

Temp:Pop 2 1.1236 0.3469 2 0.3655 0.6989 

C16:0 Temp 2 0.1967 0.8232 2 1.9183 0.1757 

 

Pop 1 1.4411 0.2455 1 8.2821 0.0100 

 

Temp:Pop 2 1.7770 0.3306 2 0.3765 0.6915 

C16:1 Temp 2 8.3501 0.0027 2 6.5360 0.0073 

 

Pop 1 0.2676 0.6113 1 10.2891 0.0049 

 

Temp:Pop 2 0.1451 0.8659 2 0.4024 0.6746 

C18:0 Temp 2 0.1518 0.8602 2 0.0029 0.9972 

 

Pop 1 0.0997 0.7558 1 3.5077 0.0774 

 

Temp:Pop 2 0.7589 0.4826 2 0.1397 0.8705 

C18:1n-9 Temp 2 0.3045 0.7412 2 5.2166 0.0163 

 

Pop 1 0.8766 0.3615 1 0.1180 0.7352 

 

Temp:Pop 2 1.0015 0.3869 2 0.2412 0.7882 

C18:1n-7 Temp 2 0.3430 0.7142 2 4.1587 0.0329 

 

Pop 1 0.0740 0.7886 1 0.0525 0.8213 

 

Temp:Pop 2 1.0159 0.3819 2 0.0975 0.9076 

C18:2n-6 Temp 2 0.0183 0.9819 2 2.9709 0.0767 

 

Pop 1 3.5454 0.0760 1 0.4064 0.5318 

 

Temp:Pop 2 0.0604 0.9417 2 1.0113 0.3835 

C18:3n-3 Temp 2 10.6807 0.0009 2 15.5971 0.0001 

 

Pop 1 1.9993 0.1744 1 1.8060 0.1957 

 

Temp:Pop 2 0.8301 0.4520 2 2.3223 0.1267 

C18:4n-3 Temp 2 0.4040 0.6736 2 7.7239 0.0038 

 

Pop 1 0.8032 0.3820 1 0.9332 0.3468 

 

Temp:Pop 2 1.5162 0.2463 2 2.5243 0.1081 

C20:4n-6 Temp 2 10.3493 0.0010 2 11.4525 0.0006 

 

Pop 1 0.0005 0.9823 1 0.2184 0.0646 

 

Temp:Pop 2 0.7223 0.4992 2 0.7938 0.4673 

C20:5n-3 Temp 2 12.8432 0.0003 2 8.1246 0.0031 

 

Pop 1 0.0683 0.7967 1 0.9124 0.3521 

 

Temp:Pop 2 0.8393 0.4482 2 0.5473 0.5278 

Total Temp 2 1.2936 0.2986 2 6.4157 0.0078 

 

Pop 1 1.5080 0.2353 1 3.2947 0.0862 

 

Temp:Pop 2 0.6268 0.5456 2 0.0949 0.9099 
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4 Discussion 

The water flea Daphnia magna inhabits aquatic environments that are variable in both biotic and 

abiotic environmental conditions, such as temperature, drought, food and predation. Although many 

female Daphnia try to actively survive the winter, only few of them succeed as clonal diversity drops 

drastically during winter (Lampert et al., 2014). To avoid the negative impact of winter conditions, 

Daphnia starts the production of dormant eggs when conditions deteriorate (Brendonck and De 

Meester, 2003). These dormant eggs are stress resistant and serve as kind of insurance against loss of 

the genetic diversity (Lampert et al., 2010). We observed that clones that were able to actively survive 

the winter as females did differ in their life history traits from clones that survived the winter as 

dormant eggs. Performance was lower for actively overwintering clones in the first generation, mostly 

due to a lower number of offspring. In the second generation number of offspring is still lower for 

overwintering populations but this difference is less pronounced, whereby performance is no longer 

different between both populations. Although performance was comparable, age at maturity and age at 

clutch release did differ between both populations if they were cultured at 12°C for two generations. 

Juveniles from actively overwintering clones are faster than juveniles from the spring hatched 

population. 

One of the most important biotic factors fluctuating in time and space is temperature. These variations 

in temperature have implications on the life history and physiology of many animals, including 

Daphnia. Daphnia grow faster at warmer temperatures, consequently being smaller at maturity and 

having a lower number of offspring at higher temperatures when food is non-limiting (Gliwicz and 

Boavida, 1996; Atkinson and Sibly, 1997; Angilletta, 2004). There are several studies confirming this 

“temperature-size rule” (Giebelhausen and Lampert, 2001; Masclaux et al., 2009; Sperfeld and 

Wacker, 2009). Accordingly, we found a strong positive correlation between the performance and 

culturing temperature in both generations. For all clones used in this study, best performance 

temperature is at 24°C, consistent with the results of Mitchell and Lampert (2000) and Mitchell et al. 

(2004). Yet, optimal temperature seems to be clone specific as some other studies observed a decline 

in growth rate with increasing temperatures above 20°C (Giebelhausen and Lampert, 2001; Masclaux 

et al., 2009). 

Pjak et al. (2012) showed that not only the culturing temperature of the experimental generation 

affects the life history of the animals, but also the temperature of the maternal generation. In contrast, 

we found that there is no difference in life history between clones cultured at the same temperature in 

the second generation, even if they were cultured at other temperatures in the previous generation. In 

Pjak et al. (2012) fitness was highest for 15°C-acclimated animals raised at 20°C, while we only 

observed that at 12°C the age at maturity of the cold-acclimated animals actively surviving winter is 

lower than those animals acclimated at 18°C or 24°C.  
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Besides the effect on life history, temperature also affects the biochemical composition of body tissue 

and eggs of Daphnia. Crustacea exposed to low temperatures accumulate polyunsaturated fatty acids 

(Farkas et al., 1984; Schlechtriem et al., 2006; Sperfeld and Wacker, 2012). Our results confirm these 

results. Eggs produced under colder temperatures contained more unsaturated fatty acids, especially 

EPA. The concentration of ALA was an exception and decreases with decreasing temperature. It is 

already known that Daphnia can produce EPA by converting the precursor ALA (Farkas te al., 1984; 

Goulden and Place, 1990; Schlechtriem et al., 2006). Moreover, Schlechtriem et al. (2006) suggested 

that the increased proportions of unsaturation may be due to a cold induced expression of delta-9-

desaturase as has been found for Carp (Tiku et al., 1996). This increased degree of unsaturation, most 

pronounced in phospholipids, plays an important role in the adaptation to cold because it allows the 

animals to maintain membrane fluidity and functioning (Hazel and Williams, 1990; Pruitt, 1990). In 

contrast with Sperfeld and Wacker (2012) who only found differences between temperatures in the 

concentrations of fatty acids of body tissue and not for eggs, the fatty acid composition of our egg 

samples did differ between temperature regimes. As expected, differences were more pronounced for 

the phospholipid fraction than for the neutral lipids. Sperfeld and Wacker (2012) did not separate the 

total lipid fraction into phospholipids and neutral lipids.  

