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Abstract 

The natural number bias is known to explain many difficulties learners have with understanding rational 

numbers. The research field distinguishes three aspects where natural number properties are inappropriately 

applied in rational number tasks: density, size, and operations. The overall goal of this study was to characterize 

the development of the natural number bias across the span between 4
th

 and 12
th

 grade. To achieve this goal, a 

comprehensive test was constructed to test 4
th

 to 12
th

 graders’ natural number bias. This test was administered to 

1343 elementary and secondary school students. Results showed that an overall natural number bias could be 

found. This bias appeared to be equally strong in tasks with decimal numbers and tasks with fractions. Moreover, 

the natural number bias was weakest in size tasks, somewhat stronger in operations tasks, and by far the 

strongest in density tasks. An overall decrease of the strength of the natural number bias – but no disappearance 

except for size tasks – could be found with grade.  
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Introduction 

A good understanding of rational numbers is an essential part of mathematical literacy, which is not only 

important in learners’ school career, but also in their everyday experiences. An illustration of the predictive 

relation between early knowledge of rational numbers and later mathematics achievement can be found in the 

longitudinal study of Siegler et al. (2012). They found that learners’ rational number knowledge in the 5
th

 grade 

predicted their mathematical achievement in high school, even after taking into account reading achievement, 

IQ, working memory, whole number knowledge, family income, and family education. Although a good rational 

number understanding is found to be very important, many people have trouble understanding the different 

aspects of rational numbers (Cramer, Post, & delMas, 2002; Mazzocco & Devlin, 2008; Vamvakoussi, Van 

Dooren, & Verschaffel, 2012; Vamvakoussi & Vosniadou, 2004). Even many teachers struggle with the 

understanding of rational numbers (Clarke & Roche, 2009; Post, Cramer, Behr, Lesh, & Harel, 1993). Learners’ 

difficulty with understanding rational numbers has several sources. An example can be found in the research of 

Siegler, Fazio, Bailey, and Zhou (2013) who point at the confusable properties concerning the arithmetic 

operations with rational numbers. They give the example that adding and subtracting fractions with the same 

denominator will result in a fraction with the same denominator, whereas this is not the case for multiplication 

and division. This leads to mistakes such as “2/5 * 3/5 = 6/5”. Another important source of the difficulties 

learners have with the understanding of rational numbers is the natural number bias. An active field of research 

focused on this phenomenon (e.g. De Wolf & Vosniadou, 2011; Obersteiner, Van Dooren, Van Hoof, & 

Verschaffel, 2013; Vamvakoussi, Christou, Mertens, & Van Dooren, 2011; Vamvakoussi et al., 2012; 

Vamvakoussi & Vosniadou, 2004; Van Hoof, Lijnen, Verschaffel, & Van Dooren; 2013; Van Hoof, Vandewalle, 

Verschaffel, & Van Dooren, 2014). As this is also the background of the current paper, we will provide a more 

elaborate explanation of the natural number bias in the next section. 

Natural Number Bias 

The natural number bias is described as the (inappropriate) application of natural number features in rational 

number tasks (e.g. Van Hoof et al., 2014). While the origin of the natural number bias is still a matter of debate, 

there is large consensus in the literature that before children are introduced to rational numbers, they already 

have formed an intuitive idea of what a number is, which is based on natural numbers (Smith, Solomon, & 

Carey, 2005, Vamvakoussi & Vosniadou, 2010). Indeed, in their daily experiences, children encounter natural 

numbers much more often than rational numbers (one example is finger counting). This intuitive idea of numbers 
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as natural numbers is confirmed and systematized by learners’ first years of mathematics education (Greer, 

2004). When rational numbers are then introduced in the classroom (mostly in the middle years of primary 

education), the principles and features of natural numbers are no longer always applicable. When this is the case, 

learners are found to make systematic mistakes specifically in rational numbers tasks where reasoning purely in 

terms of natural numbers results in an incorrect solution. At the same time, much higher accuracy levels are 

found in rational number tasks where reasoning merely in terms of natural numbers results in a correct solution. 

In the literature the former type of tasks, where reasoning in terms of natural numbers leads to an error, are 

called incongruent. For example: If learners are asked to indicate the largest number out of 0.25 and 0.7, they 

may be inclined to rely on the knowledge that 25 is larger than 7, as well as the knowledge that 0.25 has more 

digits than 0.7, leading them to the incorrect answer that 0.25 is larger than 0.7. Items where reasoning in terms 

of natural numbers leads to a correct answer, are called congruent items. An example of such an item is: If 

learners are asked to indicate the largest number out of 0.7 and 0.89, relying on their natural number knowledge 

that 89 is larger than 7, and/or that 0.89 has more digits will lead them to the correct answer that 0.89 is larger 

than 0.7 (Moss, 2005; Ni & Zhou, 2005; Vamvakoussi & Vosniadou, 2004).  

