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COUPLED CANONICAL POLYADIC DECOMPOSITIONS AND
(COUPLED) DECOMPOSITIONS IN MULTILINEAR
RANK-(Lr,n, Lr,n, 1) TERMS—PART I: UNIQUENESS∗
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Abstract. Coupled tensor decompositions are becoming increasingly important in signal pro-
cessing and data analysis. However, the uniqueness properties of coupled tensor decompositions have
not yet been studied. In this paper, we first provide new uniqueness conditions for one factor matrix
of the coupled canonical polyadic decomposition (CPD) of third-order tensors. Then, we present
necessary and sufficient overall uniqueness conditions for the coupled CPD of third-order tensors.
The results demonstrate that improved uniqueness conditions can indeed be obtained by taking into
account the coupling between several tensor decompositions. We extend the results to higher-order
tensors and explain that the higher-order structure can further improve the uniqueness results. We
discuss the special case of coupled matrix-tensor factorizations. We also present a new variant of
the coupled CPD model called the coupled block term decomposition (BTD). On one hand, the cou-
pled BTD can be seen as a variant of coupled CPD for the case where the common factor contains
collinear columns. On the other hand, it can also be seen as an extension of the decomposition into
multilinear rank-(Lr , Lr , 1) terms to coupled factorizations.

Key words. coupled decompositions, higher-order tensor, parallel factor (PARAFAC), canonical
decomposition (CANDECOMP), canonical polyadic decomposition, coupled matrix-tensor factoriza-
tion
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1. Introduction. The coupled canonical polyadic decomposition (CPD) model
(formally defined in subsection 4.1) seems to have been first used in psychometrics
[21, 22] as a way of integrating several three-way studies that involve the same stimuli
and as a means of coping with missing data in coupled data sets. The technique was
also later considered in chemometrics [36]. In recent years coupled canonical polyadic
decompositions have had a resurgence in several engineering disciplines. We mention
data mining, where they are used as an explorative tool for finding structure in coupled
data sets [3, 1], and bioinformatics, where they are used as a tool for fusion of data
obtained by different analytical methods such as nuclear magnetic resonance and
fluorescence spectroscopy [32, 48]. In chemometrics it has been suggested that coupled
matrix-tensor factorizations can be used to fuse data obtained by different analytic
methods [2]. We also mention that in biomedical engineering several multisubject
or data fusion methods that combine different modalities (fMRI, EEG, MEG, etc.)
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COUPLED TENSOR DECOMPOSITIONS 497

can be interpreted as coupled CPD problems [19, 28, 9, 20, 29, 4]. Despite their
importance, to the best of our knowledge, no algebraic studies of coupled tensor
decompositions have been provided so far. In particular, no dedicated uniqueness
conditions for coupled CPD problems are available.

Several problems in signal processing involve polyadic decompositions that have
factor matrices with collinear columns. A particular case is of block term decompo-
sitions, which are decompositions of a tensor in terms of low multilinear rank [13].
We mention applications in array processing [34, 38, 39], wireless communication
[35, 10, 12, 31, 37], and blind separation of signals that can be modeled as exponen-
tial polynomials [14]. There are also applications in chemometrics [6]. Hence, in the
study of the coupled CPD model we should pay special attention to collinearity.

The rest of the introduction presents our notation. Sections 2 and 3 briefly review
the CPD and the decomposition into multilinear rank-(Lr, Lr, 1) terms. In section 4
we introduce the coupled CPD and study its uniqueness properties. The results are
(i) necessary coupled CPD uniqueness conditions, (ii) sufficient uniqueness conditions
for the common factor matrix of the coupled CPD, (iii) sufficient overall uniqueness
conditions for the coupled CPD, (iv) extensions to tensors of arbitrary order, and
(v) a discussion of the uniqueness properties of the coupled matrix-tensor factoriza-
tion. Section 5 discusses a new coupled CPD model in which the common factor
matrix contains collinear components. The paper is concluded in section 6.

1.1. Notation. Vectors, matrices, and tensors are denoted by lowercase bold-
face, uppercase boldface, and uppercase calligraphic letters, respectively. The rth
column vector of A is denoted by ar. The symbols ⊗ and " denote the Kronecker
and Khatri–Rao product, defined as

A⊗B :=




a11B a12B . . .
a21B a22B . . .
...

...
. . .



 , A"B :=
[
a1 ⊗ b1 a2 ⊗ b2 . . .

]
,

in which (A)mn = amn. The outer product of N vectors a(n) ∈ CIn is denoted by
a(1) ◦ a(2) ◦ · · · ◦ a(N) ∈ CI1×I2×···×IN , such that

(
a(1) ◦ a(2) ◦ · · · ◦ a(N)

)

i1,i2,...,iN
= a(1)i1

a(2)i2
· · · a(N)

iN
.

The identity matrix, all-zero matrix, and all-zero vector are denoted by IM ∈ CM×M ,
0M,N ∈ CM×N , and 0M ∈ CM , respectively. The all-ones vector is denoted by
1R = [1, . . . , 1]T ∈ CR.

The transpose, Moore–Penrose pseudo-inverse, Frobenius norm, determinant,
range, and kernel of a matrix are denoted by (·)T , (·)†, ‖ · ‖F , |·|, range (·), and
ker (·), respectively. The cardinality of a set S is denoted by card (S).

MATLAB index notation will be used for submatrices of a given matrix. For
example, A(1 : k, :) represents the submatrix of A consisting of the rows from 1 to k
of A. Dk (A) ∈ CJ×J denotes the diagonal matrix holding row k of A ∈ CI×J on its
diagonal. Given A ∈ CI×J , Vec (A) ∈ CIJ will denote the column vector defined by
(Vec (A))i+(j−1)I = (A)ij .

The matrix that orthogonally projects onto the orthogonal complement of the
column space of A ∈ CI×J is denoted by

PA = II − FFH ∈ CI×I ,
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498 MIKAEL SØRENSEN AND LIEVEN DE LATHAUWER

where the column vectors of F constitute an orthonormal basis for range (A).
The Heaviside step function H : Z → {0, 1} is defined as

H [n] =

{
0 , n < 0 ,
1 , n ≥ 0 .

The rank of a matrix A is denoted by r (A) or rA. The k-rank of a matrix A
is denoted by k (A) or kA. It is equal to the largest integer k (A) such that every
subset of k (A) columns of A is linearly independent. More generally, the k′-rank of
a partitioned matrix A is denoted by k′ (A). It is equal to the largest integer k′ (A)
such that any set of k′ (A) submatrices of A yields a set of linearly independent
columns. The number of nonzero entries of a vector x is denoted by ω (x) in the
tensor decomposition literature, dating back to the work of Kruskal [26].

Let Ck
n = n!

k!(n−k)! denote the binomial coefficient. The kth compound matrix of

A ∈ Cm×n is denoted by Ck (A) ∈ CCk
m×Ck

n and its entries correspond to the k-by-k
minors of A, ordered lexicographically. As an example, let A ∈ C4×3; then

C2 (A) =





|A ([1, 2], [1, 2])| |A ([1, 2], [1, 3])| |A ([1, 2], [2, 3])|
|A ([1, 3], [1, 2])| |A ([1, 3], [1, 3])| |A ([1, 3], [2, 3])|
|A ([1, 4], [1, 2])| |A ([1, 4], [1, 3])| |A ([1, 4], [2, 3])|
|A ([2, 3], [1, 2])| |A ([2, 3], [1, 3])| |A ([2, 3], [2, 3])|
|A ([2, 4], [1, 2])| |A ([2, 4], [1, 3])| |A ([2, 4], [2, 3])|
|A ([3, 4], [1, 2])| |A ([3, 4], [1, 3])| |A ([3, 4], [2, 3])|




.

See [23, 15] for discussion of compound matrices.

2. Canonical polyadic decomposition. Consider the third-order tensor X ∈
CI×J×K . We say that X is a rank-1 tensor if it is equal to the outer product of some
nonzero vectors a ∈ CI , b ∈ CJ , and c ∈ CK such that xijk = aibjck. Decompositions
into a sum of rank-1 terms are called polyadic decompositions (PDs):

X =
R∑

r=1

ar ◦ br ◦ cr .(2.1)

The rank of a tensor X is equal to the minimal number of rank-1 tensors that yield
X in a linear combination. Assume that the rank of X is R; then (2.1) is called
the canonical PD (CPD) of X . The CPD is also known as the PARAllel FACtor
(PARAFAC) [22] and the CANonical DECOMPosition (CANDECOMP) [7]. Let us
stack the vectors {ar}, {br}, and {cr} into the matrices

A = [a1, . . . , aR] ∈ CI×R, B = [b1, . . . ,bR] ∈ CJ×R, C = [c1, . . . , cR] ∈ CK×R.

The matrices A, B, and C will be referred to as the factor matrices of the CPD in
(2.1). The following subsection presents matrix representations of (2.1) that will be
used throughout the paper.

2.1. Matrix representations. Let X(i··) ∈ CJ×K denote the matrix such that
(X(i··))jk = xijk ; then X(i··) = BDi (A)CT and

CIJ×K ) X(1) :=
[
X(1··)T , . . . ,X(I··)T

]T
= (A"B)CT .(2.2)
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COUPLED TENSOR DECOMPOSITIONS 499

More generally, the PD or CPD of the higher-order tensor X ∈ CI1×···×IM has
the matrix representations

(2.3) X(w) =




⊙

p∈Γw

A(p) "
⊙

q∈Υw

A(q)




(
⊙

r∈Ψw

A(r)

)T

,

where A(m) ∈ CIm×R and the sets Γw, Υw, and Ψw have properties Γw
⋃
Υw

⋃
Ψw =

{1, 2, . . . ,M}, Γw
⋂
Υw = ∅, Γw

⋂
Ψw = ∅, and Υw

⋂
Ψw = ∅.

2.2. Uniqueness conditions for one factor matrix of a CPD. A factor
matrix, say C, of the CPD of X ∈ CI×J×K is said to be unique if it can be deter-
mined up to the inherent column scaling and permutation ambiguities from X . More
formally, the factor matrix C is unique if all the triplets (Â, B̂, Ĉ) satisfying (2.1)
also satisfy the condition

Ĉ = CP∆ ,

where P is a permutation matrix and ∆ is a diagonal matrix. One of the first unique-
ness conditions for one factor matrix of a CPD was obtained by Kruskal in [26]. In
this paper we will make use of the following result.

Theorem 2.1. Consider the PD of X ∈ CI×J×K in (2.1). If






k (C) ≥ 1,

min (I, J) ≥ R− r (C) + 2,

CR−r(C)+2 (A)" CR−r(C)+2 (B) has full column rank,

(2.4)

then the rank of X is R and the factor matrix C is unique [15].
Condition (2.4) is more relaxed than Kruskal’s, and the proof of the theorem

admits a constructive interpretation [17].

2.3. Overall uniqueness conditions for CPD. The rank-1 tensors in (2.1)
can be arbitrarily permuted without changing the decomposition. The vectors within
the same rank-1 tensor can also be arbitrarily scaled provided that the overall rank-
1 term remains the same. We say that the CPD is unique when it is only subject
to the mentioned indeterminacies. One of the first deep CPD uniqueness results was
obtained by Kruskal [26]. For a recent comprehensive study of CPD uniqueness in the
third-order case we refer the reader to [15, 16]. Below we state some uniqueness results
for CPD that we will extend to the coupled CPD case. The results are summarized
in Table 1.

Table 1
Full column rank (f.c.r.) requirements for different CPD uniqueness conditions. In the case

where C has f.c.r., we further distinguish between a sufficient (S) and a necessary and sufficient (N
and S) condition.