We conclude that there are some important differences between passively and actively overwintering 

clones of D. magna concerning their life histories. Temperature had a strong influence on both the life 

history of female Daphnia and the fatty acid composition of the eggs and clones from the actively 

overwintering population and the spring hatching population were influenced differently by the 

temperatures. In general performance of all clones was lower at lower temperature, and performance 

of clones selected to survive winter as a parthenogenetic female was lower than of spring hatching 

clones in the first generation. Additionally, actively overwintering clones seem to be adapted to 

reproduce faster at cold temperatures. Our results also suggest that clones from overwintering 

populations invest more in EPA compared to ALA in the phospholipids of the eggs than clones that 

survive winter as dormant stages.  
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Abstract 

For the important model organism Daphnia it would be a very big step forward if the clonal lineages 

used in many research applications could be safely stored by cryopreservation. Asexual eggs are very 

sensitive to drought and freezing temperatures, mainly due to their high water content. This is a 

common feature among embryos of aquatic organisms and it is the main reason why there are only 

limited numbers of established cryopreservation protocols for these embryos. To obtain surviving eggs 

after cryopreservation it is thus essential to drastically reduce this water content without affecting 

viability. In this study we present a step by step development of a cryopreservation protocol for 

asexual eggs of D. magna. A two-step pretreatment of the eggs and freezing by droplet vitrification led 

to successful cryopreservation of these eggs, although at low numbers. The pretreatment consisted of a 

glycerol loading followed by osmotic dehydration in a vitrification solution. We also showed that 

intracellular trehalose has a beneficial effect on the survival of cryopreserved asexual eggs.  
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1 Introduction 

The water flea Daphnia is a keystone species in aquatic ecosystems with a wide geographical 

distribution (Hebert, 1978; Carpenter et al., 1987; Lampert, 2006) and an important model organism in 

ecological and evolutionary biological research (Lampert, 2011; Seda and Petrusek, 2011). Recent 

publication of the complete Daphnia pulex genome (Colbourne et al., 2011) generates even more 

opportunities (Tautz, 2011; Miner et al., 2012). Moreover, Daphnia, especially Daphnia magna, are 

the most widely used invertebrates in ecotoxicological studies (Walker, 2014). One of the biggest 

advantages of Daphnia is their parthenogenetic reproduction cycle, alternating the production of 

subitaneous asexual eggs and dormant sexual eggs (Hebert, 1978; Benzie, 2005). Dormant eggs are 

stress resistant, consequently able to stay viable for long periods of time and forming some kind of 

archive in the sediment (Hairston et al., 1995; Brendonck and De Meester, 2003; De Meester et al., 

2004).  

Though, most of the applications use well-characterized clonal lines generated through asexual 

reproduction. This enables researchers to work with large numbers of genetically identical individuals 

and to disentangle genotypic interactions and phenotypic plasticity (De Meester et al., 2004; Tollrian 

and Leese, 2010; Simon et al., 2011). However, one major disadvantage to the use of these clonal 

lineages, is that they are maintained by continuous culturing, which is laborious and time and space 

consuming. Additionally, there is a risk of contamination, diseases or accidental loss. 

Cryopreservation of the genetic lines would be a good and safe alternative. Preservation of biological 

tissue at sub-zero temperatures as low as -196°C can be regarded as the ultimate storage method as all 

metabolic processes are stopped at these ultra-low temperatures (Hodgson, 1994; Mazur et al., 2008). 

Most cells and organisms, however, do not survive exposure to freezing temperatures, and particularly 

the extreme low temperatures used for cryopreservation are not tolerated. A cryopreservation protocol 

therefore always involves some steps preparing the tissue and preventing freeze damage. Avoiding the 

formation of destructive ice crystals is essential for survival after cryopreservation (Pegg, 1987; 

Mazur, 2004).  

In general, eggs of aquatic organisms have high water contents and they are consequently very 

sensitive to low temperatures. In contrast to the numerous protocols for successful cryopreservation of 

sperm, there are only limited numbers of successful cryopreservation protocols of aquatic invertebrate 

eggs (Gwo et al., 2000; Zhang, 2004). Reports of successful cryopreservation include embryos of the 

bivalves Pacific oyster, Blue mussel and Greenshell mussel (Lin and Chao, 2000; Paredes et al., 2012; 

2013), embryos of sea uchrin (Bellas and Paredes, 2011) and embryos of the rotifer Branchionus 

plicatilis (Toledo and Kurokura, 1990). Although many attempts, also for fish embryos there are no 

successful cryopreservation protocols yet (Zhang, 2004; Mauger et al., 2006; Tsai et al., 2009). 
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In this paper we describe a stepwise approach towards successful cryopreservation of asexual Daphnia 

magna eggs. We have chosen to use vitrification as freezing method, as it is currently considered to be 

the most suitable technique for cryopreservation of embryos (Kulus and Zalewska, 2014; Fahy and 

Wowk, 2015). Vitrification aims to cryopreserve without the formation of ice crystals, via ultra-rapid 

cooling and high intracellular viscosity (Fahy et al., 1984). Sufficient dehydration can be achieved by 

air-drying, freeze-dehydration or the application of cryoprotectants. Penetrating cryoprotectants are 

used to increase intracellular solute concentrations and non-penetrating cryoprotectants for osmotic 

dehydration. Asexual eggs are very sensitive to air-drying and cryopreservation and this in contrast to 

dormant eggs, which are able to survive cryopreservation (i.e. temperatures of -196°C) after air-drying 

for 24h (Putman et al., unpubl. data (see Box III Introduction). The drought and freeze resistance of 

dormant eggs is partly due to the presence of natural cryoprotectants, including glycerol and trehalose 

(Pauwels et al., 2007, Putman et al., subm. (Chapter 2)). As these compatible solutes tend to be less 

toxic then other cryoprotectants (Fuller, 2004) we will use those for the development of an appropriate 

cryopreservation protocol for the asexual eggs. Additionally, we will add either ethylene glycol or 

methanol to the vitrification solution as they are both widely used cryoprotectants in vitrification 

protocols (Ali and Shelton, 1993; Elsen et al., 2007; Mullen et al., 2008; Mullen and Fahy, 2011; 

2012).  

2 Material and methods 

2.1 Egg collection 

The asexual eggs of Daphnia magna used in all experiments were derived from a laboratory culture of 

a clone hatched form the sediment egg bank of ‘Langerode vijver’, a pond in Neerijse, Belgium 

(0°49’42.32”N, 4°38’21.49”O). Animals were cultured in 0.5 L jars, with a density of 20 individuals 

per liter, in dechlorinated tap water (aerated for 24h prior to use) at 20°C and a photoperiod of 16h 

light and 8h dark (further referred to as standard conditions). Jars were cleaned and water was renewed 

every two days and all animals were fed daily with 150.000 cells ml
-1

 of Scenedesumus obliquus.  

To collect asexual eggs females bearing their third clutch were dissected and eggs were gently blown 

out of the brood pouch with water. All eggs used were in the first stage of development according to 

Kast-Hutcheson et al. (2001), characterized by minimal cell differentiation. Before the start of the 

experiments eggs were visually checked for possible damage resulting from previous handlings.  
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2.2 Glycerol loading 

2.2.1 Toxicity of glycerol 

In order to determine the toxicity of glycerol to asexual eggs of D. magna, eggs were exposed to 

different concentrations (0% (control), 10%, 20% and 30%) for different periods of time (15 min, 30 

min and 60 min) in a full factorial design. Eggs from different clutches were randomly distributed 

among the treatments and per treatment 50 eggs were tested.  

Eggs in 50 µl of dechlorinated tap water were transferred with a glass pipet into 450 µl of the glycerol 

solution. After completion of the exposure time, eggs were rinsed twice in dechlorinated tap water and 

transferred to fresh dechlorinated tap water and placed under standard conditions to allow hatching. 

Hatching was checked daily for 10 days.  

Results were analyzed with a generalized linear mixed model (GLMM) with binomial error 

distribution and a logit-link function using the package lme4 of the software R (version 3.1.2). To 

check for differences between the treatments and the control conditions, Dunnett post-hoc tests were 

performed following a simplified general linear model on the same data.  

2.2.2 Measurements of changes of egg volume due to glycerol exposure 

For every treatment of the previous experiment with a survival rate above 50% the volume changes 

caused by the exposure to glycerol were checked. Per treatment 50 eggs were measured before and 

after exposure to the glycerol treatment. Pictures of the eggs were taken with an Olympus CKX41 

inverted microscope equipped with a digital camera (Olympus colour view III) and measurements 

were performed on these pictures using the imaging software Cell^P (Olympus soft imaging 

solutions).  