In the research literature, three main aspects are distinguished in which the properties of natural numbers are 

inappropriately applied to rational numbers: their dense structure, their numerical size, and the effect of 

operations.  

The first aspect concerns the structure of natural and rational numbers. Natural numbers are characterized by 

discreteness: You can always point out the successor number of any given number (for example: after 4 comes 

5). Rational numbers, on the contrary, are characterized by a dense structure: There is no such thing as a 

successor number of a given rational number, as there are always infinitely many numbers between any two 

rational numbers. Many learners have difficulties understanding this difference in structure between natural and 

rational numbers. An illustration of this can be found in the study of Vamvakoussi et al. (2011) who found that 

only 28.3% of Greek and Flemish 9
th

 graders answered correctly that there are always infinitely many numbers 

between two given numbers and that these numbers can have both a fraction and a decimal form. Further, in an 

interview study with 9
th

 graders, Vamvakoussi and Vosniadou (2004) investigated learners’ understanding of the 

dense structure of rational numbers. Their results showed that even in 9
th

 grade, many learners still have a naive 

idea of the structure of rational numbers. For example, more than half of the learners stated that there is only one 

number between 3/8 and 5/8.  

The second aspect is related to the numerical size of rational numbers. As stated by Gabriel et al. (2013), 
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learners’ erroneous reasoning about the size of rational numbers can be most often attributed to the (wrong) idea 

that if the (natural) numbers in the symbolic representation are larger, the magnitude of the rational number also 

increases. One of the utterances relates to mistakes in decimal number comparison tasks, where learners have the 

wrong assumption that, as is the case with natural numbers, “longer decimals are larger” and “shorter decimals 

are smaller” (Resnick et al., 1989). For example, in the study of Smith et al. (2005), 50 upper elementary school 

children were interviewed about several aspects of rational number understanding. Common mistakes were for 

example that learners incorrectly assumed that 0.65 was larger than 0.8, because 65 is larger than 8, and that 2.09 

was larger than 2.9 because 209 is larger than 29 (while other learners argued that both numbers are equally 

large because the zero does not matter). In fraction comparison tasks, erroneous answers occur because learners’ 

wrongly assume “that a fraction’s numerical value increases when its denominator, numerator, or both increase” 

(Mamede, Nunes, & Bryant, 2005; Meert, Grégoire, & Noël, 2010). In a study of Clarke and Roche (2009) 6
th
 

graders were interviewed on eight fraction comparison tasks. Their results showed that 77% of the learners 

answered correctly to the congruent task: “Which is the larger number: 3/8 or 7/8?”. At the same time, only 37% 

of the same group of learners was accurate in solving the incongruent task: “Which is the larger number: 4/7 or 

4/5?”. Their study clearly shows that many learners focus on each part of a fraction separately to decide which 

fraction is the larger one instead of focusing on the whole numerical value of the fraction.  

The third aspect of the natural number bias concerns the effect of arithmetic operations. Certain characteristics of 

operations with natural numbers are no longer applicable in the case of rational numbers. Indeed, addition and 

multiplication with natural numbers will always result in something larger while division and subtraction will 

always result in something smaller. However, these rules do not longer necessarily apply in the case of rational 

numbers (for example 0.4 * 9 will result in an outcome smaller than 9), but learners still wrongly assume them to 

be true (Hasemann, 1981, Vamvakoussi et al., 2012). For instance, Van Hoof et al. (2014) asked 8
th

, 10
th

, and 

12
th

 graders to judge the correctness of algebraic expressions that addressed the effect of operations. An example 

of a congruent item was “x/4 < x” which can be true both when x is a rational number, but also when x is a 

natural number. An example of an incongruent item was “3 < 3/x”, in which learners need to inhibit the natural 

number rule that division always make smaller and think of a rational number between zero and one to realize 

that the expression can be true. Clear evidence for an overall natural number bias was found in the higher 

accuracy levels on congruent items (80.2%) than on incongruent items (64.9%).   

Conceptual Change Theory 
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In line with the above, a theoretical framework that has been frequently used to explain the natural number bias 

is the conceptual change theory, and more specifically Vosniadou’s framework theory approach towards 

conceptual change (Vosniadou, 1994; Vosniadou, Vamvakoussi, & Skopeliti, 2008). This theory was originally 

proposed to explain learners’ misconceptions in various science domains, but has afterwards also been applied to 

learning mathematics (Vamvakoussi, Vosniadou, & Van Dooren, 2013). The main assumption of this theory is 

that learners gradually tend to organize their daily experiences in quite coherent framework theories 