Thm. 2.2 Thm. 2.3 Thm. 2.4 Thm. 2.5
Matrices required to have f.c.r. None C C C and A
Condition S N and S S N and S

Together with related results in [16], the following is one of the most relaxed
deterministic conditions for CPD uniqueness. It does not require any of the factor
matrices to have full column rank.
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Theorem 2.2. Consider the PD of X ∈ CI×J×K in (2.1). Let S denote a subset
of {1, . . . , R} and let Sc = {1, . . . , R} \ S denote the complementary set. Stack the
columns of C with index in S in C(S) ∈ CK×card(S) and stack the columns of C
with index in Sc in C(Sc) ∈ CK×(R−card(S)). Stack the columns of A (resp., B) in
the same order such that A(S) ∈ CI×card(S) (resp., B(S) ∈ CJ×card(S)) and A(Sc) ∈
CI×(R−card(S)) (resp., B(S) ∈ CJ×(R−card(S))) are obtained. If

{
k (C) ≥ 2,

r (CR−rC+2 (A)" CR−rC+2 (B)) = CR−rC+2
R ,

and if there exists a subset S of {1, . . . , R} with 0 ≤ card (S) ≤ rC such that 1, 2






C(S) has full column rank (rC(S) = card (S)) ,

B(Sc) has full column rank (rB(Sc) = R− card (S)) ,

r
([

PC(S)C(Sc) "A(Sc),PC(S)c
(Sc)
r ⊗ II

])
= I +R− card (S)− 1 ∀r ∈ Sc,

then the rank of X is R and the CPD of X is unique [40].
If one factor matrix has full column rank, say C, then the following condition is

not only sufficient but also necessary.
Theorem 2.3. Consider the PD of X ∈ CI×J×K in (2.1). Define E(w) =∑R

r=1wrarb
T
r . Assume that C has full column rank. The rank of X is R and the

CPD of X is unique if and only if [42, 25, 46, 14]

r (E(w)) ≥ 2 ∀w ∈
{
x ∈ CR

∣∣ω(x) ≥ 2
}
.(2.5)

Generically,3 condition (2.5) is satisfied and C has full column rank if R ≤ K and
R ≤ (I − 1)(J − 1) [42].

In practice, condition (2.5) may not be easy to check. Instead we may resort
to the following more convenient result in the case where one factor matrix has full
column rank.

Theorem 2.4. Consider the PD of X ∈ CI×J×K in (2.1). If

{
C has full column rank,

C2 (A)" C2 (B) has full column rank,
(2.6)

then the rank of X is R and the CPD of X is unique [25, 11, 46, 15]. Generically,
condition (2.6) is satisfied if R ≤ K and 2R(R− 1) ≤ I(I − 1)J(J − 1) [11, 43].

In the case where two factor matrices, say A and C, have full column rank,
Theorems 2.3 and 2.4 simplify to the following.

Theorem 2.5. Consider the PD of X in (2.1). Assume that A and C have full
column rank. The rank of X is R and the CPD of X is unique if and only if kB ≥ 2
(see, e.g., [27]). Generically, this is satisfied if R ≤ min(I,K) and 2 ≤ J .

1Note that the set S in Theorem 2.2 may be empty, i.e., card (S) = 0 such that S = ∅. This
corresponds to the case where PC(S) = IK .

2The last condition states that Mr = [PC(S)C(Sc) " A(Sc),PC(S)c
(Sc)
r ⊗ II ] has a one-

dimensional kernel for every r ∈ Sc, which is minimal since [nT
r , a(S

c)T
r ]T ∈ ker (Mr) for some

nr ∈ Ccard(Sc).
3A tensor decomposition property is called generic if it holds with probability one when the

entries of the factor matrices are drawn from absolutely continuous probability density measures.
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3. CPD with collinearity in a factor matrix. We consider PDs of X ∈
CI×J×K that involve collinearities in the factor matrix C of the type

X =
R∑

r=1

Lr∑

l=1

a(r)
l ◦ b(r)

l ◦ c(r) =
R∑

r=1

(
A(r)B(r)T

)
◦ c(r) ,(3.1)

where A(r) = [a(r)
1 , . . . , a(r)Lr

] ∈ CI×Lr , B(r) = [b(r)
1 , . . . ,b(r)

Lr
] ∈ CJ×Lr . Similarly to

A(r) and B(r), we may define C(r) = 1T
Lr

⊗ c(r) ∈ CK×Lr , i.e., column vector c(r)

is repeated Lr times. Note that, if Lr ≥ 2 for some r ∈ {1, . . . , R}, then the PD of
X cannot be unique (see, e.g., [44]). In cases like this, it is impossible to recover the
individual columns of the factors A(r) and B(r). If the matrices A(r)B(r)T have rank
Lr, then the decomposition (3.1) is also known as the decomposition into multilinear
rank-(Lr, Lr, 1) terms [13].

3.1. Matrix representation. Let us stack the above matrices and vectors into
the matrices

A =
[
A(1), . . . ,A(R)

]
∈ CI×(

∑R
r=1 Lr), B =

[
B(1), . . . ,B(R)

]
∈ CJ×(

∑R
r=1 Lr),

C =
[
C(1), . . . ,C(R)

]
∈ CK×(

∑R
r=1 Lr), C(red) =

[
c(1), . . . , c(R)

]
∈ CK×R,

where “red” stands for reduced. The PD or CPD of the tensor X in (3.1) with collinear
columns in C admits the following matrix representation:

CIJ×K ) X(1) =
[
X(1··)T , . . . ,X(I··)T

]T

= (A"B)CT(3.2)

=
[
Vec

(
B(1)A(1)T

)
, . . . ,Vec

(
B(R)A(R)T

)]
C(red)T .(3.3)

3.2. Overall uniqueness conditions for decomposition into multilinear

rank-(Lr, Lr, 1) terms. Let {{Â
(n)

}, {B̂
(n)

}, Ĉ} yield an alternative decomposi-
tion of X into multilinear rank-(Lr, Lr, 1) terms. The multilinear rank-(Lr, Lr, 1)
tensors in (3.1) can be arbitrarily permuted, and the vectors within the same cou-
pled multilinear rank-(Lr, Lr, 1) tensor can be arbitrarily scaled provided the overall
coupled multilinear rank-(Lr, Lr, 1) term remains the same. We say that the decom-
position into multilinear rank-(Lr, Lr, 1) terms is unique when it is only subject to
the mentioned indeterminacies.

The following uniqueness condition for decomposition of X into multilinear rank-
(Lr, Lr, 1) terms has been obtained in [13].

Theorem 3.1. Consider the PD of X ∈ CI×J×K in (3.1). If

k′ (A) = R and k′ (B) + k (C) ≥ R + 2 ,(3.4)

then the minimal number of multilinear rank-(Lr, Lr, 1) terms is R and the decompo-
sition of X into multilinear rank-(Lr, Lr, 1) terms is unique.

Other related uniqueness results can be found in [13]. For the case where C
has full column rank, the following necessary and sufficient uniqueness condition for
decomposition of X into multilinear rank-(Lr, Lr, 1) terms has been obtained in [14].

Theorem 3.2. Consider the PD of X ∈ CI×J×K in (3.1). Define E(w) =∑R
r=1wrA

(r)B(r)T . Assume that C has full column rank. A necessary and sufficient
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X (1)

=

c1

a(1)
1

b(1)
1

+ · · ·+

cR

a(1)R

b(1)
R...

X (N)

=

c1

a(N)
1

b(N)
1

+ · · ·+

cR

a(N)
R

b(N)
R

Fig. 1. Coupled PD of the third-order tensors X (1), . . . ,X (N).

condition for uniqueness of the decomposition of X into multilinear rank-(Lr, Lr, 1)
terms is that

r (E(w)) > max
r|wr &=0

Lr ∀w ∈
{
x ∈ CR

∣∣ω(x) ≥ 2
}
.(3.5)

Generalizing CPD results in [8], generic uniqueness bounds for the BTD have
been obtained in [50].

4. New results for coupled CPD. In subsection 4.1 we introduce some defini-
tions and notation associated with the coupled CPD. Subsection 4.2 presents necessary
conditions for coupled CPD uniqueness. Subsection 4.3 presents uniqueness conditions
for the common factor matrix. In subsection 4.4 we develop sufficient uniqueness con-
ditions for the coupled CPD. Subsection 4.5 briefly explains that the results can be
extended to tensors of order greater than three. Subsection 4.6 comments on the
coupled matrix-tensor factorization problem.

4.1. Definitions and notation. We say that a collection of tensors X (n) ∈
CIn×Jn×K , n ∈ {1, . . . , N}, admits an R-term coupled polyadic decomposition if each
tensor X (n) can be written as

X (n) =
R∑

r=1

a(n)r ◦ b(n)
r ◦ cr , n ∈ {1, . . . , N},(4.1)

with factor matrices

A(n) =
[
a(n)1 , . . . , a(n)

R

]
∈ CIn×R, n ∈ {1, . . . , N},

B(n) =
[
b(n)
1 , . . . ,b(n)

R

]
∈ CJn×R, n ∈ {1, . . . , N},

C =
[
c1, . . . , cR

]
∈ CK×R.

The coupled PD of the third-order tensors {X (n)} is visualized in Figure 1.
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We define the coupled rank of {X (n)} as the minimal number of coupled rank-1
tensors that yield {X (n)} in a linear combination. Assume that the coupled rank of
{X (n)} is R; then (4.1) will be called the coupled CPD of {X (n)}.

It is clear that the coupled rank-1 tensors in (4.1) can be arbitrarily permuted
and that the vectors within the same coupled rank-1 tensor can be arbitrarily scaled
provided the overall coupled rank-1 term remains the same. We say that the coupled
CPD is unique when it is only subject to these trivial indeterminacies.

In this paper we will make use of the matrix representation of {X (n)},

X =





X(1)
(1)
...

X(N)
(1)



 =




A(1) "B(1)

...
A(N) "B(N)



CT = FCT ∈ C(
∑N

n=1 InJn)×K ,(4.2)

where

F =




A(1) "B(1)

...
A(N) "B(N)



 ∈ C(
∑N

n=1 InJn)×R.(4.3)

4.2. Necessary conditions for coupled CPD uniqueness. Propositions 4.1
and 4.2 following generalize well-known necessary uniqueness conditions for CPD (see,
e.g., [30, 44]) to the coupled CPD case.

Proposition 4.1. If the coupled CPD of {X (n)} in (4.1) is unique, then kC ≥ 2.
Proof. Assume that k (C) = 1, say c1 and c2 are collinear; then linear combina-

tions of c1 and c2 will yield an alternative coupled CPD of {X (n)} that is not related
via trivial column scaling and permutation ambiguities.

Note that in contrast to ordinary CPD, Proposition 4.1 does not prevent that
kA(n) = 1 and/or kB(n) = 1 for some n ∈ {1, . . . , N}. Indeed, the coupled CPD may
be unique in such cases, as will be explained in subsection 4.4.

Proposition 4.2. If the coupled CPD of {X (n)} in (4.1) is unique, then F has
full column rank.

Proof. The result follows directly from relation (4.2). Indeed, if F does not have
full column rank, then for any x ∈ ker (F) we obtain X = FCT = F(CT + xyT ),
where y ∈ CK .

Again, in contrast to ordinary CPD, Proposition 4.2 does not prevent that for
some n ∈ {1, . . . , N} the individual Khatri–Rao product matrices A(n) " B(n) are
rank deficient. This will be further discussed in subsection 4.4.

It is well known that the condition kC ≥ 2 is generically satisfied if K ≥ 2. Based
on Lemma 4.3 we explain in Proposition 4.4 that F generically has full column rank
if
∑N

n=1 InJn ≥ R. Hence, the necessary conditions stated in Propositions 4.1 and
4.2 are expected to be satisfied under mild conditions.