The obtained results proved to be not normally distributed so the effect of the glycerol treatment was 

analyzed with a Kruskal Wallis test using the statistical software R (version 3.1.2). 

2.2.3 Glycerol content of eggs 

Additionally to the volume measurements also the concentration of glycerol inside the eggs was 

measured of the treatments of the first experiment with an average survival above 50%. For this again 

50 eggs per treatment were used. They were isolated, exposed to the different glycerol treatments, 

rinsed twice in dechlorinated tap water and transferred to an Eppendorf tube with a minimal amount of 

water. To stop metabolism and possible breakdown of glycerol, samples were flash frozen in liquid 

nitrogen and stored at -80°C prior to analysis. 
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Eggs were homogenized in 25 µl PBS-buffer (0.15 M NaCl, 10 mM Na2HPO4
.
2H2O, pH 7.4) and 

ultrasonified for 3 min. Next, samples were centrifuged for 15 min at 13000 rpm and 10 µl of the 

supernatant was transferred to a new Eppendorf tube and diluted 40 times. Of this solution 2.4 µl was 

transferred to a 384-well plate. Then, 38.4 µl Free Glycerol Reagent (FGR; Sima Aldrich) was added 

and the plate was incubated for 10 min at 37°C. The initial absorbance, corresponding to the 

concentration of free glycerol, was measured at 540 nm with a spectrophotometer (Infinit M200, 

Tecan, Suisse). Subsequently, 9.6 µl Triglyceride Reagent (TgR; Sigma Aldrich) was added, plate was 

incubated again for 10 min at 37°C and final absorbance was measured at 540nm quantifying the 

amount of triglycerides. TgR is a lipase catalyzing the hydrolysis of triglycerides into glycerol and 

fatty acids. The difference between the initial (free glycerol) and the final absorbance (triglycerides) 

corresponds to the amount of glycerol that was bound. To convert the absorbance’s to concentrations a 

calibration curve (0, 0.005, 0.01, 0.025, 0.05 and 0.1 µg glycerol ml
-1

) ran along with the samples. 

The effect of the different treatments on the amount of glycerol able to penetrate in the cell was tested 

performing a one-way analysis of variance (ANOVA), followed by a Tukey HSD post-hoc test to 

check for difference among the treatments with the packages car and multcomp of statistical software 

R (version 3.1.2). 

2.3 Osmotic dehydration 

2.3.1 Vitrifying capacity of different solutions 

The behavior of several mixtures of cryoprotectants when plunged into liquid nitrogen was tested. 

This to determine a vitrification solution that vitrifies and does not show cold crystallization with 

lowest possible total solute concentration. For this, mixtures of two compositions varying in the 

concentrations of the individual cryoprotectants were tested: 

Mixture 1: 

 Glycerol: 10 - 15 - 20 % 

 Ethylene glycol (EG): 15 – 20 – 25 – 30 – 35 – 40 % 

 Trehalose: 0.1 – 0.25 – 0.5 M 

Mixture 2: 

 Glycerol: 10 - 15 - 20 % 

 Methanol: 15 – 20 – 25 – 30 – 35 – 40 % 

 Trehalose: 0.1 – 0.25 – 0.5 M 

Of each solution 2 ml was pipetted into a cryotube, which was submerged in liquid nitrogen for 30 sec 

and thawed in a water bath of 35 - 40°C. Both during cooling and warming samples were visually 
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inspected for crystallization, the formation of ice crystals changes the color of the solution from 

transparent to snow white.  

2.3.2 Toxicity test of vitrifying solutions 

The toxicity of the three solutions of both mixtures with the lowest total concentrations that were still 

vitrifying and did not cold crystallize was tested. The sensitivity of the eggs towards the vitrification 

solutions was tested twice, first on eggs that did not receive any previous treatment and then on eggs 

that were preloaded with glycerol. For every treatment 50 eggs were exposed to the solutions, 

randomized over the different clutches.  

Eggs were exposed to the different solutions for 5, 10, 20 or 30 min and rinsed twice after exposure. 

Two control conditions were added, eggs which did not undergo any treatment and eggs that were 

only loaded with glycerol. Exposure to the vitrification solutions was done at 0°C because at this 

temperature glycerol and ethylene glycol are considered not able to penetrate the cell membrane. 

Exposed eggs were placed in a controlled environment and hatching was monitored for 10 days.  

Processing of the results was done with a GLMM with binomial error distribution and a logit-link 

function using the package lme4 of the software R (version 3.1.2). Datasets for the two mixtures were 

analyzed separately.  

2.3.3 Measurement of the egg volume during osmotic dehydration 

To quantify the osmotic dehydration of the eggs as a consequence of exposure to the vitrification 

solutions with or without previous glycerol loading the volume reduction of the eggs was determined. 

This was done for the treatments of the previous experiment with the highest survival (five for mixture 

1 and four for mixture 2). The procedure and statistical analysis was the same as in section 2.2.2. 

Datasets for the two mixtures were analyzed separately. 

2.4 Droplet vitrification 

We used the technique of droplet vitrification, meaning that the eggs were placed in a small amount 

(10µl) of the vitrification solution on an aluminum strip and directly plunged in liquid nitrogen. The 

selected vitrification solutions resulting in the highest survival and degree of dehydration in 

combination with the best glycerol pretreatment were used as preparative steps for cryopreservation. 

In all previous experiments eggs were treated individually, but in the freezing experiments eggs were 

pooled per ten (ten eggs represent one replicate). In total three freezing experiments were performed 

(Figure 1). In the first experiment, a vitrification solution of mixture 1 (VS3 containing glycerol, EG 

and trehalose) was used, while in experiment 2 and 3 a vitrification solution of mixture 2 (VS 4 

containing glycerol, methanol and trehalose) was used. The eggs of experiment 1 and 2 were not 
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manipulated before the start of the vitrification protocol. Eggs used in experiment 3 were produced 

under different conditions and their trehalose and polyunsaturated fatty acid (PUFA) content was 

increased through a manipulation of the allocation strategy of Daphnia. Previous experiments showed 

that when females were fed algae with a higher content of C20 polyunsaturated fatty acids that they 

then allocate more of these polyunsaturated fatty acids to their eggs (Putman et al., 2015 (Chapter 1)) 

and that trehalose content of the eggs tended to increase with supplementation of the maternal food 

with trehalose containing liposomes (Putman et al., subm. (Chapter 2)). In all experiments we used 50 

eggs for the control treatments (no freezing; * in figure 1) and 500 eggs for the droplet vitrification. 

 

Figure 1: Overview of all steps used for cryopreservation of asexual D. magna eggs. Control 

treatments are indicated with an *. 

3 Results 

3.1 Glycerol loading 

3.1.1 Toxicity of glycerol 

In order to reduce mortality caused by the toxic effects of cryoprotectants different glycerol 

concentration and exposure times were tested. Both the concentration of the glycerol solution and the 

exposure time had a significant effect on the survival of the asexual eggs (Table 1), the higher the 

glycerol concentrations and the longer the exposure time the lower the survival rate (Figure 2). 

Additionally, also the clutch did have a significant effect on the survival of the eggs (p = 2.025 E
-05

). 
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The Dunnett post-hoc test revealed that survival of eggs exposed to 10% glycerol for 15 min did not 

significantly differed from survival in the control conditions (Figure 2, p = 0.3215) and exposure to 

20% glycerol for 15 min was also marginal non-significant (p = 0.0565). 

 

Figure 2: Effects of glycerol exposure on the percentage of hatching of asexual D. magna 

eggs. Eggs were exposed to glycerol solutions with different concentrations (0-10-20-30%) for 

different time periods (0-15-20-30 min). * indicates significant difference from the control 

conditions (p < 0.05, general linear model followed by Dunnett post-hoc test) 

Table 1: Results of GLMM on the effect of glycerol exposure on the survival of asexual D. 

magna eggs. Number of hatchlings was the dependent variable and concentration of glycerol 

and exposure time were the independent variables, clutch number was added to the analysis as 

a random block factor. 