(Vamvakoussi & Vosniadou, 2010). These framework theories are domain-specific conceptual structures that 

help learners explain and deal with new, unknown (problem) situations (Vamvakoussi et al., 2011). When 

learners are confronted with new information which is not in line with their framework theory, they will have 

more difficulties to understand this information than when the new information affirms or extends their initial 

framework theory (Vosniadou et al., 2008). In the former cases, conceptual change is needed: Learners need to 

accommodate their initial framework to the new incompatible information. This accommodation is typically not 

an all at once process. Learners often attempt to assimilate the new information without completely revising the 

assumptions of their initial framework theories, which often results in inconsistencies or misconceptions, which 

are explained as synthetic models (Vosniadou et al., 2008). Put differently, learners often undergo a partial 

conceptual change, which leads them to answer correctly in one new situation while answering incorrectly in 

another situation, depending on the specific features of the task. An illustration of a synthetic model is the 

situation where learners already understand that between any two decimal numbers there are infinitely many 

other decimal numbers but do not understand that this also holds for any two fractions (Vosniadou et al., 2008).  

The present study 

The overall goal of this study was to characterize the development of the natural number bias in all three aspects 

(density, size, and operations) across the wide span between 4
th

 and 12
th

 grade. By doing so, we addressed 

various issues that – despite the extensive attention that the topic of rational number understanding recently has 

received – were not covered by research so far.  

First, the natural number bias has amply been studied in separate age groups, be it elementary school students 

(e.g., Gómez, Jiménez, Bobadilla, Reyes, & Dartnell, 2014), secondary school students (Stafylidou & 

Vosniadou, 2004), or adults (e.g., Dewolf & Vosniadou, 2011; Vamvakoussi et al., 2012). However, the 

evolution over a wider age range spanning primary and secondary education has not been addressed in research 

so far.   

Second, while the natural number bias has been thoroughly investigated both with items involving rational 
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numbers in their decimal form and in their fractional form, to the best of our knowledge, no study has yet 

directly and systematically compared the strength of the natural number bias in both representation types.  

Third, previous research has typically focused on the three aforementioned aspects (density, size and operations) 

separately, which makes it difficult to compare the strength of the various aspects of the natural number bias at a 

given age. The only study we know of that included all the aspects is the one by Vamvakoussi et al. (2012) with 

adult participants. Clear evidence for the natural number bias was found in the higher accuracy levels of 

congruent than incongruent tasks for density and operations, while for size tasks there was no accuracy 

difference but only an effect in the higher reaction times participants needed to correctly solve incongruent size 

tasks in comparison with congruent size tasks. However, Vamvakoussi et al. (2012) only used a limited number 

of items, and the three aspects were not systematically and directly compared with each other in one overall 

analysis. So, no conclusions could be made about the relative strength of each aspect of the natural number bias. 

For the above three reasons, the major goal of the current study was to characterize the development of the 

natural number bias in all three aspects (density, size, and operations) across the span between 4
th

 and 12
th

 grade. 

However, since no test instrument was available to measure this natural number bias, a secondary goal of our 

study was to create a comprehensive paper-and-pencil test that includes a sufficient number of congruent as well 

as incongruent items about density, size, and operations, both in their decimal number and fraction form. We 

administered this paper-and-pencil test to learners from 4
th 

until 12
th

grade, with the aim to investigate: 

- The overall occurrence of a natural number bias (as evidenced by a higher performance on the 

congruent than on the incongruent items);  

- The relative strength of this bias in the decimal vs. fraction format;  

- The relative strength of the natural number bias across the density, size, and operations aspects of 

rational number understanding.  

- The evolution with age of the natural number bias as a whole and specifically within each of the three 

aspects.  

Method 

Participants 

Data were collected in 21 schools (nine primary schools and 12 secondary schools) from different parts of 

Flanders, Belgium. This resulted in a representative sample of 1343 learners distributed over 4
th

 grade (n=213), 

6
th

 grade (n=230), 8
th

 grade (n=293), 10
th

 grade (n=302), and 12
th

 grade (n=305). In Flanders, the instruction in 
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the mathematics class on rational numbers typically starts in the 3
rd

 grade. To make sure learners were able to 

solve the rational number test, we chose to carry out our study with learners starting from the 4
th

 grade. Further, 

the Flemish educational standards and curricula (Gemeenschapsonderwijs, 2014; Vlaams Ministerie van 

Onderwijs en Vorming, 2011a) indicate that various aspects of rational numbers are recurrently addressed 

throughout the different years of primary and secondary education. In secondary education, most attention is 

spent to this topic in the first years, where the size of rational numbers, their representations with their mutual 

relations, and computation with rational numbers are extensively treated.  In the upper years of secondary school 

learners still need to use rational numbers frequently, but there is no explicit instructional attention to the subject 

anymore (Vlaams Ministerie van Onderwijs en Vorming, 2011b). 

