
Effects of simulation on novices’ understanding of the

concept of inheritance in conceptual modeling

Gayane Sedrakyan, Monique Snoeck

Katholieke Universiteit Leuven,

Management Information Systems,

 Naamsestraat 69, 3000 Leuven

E-mail:{gayane.sedrakyan, monique.snoeck}@kuleuven.be

This is the camera ready version of this paper. The published version is available at

Springer

Provided for personal and non-commerial use only.

Please cite as follows:

Sedrakyan G, Snoeck M, 2015, Effects of simulation on novices' understanding of the

concept of inheritance in conceptual modeling, Advances in Conceptual Modeling,

vol. 9382, pp. 327 - 336, International Conference on Conceptual Modeling (ER

2015) (Stockholm (Sweden))

mailto:@econ.kuleuven.be
http://download.springer.com/static/pdf/579/chp%253A10.1007%252F978-3-319-25747-1_32.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-3-319-25747-1_32&token2=exp=1452873071~acl=%2Fstatic%2Fpdf%2F579%2Fchp%25253A10.1007%25252F978-3-319-25747-1_32.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fchapter%252F10.1007%252F978-3-319-25747-1_32*~hmac=283d87919151a515eb18e1f58eac02330fcdb4cf14fe901e691ece6ab518ee04

Effects of simulation on novices’ understanding of the

concept of inheritance in conceptual modeling

Gayane Sedrakyan, Monique Snoeck

Katholieke Universiteit Leuven,

Management Information Systems,

 Naamsestraat 69, 3000 Leuven

E-mail:{gayane.sedrakyan, monique.snoeck}@kuleuven.be

Effects of simulation on novices’ understanding of the

concept of inheritance in conceptual modeling

Gayane Sedrakyan, Monique Snoeck

Katholieke Universiteit Leuven,

Management Information Systems,

 Naamsestraat 69, 3000 Leuven

E-mail:{gayane.sedrakyan, monique.snoeck}@kuleuven.be

Abstract. In this paper we present our experience in the experimental development

and use of simulation instrument for learning object-oriented conceptual modeling in

a master level course on analysis and design of information systems. The focus of our

research is on the teaching of one particular topic in object-oriented conceptual mod-

eling - inheritance. The results from the pilot experimental study (with a student sam-

ple N = 32), demonstrate a positive effect of simulation-based learning method on the

understanding by novice business analysts of the concept of inheritance when applied

in a conceptual model.

Keywords: teaching conceptual modeling, object-oriented analysis, inheritance, simu-

lation-based learning, automated feedback

1 Introduction

Modern software engineering builds largely on object-oriented (OO) paradigm [1,

2] that aims to incorporate the advantages of modularity and reusability. In the OO

approach requirements are organized around cooperating objects that belong to hier-

archically constructed classes which encapsulate both structure and behavior [3, 4].

mailto:@econ.kuleuven.be
mailto:@econ.kuleuven.be

The possibility of software reuse during the development lifecycle being not just a

matter of reusing the code of a subroutine, but also encompassing the reuse of any

commonality expressed in class hierarchies [5], was among the important reasons

promoting the rapid growth of this paradigm during the last decades. Consequently

object-oriented analysis (OOA) and design (OOD) have emerged to support the use of

object-oriented paradigm throughout the entire software engineering lifecycle [2].

This has been supported by the introduction of a unified notation and OO modeling

(OOM) language (the Unified Modeling Language (UML)) being currently heavily

used in OOA and OOD activities.

One major advantage introduced by the object oriented paradigm is the conceptual

continuity across all phases of the software development lifecycle, i.e. the conceptual

structure of the software system remains the same, from system analysis down

through implementation [5]. Therefore when the object-oriented paradigm is used, the

design phase is linked more closely to the system analysis and the implementation

phases because designers have to deal with similar abstract concepts (such as classes

and objects) throughout software development phases [5]. Conceptual structures are

represented through a conceptual model – the first artifact produced in OO analysis.

Clearly, the quality of the conceptual model is the foundation of consistency between

the requirements and the final software. At the same time continuous efforts are made

in the area of OO conceptual modeling, in order to provide reliable and productive

software production environments [6].

Teaching requirements formalization through conceptual modeling however has

been proven to be challenging [7, 8]. Amongst the factors affecting learning outcomes

of novice requirements engineers and business analysts are 1. the complexity of in-

dustry tools being “noisy” with various constructs which can result in misusing con-

cepts and creation of unintended models, 2. the lack of domain experience as a result

of absence of trial and error rehearsals, 3. the lack of validation techniques and tool

support for testing/validating models. Additionally, several researchers correlated

novices learning achievements in system’s analysis with 4. the lack of technical in-

sights considering the absence of technical components (such as computer-assisted

learning) from education as a major contributing factor to the lack of preparedness of

their skills [9].