Variables Chi² Df P value 

Concentration 37.4735 2 7.29 E-09 

Exposure time 52.4108 2 4.16 E-12 

Concentration:time 9.2008 4 0.05627 

 

3.1.2 Measurements of changes of egg volume due to glycerol exposure 

Treatments of the previous experiment with a survival rate above 50% were: exposure to 10% glycerol 

for 15 min and 30 min and exposure to 20% glycerol for 15 min. For these treatments volume changes 

during the exposure were checked. The average volume reduction was 19.24% and there was no 

significant difference between the treatments (Kruskal Wallis, p = 0.2002).  
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3.1.3 Glycerol content of eggs 

For the same treatments as mentioned above (10% glycerol for 15 min and 30 min and 20% glycerol 

for 15 min) the amount of glycerol in the cells was measured. The amount of glycerol is significantly 

higher in eggs that were loaded with glycerol (p = 0.0097) and although not significant there is a trend 

of increasing intracellular glycerol with increasing exposure time and concentration of the glycerol 

solution (Figure 3).  

 

Figure 3: Concentration of glycerol penetrating in the asexual D. magna eggs during exposure 

to glycerol solution of varying concentrations (0-10-20%) for different exposure time (0-15-30 

min). Data are means of three replicates; error bars indicate one standard error. Distinct letters 

indicate significant differences among the treatments (p < 0.05, ANOVA followed by Tukey 

HSD post-hoc test) 

The percentage of glycerol was highest in asexual eggs exposed to a 10% glycerol solution for 30 min 

and 52% of the eggs exposed to this treatment are able to survive, so we will use this treatment as the 

first step of the egg pretreatment in the vitrification protocol. 

3.2 Osmotic dehydration 

3.2.1 Vitrifying capacity of different solutions 

For each of the two mixtures three solutions were selected, varying in the composition of 

cryoprotectants (VS1-6, Figure 4).  
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Figure 4: Vitrification capacities of mixture of cryoprotectants tested by submerging in liquid 

nitrogen (-196°C). Three categories were distinguished: mixture that crystallized during 

cooling (black boxes), mixtures that crystallized during warming (dark gray boxes) and 

mixtures that did not crystallize (light gray boxes).  

Mixtures containing glycerol, EG and trehalose started to vitrify from 45% of solutes (glycerol and 

EG), while mixture consisting of glycerol, methanol and trehalose already vitrified from a solute 

concentration of 40% (glycerol and methanol). 

3.2.2 Toxicity test of vitrifying solutions 

In this experiment we tested the toxicity of the selected vitrification solutions to asexual eggs. Control 

conditions show the same survival rates as in previous experiments, i.e. about 80% for non-treated 

eggs and around 60% for eggs only loaded with glycerol (Figure 4). Results for the two mixtures were 

analyzed separately. 
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Figure 5: Effects of exposure to vitrification solutions on the percentage of hatching of asexual 

D. magna eggs. Eggs were exposed to vitrification solutions containing glycerol, ethylene 

glycol and trehalose (A) or vitrification solutions containing glycerol, methanol and trehalose 

(B) for different time periods (0-15-20-30 min).  

Toxicity of vitrification solution 1-3 did not significantly differ from each other, but survival steeply 

decreased with exposure time (Table 2, Figure 5A). Surprisingly mortality was even higher if the 

vitrification treatment was combined with the glycerol pretreatment, while we assumed it would 

protect from VS toxicity (Table 2, Figure 5A).  
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In contrast, combination of the glycerol pretreatment and exposure to VS4-6 often led to higher 

survival then when eggs were only exposed to the vitrification solutions and the effect of exposure 

time differed for the distinct vitrification solutions (Table 2, Figure 5B). 

Table 2: Results of GLMM on the effect of exposure to vitrification solutions on the survival 

of asexual D. magna eggs. Number of hatchlings was the dependent variable and composition 

of vitrification solution, exposure time and whether or not the eggs underwent a glycerol 

pretreatment step were the independent variables, clutch number was added to the analysis as a 

random block factor. Vitrification solutions of mixture 1 contained varying concentrations of 

glycerol, ethylene glycol and trehalose and vitrification solutions of mixture 2 contained 

glycerol, methanol and trehalose. 

  Mixture 1   Mixture 2 

Variables Chi² Df P value Variables Chi² Df P value 

Vitrification solution 2.0298 2 0.3624 Vitrification solution 2.9503 2 0.22875 

Exposure time 62.3706 3 1.83 E-13 Exposure time 85.4068 3 <2.2 E-16 

Glycerol pretreatment 42.4317 1 7.32 E-11 Glycerol pretreatment 6.5562 1 0.01045 

Vitr sol:time 6.2729 6 0.3933 Vitr sol:time 14.3202 6 0.02626 

Vitr sol:Gly pretreat 1.6717 2 0.4335 Vitr sol:Gly pretreat 20.1849 2 4.14 E-05 

Time:Gy pretreat 35.6892 3 8.71 E-08 Time:Gy pretreat 55.2277 3 6.14 E-12 

Vitr sol:Gly:time 3.6685 6 0.7214 Vitr sol:Gly:time 9.0793 6 0.16917 

 

3.2.3  Measurement of egg volume during osmotic dehydration 

Subsequently, we also studied the volume change during the exposure to vitrification solutions of the 

treatments with the highest survival rates (Figure 5). Treatments selected for mixture 1 are exposure to 

VS1 for 5 min (56% survival), exposure to VS2 for 5 (54% survival) and 10 min (38% survival) and 

exposure to VS3 for 5 (70% survival) and 10 min (36% survival). Treatments selected for mixture 2 

are exposure to VS4 for 10 (60% survival) and 20 min (56% survival), exposure to VS5 for 10 min 

(70% survival) and exposure to VS6 for 10 min (66% survival). 

Results for the two mixtures were again analyzed separately. Survival did not significantly differ 

between the vitrification solutions of the same mixtures (Kruskal Wallis, pmixture1 = 0.1218, p mixture2 = 

0.1108). However, applying the glycerol pretreatment did have a significant influence on the egg 

volume (Kruskal Wallis, pmixture1 and 2 < 0.0001). Exposure to VS1-3 results in a volume reduction of the 

asexual eggs with about 20%, and in combination with glycerol loading lead to shrinkage of even 35% 

(Figure 6A). For VS4-6 the volume changes are less pronounced with 7% and 10%, for respectively 

exposure to the vitrification solutions without and with glycerol pretreatment (Figure 6B).  
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Figure 6: Effect of exposure to vitrification solution and/or glycerol on the volume of asexual 

eggs of D. magna. Data are means of fifty replicate eggs; error bars indicate one standard error. 

3.3 Droplet vitrification 

From previous experiments treatments causing lowest mortality were selected to use as pretreatments 

in the vitrification protocol and followed by the droplet vitrification (Figure 1). 

Survival off all control conditions without freezing (* in figure 1) was similar to survival in the 

previous experiments (Figure 7). There were only survivors after freezing if eggs were pretreated in 

two steps, i.e. with both the glycerol loading and the osmotic dehydration in a vitrification solution. 

After osmotic dehydration with VS3 three of thousand eggs survived droplet vitrification, one after 5 

min of exposure and two after 10 min of exposure (Figure 7). After osmotic dehydration with VS4 

seven of thousand eggs survived droplet vitrification but only if there fatty acid and trehalose content 

was manipulated, six after 10 min of exposure and one after 20 min of exposure (Figure 7).  