Design 

Starting from a broad literature review and an exploration of the Flemish mathematics curriculum, a 

comprehensive paper-and-pencil test (the Rational Number Sense Test, further abbreviated as ‘RNST’) was 

constructed with the aim to measure learners’ natural number bias in rational number tasks. The test contained 

items addressing the three aforementioned aspects of the natural number bias (density, size, and operations), with 

items presented in fraction or decimal form or using a combination of both. The test further contained open and 

multiple choice questions and items of a varying difficulty degree for each of the aspects, in order to tap the full 

range of learners’ natural number bias. In this study we report data from 63 items that were solved by learners 

from every grade. In total there were 15 density items
1
 (2 congruent and 13 incongruent), 33 size items (15 

congruent and 18 incongruent), and 15 operations items (2 congruent and 13 incongruent). Further, 37 items 

involved fractions, 23 decimal numbers, and 3 items allowed a fraction or a decimal number as an answer. 

Examples of congruent and incongruent items are given in Table 1. The full test can be found in Appendix. 

Because the goal of the present study was to directly compare and investigate the development of the natural 

number bias in rational number tasks throughout the elementary and secondary school curriculum, we will report 

only the data from the 63 items that were in common to learners in all age groups. The entire RNST, however, 

contained 177 items, because with increasing grade, additional items were included to tap even more advanced 

understanding of rational numbers.  

                                                           
1
 The only exception is the test of the 4

th
 graders.  Because the dense structure of rational numbers is only 

briefly introduced in elementary school in Flanders, only a limited number of density tasks (four) were provided 
in the test of the 4

th
 graders.  
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Table 1  

Examples of test items 

 Congruent item Incongruent item 

Density Write a number between 1/4 and ¾ Write a number between 3.49 and 

3.50 

Size Choose the largest number: 

14/18 or 29/31 

Choose the largest number: 

3/9 or 2/5 

Operations Is 50 * 3/2 bigger or smaller than 

50? 

Is 72 * 0.99 bigger or smaller than 

72? 

 

Analysis 

Because we had a repeated measures design, data were analyzed using the Generalized Estimation of Equations 

(GEE) in order to correct for repeated (and probably correlated) measures within participants (Liang & Zeger, 

1986). Learners’ accuracy on a specific item was the dependent variable. Because of the dichotomous nature of 

this variable, we used logistic regression to model the probability that a correct answer was given to a specific 

item. The degree of difference in accuracy on the congruent versus incongruent items was seen as an indicator of 

the strength of the natural number bias. As such, we expected our analysis to point out a main effect of 

congruency indicating better performance on congruent than incongruent items. Besides investigating the 

congruency effect, we also investigated the interaction with the various other variables in the study, i.e. the 

representational format of the items, the aspect of the natural number bias dealt with, and learners’ grade level.   

Results 

The reliability of the test instrument was high (Cronbach’s alpha= .87). The high reliability of the test was found 

in every grade separately as well (4
th

 grade: Cronbach’s alpha= .87, 6
th

 grade: Cronbach’s alpha= .88, 8
th

 grade: 

Cronbach’s alpha= .83, 10
th
 grade: Cronbach’s alpha= .84, and 12

th
 grade: Cronbach’s alpha= .83). 

Congruency Main Effect  
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A significant main effect of congruency was found X²(1, N = 1343) = 1456,13, p <.001. The accuracy level for 

congruent items (87.9%) was significantly higher than for incongruent items (66.8%) for the whole group of 

participants, confirming an overall occurrence of a natural number bias. 

Congruency x Representation Interaction Effect 

No significant interaction effect between representation and congruency could be found, X²(1, N = 1343) = 0.03, 

p = .87
2
. This suggests that the natural number bias was equally strong in rational number tasks with decimal 

numbers as in rational number tasks with fractions. Pairwise comparisons demonstrated significantly higher 

accuracy levels for congruent items compared to incongruent items for rational number tasks with decimal 

numbers (88.5% vs. 68.1%, p < .001) as well as for rational number tasks with fractions (87.6% vs. 66.0%, p < 

.001). The finding that the natural number bias was equally strong in rational number tasks with decimal 

numbers as in rational number tasks with fractions is also visible in the odds ratios and their 95% confidence 

intervals (OR = 3.61, 95% CI [3.32, 3.92] for decimal numbers and OR = 3.63, 95% CI [3.43, 3.85] for 

fractions). 

Congruency x Aspect Interaction Effect 

A significant interaction effect between congruency and aspect was found X²(3, N = 1343) = 439.86, p <.001, 

indicating that the natural number bias was not equally strong for each of the three aspects. Pairwise 

comparisons demonstrated significantly higher accuracy levels for congruent items in comparison with 

incongruent items for each aspect: 92.5% vs. 51.9%, p < .001 for density, 87.9% vs. 83.1%, p < .001 for size, 

and 84.7% vs. 68.3%, p < .001 for operations. The odds ratios and their 95% confidence intervals showed that 

the natural number bias was weakest in size tasks (OR = 1.48, 95% CI [1.40, 1.57]), somewhat larger in 

operations tasks (OR =1.66, 95% CI [1.58, 1.74]) and clearly largest in density tasks (OR = 11.48, 95% CI 

[10.01, 13.17]).  