Computer-based simulation has been proven to be an excellent technique assisting

juniors in understanding complex systems by allowing them to “learn by experienc-

ing” [10-12]. Simulated environments are also known to promote successful transfer

of the skills learned in classroom to real-world environments by allowing to simulate

real-life situations where learners improve their technical and problem-solving skills.

In the domain of conceptual modeling the use of simulation-based teaching is ham-

pered by at least two shortcomings introduced by the existing standards for simulation

technologies. The major disadvantages include being too complex and time consum-

ing to be achieved by novice modelers whose technical expertise is limited [13]. An-

other important disadvantage is connected with the difficulty of interpreting the simu-

lation results. Our previous work presents significant positive effects on learning

achievements of novices for conceptual modeling when using a simulation that is 1.

adapted to limited technical expertise of novices using easy and fast (“single-click”)

approach to achieve simulation 2. adapted to conceptual modeling goals in which

constructs irrelevant for conceptual modeling goals are filtered away, and 3. is en-

hanced with feedback that links simulation results to their causes in a model design

[14-16].

The work presented in this paper builds on our previous research on simulation-

based teaching/learning of conceptual models by extending it with OO concepts.

While the OO development approach is defined by one of its founders as a “hierarchy

of reusable classes united via inheritance relationships” [2, 3], this perspective is

largely neglected in literature on simulation-based teaching of OO system analysis

and modeling. More specifically, in this work we target at a simulation technique that

allows novices to master the concept of reusability that can be exploited by means of

class inheritance – a key OO concept, the semantics of which is among the most chal-

lenging to be mastered by novices [17, 18], while inheritance being also often avoided

[19] and/or a misapplied modeling construct [20, 21]. The effectiveness of proposed

method is evaluated with respect to comprehension by novices of the concept of in-

heritance when applied in a conceptual model. The results of the experimental study

show a positive impact of the proposed technique on learning outcomes of novices.

The remainder of the paper is structured as follows. The second section describes

the educational context and assumptions used within this paper. Section 3 gives a

brief overview of the simulation environment subsequently highlighting the learning

benefits of the proposed method. Section 4 describes the experimental study targeting

to measure the effects of the proposed simulation technique on the learning outcomes

of novice modelers, followed by the data analysis and subsequently reports on the

results. Finally, section 5 concludes the work proposing some future research direc-

tions.

2 Educational context

The proposed simulation method has been developed and validated within the course

“Architecture and Modeling of Management Information Systems”
1
 over a 5-years

period of teaching, with participation and constant feedback from 500 students over-

all. The course targets at master level students with heterogeneous backgrounds from

the Management Information Systems program. The goal of the course is to familiar-

ize the students with modern methods and techniques of Object-Oriented Analysis

and Design for Enterprise Information Systems, to let them understand the relation

between an information system and the organizational aspects of an enterprise, and to

let them acquire sufficient skills of developing an enterprise model as basis of an

enterprise information system. During the course students have to formalize business

requirements into conceptual domain models using an adapted for conceptual model-

1 The course page can be found on

http://onderwijsaanbod.kuleuven.be/syllabi/e/D0I71AE.htm

ing and simulation environment JMermaid
2
. The methodology uses the UML as mod-

elling language, but underneath it relies on the concepts of MERODE
3
, an Enterprise

Information Systems engineering methodology developed at the university of Leuven,

which follows the Model-Driven Architecture and Engineering approach. In

MERODE a conceptual model integrates both structural and behavioral views of a

system to be engineered using a restricted class diagrams with regular binary associa-

tions, multiple interacting state charts and an interaction model. Throughout a model-

ing process self-regulated activities, such as testing and validation of models, are

promoted through model simulation using MERODE's semantic prototyper [16]

which allows simulating model solutions using a “one-click” approach. In this paper

we will refer to simulation of a conceptual model as a process of generating prototype

applications using a conceptual model as an input. We will therefore use the terms

“simulated model” and “prototype” interchangeably. The simulation effects on the

learning outcomes of novice modelers are measured with respect to understanding of

model semantics as defined in the Conceptual Model Quality Framework [22].

3 Extending simulation model with the concept of inheritance

MERODE's model simulation environment has been extended to support the key

concepts of object-oriented approach. 1. classes are created in hierarchies, and inher-

itance allows the structural features (attributes) and behavioural features (methods)

to be passed down the hierarchy 2; this is realized through the concepts of concrete

classes (classes which can be instantiated) and abstract classes (classes that have no

instances but are used for creating other classes via inheritance).