 

Figure 7: Overview of the survival rate (%) of a sexual D. magna eggs exposed to the multiple 

steps of the cryopreservation protocol. 
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4 Discussion 

This is the first report on the survival of parthenogenetic eggs of Daphnia after exposure to liquid 

nitrogen. We show that asexual eggs of Daphnia magna are capable of surviving cryopreservation 

provided they are sufficiently dehydrated. The most successful protocol was the one in which eggs 

were dehydrated in two steps, through glycerol loading followed by osmotic dehydration in a 

vitrification solution. The safe preservation of clonal lines would give researchers the opportunity to 

work with genetically identical individuals in studies performed at different times and places, 

increasing comparability, reliability and repeatability.  

The cryoprotectant glycerol is due to its hydroxyl groups able to stabilize membranes by the formation 

of hydrogen bonds with the polar phospholipid heads (Bryant et al., 2001). It is a small sugar alcohol 

able to penetrate the cell membrane at a slow rate at room temperature, thereby increasing the 

intracellular viscosity and kinetically inhibiting ice formation (Polge, 1949; Fuller, 2004; Muldrew et 

al., 2004). This has been confirmed by our results for the asexual D. magna eggs. The concentration of 

glycerol only increased to about 0.033% per egg during exposure to glycerol solutions of 10-20%, 

while at the same time the volume decreased with about 20% as a consequence of water loss. Glycerol 

is a compatible solute and thus naturally produced by many organisms to withstand drought and cold 

temperatures, including Daphnia concentrations (Eroglu, 2003; Fuller, 2004; Pauwels et al., 2007). 

The consequence is also that it is less toxic than other cryoprotectants at high concentration. 

Nevertheless, we still found an increasing mortality with increasing glycerol concentration and 

exposure time mainly due to osmotic toxicity. Concentrations higher than 20% glycerol are not 

tolerated well by the asexual eggs of D. magna.  

To reduce the toxic effects of individual cryoprotectants we used a mixture of cryoprotectants, as we 

needed high concentrations to achieve a vitrified state of the biological tissue (or the formation of a 

glass) (Fahy et al., 1984; 2004; Muldrew at al., 2004). We have applied glycerol, ethylene glycol and 

trehalose in one mixture and in the other mixture ethylene glycol was substituted by methanol. 

Trehalose was added to both vitrification solutions because it is known to have beneficial effects on 

the vitrification capacity of a solution by lowering its vitrification temperature (Kuleshova et al., 

1999). The disaccharide trehalose is a non-penetrating cryoprotectant and like glycerol it is a 

compatible solute also used by many invertebrates, including Daphnia, as protective molecule against 

stressful conditions encountered by their dormant eggs (Clegg, 2001; Hengherr et al., 2011; Putman et 

al., subm. (Chapter 2)). Ethylene glycol and methanol are commonly used cryoprotectants because of 

their low toxicity towards embryos at vitrifying concentrations (Ali and Shelton, 1993; Mullen et al., 

2008). Ethylene glycol is a synthetic ice blocking agent able to penetrate membranes depending on the 

application temperature (Irdani et al., 2006). It is used in many successful cryopreservation protocols 

of mammalian embryos (Mullen and Fahy, 2011; 2012) and in the vitrification solution used to 
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cryopreserve embryos of the arthropod Drosophila melanogaster (Steponkus et al., 1990; Steponkus 

and Caldwell, 1993). Methanol is a fast penetrating cryoprotectant among others used for the 

vitrification of nematodes and fish spermatozoa (Galway and Curran, 1995; Zhang, 2004; Elsen et al., 

2007). Osmotic dehydration was applied at 0°C, consequently glycerol and ethylene glycerol are no 

longer able to penetrate through the cell membrane. Consequently, mixture 1 only contains non-

penetrating cryoprotectants and can only extract water from the eggs, while mixture 2 contains a 

combination of penetrating and non-penetrating cryoprotectants. This difference resulted in a clearly 

different volume reduction. The shrinkage of eggs exposed to mixture 1 was about 10% higher than 

when eggs were exposed to mixture 2, resulting in higher mortality upon exposure to mixture 1 due to 

osmotic toxicity. 

Apart from the ability to lower the vitrification temperature of a solution, trehalose has many more 

functions, such as stabilizing proteins, phospholipids and other macromolecules (Crowe et al., 2001; 

Crowe 2007), but therefore trehalose has to be present inside the cell. As trehalose is not able to 

penetrate through a cell membrane this could be achieved using techniques like microinjection or 

electroporation (Eroglu et al., 2002; 2003; Shirakashi, 2002) or by inducing adaptive metabolism 

(Putman et al., subm. (Chapter 2)). The little increase from 0.006% to 0.011% trehalose per egg 

caused by trehalose supplementation of the maternal food led to some promising results. 

We prove that cryopreservation of the asexual eggs of Daphnia magna is possible although there is 

still some optimization needed to increase the survival rate. Cryopreservation protocols of aquatic 

embryos are scarce and we believe that the techniques and approaches used in this study can 

contribute to the development of cryopreservation protocols for embryos of other species. We believe 

that a successful cryopreservation can be developed for most organisms provided a logic approach is 

followed. Starting with a study of the biochemical composition of the tissue to be preserved, as this 

can provide valuable information on which cryoprotectants to use, and then step by step optimizing all 

steps of the protocol.  
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The water flea Daphnia magna is an important model organism in many research areas, such as 

ecology, ecotoxicology, evolutionary biology and eco-genomics (Lampert, 2006; 2011; Altshuler et 

al., 2011; Seda and Petrusek, 2011; Tautz, 2011). Many of these applications use clonal lines produced 

via asexual reproduction. This gives researchers the opportunity to work with large numbers of 

genetically identical individuals (De Meester et al., 2004). For ecotoxicology, use of the same clonal 

lineages worldwide and for different tests over time increases comparability and reliability (Walker, 

2014). Working with clonal lines for ecological and evolutionary biological research increases 

repeatability. Additionally, it allows researchers to distinguish between genetic responses and 

phenotypic plasticity, study genotype-environment interactions and genotype-genotype interactions in 

a straightforward way, and to perform their experiments with lines that have evolved special 

characteristics (Van Doorslaer, 2009; 2010; Tollrian and Leese, 2010; Simon, 2011; Jansen et al., 

2015). Due to the publication of the Daphnia genome, clonal lines obtained from experiments can now 

also be characterized for their genome (http://daphnia.cgb.indiana.edu/; Colbourne et al., 2011). Yet, 

there is so far still one major hurdle: the clonal lines have to be kept continuously in culture, because 

there is no way to store them. While Daphnia produce dormant eggs that can be kept for long periods 

in a low-active state, these eggs are sexual so in effect, they destroy the original genotype. Apart from 

the maintenance costs, this is also very risky. Clones can be lost accidently or can be contaminated. In 

this PhD research, we tried to solve this problem by developing a cryopreservation protocol for the 

asexual eggs of Daphnia magna.  

The dormant eggs (See Figure 4, Introduction) of Daphnia are drought and freeze resistant (see Box II, 

Introduction). While they are not suitable for the preservation of clonal lines, they can act as an 

excellent reference to determine what is needed for eggs to survive freezing, and thus 

cryopreservation. Therefore we first needed to determine what the main biochemical differences are 

between sexual and asexual eggs (Chapter 1-3; Discussed in section 1). Once these differences were 

identified, asexual eggs could be modified to try to bridge the gap between both egg types and to 

increase stress resistance of asexual eggs (Chapter 1-4; Discussed in section 2). In parallel, we started 

with the optimization of the protocol for cryopreservation. We first tested the toxicity of several 

cryoprotectants. In a second step, we incorporated the procedure to alter the biochemical properties of 

asexual eggs developed in chapters 1 and 2 in our cryopreservation protocols, and checked survival of 

modified and unmodified eggs after vitrification (Chapter 5; Discussed in section 3). 