Congruency x Grade Interaction Effect 

A significant interaction effect between congruency and grade was found X²(8, N = 1343) = 998.95, p <.001, 

indicating that the natural number bias was not equally strong in every grade although higher accuracy levels for 

                                                           
2
 Because there were only 3 items that consisted of a combination of fractions and decimal numbers or of an 

open question in which learners could answer with a fraction or a decimal number, these 3 items are not 
discussed in this part of the analysis and we only looked at the difference between items with fractions and 
items with decimal numbers. 
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congruent items than incongruent items were found in each grade level: for 4
th

 (78.7% vs. 41.7%, p < .001), 6
th
 

(88.8% vs. 58.3%, p < .001), 8
th

 (88.9% vs. 67.5%, p < .001), 10
th

 (90.0% vs. 78.1%, p < .001), and 12
th

 graders 

(93.0% vs. 85.4%, p < .001). The odds ratios and their 95% confidence intervals (see Figure 1) showed that the 

strength of the natural number bias was not significantly different for 4
th

 graders ( OR = 5.16, 95% CI 

[4.72,5.63]) and 6
th

 graders (OR = 5.66, 95% CI [5.12, 6.25]). However, the natural number bias was 

significantly weaker in  8
th

 graders (OR = 3.85, 95% CI [3.45, 4.31]) and even significantly weaker in 10
th

 

graders (OR = 2.52, 95% CI [2.24, 2.83]) and 12
th
 graders (OR = 2.26, 95% CI [1.98, 2.59]). The strength of the 

natural number bias did not significantly differ between these latter two grades.  

 

Figure 1. Overall evolution of the strength of the natural number bias as represented by the odds ratios (an odds 

ratio of 1 indicates an absence of a bias). 

Congruency x Grade Interaction Effect for Every Aspect  

Density. 

Important to note is that the dense structure of rational numbers is only briefly introduced in elementary school 

in Flanders. Therefore, only a limited number of density tasks were provided in the test of the 4
th

 graders. 

Consequently, the data from the density tasks of the 4
th

 graders were not used in the current analysis.  

There was a significant interaction effect between congruency and grade X²(3, N = 1130) = 15.14, p <.01. 

Pairwise comparisons demonstrated significantly higher accuracy levels on congruent than on incongruent 

density items for 6
th

 (89.1% vs. 24.2%, p < .001), 8
th

 (94.0% vs. 39.3%, p < .001), 10
th

 (95.4% vs. 63.8%, p < 

.001), and 12
th

 graders (95.8% vs. 74.0%, p < .001). The odds ratios showed that the natural number bias was 
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very strong in all grades: 6
th

 graders (OR = 25.71, 95% CI [18.95, 34.89]), 8
th

 graders (OR = 24.02, 95% CI 

[15.77,36.58]), 10
th

 graders (OR = 11.69, 95% CI [7.33, 18.65]), and 12
th

 graders (OR = 8.05, 95% CI [4.92, 

13.18]). These confidence intervals indicated that although the strength of the natural number bias for density 

does not significantly differ from one age group to the next one, the general trend was that the strength of the 

natural number bias decreased with grade (see Figure 2a). 
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Figure 2a.  

 

Figure 2b.  

 

Figure 2c.  

Figure 2. Evolution of the strength of the natural number bias in density (2a), size (2b), and operations items (2c) 

as represented by the odds ratios (an odds ratio of 1 indicates an absence of a bias). 

Size. 
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There was a significant interaction effect between congruency and grade, X²(4, N = 1343) = 80.81, p <.001. 

Pairwise comparisons yielded significantly higher accuracy levels on congruent size items in comparison with 

incongruent size items for 4
th

 (79.8% vs. 52.6%, p < .001), 6
th

 (91.5% vs. 85.3%, p < .001), and 8
th

 graders 

(89.7% vs. 87.6%, p = .04), but not in 10
th

 (90.5%  vs. 90.8%, p = .74) and 12
th

 graders (93.4% vs. 94.2%, p = 

.29). The odds ratios showed (see Figure 2b) that the strength of the natural number bias was largest in 4
th

 

graders (OR = 3.56, 95% CI [3.20, 3.97]), somewhat smaller in 6
th

 graders (OR = 1.85, 95% CI [1.60, 2.14], and 

nearly absent in 8
th

 graders (OR =1.23, 95% CI [1.05, 1.44]). No natural number bias for size items was found in 

the odds ratio of the 10
th

 (OR = 0.97, 95% CI [0.82, 1.15]) and 12
th

 graders (OR =0.87, 95% CI [0.72, 1.07]). 

Operations. 

There was a significant interaction effect between congruency and grade, X²(4, N = 1343) = 80.90, p <.001. 