2 http://merode.econ.kuleuven.ac.be/mermaid.aspx
3 MERODE is an Object Oriented Enterprise Modeling method. Its name is the abbreviation

of Model driven, Existence dependency Relation, Object oriented DEvelopment. Cfr.

http://merode.econ.kuleuven.be

Fig. 1. Interface showing a tab for an abstract superclass

Understanding the interface (input and output models) of the generated prototype is

quite intuitive. The graphical interface of a prototype application includes a main

window and a set of input/output popup windows. Business entities are presented

across tabbed views in the main window each containing corresponding properties of

object instances (such as attributes and associated objects) presented in a tabular for-

mat. Each view of a tab panel also contains buttons corresponding to the business

events that can be triggered for a particular class. MERODE prototypes offer basic

functionality like triggering the creating and ending of objects, and triggering other

business events that returns the output to a user in a passed/failed format. The tabs

representing abstract classes are in disabled mode except for viewing buttons. An

attempt to trigger any business event for this class is followed by an explanation mes-

sage about the concept of ‘abstract class’. The list of instances has an indication of the

subclass name for each subclass instance. Fig. 1 shows the main interface of the pro-

totype: the tab for abstract class “Medicine” with disabled functionality includes in-

stances “Aspirine” that belongs to the subtype “FreeMedicine” and “Antibiotic” that

belongs to the subtype “RestrictedMedicine”.

Inherited (from a supertype) and specialized (further extended by a subtype) meth-

ods are defined by a modeler in JMermaid environment. Inherited methods are those

methods that have been inherited from a supertype without changing their signature,

whereas specialized methods are new methods that "extend" the subclass with addi-

tional features. Tabs for subtype classes show buttons both for the inherited and spe-

cialized methods (see Fig. 2).

Fig. 2. Interface showing a tab for an subclass with inherited and specialized methods

Fig. 3. Sample erroneous model

The entire interaction process is guided by user-friendly messages in case of an in-

valid input or a failure of an event execution (e.g. creating, ending or modifying ob-

ject instances) thus ensuring maximum transparency between a prototype and its de-

sign model. A sample erroneous model and validation scenario is described in Fig. 3.

Notice that in the diagrams abstract classes have been graphically represented by a

black filled triangle rather than by the textual keyword {abstract} as in UML.

An example of a modeling task would be to validate a given model solution for the

requirement “To buy a restricted medicine a customer needs to have a prescription.

However a prescription is not required for buying a free medicine. Registering a buy-

er’s identity is not required for selling a free medicine. Both free and restricted sale

can have a shared behavior, e.g. undergo a promotion,… . Likewise free and restrict-

ed medicine can both be out of stock, removed from sale, have a delivery request,

expire,…”.

inherited method
specialized method

Fig. 4. Validation through a simulated model with a sample feedback on mandatory one rule

violation for an association linked to the supertype class

When testing a model's prototype a student will be confronted with the following

scenario: trying to register a free sale for “Aspirine” (according to a designed model

this will be by means of triggering a creating event of a ‘FreeSale’) a popup window

will request an input for the attributes specified in the model as well as to choose

instances of the associated mandatory objects “Medicine” and “Person”. As a result, a

first problem that the prototype will allow to discover is that the selling of a free med-

icine requires a person to be associated with it as a result of the mandatory relation-

ship between its superclass “Sale” and the class “Person” (cardinality of [1..1]). This

is clearly in contradiction with the requirement that registering a buyer's identity is not

required for selling a free medicine. A second problem that the student will discover,

is that -as a consequence of the Liskov principle of substitutability- while choosing

the medicine to associate with the newly created instance of the “FreeSale” object

also instances of the subtype “RestrictedMedicine” will be available as potential sub-

stitutes for the supertype “Medicine”, thus enabling an unrestricted sale for a restrict-

ed medicine. Through such testing, a student's analytical problem-solving ability is

1

2

stimulated to pursue a correct design solution in order to fix the detected error in the

model. While iteratively improving a model solution and testing with a simulated

model a student is involved in a self-regulative learning process through what-if sce-

narios and trial and error rehearsals that allows him/her to not only achieve better but

also allowing to gain knowledge that emerges from own practice. The generated feed-

back facilitates the process of achieving the intended behavior by explaining the rea-

sons each time the execution of intended behavior is refused as illustrated in Fig. 4.