Lemma 4.3. Given an analytic function f : Cn → C, if there exists an element
x ∈ Cn such that f (x) -= 0, then the set { x | f (x) = 0 } is of Lebesgue measure zero
(see, e.g., [24]).

Proposition 4.4. Consider F ∈ C(
∑N

n=1 InJn)×R given by (4.3). For generic

matrices {A(n)} and {B(n)}, the matrix F has rank min(
∑N

n=1 InJn, R).
Proof. Due to Lemma 4.3 we just need to find one example where the statement

made in this lemma holds. We give an example in the supplementary material.
Another necessary condition for CPD uniqueness is that none of the column

vectors of A "B (similarly for A "C and B "C) in (2.2) can be written as linear
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combinations of its remaining column vectors [15, 14]. Proposition 4.5 extends the
result to coupled CPD.

Proposition 4.5. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N},
in (4.1). Define

E(n)(w) =
R∑

r=1

wra
(n)
r b(n)Tr and Ω =

{
x ∈ CR

∣∣ω(x) ≥ 2
}
.(4.4)

If the coupled CPD of {X (n)} in (4.1) is unique, then

∀w ∈ Ω ∃n ∈ {1, . . . , N} : r
(
E(n)(w)

)
≥ 2 .(4.5)

Proof. The necessity of r (F) = R has already been mentioned in Proposition 4.2.
Assume now that there exists a vector w(r) ∈ CR with ω(w(r)) ≥ 2 such that for
some r ∈ {1, . . . , R} we have

(4.6) ã(n)r ⊗ b̃
(n)

r =
R∑

s=1

w(r)
s

(
a(n)s ⊗ b(n)

s

)
∀n ∈ {1, . . . , N} .

Since F has full column rank, its column vectors are linearly independent, that is,∑
s&=r w

(r)
s (a(n)

s ⊗ b(n)
s ) cannot be proportional to a(n)

r ⊗ b(n)
r for all n ∈ {1, . . . , N},

and consequently ã(n)
r ⊗ b̃

(n)

r is not proportional to a(n)r ⊗b(n)
r for all n ∈ {1, . . . , N}.

This means that factor matrices {{Ã
(n)

}, {B̃
(n)

}, C̃} with property (4.6) yield an
alternative coupled CPD of {X (n)} which is not related to {{A(n)}, {B(n)},C} via
the intrinsic column scaling and permutation ambiguities.

In contrast to ordinary CPD, Proposition 4.5 does not prevent that for some
n ∈ {1, . . . , N} the individual columns of the matrices A(n) "B(n) may be written as
linear combinations of its remaining column vectors.

4.3. Uniqueness conditions for common factor matrix. This subsection
presents conditions that guarantee the uniqueness of the common factor C of the
coupled CPD of {X (n)} in (4.1), even in cases where some of the remaining factor
matrices {A(n)} and {B(n)} contain all-zero column vectors. This is in contrast with
ordinary CPD where kA(n) ≥ 2 and kB(n) ≥ 2 are necessary conditions.

Proposition 4.6 is a variant of Theorem 2.1 for coupled CPD.
Proposition 4.6. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N},

in (4.1). W.l.o.g. we assume that min(I1, J1) ≥ min(I2, J2) ≥ · · · ≥ min(IN , JN ). De-
note Q =

∑N
n=1 H [min (In, Jn)−R+ rC − 2], where H [·] denotes the Heaviside step

function. Define

G(m) =





Cm

(
A(1)

)
" Cm

(
B(1)

)

...

Cm

(
A(Q)

)
" Cm

(
B(Q)

)




∈ C(

∑Q
n=1 Cm

In
Cm

Jn)×Cm
R ,(4.7)

where m = R− rC + 2. If
{
k (C) ≥ 1,

r(G(m)) = Cm
R ,

(4.8)

D
ow

nl
oa

de
d 

05
/1

1/
15

 to
 1

34
.5

8.
25

3.
57

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COUPLED TENSOR DECOMPOSITIONS 505

then the coupled rank of {X (n)} is R and the factor matrix C is unique.
Proof. The result is a technical variant of [15, Proposition 4.3]. It is provided in

the supplementary material.
In the case that the common factor matrix C has full column rank, Proposition

4.6 directly reduces to the following result. (Compare to Theorem 2.4.)
Corollary 4.7. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N},

in (4.1). Let G(2) be defined as in (4.7). If

{
C has full column rank,

G(2) has full column rank,
(4.9)

then the coupled rank of {X (n)} is R and the factor matrix C is unique.
If additionally some of the factor matrices in the set {A(n)} also have full column

rank, then Corollary 4.7 further reduces to the following result. (Compare to Theorem
2.5.)

Corollary 4.8. Consider the coupled PD of {X (n)} in (4.1). Consider also a
subset S of {1, . . . , N} with card (S) = Q. W.l.o.g., we assume that S = {1, . . . , Q}.
If for some Q ∈ {1, . . . , N}, we have

(4.10)




rC = R ,

rA(n) = R ∀n ∈ {1, . . . , Q},
∀r ∈ {1, . . . , R}, ∀s ∈ {1, . . . , R} \ r, ∃n ∈ {1, . . . , Q} : k

([
b(n)r , b(n)s

])
= 2 ,

then the coupled rank of {X (n)} is R and the factor matrix C is unique.
Proof. Due to Corollary 4.7 we know that the coupled rank of {X (n)} is R and

the factor matrix C is unique. We assume that for some Q ∈ {1, . . . , N} the matrix

(4.11) G(2) =

[(
C2

(
A(1)

)
" C2

(
B(1)

))T
, . . . ,

(
C2

(
A(Q)

)
" C2

(
B(Q)

))T ]T

has full column rank. As in ordinary CPD [47], we can premultiply each A(n) by a
nonsingular matrix without affecting the rank or the uniqueness of the coupled CPD

of {X (n)}. Hence, w.l.o.g. we can set A(n) =
[
IR,0

T
In−R,R

]T
. Likewise, as in ordinary

CPD [45], the premultiplication of A(n) by a nonsingular matrix does not affect the
rank of G(2). The problem of determining the rank of G(2) reduces to finding the
rank of

H =





C2

([
IR

0I1−R,R

])
" C2

(
B(2)

)

...

C2

([
IR

0IQ−R,R

])
" C2

(
B(Q)

)




.

After removing the all-zero row-vectors of H we need to find the rank of

H̃ =

[(
IR(R−1)

2
" C2

(
B(1)

))T
, . . . ,

(
IR(R−1)

2
" C2

(
B(Q)

))T]T
.
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Note that C2(B
(n)) = [d(n)

1,2 , . . . ,d
(n)
1,R,d

(n)
2,3 , . . . ,d

(n)
2,R, . . . ,d

(n)
R−2,R−1,d

(n)
R−2,R,d

(n)
R−1,R],

where d(n)
p,q = C2([b

(n)
p ,b(n)

q ]) ∈ CJn(Jn−1)/2. Note also that H̃ corresponds to a

row-permuted version of a block-diagonal matrix holding the column vectors {d̃p,q}
defined as d̃p,q = [d(1)T

p,q , . . . ,d(N)T
p,q ]T ∈ C(

∑N
n=1 Jn(Jn−1)/2) on its block-diagonal. It

is now clear that H̃ has full column rank if for every pair (r, s) ∈ {1, . . . , R}2 with
r -= s there exists an n ∈ {1, . . . , Q} such that ω(d(n)

r,s ) ≥ 1. Equivalently, for every
pair (r, s) ∈ {1, . . . , R}2 with r -= s there should exist an n ∈ {1, . . . , Q} such that
k([b(n)

r ,b(n)
s ]) = 2.

In the case where C has full column rank we have the following necessary and
sufficient uniqueness condition for the common factor. (Compare to Theorem 2.3.)

Proposition 4.9. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N},
in (4.1). Define E(n)(w) and Ω as in (4.4). Assume that C has full column rank. The
coupled rank of {X (n)} is R and the factor matrix C is unique if and only if condition
(4.5) is satisfied.

Proof. The necessity of condition (4.5) has already been demonstrated in Propo-
sition 4.5. Let us now prove the sufficiency of condition (4.5) in the case where C has
full column rank. Note that (4.5) implies that F has full column rank. Indeed, if F
is rank deficient, then there exists a vector x ∈ CR with property ω(x) ≥ 2 such that
∑R

r=1 xrfr = 0. This will contradict (4.5). Let {{Ã
(n)

}, {B̃
(n)

}, C̃} denote the factor

matrices of an alternative coupled CPD of X (n), n ∈ {1, . . . , N}, where Ã
(n)

∈ CIn×R̃,

B̃
(n)

∈ CJn×R̃, and C̃ ∈ CK×R̃ with R̃ ≤ R. Further, let F̃ ∈ C(
∑N

n=1 InJn)×R̃ denote

the alternative F constructed from {Ã
(n)

} and {B̃
(n)

} such that

(4.12) X = FCT = F̃C̃
T
.

Since F has full column rank and C has full column rank by assumption, we know
from (4.12) that R = R̃, that C̃ and F̃ have full column rank, and that range (C) =

range
(
C̃
)
.

We obtain from (4.12) the relation

(4.13) FH = F̃,

where H = CT (C̃
T
)† ∈ CR×R is nonsingular. This may be expressed in a columnwise

manner as

(4.14) ã(n)
r ⊗ b̃

(n)

r =
R∑

s=1

hsr

(
a(n)s ⊗ b(n)

s

)
, r ∈ {1, . . . , R}, n ∈ {1, . . . , N} .

Combination of (4.5) and (4.14) now yields that the nonsingular matrix H has exactly
one nonzero entry in every column. This implies that H = PD, where P ∈ CR×R is a
permutation matrix and D ∈ CR×R is a nonsingular diagonal matrix. From (4.12) we
obtain that C̃ = CPD−1. We conclude that the common factor C is unique.

While Proposition 4.9 provides a necessary and sufficient condition for the case
where C has full column rank, Corollaries 4.7 and 4.8 may be easier to check in
practice.

4.4. Sufficient uniqueness conditions for coupled CPD. We first present a
condition in Proposition 4.10 and Theorem 4.11 for the case where at least one of the
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involved CPDs is unique. Next, in Theorem 4.12 we extend Theorem 2.2 to coupled
CPD. It is a more relaxed condition than Proposition 4.10 and Theorem 4.11 since
it requires only that the overall coupled CPD be unique, i.e., none of the individual
CPDs are required to be unique. In Corollary 4.13 and Theorem 4.15 we extend
Theorems 2.3 and 2.4 to the coupled CPD case in which the common factor matrix
has full column rank. Finally, in Corollary 4.14 we extend Theorem 2.5 to coupled
CPD. Table 2 summarizes the organization and structure.

Table 2
Relations between uniqueness conditions for the single CPD and coupled CPD for different

rank properties of the common factor matrix C. The coupled CPD, case 1, corresponds to the cases
where one of the individual CPDs is unique, while the coupled CPD, case 2, corresponds to the cases
where none of the individual CPDs are required to be unique. In the case where C has full column
rank, we further distinguish between sufficient (S) conditions and necessary and sufficient (N and
S) conditions.

(S) (N and S) (S) (S)
k (C) ≥ 2 r (C) = R r (C) = R r (C) = R

Single CPD Thm. 2.2 Thm. 2.3 Thm. 2.4 Thm. 2.5
Coupled CPD, case 1 Thm. 4.11 Prop. 4.10 Prop. 4.10 Cor. 4.14
Coupled CPD, case 2 Thm. 4.12 Thm. 4.15 Cor. 4.13 Cor. 4.14

Proposition 4.10. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N},
in (4.1). If 4

∃n ∈ {1, . . . , N} : the rank of X (n) is R and the CPD of X (n) is unique,

and if C has full column rank, then the coupled rank of {X (n)} is R and the coupled
CPD of {X (n)} is unique.