Pairwise comparisons demonstrated significantly higher accuracy levels on congruent operations items in 

comparison with incongruent operations items for all grade levels: 4
th

 graders (68.5% vs. 32.6%, p < .001), 6
th
 

graders (74.9% vs. 54.9%, p < .001), 8
th

 graders (81.7% vs. 67.9%, p < .001), 10
th

 graders (83.7%  vs. 75.0%, p 

< .001), and 12
th

 graders (88.8% vs. 84.7%, p = .01). The odds ratio showed that the strength of the natural 

number bias was largest in 4
th

 graders (OR = 4.49, 95% CI [3.74, 5.41]), somewhat smaller in 6
th

 graders (OR = 

2.45, 95% CI [2.04, 2.96], 8
th
 graders (OR =2.11, 95% CI [1.68, 2.65]), and 10

th
 graders (OR = 1.71, 95% CI 

[1.35, 2.16]), and nearly absent in 12
th

 graders (OR =1.43, 95% CI [1.08, 1.87]). As for the density items, the 

strength of the natural number bias did not significantly decrease between every grade. However, the general 

trend was that the strength of the natural number bias decreases with grade (see Figure 2c). 

Conclusion and Discussion 

A good understanding of rational numbers is an essential part of mathematical literacy. However, children and 

even adults have difficulty with the understanding of the different aspects of rational numbers. The natural 

number bias has been found to explain a large part of this difficulty. Although a large body of literature already 

exists on the natural number bias, this literature is quite fragmented. The present study aimed at characterizing 

the development of the natural number bias for all three aspects of it that have been distinguished in the research 

literature and across the wide span between 4
th

 and 12
th

 grade. To do so, a secondary aim of the study was to 

construct a single test instrument that comprises all three aspects of it, both in their decimal and fractional 

representation.   

Based on the existing literature and an analysis of the Flemish curriculum, we created and validated a 
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comprehensive test instrument that enabled to systematically and directly compare the strength of the natural 

number bias in the different aspects (density, size, and operations) and representations (fractions, decimal 

numbers) between 4
th

 and 12
th

 grade. The fact that we succeeded in constructing a comprehensive test instrument 

with a high overall reliability in all five grades, and with systematically substantially higher accuracies on items 

that we characterized as congruent than on items that we characterized as incongruent suggests that this test 

measures one construct, namely learners’ natural number bias.  

In what follows, we will first report the most important results and conclusions of this study. Second, an 

important methodological implication together with some methodological shortcomings of the study will be 

discussed. Third, we will point at some suggestions for future research. At last, an important educational 

implication of this study will be discussed.  

Using the new test instrument in a large group of 4
th

 to 12
th

 graders, it was first of all found that this bias was 

equally strong in tasks with decimal numbers as with fractions. Given that the relative strength of the natural 

number bias was never directly and systematically compared across these two representations, this is an 

interesting finding, particularly because the available theoretical and empirical literature contains evidence that 

different kinds of natural number-based errors may occur in items involving these two representations. For 

example: For the aspect of size, learners’ misconception about the size of decimal numbers is largely based on 

their length (“longer decimals are larger” and “shorter decimals are smaller”) (e.g. Resnick et al., 1989), while in 

the case of fractions  misconceptions are (largely) based on the numerical value of each of the components of the 

fractions (“a fraction’s numerical value increases when its denominator, numerator, or both increase”) (e.g. 

Mamede et al., 2005). Similarly, for the density aspect, numbers situated between two other decimal numbers 

can be found by simply extending these decimal numbers with zeros, while finding numbers between two given 

fractions requires other approaches. So, even though different difficulties seem to come into play in solving 

items in decimal numbers and fractions, we found no difference in the strength of the natural number bias 

between these two representation forms.  

Second, an overall decrease of the strength of the natural number bias was found with grade. While the strength 

of the natural number bias was equally large in 4
th

 and 6
th

 graders, it was significantly lower in 8
th

 graders and 

even lower in 10
th

 graders. No significant difference was observed in the strength of the natural number bias 

between 10
th

 and 12
th

 graders. We can conclude from these results that learners’ rational number sense increases 

with grade and that it develops over a period of at least six years. Further, we learn from these results that the 

development of learners’ rational number sense does not develop continuously, but that there are periods where 
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this goes faster and other periods where it stagnates, for example between 10
th

 and 12
th

 grade. This stagnation 

however does not mean that the natural number bias completely disappears, since clear traces of this bias can 

still be found in 12
th

 grade in density and operations items.  

Third, results showed that the natural number bias was weakest in size tasks, somewhat stronger in operations 

tasks, but by far the strongest in density tasks. This is in line with previous research (see for example 

Vamvakoussi et al., 2012).  