4 Evaluation method

Our research goal was to assess the effectiveness of such feedback-enabled simula-

tion in improving the novices understanding of the semantics of inheritance in a con-

ceptual model. We opted for an experimental study with a pre/post-test control group

experimental design.

Procedure: The experiment was conducted in two parts. In the first part students

had to answer the set of TRUE/FALSE questions without the use of the model’s pro-

totype, so only by means of manual inspection of a given model solution. The goal of

this part was to establish a baseline model validation capability level to measure the

simulation effects in the second cycle. Then, in the second part of the experiment,

analogous questions about a similar model had to be answered again, this time with

the use of the generated prototype. The answers had to be recorded on an answer

sheet. We will further refer to cycles without simulation (a paper exercise by means of

manual inspection of a given model to answer the test’s questions) as “withoutPT”,

and cycles with the use of simulation (students were required to use laptops to run a

simulated model of a given model solution to answer the test’s questions) as

“withPT”. The effectiveness of the proposed simulation method was measured by

means of comparison of the test results of students between experimental cycles

(without and with a use of a simulation).

Observable dimensions: Assessing the semantic correctness of a model requires a

combination of model understanding and comparing model statements with require-

ments. Model-reading knowledge specifically for inheritance can be assessed at dif-

ferent levels of understanding. In this pilot study we target at understanding of the

semantics of a single level inheritance, hidden dependencies through chain of associa-

tions and parallel paths via subclass and superclass:

Level 1: Understanding the difference between the concepts of abstract and con-

crete classes.

Level 2: Understanding the basic concept of inheritance: that attributes and meth-

ods are inherited by the subtype from the supertype. This includes understanding the

direction of the inheritance relationship.

Level 3: Understanding a single inheritance hierarchy (inheritance of associations):

through inheritance and the Liskov principle of substitution, objects of the subclass

can participate in associations defined at the level of the superclass (e.g. in Fig. 4, a

subclass “FreeSale” inherits the association to “Person” from supertype “Sale”).

Level 4: Understanding complex models with more than one inheritance hierar-

chies connected with a single (chain of) association.

Level 5: Understanding complex models with more than one inheritance hierar-

chies connected with multiple parallel (chains of) associations (e.g. in Fig. 4, the hier-

archy of “Sale” and the hierarchy of “Medicine” are directly connected via the associ-

ation between “Sale” and “Medicine” classes, but also through “Person” and “Pre-

scription”).

Minimum 2 questions per each dimensions have been included in the tests.

Gender
Male 59 %

Female 41 %

Age distributions

Min age 22 y.

Max age 42 y.

Mean age 24.6 y.

Previous knowledge of data modeling

No knowledge 19 %

Little knowledge 28 %

Moderate knowledge 38 %

Extensive knowledge 15 %

Table 1. Summary of sample demographics

Participants: Students who participated in the experiments were final year master

students from Management Information Systems programs at KU Leuven. Overall 32

students participated in the experiment. Analysis of the pre-experimental test for basic

data modeling skills and the context information from the post-study questionnaire

resulted in the demographics presented in Table 1. The normality of distributions of

pre-experimental knowledge as well as the experimental test scores were confirmed.

Data Analysis and findings: Data has been analyzed by means of statistical com-

parison of mean scores among the experimental cycles. The effectiveness was as-

sessed based on the relative average advantage (positive correction). The results of the

paired T-Test comparing mean scores of withoutPT and withPT experimental cycles

(X̅ withoutPT = 6.04, X̅ with = 8.37, X̅ difference = 2.33, p-value = 0.000) provide evidence

that the prototyping method was effective in producing positive correction with regard

to students’ understanding of the concept of inheritance applied in a conceptual mod-

el. At individual test level the corrections in scores varied from 0 up to 9 (out of total

12). Despite a tool’s usefulness, insufficient user acceptance can however be another

factor affecting learner performance (Venkatesh, et al., 2003) such ease of use (EU)

referring to the required effort to interact with a system and perceived usefulness

(PU). The ratings collected in a post-study questionnaire used to assess students per-

ceptions on a 6-point Likert scale reflect positive perceptions (Mean EOU = 4.7/6,

Mean PU = 5.15/6) on the simulation environment. Students also reported a high per-

ceived utility on the inclusion of feedback to execution failures in the prototype

(5.75/6).