1 Biochemical composition of dormant and subitaneous D. magna eggs 

It is already well-known for a long time that dormant and subitaneous eggs differ in their morphology 

and capacity to cope with stress (Makrushin, 1978; Seidman and Larsen, 1979; Zaffagnini, 1987; 

Radzikowski, 2013) and in the life history of the animals that hatch from them (Arbaciauskas, 1998). 
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Next to morphology, biochemical composition of the cytoplasm and membranes are the main factors 

influencing stress resistance of cells and tissues. Our results expanded the knowledge about the 

differences in biochemical composition of dormant and subitaneous eggs of Daphnia magna (see 

General introduction Table 2). To summarize (Table 1), we found increased levels of trehalose, 

putrescine, spermidine and EPA and ARA (when both eggs are produced on C20 PUFA-deficient diet) 

in dormant compared to subitaneous eggs while diaminopropane and total fatty acid concentrations 

were higher in parthenogenetic eggs. And it was already know that sexual eggs contain higher 

amounts of glycerol and Hsp 60 (Pauwels et al., 2007). 

Table 1: Comparison of biochemical composition between sexual and asexual eggs 

Biochemical components Sexual eggs Asexual eggs 

Lipids1   
 

 
More PUFA  More fatty acids in phospholipids 

Sugars and sugar alochols   
 

 
More Trehalose2 

 

 
More Glycerol3 

 Proteins3   
 

 
More Hsp 60 

 Polyamines4   
 

 
More Spermidine More Diaminopropane 

 
More Putrescine 

 1 Abrusan et al., 2007; Putman et al., 2015 (Chapter 1) 

 2 Hengherr et al., 2011; Putman et al., subm. (Chapter 2) 

 3 Pauwels et al., 2007 

  4 Putman et al., subm. (Chapter 3) 

  
 

Trehalose, neutral lipids, glycerol, heat shock proteins, putrescine and spermidine all have a stress 

protective role in the cytoplasm of the cells. Heat shock proteins, glycerol and trehalose act as 

molecular chaperones preserving the native state of proteins under stress conditions (Crowe, 1987; 

2007; Parsell and Lindquist, 1993). The polycations spermidine and putrescine also protect negatively 

charged macromolecules such as proteins, DNA and RNA (Pegg and McCann, 1982; Tabor and 

Tabor, 1984). The cryoprotective substances trehalose and glucose additionally inhibit the formation 

of intracellular ice crystals by increasing the viscosity of the cytoplasm and by physically interrupting 

the formation of an ice crystal (Wolfe and Bryant, 1999; Fuller, 2004).  

Phospholipids, glycerol, trehalose and polyamines also protect the cell membranes against damage 

caused by drought or cold temperatures by maintaining membrane fluidity and preserving the integrity 

of the membrane structure. The length and the saturation degree of the fatty acid tail of the 



  Discussion 

147 

 

phospholipids determine membrane flexibility (Valentine and Valentine, 2004; Pruitt, 1990). 

Trehalose and glycerol stabilize membranes during cold or drought by the formation of hydrogen 

bounds (Crowe et al., 1987; Storey, 1997; Bryant et al., 2001; Crowe, 2007), while the polyamines 

spermidine and putrescine bind to negatively charged membrane components to stabilize them (Pegg 

and McCann, 1982; Tabor and Tabor, 1984). Another important asset of trehalose is that it lowers the 

phase transition temperature of the membrane (Hontoria et al., 1998). 

We now have a more thorough understanding of the biochemical differences between dormant and 

subitaneous eggs and how these differences contribute to the striking contrast in stress resistance 

between the two egg types. There are still a number of candidate protective components for which we 

have no information, however. Besides phospholipids, also sterols are essential components of plasma 

membranes and in animal’s cholesterol is the dominant sterol (Goad, 1981; Crockett, 1998).  

Due to its ability to interact with phospholipids and membrane proteins, cholesterol has many 

functions in the plasma membrane. Cholesterol affects the stabilization of membrane functions, 

membrane fluidity and permeability by influencing the phase transition and ordering of membranes 

(Crockett, 1998; Ohvo-Rekilä et al., 2002). Arthropods lack the capacity to synthesize cholesterol and 

therefore have to rely on their diet for this compound (Goad, 1981). As the diet of Daphnia consists of 

phytoplankton, they have to convert phytosterols into cholesterol and not all of them are equally 

suitable (Martin-Creuzburg and Von Elert, 2004). Expect for the diet also the temperature influences 

the sterol content and the play a major role in thermal adaptation (Crockett 1998). Sperfeld and 

Wacker (2009) reported that female Daphnia incorporate more cholesterol in their body tissue and 

eggs at higher temperatures, Having so many functions, cholesterol deficit has been shown to have a 

large impact on the life history of Daphnia (Martin-Creuzburg and Von Elert 2004; 2009; Martin-

Creuzburget al., 2005) however cholesterol will probably not contribute to the cold resistance of 

dormant eggs.  

Another important biochemical component for which we still lack information in our comparison is 

protein composition. Stress responses in all organisms, including Daphnia, involve gene up- and 

down-regulation, consequently affecting the protein profile (Eads et al., 2007; Colbourne et al., 2011). 

Schwerin et al. (2009) showed distinct protein profiles for 10°C- and 20°C-acclimated D. pulex 

animals and it has been shown that synergistic effects between trehalose and stress proteins increase 

tolerance towards multiple stressors (Elliott et al., 1996; Crowe et al., 2001). Except for heat shock 

protein 60, which has been found in higher concentrations in sexual compared to asexual eggs by 

Pauwels et al. (2007), little is known about the protein profile of both egg types. Although we were 

able to develop a protocol to analyze the protein content of sexual and asexual eggs of Daphnia 

magna, we could not perform yet the analysis due to technical problems and time restrictions. The 

protocol uses 2D gel electrophoresis to separate the proteins and mass spectrometry to identify them. 



  Discussion 

148 

 

2 Plasticity of subitaneous eggs 

2.1 Alteration of biochemical composition via food conditions 

From our comparison of the biochemical composition of the two egg types we can conclude that the 

largest differences between sexual and asexual eggs of D. magna are to be found in the much higher 

concentration of trehalose and the different fatty acid composition of the phospholipids in the sexual 

compared to the asexual eggs (Chapter 1-2). The total concentration of fatty acids and especially 

polyunsaturated fatty acids is higher in asexual eggs compared to sexual eggs when they are produced 

under the same conditions. There are, however, two exceptions; eicosapentaenoic acid (EPA, C20:5 n-

3) as well as arachidonic acid (ARA, C20:4 n-6) were measured in higher concentrations in sexual 

eggs when these were produced on S. obliquus, a C20-PUFA deficient diet (Abrusan et al., 2007; 

Putman et al., 2015 (Chapter1)). EPA and ARA play important roles in the cell metabolism as 

precursors for prostaglandins and other eicosanoids, which are important for reproduction, the immune 

system and ion transport (Stanley, 2006; Heckmann et al., 2008). These long-chain polyunsaturated 

fatty acids are important for the maintenance of membrane fluidity and functioning under low 

temperatures (Hazel and Williams, 1990; Pruitt, 1990; Martin-Creuzburg et al., 2012). Our results 

indicate that dormant eggs may need a certain concentration of C20-PUFA to be able to survive harsh 

winter conditions. It has been shown that the fatty acid composition of subitaneous eggs is very plastic 

and strongly reflects the composition of the maternal diet (Wacker and Martin-Creuzburg, 2007). We 

observed that the plasticity of asexual eggs is higher than that of sexual eggs (Putman et al., 2015 

(Chapter1)). To bridge the difference between the EPA and ARA content of sexual and asexual eggs 

produced on S. obliquus, we adjusted the diet and provided an alga containing high concentrations of 

C20 PUFA, N. limnetica. This resulted in a spectacular increase in EPA content in asexual eggs 

(Figure 1), so this manipulation was successful.  
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Figure 1: Comparison of the EPA and trehalose content (%) of dormant and subitaneous eggs. 

Dormant eggs and unmanipulated subitaneous eggs were produced under standard laboratory 

conditions with Scenedesmus obliquus as food. Manipulated subitaneous eggs were produced 

under the same standard conditions, but with Nannochloropsis limnetica and trehalose 

containing liposomes as food (Data from chapter 1-2). 