Proof. If there exists an integer n ∈ {1, . . . , N} such that the rank of X (n) is R and
the CPD of X (n) is unique, then obviously the common factor matrix C is unique.
Compute Y(n) = X(n)(CT )†; then the remaining factor matrices are obtained by
recognizing that the columns of Y(n) are vectorized rank-1 matrices:

min
a(n)
r ,b(n)

r

∥∥∥y(n)
r − a(n)r ⊗ b(n)

r

∥∥∥
2

F
, r ∈ {1, . . . , R}, n ∈ {1, . . . , N}.

Hence, the coupled CPD of {X (n)} is unique and the coupled rank of {X (n)}
is R.

Proposition 4.10 tells us that a coupled CPD in which the common factor matrix
has full column rank is unique if one of the involved CPDs is unique. This simple
observation already demonstrates that a coupled CPD can be unique even if some of
the involved CPDs are individually nonunique. For instance, Proposition 4.10 does
not prevent in the coupled CPD that some of the Khatri–Rao products are rank
deficient, which is not allowed in the ordinary CPD. As an example, we consider

X =

[
X(1)

(1)

X(2)
(1)

]
=

[
A(1) "B(1)

A(2) "B(2)

]
CT ,

4As an example, Theorem 2.4 states that if r(C2(A(n))"C2(B(n))) = R(R−1)
2 , then the rank of

X (n) is R and the CPD of X (n) is unique. Alternatively, Theorem 2.3 states that if r(E(n)(w)) =
∑R

r=1 wra
(n)
r b

(n)T
r ≥ 2 for all w ∈ Ω = {x ∈ CR

∣∣ω(x) ≥ 2}, then the rank of X (n) is R and the

CPD of X (n) is unique.
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where A(1) ∈ C3×4, A(2) ∈ C3×4, B(1) ∈ C3×4, B(2) ∈ C3×4, and C ∈ C4×4. Further,

let a(2)1 ⊗b(2)
1 = a(2)

2 ⊗b(2)
2 ; then generically r(A(2)"B(2)) = 3, and consequently the

CPD of X (2) is not unique [30]. However, Proposition 4.10 tells us that the coupled
CPD of X (1) and X (2) is generically unique.

Theorem 4.11 considers the more general case where C does not necessarily have
full column rank.

Theorem 4.11. Consider the coupled PD of X (n) ∈ CIn×Jn×K, n ∈ {1, . . . , N},
in (4.1). Let Sn denote a subset of {1, . . . , R}, and let Sc

n = {1, . . . , R}\Sn denote the
complementary set. Stack the columns of C with index in Sn in C(Sn) ∈ CK×card(Sn)

and stack the columns of C with index in Sc
n in C(Sc

n) ∈ CK×(R−card(Sn)). Stack the
columns of A(n) (resp., B(n)) in the same order such that A(n,Sn) ∈ CIn×card(Sn)

(resp., B(n,Sn) ∈ CJn×card(Sn)) and A(n,Sc
n) ∈ CIn×(R−card(Sn)) (resp., B(n,Sn) ∈

CJn×(R−card(Sn))) are obtained. If 5

∃n ∈ {1, . . . , N} : the rank of X (n) is R and CPD of X (n) is unique,(4.15a)

and for all n ∈ {1, . . . , N} there exist an index set Sn with 0 ≤ card (Sn) ≤ rC such
that C(Sn) has full column rank and

{
B(n,Sc

n) has full column rank,

r
([

PC(Sn)C(Sc
n) "A(n,Sc

n),PC(Sn)c
(Sc

n)
r ⊗ IIn

])
= αn ∀r ∈ Sc

n,
(4.15b)

where αn = In +R− card (Sn)− 1, or

{
A(n,Sc

n) has full column rank,

r
([

PC(Sn)C(Sc
n) "B(n,Sc

n),PC(Sn)c
(Sc

n)
r ⊗ IJn

])
= βn ∀r ∈ Sc

n,
(4.15c)

where βn = Jn+R−card (Sn)−1, then the coupled rank of {X (n)} is R and the coupled
CPD of {X (n)} is unique. Generically, condition (4.15b) or (4.15c) is satisfied if for
all n ∈ {1, . . . , N} we have

{
R ≤ min

(
Vn +min (K,R) , Vn(Wn−1)+Wn(K−1)+1

Wn

)
when Vn < R ,

R ≤ (K − 1)Wn + 1 when Vn ≥ R ,
(4.16)

where Vn = max(In, Jn) and Wn = min(In, Jn).
Proof. We assume that the rank of X (p) is R and the CPD of X (p) is unique for

some p ∈ {1, . . . , N}. The overall uniqueness of the CPD of X (p) implies that the
common factor matrix C is unique with property k (C) ≥ 2. We now consider the
individual CPDs of the tensors {X (n)} with matrix representations

X(n)
(1) =

(
A(n) "B(n)

)
CT , n ∈ {1, . . . , N},

as CPDs with a known factor matrix. We know from [40, Theorem 4.8] that the CPD
of the tensor X (n) with known factor C is unique if condition (4.15b) or (4.15c) is

5As an example, if the conditions stated in Theorem 2.2 are satisfied for some p ∈ {1, . . . , N} in
which the roles of A(p), B(p), and C may be interchanged, then the rank of X (p) is R and the CPD
of X (p) is unique.
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satisfied. We also know from [40, Theorem 4.8] that the CPD of the tensor X (n) with
known factor C is generically unique if conditions (4.16) are satisfied. We conclude
that the coupled CPD of {X (n)} linked via the matrix C is unique and the coupled
rank of {X (n)} is R.

Theorem 4.11 tells us that a coupled CPD is unique under more relaxed conditions
than the individually involved ordinary CPDs even in cases where C does not have
full column rank. This also means that some of the involved CPDs are allowed to be
individually nonunique. As an example, we consider

X =

[
X(1)

(1)

X(2)
(1)

]
=

[
A(1) "B(1)

A(2) "B(2)

]
CT ,

where A(1) ∈ C4×5, A(2) ∈ C4×5, B(1) ∈ C4×5, B(2) ∈ C4×5, and C ∈ C4×5.

Furthermore, let b(2)
1 = b(2)

2 ; then generically k(B(2)) = 1 and consequently the
CPD of X (2) is not unique (see, e.g., [44]). Since C does not have full column rank,
Proposition 4.10 does not apply. However, Theorem 4.11 tells us that the coupled
CPD of X (1) and X (2) is generically unique. Note that this result is not obtained by
inverting C as in the proof of Proposition 4.10.

Theorem 4.12. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}
in (4.1). Let Sn denote a subset of {1, . . . , R}, and let Sc

n = {1, . . . , R}\Sn denote the
complementary set. Stack the columns of C with index in Sn in C(Sn) ∈ CK×card(Sn)

and stack the columns of C with index in Sc
n in C(Sc

n) ∈ CK×(R−card(Sn)). Stack the
columns of A(n) (resp., B(n)) in the same order such that A(n,Sn) ∈ CIn×card(Sn)

(resp., B(n,Sn) ∈ CJn×card(Sn)) and A(n,Sc
n) ∈ CIn×(R−card(Sn)) (resp., B(n,Sn) ∈

CJn×(R−card(Sn))) are obtained.
If C is unique6 with property k (C) ≥ 2, and if for all n ∈ {1, . . . , N} there exists

an index set Sn with 0 ≤ card (Sn) ≤ rC such that C(Sn) has full column rank and
condition (4.15b) or (4.15c) is satisfied, then the coupled rank of {X (n)} is R and the
coupled CPD of {X (n)} is unique.

Proof. The necessity of k (C) ≥ 2 has already been mentioned in Proposition 4.1.
Assuming that the common factor matrix C is unique with k (C) ≥ 2, we can consider
the individual CPDs of the tensors {X (n)} as CPDs with a known factor matrix C.
We know from [40, Theorem 4.8] that the CPD of the tensor X (n) with known factor
C is unique if condition (4.15b) or (4.15c) is satisfied. We can now conclude that the
coupled CPD of {X (n)} linked via the matrix C is unique and the coupled rank of
{X (n)} is R.

Note that Theorem 4.12, unlike Proposition 4.10 and Theorem 4.11, does not
assume that the CPD of one of the individual tensors X (n) is unique. As an example,
we consider

X =

[
X(1)

(1)

X(2)
(1)

]
=

[
A(1) "B(1)

A(2) "B(2)

]
CT ,

where A(1) ∈ C4×5, A(2) ∈ C4×5, B(1) ∈ C4×5, B(2) ∈ C4×5, and C ∈ C4×5. Further,

let b(1)
1 = b(1)

2 and b(2)
3 = b(2)

4 ; then generically k(B(1)) = 1 and k(B(2)) = 1.
Consequently the individual CPDs of X (1) and X (2) are not unique, which means

6As an example, if the conditions (4.8) stated in Proposition 4.6 are satisfied, then the coupled
rank of {X (n)} is R and the common factor matrix C is unique.
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that neither Proposition 4.10 nor Theorem 4.11 can be used to establish coupled
CPD uniqueness. However, Proposition 4.6, together with Theorem 4.12, tells us that
the coupled CPD of X (1) and X (2) is generically unique.

The above example explains that in some cases it is better to first establish
uniqueness of the common factor matrix C via, for instance, Proposition 4.6, and
thereafter establish coupled CPD uniqueness of {X (n)} by treating the individual
CPDs of {X (n)} as CPDs with a known factor C. However, in other cases it is better
to first establish CPD uniqueness of one of the individual tensors, say X (p), via, for
instance, Theorem 2.2, and thereafter establish coupled CPD uniqueness of {X (n)}
by treating the individual CPDs of {X (n)} as CPDs with a known factor C. As an
example, we consider

X =

[
X(1)

(1)

X(2)
(1)

]
=

[
A(1) "B(1)

A(2) "B(2)

]
CT ,

where A(1) ∈ C4×6, A(2) ∈ C4×6, B(1) ∈ C6×6, B(2) ∈ C5×6, and C ∈ C3×6. For this
problem Proposition 4.6 cannot be used since the matrix G(5) is not defined. On the
other hand, Theorem 2.2, together with Theorem 4.11, tells us that the coupled CPD
of X (1) and X (2) is generically unique.

Let us now assume that the common factor matrix C has full column rank. In
that case, Theorem 4.12 reduces to Corollary 4.13, which in turn can be understood
as an extension of Theorem 2.4 to coupled CPD. Corollary 4.13 can also be seen as
a generalization of Proposition 4.10 to the case where none of the involved CPDs are
required to be unique.

Corollary 4.13. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N},
in (4.1). Let G(2) be defined as in (4.7). If

{
C has full column rank,

G(2) has full column rank,
(4.17)

then the coupled rank of {X (n)} is R and the coupled CPD of {X (n)} is unique.
Proof. Due to Corollary 4.7 we know that the coupled rank of {X (n)} is R and

the common factor matrix C is unique when condition (4.17) is satisfied. Assuming
that C has full column rank, the remaining factors follow from rank-1 approximations
as explained in the proof of Proposition 4.10.

If additionally some of the factor matrices in the set {A(n)} also have full column
rank, then we may use the Corollary 4.14 following, which can be understood as an
extension of Theorem 2.5 to coupled CPD.

Corollary 4.14. Consider the coupled PD of {X (n)} in (4.1). Consider also a
subset S of {1, . . . , N} with card (S) = Q. W.l.o.g., we assume that S = {1, . . . , Q}.
If for some Q ∈ {1, . . . , N} we have

(4.18)




rC = R ,

rA(n) = R ∀n ∈ {1, . . . , Q},
∀r ∈ {1, . . . , R}, ∀s ∈ {1, . . . , R} \ r, ∃n ∈ {1, . . . , Q} : k

([
b(n)r , b(n)s

])
= 2 ,

then the coupled rank of {X (n)} is R and the coupled CPD of {X (n)} is unique.
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Proof. Due to Corollary 4.8 we know that the coupled rank of {X (n)} is R and
the common factor C is unique. Since C is unique and has full column rank, the
remaining factors follow from rank-1 approximations as explained in the proof of
Proposition 4.10.