Fourth, subsequent to the above, there was a gradual decrease in the strength of the natural number bias for 

density and operations tasks throughout primary and secondary education, while for the size aspect the bias had 

already almost disappeared in grade eight. Thus, while an evolution can be found in learners’ understanding of 

all three aspects of the natural number bias, they continue to struggle particularly with the operations and density 

aspect. Especially the dense structure of rational numbers remains difficult to grasp, even for higher secondary 

school students.  

Besides the above-mentioned theoretical findings and conclusions, the present study also resulted in another 

valuable outcome, namely a valid and reliable test instrument. As stated above, while there have been already 

studies within the three aforementioned aspects of the natural number bias (density, size and operation), there 

was no test yet that addressed all of them in an integrated manner. In this study, we have created a valid and 

reliable test instrument (the RNST) that measures learners’ natural number bias in rational number tasks, and this 

test can be useful in future research in this domain. This RNST can, for example, be used to conduct 

(internationally) comparative research. It can further be used as effectiveness measure in intervention studies 

aimed at improving learners’ rational number sense. At last, the RNST can be used to investigate the relation 

between learners’ rational number sense and other aspects of learners’ number sense and/or other learner 

characteristics. An example can be found in the study of Van Hoof, Verschaffel, and Van Dooren (submitted), in 

which the RNST was used to further investigate the relation between learners’ natural and rational number sense, 

departing from the study of Bailey, Siegler, and Geary (2014). Based on the data of 130 6
th

 graders, Van Hoof et 

al. found positive correlations between learners’ natural and rational number sense, which confirms the findings 

of Bailey et al. (2014). Further, the relation between learners’ natural and rational sense was found even when 

they focused on incongruent rational number tasks, when they included items from all three aspects of rational 

number knowledge (density, size, and operations), and when they used items both in their fractional and decimal 

form. However, the relation between both variables was always found to be completely mediated by learners’ 

general mathematics achievement.  
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We now turn to some methodological limitations of the study and make suggestions for further research. First, 

next to a cross-sectional design, future research would benefit from longitudinal designs to capture how learners’ 

individual rational number sense evolves over time, using latent profile analysis and latent transition analysis. In 

a recent longitudinal study of McMullen, Laakkonen, Hannula-Sormunen, and Lehtinen (2014), these latter 

statistical techniques have already been used successfully to describe learners’ processes of conceptual change in 

rational number understanding. In their study, conceptual knowledge of the dense structure and the size of 

rational numbers was measured from 263 upper elementary school children over a one-year time period. A first 

finding was that conceptual knowledge of size of rational numbers is necessary but not sufficient for successful 

conceptual change in the aspect of density. Second, participants only showed limited conceptual change in the 

aspects of size and density. However, these authors, in their turn, argue that still more research is needed to be 

able to confirm their results. Firstly, their finding that participants only showed limited conceptual change can be 

explained by the fact that they included elementary school students and moreover only followed them for one 

year. This asks for enlarging the time frame in which the learners are followed and for including older, 

secondary school students. At last, only the aspects of size and density were investigated in their study. Using the 

test instrument developed and used in the context of our study, a more comprehensive description of learners’ 

rational number sense can be acquired.  

A second limitation of our study was that we only used performance data collected in a collective paper-and-

pencil test. With a view to investigate the interference of learners’ natural number knowledge in rational number 

tasks, it would be interesting to complement these performance data with data about learners’ reaction times. As 

shown by numerous studies (see for example Vamvakoussi et al., 2012), reaction time data are effective in 

investigating the natural number bias. The core finding of these reaction time studies is that it takes more time to 

respond correctly to incongruent than to congruent tasks. So, the main advantage of reaction times is that they 

still can shed light on the natural number bias even in learners who no longer make errors.    

We finally turn to an important educational implication that emerges from this study. Given that the 

understanding of rational numbers has been shown to relate to later mathematics achievement, it is quite 

worrying that the majority of learners have troubles understanding the several aspects of rational numbers, some 

of which even last until the end of secondary school. Consequently, the acquisition of rational number 

understanding – and particularly of the understanding of the differences with natural numbers – deserves more 

attention in the mathematics class. In this respect, we note that errors committed by learners may be partly 

caused by formal instruction, or at least by the fact that they are not sufficiently addressed by instruction. Debou 
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and Verschetze (2012) systematically investigated the three most often used textbooks for elementary school 

mathematics in Flanders. Their analysis showed that textbooks pay almost no explicit attention to the 

(conceptual) differences between natural and rational numbers, but rather tend to only point to similarities 

between both. We believe that if textbook designers and teachers have a thorough understanding of the natural 

number bias, they will be better able to address the natural number bias, for instance by pointing the learners 

systematically to differences between natural numbers and rational numbers.   

 A more specific educational implication is that especially more attention should go to the dense structure of 

rational numbers in the classrooms given the fact that our results showed that although we found a continuous 

growth in learners’ understanding of the dense structure of rational numbers, upper secondary school students 

still seem to seriously struggle with it.  
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Appendix: Items included in the study   

Write a number between these two numbers. If you think that is not possible, write ‘impossible’. 