The disaccharide trehalose has been linked to desiccation tolerance in dormant stages of many 

organisms, including the crustacean Triops (Hengherr et al., 2011), Daphnia pulex (Hengherr et al., 

2011), Daphnia magna (Hengherr et al., 2011; Putman et al., subm. (Chapter 2)) and Artemia 

franciscana (Clegg, 1965). Additionally, trehalose is a crucial cryoprotectant in many 

cryopreservation protocols for embryos (Kuleshova et al, 1999; Eroglu et al., 2000; 2002; Lagares et 

al., 2009). Trehalose is a naturally occurring cryoprotectant in the eggs of Daphnia magna, so it likely 

to be less toxic than other cryoprotectants and it has many beneficial effects on the survival of cells 

during drought and freezing conditions. It would therefore be good if the concentrations of trehalose in 

the subitaneous eggs could be increased. In an attempt to do so, we raised female Daphnia on a diet 

supplemented with trehalose containing liposomes, a technique that has been applied successfully for 

the supplementation of Daphnia with fatty acids and sterols (Martin-Creuzburg et al., 2008; 2009; 

Martin-Creuzburg and Von Elert, 2009). Trehalose concentration in the eggs increased, but not 

significantly (Chapter 2) and the increase was marginal compared to the difference in trehalose 

concentration between subitaneous and dormant eggs (Figure 1). Increasing the liposome 

concentration supplemented to the food had no effect, probably because of a limitation in filtering rate 

of the water fleas. Raising the trehalose concentration in the liposomes even more was impossible as 

liposomes in this case did no longer form correctly. As trehalose could be a key component in the 

survival of subitaneous eggs undergoing cryopreservation, there is a need for additional mechanisms 

to increase trehalose levels in eggs. In mammalian cells electroporation and microinjection have been 

successfully used to transfer trehalose through the membranes (Eroglu et al., 2002; 2003; Shirakashi, 

2002) and both techniques have already been optimized for Daphnia (Kato et al., 2010; 2011). It 
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would be thus be very interesting to test the effectiveness of these techniques for loading asexual eggs 

with trehalose. 

2.2 Modification of biochemical composition via the manipulation of culture temperature  

Temperature is an important environmental characteristic fluctuating in time and space, strongly 

affecting the physiology and life history of organisms, especially ectotherms as they rely on the 

external temperature for the regulation of their body temperature. Cell membranes are particularly 

sensitive to low temperatures as they tend to undergo a phase transition from liquid to gel, 

consequently losing flexibility, permeability and functionality (Wolfe and Bryant, 1999; 2001; Mazur, 

2004). To avoid this, winter-active and cold-acclimated crustacea accumulate (long-chain) PUFA in 

their membranes (Farkas et al., 1984; Pruitt, 1990; Schlechtriem et al., 2006; Sperfeld and Wacker, 

2012). We could thus reason that PUFA concentrations of eggs can be increased by culturing Daphnia 

at relatively cold temperatures. We confirmed these results for asexual eggs of D. magna: eggs 

generated at colder temperatures contained more phospholipids and incorporated more PUFA in their 

membranes. Many animals and plants induce cold-resistance strategies upon a short exposure to cold 

temperatures. Additionally to culturing at constant temperatures, we have therefore also tested the 

effect of a cold shock. Animals of the cold shock treatment were cultured at 18°C but placed at 4°C for 

8h at day 3 of their development and at maturity. This experiment was carried out in parallel to the 

experiment described in chapter 4. In contrast to the continuous culturing at low temperatures, cold 

shocks did not have an influence on the fatty acid composition of neutral and phospholipids (Figure 2). 

 

Figure 2: Fatty acid composition (µg mg
-1

 dry weight) of the neutral lipid (A) and 

phospholipid (B) fractions of asexual eggs of D. magna produced under different temperatures. 

Data are means of 4 replicates and error bars indicate one standard error. 
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It would also be interesting to check if low culturing or environmental temperatures influence the 

trehalose content of asexual eggs, because this would provide an easy way to increase the trehalose 

concentration. Earlier studies have shown that cold temperatures have a major influence on the 

concentration of trehalose in many organisms, such as bacteria, nematodes and insects. In all these 

organisms the trehalose content increased with decreasing temperature, with an increased cold 

resistance as result (Fields et al.; 1998; Kandror et al., 2002; Jagdale et al., 2003). 

3 Cryopreservation 

Optimization of every step in the vitrification protocol led to the survival of some subitaneous 

Daphnia magna eggs after vitrification (Chapter 5). Before exposure to liquid nitrogen these eggs 

must be dehydrated to increase their viscosity as much as possible. First, subitaneous eggs were loaded 

with trehalose through supplementation of the maternal diet with trehalose containing liposomes and 

the phospholipid composition was altered through feeding the mother C20 PUFA-rich food. Second, 

the eggs were loaded with the penetrating cryoprotectant glycerol through exposure to a 10% glycerol 

solution for 30 min. Third, they were osmotically dehydrated, and simultaneously loaded with 

methanol, through exposure to a vitrifying solution containing 10% glycerol, 30% methanol and 0.5M 

trehalose. In the last step, eggs were plunged into liquid nitrogen in a drop of the vitrification solution, 

applying the principles of ultra-fast freezing using droplet vitrification. 

While we were successful in cryopreserving parthenogenetic eggs, survival rates so far are very low. 

To increase survival several steps in the protocol can still be improved. First, it should be tested 

whether the intracellular concentration of trehalose can be increased, either by changing the culture 

conditions for example in terms of temperature or by other techniques overcoming membrane 

impermeability for trehalose, like microinjection or electroporation. Second, the effect of the exact age 

of the eggs should be tested. In all experiments we aimed to use eggs of stage 1 following to Kast-

Hutcheson et al. (2001), but the difference with stage 2 eggs is difficult to see. Stage 1 is the time 

between 0 and 15h after ovulation, with no evidence for cellular differentiation. In stage 2, 15-25h 

after deposition, embryos are already differentiated into a gastrula. The longer eggs stay in the brood 

pouch the more they differentiate, and the more differentiation the lower the changes to survive 

cryopreservation. The latter has been shown among others for rotifers (Toledo and Kurokora, 1990), 

blue mussel (Toledo et al., 1989) and sea urchins (Asahina and Takahashi, 1978) and is due to the fact 

that in differentiated structures not only the cell integrity but also the tissue integrity (with all 

intercellular connections) needs to be preserved. Additionally, it is more difficult for cryoprotectant 

substances to spread evenly over the tissue and it is more difficult to extract sufficient amounts of 

water from the centrally positioned cells. Therefore a comprehensive histological study of asexual and 

sexual eggs would provide valuable extra information about the structural differences between the egg 

types and it could allow checking the distribution of the cryoprotectants trehalose and glycerol in the 
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asexual eggs. Ideally, we should get a survival rate of >10% so that we can use the technique in a 

reliable way to preserve clonal lineages of Daphnia.  

4 Conclusion 

Our stepwise approach led to successful cryopreservation of subitaneous Daphnia magna eggs. 

Although survival rates are still low, this is a large step forward in the process towards safe storage of 

clonal lines. The comparison of the biochemical content of dormant, stress resistant eggs with 

subitaneous, sensitive eggs provided crucial information that was used to modify subitaneous eggs 

towards drought and freeze resistant eggs.  
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The water flea Daphnia magna is an important model organism in many research areas, such as 

ecology, ecotoxicology, evolutionary biology and eco-genomics and most of these applications use 

clonal lines produced via asexual reproduction. To date, maintenance of the clonal lines can only be 

achieved through continuous culturing. This is a labor-intensive process and entails the risk of losing 

important lines because of contamination, disease or accidents. In this PhD research, we tried to solve 

this problem by developing a cryopreservation protocol for the asexual eggs of Daphnia magna. 