Comparison of Theorem 2.5 with condition (4.19) shows that the coupling has
relaxed the uniqueness condition.

Finally, we generalize the necessary and sufficient uniqueness condition (2.5)
stated in Theorem 2.3 to the coupled CPD problem.

Theorem 4.15. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N},
in (4.1). Assume that C has full column rank. The coupled rank of {X (n)} is R and
the coupled CPD of {X (n)} is unique if and only if

∀w ∈ Ω , ∃n ∈ {1, . . . , N} : r
(
E(n)(w)

)
≥ 2 ,(4.19)

where E(n) and Ω are defined as in (4.4).
Proof. Due to Proposition 4.9 we know that the coupled rank of {X (n)} is R and

the common factor C is unique if and only if the condition (4.19) is satisfied. Since
the common factor C is unique and has full column rank, the remaining factors follow
from rank-1 approximations as explained in the proof of Proposition 4.10.

As in the case of ordinary CPD, the conditions in Theorem 4.15 may be harder
to check than those in Corollary 4.13 or Corollary 4.14.

4.5. Extension to tensors of arbitrary order. The uniqueness properties of
the CPD of higher-order tensors are not just a straightforward generalization of those
for third-order tensors. As a matter of fact, they are conceptually quite different.
We note that the idea of simultaneously considering different matrix representations
of the CPD of a single higher-order tensor for the case where one factor matrix has
full column rank was first considered in [46]. As our contribution, first we generalize
the idea to cases where none of the involved factor matrices are required to have full
column rank. In fact, based on the connection between coupled CPD and higher-order
tensors, we even demonstrate that the (coupled) CPD of a higher-order tensor(s)
can be unique despite collinearities in all factor matrices. Second, we extend the
coupled CPD framework in subsections 4.3 and 4.4 to tensors of arbitrary order.
More specifically, we demonstrate that by taking into account both the coupled and
higher-order structures, improved uniqueness conditions are obtained.

We consider coupled PDs of X (n) ∈ CI1,n×···×IMn,n×K , n ∈ {1, . . . , N}, of the
form

X (n) =
R∑

r=1

a(1,n)r ◦ · · · ◦ a(Mn,n)
r ◦ cr, n ∈ {1, . . . , N}.(4.20)

The factor matrices are

A(m,n) =
[
a(m,n)
1 , . . . , a(m,n)

R

]
∈ CIm,n×R, m ∈ {1, . . . ,Mn}, n ∈ {1, . . . , N},

C =
[
c1, . . . , cR

]
∈ CK×R.

The coupled PD of tensors {X (n)} of arbitrary order is visualized in Figure 2.
Note that the tensors X (n) may have different orders Mn and different sizes Im,n.

As a special case, we have the case of a single tensor (N = 1) of order M ≥ 4. Our
key idea is that, if one or more tensors have order Mn ≥ 4, then we may combine
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X (1)

= ⊗ · · ·⊗

c1

b(M1,1)
1

a(1,1)
1

+ · · ·+ ⊗ · · ·⊗

cR

b(M1,1)
R

a(1,1)
R...

X (N)

= ⊗ · · ·⊗

c1

b(MN ,N)
1

a(1,N)
1

+ · · ·+ ⊗ · · ·⊗

cR

b(MN ,N)
R

a(1,N)
R

Fig. 2. Coupled PD of tensors X (1), . . . ,X (N) in which b(Mn,n)
r = a(2,n)

r ⊗ · · ·⊗ a(Mn,n)
r .

the coupled third-order CPD results discussed in subsections 4.2–4.4 with results for
higher-order tensors [46]. More precisely, uniqueness results may be obtained by
reducing the associated higher-order PDs to coupled third-order PDs. Namely, we
simultaneously consider several matrix representations of the form

(4.21) X(w,n) =




⊙

p∈Γw,n

A(p,n) "
⊙

q∈Υw,n

A(q,n)



CT =
(
A[w,n] "B[w,n]

)
CT ,

where A[w,n] =
⊙

p∈Γw,n
A(p,n) ∈ CÎw,n×R with Îw,n =

∏
p∈Γw,n

Ip,n, B[w,n] =
⊙

q∈Υw,n
A(q,n) ∈ CĴw,n×R with Ĵw,n =

∏
q∈Υw,n

Iq,n, and the sets Γw,n and Υw,n

have properties Γw,n
⋃
Υw,n = {1, 2, . . . ,Mn} and Γw,n

⋂
Υw,n = ∅. Let us assume

that there are Wn sets {Γw,n} and {Υw,n} for each n ∈ {1, . . . , N}. We collect the

matrices {X(w,n)} into the matrix

X =
[
X(1)T ,X(2)T , . . . ,X(N)T

]T
, X(n) =

[
X(1,n)T ,X(2,n)T , . . . ,X(Wn,n)T

]T
,

such that

(4.22) X = FCT , F =





F(1)

F(2)

...
F(N)




, F(n) =





A[1,n] "B[1,n]

A[2,n] "B[2,n]

...
A[Wn,n] "B[Wn,n]




.

We now ignore the Khatri–Rao structure of A[w,n] and B[w,n] and treat (4.22) as a
matrix representation of a set of coupled third-order CPDs.

For establishing uniqueness, we may resort to the different results in subsection
4.4. For the results that make use of G(R−rC+2), we may work with the follow-
ing generalization. We limit ourselves to the W̃n sets {Γw,n} and {Υw,n} for each
n ∈ {1, . . . , N} in which min(

∏
p∈Γw,n

Ip,n,
∏

q∈Υw,n
Iq,n) ≥ R − rC + 2. Define
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G(R−rC+2,W̃n) ∈ C
(
∑W̃n

w=1 C
R−rC+2∏
p∈Γw,n

Ip,n
C

R−rC+2∏
q∈Υw,n

Iq,n
)×C

R−rC+2
R as follows:

G(R−rC+2,W̃n) =





CR−rC+2

(
A[1,n]

)
" CR−rC+2

(
B[1,n]

)

...

CR−rC+2

(
A[W̃n,n]

)
" CR−rC+2

(
B[W̃n,n]

)




, n ∈ {1, . . . , N}.

The following matrix generalizes G(R−rC+2) in (4.7):

G(m) =





G(m,W̃1)

...

G(m,W̃N )



 ∈ C
∑N

n=1(
∑W̃n

w=1 Cm∏
p∈Γw,n

Ip,n
Cm∏

q∈Υw,n
Iq,n

)×Cm
R ,(4.23)

where m = R − rC + 2. In the extensions of Theorems 4.11 and 4.12, it suffices to
check condition (4.15b) or (4.15c) for one of the W̃n matrix representations.

As an example, consider the fourth-order tensors X (n) ∈ CI×J×K×L, n ∈ {1, 2},
with PDs,

(4.24) X (n) =
R∑

r=1

a(n)
r ◦ b(n)

r ◦ c(n)r ◦ dr, n ∈ {1, 2},

in which I = 4, J = 5, K = 4, L = 3, R = 4, a(1)
2 = a(1)3 , b(1)

1 = b(1)
3 , c(1)1 = c(1)2 ,

c(1)3 = c(1)4 , a(2)1 = a(2)
4 , b(2)

1 = b(2)
2 = b(2)

3 , and c(2)3 = c(2)4 . Note that generically
kA(1) = kB(1) = kC(1) = kA(2) = kB(2) = kC(2) = 1 and kD ≥ 2. The existing
CPD uniqueness conditions for higher-order tensors stated in [33, 46, 5] do not apply.
Similarly, the uniqueness conditions for coupled CPD based on third-order tensors
(i.e., if we ignore the fourth-order structure by combining two modes) discussed in
subsection 4.4 do not apply either. We now explain that by simultaneously exploiting
both the higher-order and coupled structures of the PDs in (4.24), coupled CPD
uniqueness can be established. Generically D has rank 3. Denote

G(n) =





C3

(
A(n)

)
" C3

(
B(n) "C(n)

)

C3

(
B(n)

)
" C3

(
C(n) "A(n)

)

C3

(
C(n)

)
" C3

(
A(n) "B(n)

)




.

Using Lemma 4.3 it can be verified that, although the matrices G(1) and G(2) are
rank deficient, the matrix G = [G(1)T ,G(2)T ]T generically has full column rank.
Thus, Proposition 4.6 tells us that by taking into account the higher-order structure
and the coupling between X (1) and X (2), uniqueness of D can be established. Using
Lemma 4.3 it also can be verified that E(1) = B(1) " C(1) and E(2) = B(2) " C(2)

generically have full column rank and that the matrix [D"A(n),dr ⊗ II ] generically
has a one-dimensional kernel for every r ∈ {1, 2, 3, 4} and n ∈ {1, 2}. Invoking
Theorem 4.12 we can conclude that the coupled CPD of X (1) and X (2) (in which the
Khatri–Rao structure of E(1) and E(2) has been ignored) is unique. Consequently,
the factors {A(n)}, {E(n)}, and D are unique despite the collinearities in the factor
matrices. Finally, the rank-1 structure of the columns of E(n) = B(n) "C(n) implies
that {B(n)} and {C(n)} are also unique.
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We now demonstrate that (coupled) CPD of higher-order tensors can even be
unique despite collinearities in all factor matrices; i.e., the factor matrices of the PDs
of {X (n)} in (4.20) may satisfy kC = 1 and kA(m,n) = 1 for all m ∈ {1, . . . ,Mn}, for
all n ∈ {1, . . . , N}. For this reason Proposition 4.1 does not extend to higher-order
tensors in an obvious manner. Note that the existing CPD uniqueness conditions for
higher-order tensors stated in [33, 46, 5] do not apply in this case. As an example,
consider N = 1 and the PD of X ∈ CI×J×K×L given by

(4.25) X =
R∑

r=1

ar ◦ br ◦ cr ◦ dr ,

in which a1 = a2, b1 = b3, c3 = c4, d2 = d3, and I = J = K = L = R = 4. Since
kA = kB = kC = kD = 1 the results discussed in subsection 4.4 cannot be applied in
a direct manner. We will establish uniqueness by reducing the fourth-order PD to a
coupled third-order PD and by following a deflation argument. Generically rA = 3.
Using Lemma 4.3 it can be verified that




CR−rA+2 (B)" CR−rA+2 (C"D)
CR−rA+2 (C)" CR−rA+2 (B"D)
CR−rA+2 (D)" CR−rA+2 (B"C)



 =




C3 (B)" C3 (C"D)
C3 (C)" C3 (B"D)
C3 (D)" C3 (B"C)





generically has full column rank. Proposition 4.6 implies that the factor matrix A
is unique. The next step is to demonstrate that the rank-1 term a4 ◦ b4 ◦ c4 ◦ d4 is
unique. The PD of X in (4.25) has matrix representation

X = (A"B) (C"D)T = (A"B)ET , E = C"D.

Lemma 4.3 can also tell us that E generically has full column rank and that generically

r ([A"B, ar ⊗ IJ ]) = R + J − Γr (A) ,

where Γ1 (A) = Γ2 (A) = 2 and Γ3 (A) = Γ4 (A) = 1. Since Γ4 (A) = 1, [41,
Proposition 5.2] tells us that the vectors b4 and e4 are unique. As a consequence of
the rank-1 structure of e4 we also know that c4 and d4 are unique. We subtract the
unique rank-1 term,

Y = X − a4 ◦ b4 ◦ c4 ◦ d4 =
3∑

r=1

ar ◦ br ◦ cr ◦ dr .