1)  8,9 and 8,15 

2)  3,49 and 3,50 

5)  
 

 
  and  

 

 
 

6)  
 

 
  and 

 

 
 

26)  2,5 and 2,7 

28)  
 

 
 and 

 

 
 

 

9) Write down two different numbers so that there are no other numbers in between those two numbers. If you 

think that is not possible, write ‘impossible’.  

 

How many numbers are there between: 

10) 1,42 and 1,43 

11) 1,9 and 1,40 

14) 
 

 
 and 

 

 
  

15) 
 

 
 and 

 

 
?  

 

How many numbers are there between these numbers? Circle the best answer.  

 

18) 0,7 and 0,9 

19) 3,42 and 3,124 

22)  
 

 
 and  

 

 
 

23) 
 

 
 and  

 

 
 

a) There is no number  

b) There is a finite number of decimal numbers 

c) There is a finite number of fractions 

d) There are infinitely many decimal numbers 

e) There are infinitely many fractions 

f) There are infinitely many numbers, who can be presented both in their decimal form as in 

their  fraction form 

g) None of the above, I think 

that………………………………………………………………….. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



23 
 

 

Order the following numbers from small to large. If two numbers are equally large, circle them to indicate that 

they are equally large.  

30)  
 

 
 1  

 

 
  

 

 
  

 

67)  
 

   
     

 

  
     

  

   
     

  

  
     

  

   
       

   

   
     

 

  
     

 

   
     

 

  
     

 

   
    

 

73)    3,682  3,2  3,35 

74)     7,651  7,8  7,08 

75)     0,5    
 

 
         

 

  
    0,356  

 

Circle the largest number 

 

31) 
 

 
      

 

 
 

34) 
 

 
    

 

 
 

36) 
 

 
    

 

 
 

 38)  
 

 
    

 

 
 

40)  
 

 
    

 

 
 

41) 
 

 
   

 

 
 

45)  
 

 
    

 

 
 

 

46)  
 

 
    

 

 
 

49)  
 

 
    

 

 
 

50) 
 

 
     

 

 
 

51) 
 

 
    

 

 
 

52) 
 

 
    

 

 
 

53) 
 

  
    

 

 
 

54) 
 

 
    

 

 
 

 

55) 
 

 
    

 

 
 

56) 
 

 
    

 

 
 

59) 
 

 
    

 

 
 

60) 
 

 
    

 

 
 

61) 
 

 
    

 

 
 

62) 
 

 
    

 

 
 

64) 
 

 
    

 

 
 

 

65) 
 

 
    

 

 
 

66)  
 

 
    

 

 
 

68) 4,4   or   4,50 

69) 0,3   or   0,30 

70) 0,36   or   0,5 

71) 2,621   or   2,0687986 

72) 0,25   or   0,400 

122)Without calculating the exact answer, do you think 72 . 0,99 is bigger or smaller than 72? 

127) Without calculating the exact answer, do you think 50. 3/2 is bigger or smaller than 50? 

129) Without calculating the exact answer, do you think 21 : 0,7 is bigger or smaller than 21? 

130) Without calculating the exact answer, do you think 40 : 1/2 is bigger or smaller than 40? 

131) What is half of 1/8?  

134) Is it possible that the sum of two numbers is smaller than zero? 

O Yes   O No 

171)    0,46 = 0,4 + …  
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172)  0,72 = 0,2 + …  

173)  0,36 – 0,2 = … 

174)  0,500 - … = 0,45 

 

Circle the correct operation you need to answer the following word problems. 

 

175)  1 liter of lemon syrup is needed to make 15 liter of lemonade. How many lemonade can be made from 

0.75 liter of lemon syrup? 

 

A. 0,75 : 15  

B. 15 . 0,75  

C. 15 : 0,75  

176)  The price of 1 kilogram gold is 15000 euro. What is the price of 1/5 kilogram gold? 

 

A. 15000 : 
 

 
 

B. 
 

 
 : 15000 

C. 15000 . 
 

 
 

 

177)  12 friends bought 5 kilogram of cookies. If they want to equally divide the cookies, how many 

kilograms does each friend get? 

A. 5 : 12  

B. 5 . 12 

C. 12 : 5  

 

178)  I had to pay 9 euro for ¾ kilogram candy. What is the price of 1 kilogram candy? 

A. 9 : 
 

 
 

 

B. 9 . 
 

 
 

 

C. 
 

 
 : 9  

 

179)  If you know the walls of the bathroom are 3 meters high. How many rows of tiles do you need to cover 

the wall if you know the tiles have a height of 0.15 meters?  

 

A. 3 : 0,15 

B. 0,15 . 3 

C. 0,15 : 3  
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