The dormant eggs of Daphnia, produced by sexual reproduction, are drought and freeze resistant and 

are thereby an excellent reference to determine what is needed for eggs to survive cryopreservation. 

We determined the main biochemical differences between sexual and asexual eggs. We found that 

asexual eggs have higher concentrations of fatty acids than sexual eggs, however a certain 

concentration of long-chain PUFA, especially EPA and ARA, is maintained in sexual eggs even when 

they are not provided by the food and this in both neutral lipids and phospholipids. Sugar content of 

sexual and asexual eggs was very distinct, sexual eggs contained high amounts of trehalose (4.15% of 

their dry weight), while asexual only contain 0.006% trehalose. Also polyamine analysis revealed 

some difference between the two egg types. Asexual eggs always contained higher amounts of the 

metabolite diaminopropane and lower amounts of putrescine and spermidine in comparison with 

sexual eggs. 

In a second step we tried to modify the composition of asexual eggs in order to increase their stress 

resistance. Fatty acid composition of asexual is strongly influenced by the maternal food, so to boost 

the PUFA composition of these eggs we simply switch to a diet containing more long-chain PUFA. 

PUFA composition of the asexual eggs of D. magna is also strongly influence by the culturing 

temperature of the females, they allocate more unsaturated fatty acids to their eggs at colder 

temperatures. In addition, we tried to increase trehalose concentration of the asexual eggs by 

supplementation of the maternal diet with trehalose containing liposomes, but changes were only 

minor.  

In parallel, the protocol for cryopreservation was optimized. To obtain sufficient dehydration we 

choose for a two-step pretreatment for the eggs before applying droplet vitrification. The pretreatment 

consisted of a glycerol loading in a 10% glycerol solution for 30 min. This was followed by osmotic 

dehydration in a vitrification solution. The vitrification solution with the lest mortality after exposure 

for 10 or 20 min contains 10% glycerol, 30% methanol and 0.5M trehalose. 

In the last step, we combined the procedure to alter the biochemical properties of asexual eggs and our 

most suitable cryopreservation protocol. This stepwise approach led to successful cryopreservation of 

subitaneous Daphnia magna eggs. Although survival rates are still low, this is a large step forward in 

the process towards safe storage of clonal lines. 



 

162 

 

 



 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Samenvatting 



 

 



  Samenvatting 

165 

 

De watervlo Daphnia magna is een belangrijk modelorganisme in verscheidene onderzoeksdomeinen, 

zoals ondermeer ecologie, ecotoxicologie en evolutionaire biologie en de meeste van deze 

toepassingen maken gebruik van clonale lijnen geproduceerd via aseksuele reproductie. Tot op heden 

worden deze lijnen bijgehouden door ze continu in cultuur te houden. Dit is niet alleen 

arbeidsintensief, het is ook niet geheel zonder risico. Clones kunnen gecontamineerd worden of 

verloren gaan door ziekte of accidenteel verlies. Om dit probleem op te lossen hebben we tijdens dit 

doctoraatsonderzoek geprobeerd om een cryopreservatieprotocol te ontwikkelen voor de aseksuele 

eieren van Daphnia magna. 

De dormante eieren van de watervlo, geproduceerd via seskuele reproductie, zijn wel droogte- en 

vriesresistent en kunnen daarom fungeren als referentiemateriaal. In een eerste deel hebben we dan 

ook de biochemische verschillen tussen beide eitypes bepaald. Onze resultaten toonden aan dat 

aseksuele eieren in het totaal meer vetzuren bevatten, maar seksuele eieren bevatten altijd een 

bepaalde concentratie aan lange ongesatureerde vetzuren, vooral EPA en ARA, ook als deze niet 

worden aangerijkt door het voedsel. De samenstelling van de suikers was zeer verschillend in seksuele 

en aseksuele eieren. Seksuele eieren bevatten zeer hoge concentraties aan trehalose (4.15% van hun 

drooggewicht), terwijl aseksuele eieren maar 0.006% bevatten. Ook de samenstelling van de 

polyamines vertoonde opvallende verschillen tussen beide types eieren. Aseksuele eieren bevatten 

meer van de metaboliet diaminopropaan en lagere hoeveelheden van spermidine en putrescine dan 

seksuele eieren.  

In een tweede stap hebben we geprobeerd om de samenstelling van de aseksuele eieren te wijzigen 

opdat ze meer resistant zouden worden. Vetzuursamenstelling van de eieren wordt sterk beïnvloed 

door het maternale dieet, dus om de hoeveelheid meervoudig ongesatureerde vetzuren te verhogen 

hebben we de vrouwelijke Daphnia gevoederd met een dieet dat veel meervoudig ongesatureerde 

vetzuren bevat. Daarnaast wordt de vetzuursamenstelling van aseksuele eieren ook sterk beïnvloed 

door de temperatuur waarop de vrouwtjes worden gekweekt, deze alloceren meer meervoudig 

ongesatureerde vetzuren naar hun eieren wanneer ze gekweekt worden op koude temperaturen. 

Vervolgens hebben we geprobeerd om het gehalte aan trehalose in aseksuele eieren te verhogen door 

het maternale dieet te supplementeren met trehalose bevattende liposomen, maar dit reflecteerde 

slechts in een zeer kleine stijging.  

In parallel met voorgaande stappen, hebben we ook het cryopreservatieprotocol geoptimaliseerd. Om 

voldoende uitdroging van de eieren te bekomen hebben we gekozen voor een voorbehandeling 

bestaande uit 2 stappen vooraleer de eieren werden ingevroren via ‘droplet vitrificatie’. Deze 

voorbehandeling bestaat uit het laden van gelycerol via de blootstelling aan een glyceroloplossing van 

10% gedurende 30 min gevolgd door osmotische dehydratatie in een vitrificatieoplossing. De 
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vitrificatieoplossing resulterend in de hoogste overleving, na blootstelling eraan voor 10 of 20 min, 

bevat 10% glycerol, 30% methanol en 0.5M trehalose. 

In de laatste stap, combineerden we de procedure voor het wijzigen van de samenstelling van de 

asksuele eieren met het meest geschikte cryopreservatieprotocol. Deze stapsgewijze aanpak 

resulteerde in succesvolle cryopreservatie van asksuele eieren van Daphnia magna. Ondanks het feit 

dat de ontluikingspercentages nog zeer laag zijn, is dit een grote stap voorwaarts in het proces naar het 

veilig bewaren van clonale lijnen. 
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ALA   Alpha-linolenic acid (C18:3n-3) 

ANOVA   Analysis of variance 

ARA   Arachidonic acid (C20:4n-6) 

DAP   Diaminopropane 

DHA   Docosahexaenoic acid (C22:6n-3) 

DNA   Deoxyribonucleic acid 

EG   Ethylene glycol 

EPA   Eicosapentaenoic acid (C20:5n-3) 

FA   Fatty acids 

FAME   Fatty acids methyl esters 

GC   Gas chromatography 

GLMM   Generalized linear mixed model 

HPLC   High performance liquid chromatography 

HSD   Honestly Significant Difference 

Hsp   Heat shock protein 

LIN   Linoleic acid (C18:2n-6) 

LRV   ‘Langerode vijver’ 

MANOVA  Multivariate analysis of variance 

ME   Methyl ester 

MUFA   Monounsaturated fatty acids 

NSPD   Nor-spermidine 

NSPM   Nor-spermine 

POPC   1-palmitoyl-2-oleoyl-phosphatidylglycerol 

POPG   1-palmitoyl-2-oleoyl-phosphatidylcholin 

PUFA   Polyunsaturated fatty acids 

List of abbreviations 
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PUT   Putrescine 

RNA   Ribonucleic acid 

SFA   Saturated fatty acids 

SPD   Spermidine 

SPM   Spermine 

VS   Vitrification solution 
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