The PD of Y has the factor matrices A(2) = [a1, a2, a3], B
(2) = [b1,b2,b3], C

(2) =
[c1, c2, c3], and D(2) = [d1,d2,d3]. The matrix C(2) generically has full column rank.
Using Lemma 4.3 it can be verified that





C2

(
A(2)

)
" C2

(
B(2) "D(2)

)

C2

(
B(2)

)
" C2

(
D(2) "A(2)

)

C2

(
D(2)

)
" C2

(
A(2) "B(2)

)





generically has full column rank. Due to Corollary 4.13 we now know that the re-
maining factors A(2), B(2), C(2), and D(2) are unique.

More generally, for the case of coupled CPD of higher-order tensors it is possible
in some cases to establish coupled CPD uniqueness via a sequence of deflation steps.
See the supplementary material for a brief discussion.
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4.6. Coupled matrix-tensor factorization. A simple case of coupled decom-
positions is the coupled matrix-tensor factorization, admitting a matrix representation
of the form

X =

[
X(1)

(1)

X(2)
(1)

]
=

[
A(1) "B(1)

A(2)

]
CT .(4.26)

Because of its simplicity, (4.26) is common in the analysis of multiview data [49, 1, 18,
2]. Note that coupled matrix-tensor factorization is a special case of coupled CPD.
Indeed, define B(2) = [1, 1, . . . , 1] ∈ C1×R; then (4.26) can also be written as

X =

[
X(1)

(1)

X(2)
(1)

]
=

[
A(1) "B(1)

A(2) "B(2)

]
CT ,

which is of form (4.2), so that several of the results presented in this paper can be
applied.

A notable limitation of the coupled matrix-tensor factorization (4.26) is that
in order to guarantee the uniqueness of A(2), the common factor C must have full
column rank. More precisely, if C has full column rank, then A(2) follows from A(2) =

X(2)
(1)(C

T )†. On the other hand, if C does not have full column rank, then there will

be an intrinsic indeterminacy between A(2) and C. Indeed, when C does not have full
column rank, the null space of C is not empty. Any vector y ∈ ker (C) will generate an

alternative coupled matrix-tensor factorization X in which X(2)
(1) = (A(2) + xyT )CT ,

where x ∈ CI2 .

5. Coupled CPD with collinearity in common factor. We consider coupled
PDs of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}, of the following form:

X (n) =
R∑

r=1

Lr,n∑

l=1

a(r,n)
l ◦ b(r,n)

l ◦ c(r) =
R∑

r=1

(
A(r,n)B(r,n)T

)
◦ c(r).(5.1)

On one hand, this is an extension of (3.1) to the coupled case. On the other hand, it
is a variant of the coupled PD in (4.1) for collinearity constrained C. If the matrices
A(r,n)B(r,n)T have rank Lr,n, then (5.1) is a coupled decomposition into multilinear
rank-(Lr,n, Lr,n, 1) terms. We will briefly call this a coupled block term decomposition
(BTD). The coupled BTD of the third-order tensors {X (n)} is visualized in Figure 3.

The coupled multilinear rank-(Lr,n, Lr,n, 1) tensors in (5.1) can be arbitrarily per-
muted, and the vectors/matrices within the same coupled multilinear rank-
(Lr,n, Lr,n, 1) tensor can be arbitrarily scaled provided the overall coupled multilinear
rank-(Lr,n, Lr,n, 1) term remains the same. We say that the coupled BTD is unique
when it is only subject to the mentioned indeterminacies.

In this section we limit the exposition to third-order tensors. Analogous to the
coupled CPD in subsection 4.5, the coupled BTD and its associated properties can
be extended to tensors of arbitrary order. In the supplementary material we briefly
explain that it can be reduced to a set of coupled BTDs of third-order tensors.

D
ow

nl
oa

de
d 

05
/1

1/
15

 to
 1

34
.5

8.
25

3.
57

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

516 MIKAEL SØRENSEN AND LIEVEN DE LATHAUWER

X (1) =

c(1)

A(1,1)

L1,1

B(1,1)T

+ · · ·+

c(R)

A(R,1)

LR,1

B(R,1)T

...

X (N)

=

c(1)

A(1,N)

L1,N

B(1,N)T

+ · · ·+

c(R)

A(R,N)

LR,N

B(R,N)T

Fig. 3. Coupled BTD of the third-order tensors X (1), . . . ,X (N).

5.1. Matrix representation. Denote Rtot,n =
∑R

r=1 Lr,n. The coupled PD of
the tensors {X (n)} of the form (5.1) has the factor matrices

A(r,n) =
[
a(r,n)1 , . . . , a(r,n)Lr,n

]
∈ CIn×Lr,n ,

A(n) =
[
A(1,n), . . . ,A(R,n)

]
∈ CIn×Rtot,n , n ∈ {1, . . . , N},

B(r,n) =
[
b(r,n)
1 , . . . ,b(r,n)

Lr,n

]
∈ CJn×Lr,n ,

B(n) =
[
B(1,n), . . . ,B(R,n)

]
∈ CJn×Rtot,n , n ∈ {1, . . . , N},

C(red) =
[
c(1), . . . , c(R)

]
∈ CK×R,(5.2)

C(n) =
[
1T
Lr,n

⊗ c(1), . . . ,1T
LR,n

⊗ c(R)
]
∈ CK×Rtot,n ,(5.3)

and matrix representation

X =
[
X(1)T

(1) , . . . ,X(N)T
(1)

]T
= F(red)C(red)T ∈ C(

∑N
n=1 InJn)×K ,(5.4)

where F(red) ∈ C(
∑N

n=1 InJn)×R is given by

F(red) =





Vec
(
B(1,1)A(1,1)T

)
· · · Vec

(
B(R,1)A(R,1)T

)

...
. . .

...

Vec
(
B(1,N)A(1,N)T

)
· · · Vec

(
B(R,N)A(R,N)T

)




.(5.5)

Denote Lr,max = maxn∈{1,...,N} Lr,n and Rext =
∑R

r=1Lr,max, where “ext” stands

for extended. By appending all-zero column vectors to A(r,n) and B(r,n), (5.4) may
also be expressed as

X = F(ext)C(ext)T ∈ C(
∑N

n=1 InJn)×K ,(5.6)

D
ow

nl
oa

de
d 

05
/1

1/
15

 to
 1

34
.5

8.
25

3.
57

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COUPLED TENSOR DECOMPOSITIONS 517

where

F(ext) =

[(
Ã

(1)
" B̃

(1)
)T

, . . . ,

(
Ã

(N)
" B̃

(N)
)T
]T

∈ C(
∑N

n=1 InJn)×Rext ,(5.7)

C(ext) =
[
1T
L1,max

⊗ c(1), . . . ,1T
LR,max

⊗ c(R)
]
∈ CK×Rext ,(5.8)

in which

Ã
(r,n)

=
[
A(r,n),0In,(Lr,max−Lr,n)

]
∈ CIn×Lr,max,

Ã
(n)

=

[
Ã

(1,n)
, . . . , Ã

(R,n)
]
∈ CIn×Rext , n ∈ {1, . . . , N},

B̃
(r,n)

=
[
B(r,n),0Jn,(Lr,max−Lr,n)

]
∈ CJn×Lr,max ,

B̃
(n)

=

[
B̃

(1,n)
, . . . , B̃

(R,n)
]
∈ CJn×Rext , n ∈ {1, . . . , N}.

5.2. Uniqueness conditions for coupled CPD with collinearity in com-

mon factor. Let {{Â
(r,n)

}, {B̂
(r,n)

}, {ĉ(r)}} yield an alternative coupled BTD of
the tensors {X (n)} in (5.1). We say that the coupled BTD of {X (n)} is unique if it
is unique up to a permutation of the coupled multilinear rank-(Lr,n, Lr,n, 1) terms

{(Â
(r,n)

B̂
(r,n)T

) ◦ ĉ(r)} and up to the following indeterminacies within each term:

Â
(r,n)

= α(r,n)A(r,n)Hr,n , B̂
(r,n)

= β(r,n)B(r,n)H−1
r,n , ĉ(r) = γ(r)c(r),

where Hr,n ∈ CLr,n×Lr,n are nonsingular matrices and α(r,n),β(r,n), γ(r) ∈ C are
scalars satisfying α(r,n)β(r,n)γ(r) = 1, r ∈ {1, . . . , R}, n ∈ {1, . . . , N}. From (5.4) it is
clear that uniqueness requires kC(red) ≥ 2. From (5.4) it is also clear that F(red) must
have full column rank in order to guarantee the uniqueness of the coupled BTD of
{X (n)}. Proposition 5.1 below extends the necessary conditions stated in Propositions
4.1, 4.2, and 4.5 to coupled BTD.

Proposition 5.1. Consider the coupled PD of X (n), n ∈ {1, . . . , N}, in (5.1).
Define E(n)(w) =

∑R
r=1 wrA

(r,n)B(r,n)T and Ω =
{
x ∈ CR

∣∣ω(x) ≥ 2
}
. If the coupled

BTD of {X (n)} in (5.1) is unique, then
(i) kC(red) ≥ 2,
(ii) F(red) has full column rank,
(iii) for all w ∈ Ω , ∃n ∈ {1, . . . , N} : r(E(n)(w)) > maxr|wr &=0 Lr,n.
Proof. The proof is analogous to that of Propositions 4.1, 4.2, and 4.5.
Proposition 5.2 tells us that this is generically true if F(red) has at least as many

rows as columns.
Proposition 5.2. Consider F(red) ∈ C(

∑N
n=1 InJn)×R given by (5.5). For generic

matrices {A(r,n)} and {B(r,n)}, the matrix F(red) has rank min(
∑N

n=1 InJn, R).
Proof. Due to Lemma 4.3 we just need to find one example for which the propo-

sition holds. Since the coupled CPD (4.1) is a particular case of (5.4), a particu-

lar example is the matrix F(red) in (4.3). (Formally, we take a(r,n)l = 0In for all
l ∈ {2, . . . , Lr,n}, for all r ∈ {1, . . . , R}, for all n ∈ {1, . . . , N}.) The proposition now
follows directly from Proposition 4.4.

We will now discuss extensions of Theorems 4.11, 4.12, and 4.15 to the case
where the common factor matrix contains collinear components. The generalizations
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of Proposition 4.10 and Corollary 4.13 follow immediately and are therefore not con-
sidered in this section.

Theorem 5.3 can be seen as a version of Theorem 4.11 for the case where the
common factor matrix contains collinear columns.