5 Conclusion and future work

The work reported on experimental extension of a feedback-enabled simulation of

conceptual models with the concept of OO inheritance. The results of our pilot study

described in this work show a positive effect of the proposed learning method on

novices understanding of the concept of inheritance when applied in a conceptual

model. While the simulation environment presented in this work uses regular binary

associations in a class diagram, expanding the simulation environment with other

concepts such as associative classes, composition/aggregation as well as broader cov-

erage for inheritance with more advanced concepts such as multi-level inheritance are

in the domain of future research. Among possible further directions of this research a

replication experiment in the context of other university study programs with an im-

proved experimental design (e.g. factoral 4 group experiment) is considered. In addi-

tion extending feedback framework specifically for inheritance can be another direc-

tion for this research. Yet further research must be conducted towards methodologies

allowing better consistency between different abstraction levels used in a conceptual

model and more detailed design models used for lower level specifications and code

implementation.

6 References

1. Vazquez, G., J.A.D. Pace, and M. Campo, Reusing design experiences to

materialize software architectures into object-oriented designs. Information

Sciences, 2014. 259: p. 396-411.

2. Booch, G., Object Oriented Analysis & Design with Application. 2006:

Pearson Education India.

3. Booch, G., Object-oriented development. Software Engineering, IEEE

Transactions on, 1986(2): p. 211-221.

4. Northrop, L.M., Object‐Oriented Development. Encyclopedia of Software

Engineering, 1994.

5. Capretz, L.F., A brief history of the object-oriented approach. ACM

SIGSOFT Software Engineering Notes, 2003. 28(2): p. 6.

6. Pastor, O., et al. Linking object-oriented conceptual modeling with object-

oriented implementation in Java. in Database and Expert Systems

Applications. 1997. Springer.

7. Siau, K. and P.-P. Loo, Identifying Difficulties in Learning Uml. Information

Systems Management, 2006. 23(3): p. 43-51.

8. Erickson, J. and S. Keng. Can UML Be Simplified? Practitioner Use of UML

in Separate Domains. in Proceedings of the 12th Workshop on Exploring

Modeling Methods for Systems Analysis and Design (EMMSAD'07), held in

conjunctiun with the 19th Conference on Advanced Information Systems

(CAiSE'07),Trondheim, Norway. 2007.

9. Barjis, J., et al., Innovative Teaching Using Simulation and Virtual

Environments. Interdisciplinary Journal of Information, Knowledge, and

Management, 2012. 7: p. 237-255.

10. Kluge, A., Experiential learning methods, simulation complexity and their

effects on different target groups. Journal of educational computing research,

2007. 36(3): p. 323-349.

11. Damassa, D.A. and T. Sitko, Simulation Technologies in Higher Education:

Uses, Trends, and Implications. EDUCAUSE Center for Analysis and

Research (ECAR), Research Bulletins, 2010.

12. EuropeanCommission, Opening up education: Innovative teaching and

learning for all through new technologies and open educational resources.

Communication from the commission to the European parliament, the

council, the European economic and social committee and the committee of

the regions. 2013.

13. Sedrakyan, G. and M. Snoeck. A PIM-to-Code requirements engineering

framework. in Modelsward 2013-1st International Conference on Model-

driven Engineering and Software Development-Proceedings. 2013.

14. Sedrakyan, G. and M. Snoeck, Lightweight semantic prototyper for

conceptual modeling, in Advances in Conceptual Modeling. 2014, Springer.

p. 298-302.

15. Sedrakyan, G. and M. Snoeck, Technology-enhanced support for learning

conceptual modeling, in Enterprise, Business-Process and Information

Systems Modeling. 2012, Springer. p. 435-449.

16. Sedrakyan, G., M. Snoeck, and S. Poelmans, Assessing the effectiveness of

feedback enabled simulation in teaching conceptual modeling. Computers &

Education, 2014. 78: p. 367 - 382.

17. Liberman, N., C. Beeri, and Y. Ben-David Kolikant, Difficulties in learning

inheritance and polymorphism. ACM Transactions on Computing Education

(TOCE), 2011. 11(1): p. 4.

18. Hadar, I. and U. Leron, How intuitive is object-oriented design?

Communications of the ACM, 2008. 51(5): p. 41-46.

19. Sedrakyan, G., M. Snoeck, and J. De Weerdt, Process Mining Analysis of

Conceptual Modeling Behavior of Novices - empirical study using JMermaid

modeling and experimental logging environment (accepted). Computers in

Human Behavior, 2014. 41(C): p. 486-503.

20. Rumbaugh, J., Disinherited-Examples of misuse of inheritance. Journal of

Object-Oriented Programming, 1993. 5(9): p. 22-24.

21. Deligiannis, I.S., et al., A review of experimental investigations into object-

oriented technology. Empirical Software Engineering, 2002. 7(3): p. 193-

231.

22. Nelson, H.J., et al., A conceptual modeling quality framework. Software

Quality Journal, 2012. 20(1): p. 201-228.