Theorem 5.3. Consider the coupled PD of X (n), n ∈ {1, . . . , N}, in (5.1). Let Sn

denote a subset of {1, . . . , R}, and let Sc
n = {1, . . . , R} \Sn denote the complementary

set. Stack the columns of C(red) with index in Sn in C(red,Sn) ∈ CK×card(Sn) and stack
the columns of C(red) with index in Sc

n in C(red,Sc
n) ∈ CK×(R−card(Sn)). Stack A(r,n)

(resp., B(r,n) and C(r,n)) in the same order such that A(n,Sn) ∈ CIn×(
∑

p∈Sn
Lp,n)

(resp., B(n,Sn) ∈ CJn×(
∑

p∈Sn
Lp,n) and C(n,Sn) ∈ CK×(

∑
p∈Sn

Lp,n)) and A(n,Sc
n) ∈

CIn×(
∑

p∈Sc
n
Lp,nt) (resp., B(n,Sc

n) ∈ CJn×(
∑

p∈Sc
n
Lp,n) and C(n,Sc

n) ∈ CK×(
∑

p∈Sc
n
Lp,n))

are obtained. Denote D(n,Sc
n) = PC(red,Sn)C(n,Sc

n). If 7






∃ p ∈ {1, . . . , N} : the minimal number of rank-(Lr,p, Lr,p, 1)

terms in X (p) is R and the decomposition of X (p) into

rank-(Lr,p, Lr,p, 1) terms is unique,

(5.9a)

and for every n ∈ {1, . . . , N} there exists an index set Sn ⊆ {1, . . . , R} with property
0 ≤ card (Sn) ≤ rC(red) , such that





B(n,Sc

n) has full column rank
(
rB(n,Sc

n) =
∑

p∈Sc
n
Lp,n

)
,

r
([

D(n,Sc
n) "A(n,Sc

n),d(n,Sc
n)

r ⊗ IIn

])
= αr,n ∀r ∈ Sc

n,
(5.9b)

where αr,n = In +
∑

p∈Sc
n
Lp,n − Lr,n, or





A(n,Sc

n) has full column rank
(
rA(n,Sc

n) =
∑

p∈Sc
n
Lp,n

)
,

r
([

D(n,Sc
n) "B(n,Sc

n),d(n,Sc
n)

r ⊗ IJn

])
= βr,n ∀r ∈ Sc

n,
(5.9c)

where βr,n = Jn+
∑

p∈Sc
n
Lp,n−Lr,n, then the minimal number of coupled multilinear

rank-(Lr,n, Lr,n, 1) terms is R and the coupled BTD of {X (n)} is unique.
Proof. Assume that there exists an integer p ∈ {1, . . . , N} such that the minimal

number of rank-(Lr,p, Lr,p, 1) terms in X (p) is R and the decomposition of X (p) into

rank-(Lr,p, Lr,p, 1) terms is unique. Since C(red) is unique and the condition (5.9b) or
(5.9c) is satisfied for every n ∈ {1, . . . , N}, we know from [41, Proposition 5.2] that
the coupled BTD of {X (n)} is unique and the minimal number of coupled multilinear
rank-(Lr,n, Lr,n, 1) terms is R.

Theorem 5.4 below can be interpreted as a version of Theorem 4.12 for the case
where the common factor matrix contains collinear columns.

Theorem 5.4. Consider the coupled PD of X (n), n ∈ {1, . . . , N}, in (5.1). Let Sn

denote a subset of {1, . . . , R} and let Sc
n = {1, . . . , R} \ Sn denote the complementary

7As an example, if r(CRtot,p−r
C(red)+2(A

(p))"CRtot,p−r
C(red)+2(B

(p))) = C
Rtot,p−r

C(red)+2

Rtot,p
,

then Theorem 2.1 tells us that the rank of X (p) is
∑R

r=1 Lr,p and the factor C(p) is unique up

to a column permutation and scaling. The uniqueness of the decomposition of X (p) into rank-
(Lr,p, Lr,p, 1) terms now follows from condition (5.9b) or (5.9c), as explained by Proposition 5.2 in
[41].
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set. Stack the columns of C(red) with index in Sn in C(red,Sn) ∈ CK×card(Sn) and stack
the columns of C(red) with index in Sc

n in C(red,Sc
n) ∈ CK×(R−card(Sn)). Stack A(r,n)

(resp., B(r,n) and C(r,n)) in the same order such that A(n,Sn) ∈ CIn×(
∑

p∈Sn
Lp,n)

(resp., B(n,Sn) ∈ CJn×(
∑

p∈Sn
Lp,n) and C(n,Sn) ∈ CK×(

∑
p∈Sn

Lp,n)) and A(n,Sc
n) ∈

CIn×(
∑

p∈Sc
n
Lp,n) (resp., B(n,Sc

n) ∈ CJn×(
∑

p∈Sc
n
Lp,n) and C(n,Sc

n) ∈ CK×(
∑

p∈Sc
n
Lp,n))

are obtained.
If C(red) is unique8 with property k(C(red)) ≥ 2 and if for every n ∈ {1, . . . , N}

there exists an index set Sn ⊆ {1, . . . , R} with property 0 ≤ card (Sn) ≤ rC(red) ,
such that condition (5.9b) or (5.9c) is satisfied, then the minimal number of coupled
multilinear rank-(Lr,n, Lr,n, 1) terms is R and the coupled BTD of {X (n)} is unique.

Proof. We assume that the common factor matrix C(ext) is unique. Since
k(C(red)) ≥ 2 we can remove repeated column vectors of C(ext) so that C(red) is
obtained up to an intrinsic column permutation and scaling. From [41, Proposition
5.2] we know that when C(red) is unique and condition (5.9b) or (5.9c) is satisfied for
every n ∈ {1, . . . , N}, the coupled BTD of {X (n)} is unique and the minimal number
of coupled multilinear rank-(Lr,n, Lr,n, 1) terms is R.

Let us now assume that the common factor C(red) has full column rank. We for-
mulate the generalization of the necessary and sufficient uniqueness condition stated
in Theorem 4.15 to the coupled BTD case.

Theorem 5.5. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}
in (5.1). Define E(n)(w) =

∑R
r=1wrA

(r,n)B(r,n)T and Ω =
{
x ∈ CR

∣∣ω(x) ≥ 2
}
.

Assume that C(red) has full column rank. The decomposition of {X (n)} into coupled
multilinear rank-(Lr,n, Lr,n, 1) terms is unique if and only if

∀w ∈ Ω ∃n ∈ {1, . . . , N} : r
(
E(n)(w)

)
> max

r|wr &=0
Lr,n .(5.10)

Proof. The proof is analogous to that of Theorem 4.15.

6. Conclusion. Coupled tensor decompositions are currently gaining interest in
several engineering disciplines. However, a firm algebraic framework for coupled tensor
decompositions had not yet been presented in the literature. The existing uniqueness
conditions for single tensor decompositions are not sufficient for the coupled case. In
this paper we have derived necessary and sufficient conditions for the uniqueness of a
coupled CPD. The conditions are more relaxed than their single tensor counterparts.
We have considered variants for tensors of order greater than three and for coupled
matrix-tensor decompositions.

In several signal processing problems the common factor matrix contains collinear
columns. To cope with collinearity, we introduced the coupled BTD, which can be
seen as a variant of the coupled CPD but also as an extension of the decomposition
into multilinear rank-(Lr, Lr, 1) terms to the coupled case. For the coupled BTD, we
provided several necessary and sufficient uniqueness conditions as well.

It is also important to take into account the coupling in the actual computation
of the decompositions. Computation is addressed in the companion paper [41].

8For working with Proposition 4.6, denote Q =
∑N

n=1 H[min(In, Jn) − Rext + rC(red) − 2] and

define G ∈ C(
∑Q

n=1 C
Rext−r

C(red)+2

In
C

Rext−r
C(red)+2

Jn
)×C

Rext−r
C(red)+2

Rext as in (4.7) and built from the

zero-padded matrices {Ã(n)} and {B̃(n)}. Proposition 4.6 tells us that if r (G) = C
Rext−r

C(red)+2

Rext

and k(C(red)) ≥ 1, then the coupled rank of {X(n)} is Rext and the common factor C(ext) is unique.
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COUPLED CANONICAL POLYADIC DECOMPOSITIONS AND
(COUPLED) DECOMPOSITIONS IN MULTILINEAR
RANK-(Lr,n, Lr,n, 1) TERMS — PART I: UNIQUENESS

SUPPLEMENTARY MATERIAL

MIKAEL SØRENSEN ∗† AND LIEVEN DE LATHAUWER ∗†

Recall that a collection of tensors X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}, admits an
R-term coupled polyadic decomposition if each tensor X (n) can be written as

X (n) =
R∑

r=1

a(n)r ◦ b(n)
r ◦ cr , n ∈ {1, . . . , N}, (S.0.1)

with factor matrices

A(n) =
[
a(n)1 , . . . , a(n)

R

]
∈ C

In×R, n ∈ {1, . . . , N},

B(n) =
[
b(n)
1 , . . . ,b(n)

R

]
∈ C

Jn×R, n ∈ {1, . . . , N},

C =
[
c1, . . . , cR

]
∈ C

K×R.

we will make use of the following matrix representation of {X (n)}:

X =





X(1)
(1)
...

X(N)
(1)



 =





A(1) #B(1)

...
A(N) #B(N)



CT = FCT ∈ C
(
∑N

n=1
InJn)×K , (S.0.2)

where

F =





A(1) #B(1)

...
A(N) #B(N)



 ∈ C
(
∑N

n=1
InJn)×R. (S.0.3)

S.1. Supplementary material related to Proposition 4.4. Consider F ∈
C(

∑N
n=1

InJn)×R given by (S.0.3). For generic matrices {A(n)} and {B(n)}, the matrix

F has rank min
(∑N

n=1 InJn, R
)
.

Proof. Due to [3, Lemma 4.3] we just need to find one example where the state-
ment made in this lemma holds.
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By way of example, let

a(n)r =





1
zJn
r

z2Jn
r
...

z
(In−1)Jn
r




z
∏

p<n IpJp

r ∈ C
In and b(n)

r =





1
zr
z2r
...

z
(Jn−1)
r




∈ C

Jn . (S.1.1)

By inserting (S.1.1) into (S.0.3) we obtain

F =





A(1) #B(1)

...
A(N) #B(N)



 =





1 · · · 1
z11 · · · z1R
z21 · · · z2R
...

. . .
...

z
∑N

n=1
InJn−1

1 · · · z
∑N

n=1
InJn−1

R




. (S.1.2)

The Vandermonde matrix F given by (S.1.2) has rank min
(∑N

n=1 InJn, R
)

if the

generators {zr} are distinct. By invoking [3, Lemma 4.3] we conclude that the matrix

F given by (S.0.3) generically has rank min
(∑N

n=1 InJn, R
)
.

S.2. Supplementary material related to Proposition 4.6. In Proposition
S.2.3 we briefly explain how Proposition 4.3 in [1] for CPD can be extended to coupled
CPD. The proof of Proposition S.2.3 makes use of the following two lemmas.

Lemma S.2.1 (Kruskal’s Permutation Lemma). Let C̃ ∈ CK×R̃ and C ∈ CK×R

in which R̃ ≤ R and k (C) ≥ 1. If

ω
(
C̃

T
x

)
≤ R̃− r

(
C̃

)
+ 1 ⇒ ω

(
C

T
x

)
≤ ω

(
C̃

T
x

)
, ∀x ∈ C

K ,

then R̃ = R and there exists a unique permutation matrix P ∈ CR×R and a unique
nonsingular diagonal matrix D ∈ CR×R such that C̃ = CPD.

Proof. The original proof can be found in [2] and a discussion of the result can
be found in [5].

Lemma S.2.2. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}
in (S.0.1). W.l.o.g. we assume that min(I1, J1) ≥ min(I2, J2) ≥ · · · ≥ min(IN , JN ).
Denote Q =

∑N
n=1 H [min (In, Jn)−R+ rC − 2]. Define

G
(m) =





Cm

(
A

(1)
)
# Cm

(
B

(1)
)

...

Cm

(
A

(Q)
)
# Cm

(
B

(Q)
)




∈ C(

∑Q
n=1

Cm
In

Cm
Jn)×Cm

R , (S.2.1)

where m = R−rC+2. If G(m) has full column rank, then G
(m−1),G(m−2), . . . ,G(1) =

F all have full column rank.
Proof. The result is analogous to Lemma 3.6 in [1].
Proposition S.2.3. Consider the coupled PD of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N}

in (S.0.1). Let G(m) be defined as in (S.2.1). If

{
k (C) ≥ 1

r
(
G

(R−rC+2)
)
= CR−rC+2

R ,
(S.2.2)
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then the coupled rank of {X (n)} is R and the factor matrix C is unique.

Proof. Let

{
{Ã

(n)
}, {B̃

(n)
}, C̃

}
denote the factor matrices of an alternative

coupled CPD of X (n), n ∈ {1, . . . , N}, where Ã
(n)

∈ CIn×R̃, B̃
(n)

∈ CJn×R̃ and

C̃ ∈ CK×R̃. This implies that R̃ ≤ R and
(
Ã

(n)
# B̃

(n)
)
C̃

T
=

(
A(n) #B(n)

)
CT , n ∈ {1, . . . , N} . (S.2.3)

Denote

F̃ =

[(
Ã

(1)
# B̃

(1)
)T

, . . . ,

(
Ã

(N)
# B̃

(N)
)T

]T

∈ C
(
∑N

n=1
InJn)×R̃.

Due to Lemma S.2.2 we know that condition (S.2.2) implies that F has full column
rank. Since we know that F has full column rank we also know that

r (C) = r
(
FCT

)
= r

(
F̃C̃

T
)
≤ r

(
C̃
)
. (S.2.4)

Let x ∈ CK be a vector such that ω
(
C̃

T
x
)
≤ R̃− r

(
C̃
)
+1. Due to inequalities

R̃ ≤ R and (S.2.4) we also know that ω
(
C̃

T
x
)
≤ R̃ − r

(
C̃
)
+ 1 ≤ R − r (C) + 1 =

R− rC + 1.
From (S.2.3) we obtain

Ã
(n)

D1

(
xT C̃

)
B̃

(n)T
= A(n)D1

(
xTC

)
B(n)T , n ∈ {1, . . . , N} . (S.2.5)

Denote γ = ω
(
C̃

T
x
)
+ 1. Like Proposition 4.3 in [1], the result will be based

on Lemmas 2.4 and 2.5 in [1], as explained next. Lemma 2.4 in [1] tells us that

Cγ (AB) = Cγ (A)Cγ (B) while Lemma 2.5 in [1] states that ω
(
C̃

T
x
)

< γ ⇔

Cγ

(
D1

(
xT C̃

))
= 0. Consequently from (S.2.5) we obtain the relations

Cγ

(
Ã

(n)
D1

(
xT C̃

)
B̃

(n)T
)

= Cγ

(
Ã

(n)
)
Cγ

(
D1

(
xT C̃

))
Cγ

(
B̃

(n)T
)

= Cγ

(
A(n)

)
Cγ

(
D1

(
xTC

))
Cγ

(
B(n)T

)

= 0 , n ∈ {1, . . . , N} , (S.2.6)

where the last equality follows from the fact that Cγ

(
D1

(
xT C̃

))
= 0. Let us collect

the relations (S.2.6) as follows

G(γ)Vecd
(
Cγ

(
D1

(
xTC

)))
= 0 , (S.2.7)

whereG(γ) ∈ C(
∑Q

n=1
Cγ

In
Cγ

Jn
)×Cγ

R is given by (S.2.1). Since we assume thatG(R−rC+2)

has full column rank, we also known from Lemma S.2.2 thatG(R−rC+1),G(R−rC), . . . ,G(1)

all have full column rank. We can now conclude from (S.2.7) that

Vecd
(
Cγ

(
D1

(
xTC

)))
= 0.
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Hence, for any vector x ∈ CK with property ω
(
C̃

T
x
)

≤ R̃ − r
(
C̃
)
+ 1 we have

ω
(
CTx

)
≤ ω

(
C̃

T
x
)
. By invoking Lemma S.2.1 we can conclude that R̃ = R and

there exists a unique permutation matrix P ∈ CR×R and a unique diagonal matrix
D ∈ CR×R such that C̃ = CPD.

S.3. Supplementary material related to subsection 4.5. We consider cou-
pled PDs of X (n) ∈ CI1,n×···×IMn,n×K , n ∈ {1, . . . , N} of the form

X (n) =
R∑

r=1

a(1,n)
r ◦ · · · ◦ a(Mn,n)

r ◦ cr , n ∈ {1, . . . , N}. (S.3.1)

We will here explain in a bit more detail how to combine the uniqueness results pre-
sented in [3, 4] with a deflation argument in order to establish coupled CPD uniqueness
of higher-order tensors of the form (S.3.1).

Let {Qt}Tt=1 denote a disjoint partitioning of {1, . . . , R}, i.e., Qt∩Qu = ∅, ∀t ,= u
and ∪T

t=1Qt = {1, . . . , R}. Denote Rq = card
(
∪T
t=qQt

)
, meaning that

R1 = card (Q1) + card (Q2) + card (Q3) + · · ·+ card (QT )

R2 = card (Q2) + card (Q3) + · · ·+ card (QT )

...

RT = card (QT ) .

Note that R = R1. Define for t ∈ {1, . . . , T } the following coupled PDs

C
I1,n×···×IMn,n×K . X (n,t) =

∑

r∈Qt

a(1,n)
σt(r)

◦ · · · ◦ a(Mn,n)
σt(r)

◦ cσt(r), n ∈ {1, . . . , N},

with factor matrices

A(m,n,t) =
[
a(m,n)
σt(1)

, . . . , a(m,n)
σt(card(Qt))

]
∈ C

Im,n×card(Qt),

C(t) =
[
cσt(1), . . . , cσt(card(Qt))

]
∈ C

K×card(Qt),

where {σt(r)} denotes the indexing of the rank-1 terms associated with the set Qt.
Note that we have partitioned X (n), n ∈ {1, . . . , N}, in (S.3.1) as follows

X (n) = X (n,1) + X (n,2) + · · ·+ X (n,T ), n ∈ {1, . . . , N}. (S.3.2)

Denote

Y(n,t) = X (n,t) + X (n,t+1) + · · ·+ X (n,T ), n ∈ {1, . . . , N}. (S.3.3)

Note that X (n) = Y(n,1). The idea is to process Y(n,t) consecutively for increasing t.
Several results in [3, 4] can be used to establish coupled CPD uniqueness for {X (n,1)}
(involving card (Q1) coupled rank-1 tensors) by working on {Y(n,1)} (involving R cou-
pled rank-1 tensors). In several cases the uniqueness of A(m,n,1) can be demonstrated
after proving uniqueness of the overall matrix C. See subsection 4.5 in [3] for an
example. If coupled CPD uniqueness of {X (n,1)} can be proven, then we deflate:

Y(n,2) = Y(n,1) − X (n,1), n ∈ {1, . . . , N}.
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Likewise, if we can establish coupled CPD uniqueness of {X (n,2)} (involving card (Q2)
coupled rank-1 tensors) by working on {Y(n,2)} (involving R2 coupled rank-1 tensors),
then we deflate:

Y(n,3) = Y(n,2) − X (n,2), n ∈ {1, . . . , N}.

In general, if there exists a disjoint partitioning {Qt}Tt=1 of {1, . . . , R} such that we
can establish coupled CPD uniqueness of {X (n,t)} (involving card (Qt) coupled rank-
1 tensors) by working on {Y(n,t)} (involving Rt coupled rank-1 tensors) for every
t ∈ {1, . . . , T }, then overall coupled CPD uniqueness of {X (n)} in (S.3.1) follows.

S.4. Supplementary material related to section 5. We consider coupled
PDs of X (n) ∈ CIn×Jn×K , n ∈ {1, . . . , N} of the following form:

X (n) =
R∑

r=1

Lr,n∑

l=1

a(r,n)
l ◦ b(r,n)

l ◦ c(r) =
R∑

r=1

(
A(r,n)B(r,n)T

)
◦ c(r). (S.4.1)

We now explain how to extend (S.4.1) to tensors X (n) ∈ CI1,n×···×IMn,n×K of arbitrary
order:

X (n) =
R∑

r=1

Lr,n∑

l=1

a(r,1,n)
l ◦ · · · ◦ a(r,Mn,n)

l ◦ cr , n ∈ {1, . . . , N} . (S.4.2)

Tensor X (n) of order Mn ≥ 4 admits several matrix representations of the form

X(w,n) =




⊙

p∈Γw,n

A(p,n) #
⊙

q∈Υw,n

A(q,n)



C(n)T =
(
A[w,n] #B[w,n]

)
C(n)T ,

(S.4.3)
where Γw,n and Υw,n are disjoint sets such that Γw,n

⋃
Υw,n = {1, 2, . . . ,Mn} and

Γw,n

⋂
Υw,n = ∅. Assume that there are Wn such sets for every n ∈ {1, . . . , N}. The

factor matrices in (S.4.3) are of the form:

A(r,m,n) =
[
a(r,m,n)
1 , . . . , a(r,m,n)

Lr,n

]
∈ C

Im,n×Lr,n ,

A(m,n) =
[
A(1,m,n), . . . ,A(R,m,n)

]
∈ C

Im,n×Rtot,n ,

A[w,n] =
⊙

p∈Γw,n

A(p,n) ∈ C
Îw,n×Rtot,n , Îw,n =

∏

p∈Γw,n

Ip,n,

B[w,n] =
⊙

q∈Υw,n

A(q,n) ∈ C
Ĵw,n×Rtot,n , Ĵw,n =

∏

q∈Υw,n

Iq,n,

C(n) =
[
1T
Lr,n

⊗ c(1), . . . ,1T
LR,n

⊗ c(R)
]
∈ C

K×Rtot,n ,

where Rtot,n =
∑R

r=1 Lr,n. Let

C(red) =
[
c(1), . . . , c(R)

]
∈ C

K×R
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and define F(red) ∈ C(
∑N

n=1
Wn

∏Mn
m=1

Im,n)×R as follows

F(red) =





F(1)

F(2)

...
F(N)




, F(n) =





Vec
(
D[1,1,n]

)
. . . Vec

(
D[R,1,n]

)

Vec
(
D[1,2,n]

)
. . . Vec

(
D[R,2,n]

)

...
. . .

...

Vec
(
D(1,WN ,N)

)
. . . Vec

(
D(R,WN ,N)

)




,

where D[r,w,n] = B[r,w,n]A[r,w,n]T , then we obtain the overall matrix representation

X =






X(1,1)
(1)

X(2,1)
(1)
...

X(WN ,N)
(1)





= F(red)C(red) ∈ C(

∑N
n=1

Wn

∏Mn
m=1

Im,n)×K . (S.4.4)

Alternatively, by appending all-zero column vectors to A[w,n] and B[w,n] we can
also express (S.4.4) as follows

X = F(ext)C(ext)T , (S.4.5)

where

C(ext) =
[
1T
L1,max

⊗ c(1), . . . ,1T
LR,max

⊗ c(R)
]
∈ C

K×Rext ,

and F(ext) ∈ C(
∑N

n=1
Wn

∏Mn
m=1

Im,n)×Rext is given by

F(ext) =





F(ext,1)

F(ext,2)

...
F(ext,N)




, F(ext,n) =





Ã
[1,n]

# B̃
[1,n]

Ã
[2,n]

# B̃
[2,n]

...

Ã
[Wn,n]

# B̃
[Wn,n]




,

in which

Lr,max = max
n∈{1,...,N}

Lr,n,

Rext =
R∑

r=1

Lr,max,

Ã
(r,m,n)

=
[
A(r,m,n),0Im,n,(Lr,max−Lr,n)

]
∈ C

Im,n×Lr,max,

Ã
(m,n)

=

[
Ã

(1,n)
, . . . , Ã

(R,n)
]
∈ C

Im,n×Rext ,

Ã
[w,n]

=
⊙

p∈Γw,n

Ã
(p,n)

∈ C
Îw,n×Rext , Îw,n =

∏

p∈Γw,n

Ip,n,

B̃
[w,n]

=
⊙

q∈Υw,n

Ã
(q,n)

∈ C
Ĵw,n×Rext , Ĵw,n =

∏

q∈Υw,n

Iq,n.
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From (S.4.4) and (S.4.5) it is clear that the uniqueness results presented in subsection
5.2 can be extended to coupled tensors of arbitrary order by treating them as a set of
coupled third-order tensors.
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