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A B S T R A C T

Cancer cell lines are good in vitro models to study molecular mechanisms underlying chemoresistance
and cancer recurrence. Recent works have demonstrated that most of the available ovarian cancer cell
lines are most unlikely high grade serous (HGSOC), the major type of epithelial ovarian cancer. We aimed
at establishing well characterized HGSOC cell lines, which can be used as optimal models for ovarian
cancer research.

We successfully established seven cell lines from HGSOC and provided the major genomic altera-
tions and the transcriptomic landscapes of them. They exhibited different gene expression patterns in
the key pathways involved in cancer resistance. Each cell line harbored a unique TP53 mutation as their
corresponding tumors and expressed cytokeratins 8/18/19 and EpCAM. Two matched lines were estab-
lished from the same patient, one at diagnosis and being sensitive to carboplatin and the other during
chemotherapy and being resistant. Two cell lines presented respective BRCA1 and BRCA2 mutations.

To conclude, we have established seven cell lines and well characterized them at genomic and
transcriptomic levels. They are optimal models to investigate the molecular mechanisms underlying the
progression, chemo resistance and recurrence of HGSOC.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Epithelial ovarian cancer (EOC) is the most lethal type of ovarian
cancer and accounts for 4% of cancer deaths in women [1]. High
grade serous ovarian cancer (HGSOC) is the most frequent histo-
logical type, accounting for about 70% of all EOC [2]. Standard
therapies include surgery and platinum-based chemotherapy. Al-
though most of the patients show complete clinical response after
the first-line treatment, nearly all of them relapse and develop re-
sistant disease which eventually causes death. The very high rate
of resistance and early recurrence are the major reasons for the very
low 5-year survival rate of around 30% [3].

Platinum-based drugs bind to DNA, produce inter- and intra-
strand adducts and ultimately induce cell death. The mechanisms
of platinum resistance and recurrence of HGSOC are not com-
pletely understood [4]. Various pathways have been proposed to be
involved in platinum resistance [5] including DNA repair [6–10], cell
cycle control and apoptosis [11,12]. Despite the fact that p53 plays
a central role in most of these processes and that almost all HGSOC
harbor mutations in the TP53 gene [13], no direct link between TP53
mutations and carboplatin resistance could be determined so far.

It is thus of utmost importance to identify key genes or path-
ways involved in platinum resistance to open the way to develop
new drugs to be used alone or in combination with platinum to elim-
inate the tumor mass along with resistant cells [14].

Cancer cell lines are good in vitro models to study molecular
mechanisms underlying chemoresistance and tumor recurrence, pro-
vided that they have been well characterized [15]. For decades, cell
lines have been used to generate our knowledge on ovarian cancer.
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However, previously established cell lines are insufficiently char-
acterized, missing important information on tumors and genomic
characteristics such as histopathological type, clinical outcome of
the patients and TP53 mutation status. A systematic genomic anal-
ysis on a panel of 47 ovarian cancer cell lines and the comparison
with the TCGA dataset suggested that most of the commonly used
“ovarian cancer” cell lines were most unlikely to originate from
HGSOC and thus are not optimal models for studying the disease
[16]. Furthermore, discrepancies and difficulties in identifying cell
origin, histological type, mutation status or clinical data of the donor
patients in different cell banks question the use of the available cell
lines as proper models of HGSOC [15,17].

A considerable study on tumor heterogeneity and clonal evo-
lution in ovarian cancer has been performed [18] using matched
cell lines established at the end of the 1980s [19] and new cell line
series derived from the same patient have been established and char-
acterized [20,21]. These approaches provide new opportunities to
study HGSOC. However, the unavailability of histopathological con-
firmation, the non-standard treatment and lack of information on
patients’ clinical outcome are still persisting obstacles. New cell lines
with well-defined molecular and cellular characteristics, com-
plete clinical documentation of the corresponding tumors and the
patients are urgently needed. Particularly, matched cell lines es-
tablished from tumor materials taken from different time points from
the same patient will certainly provide advantages to study the clonal
evolution of tumor cells.

In this work, we established cell lines from ascites or tumor tissue
from patients with HGSOC, and characterized them regarding
gene mutations, mRNA expression, protein expression and
chemosensitivity.

Materials and methods

Patients and clinical materials

Informed consents were obtained from all patients with HGSOC included in this
study in the Department of Obstetrics and Gynecology, Medical University of Vienna.
The study protocol was approved by the ethics committees (EK Nr. 366/2003 and
260/2003). During cytoreductive surgery, tumor tissues were directly transferred to
the Department of Pathology, Medical University of Vienna. After confirming the
histological type, the materials were sent to the laboratory. Ascites was collected
from the clinic and directly sent to the laboratory. The clinical response of the pa-
tients was evaluated following the standard guidelines [22].

Establishment and maintenance of cell lines

Ascites was centrifuged and the red blood cells were depleted with a centrifu-
gation step with Histopaque 1077 (Sigma-Aldrich, St. Louis, USA).

Tumor tissues were cut into small pieces and digested with collagenase (1 mg/mL,
1453 CDU/mg, Sigma-Aldrich) at 37 °C for about 1 h.

Cells were cultivated in DMEM medium, with 10% fetal bovine serum (FBS),
100 units/mL penicillin and 100 μg/mL streptomycin (PS; all from Gibco by Life Tech-
nologies, CA, USA) at 37 °C and 5% CO2.

VenorGeM Classic Mycoplasma Detection Kit for conventional PCR (Minerva
Biolabs, Berlin, Germany) was used to control mycoplasma contaminations.

Authentication of cell lines

Short tandem repeat (STR) analyses of 7 markers (TPOX, vWA, CSF180, D16S539,
D7S820, D13S317, D5S818, Applied Biosystems Life Technologies) were performed
using ABI Prism 310 Genetic Analyzer (Applied Biosystems, Life Technologies).

Scratch assay

Cell culture at 100% confluency was scratched with a Pasteur pipette and pic-
tures were taken at the time of scratching and 48 h afterwards. The web based
Software WimScratch (ibidi, Munich, Germany) was used to determine the confluency
of the cells on the scratched area. The scratched surface in each cell culture flask
was defined as 100% and the proportion of the remaining cell free area after 48 h
was calculated.

DNA and RNA isolation

Homogenized fresh frozen tumor tissue (Mikro-Dismembrator U; B.Braun Biotech
International, Melsungen, Germany) lysate and cell pellet lysate were processed for
DNA and RNA isolation using the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany).
The nucleic acid concentrations were measured by a BioPhotometer (Eppendorf,
Hamburg, Germany).

Determination of gene mutation

TP53 mutation was determined by a modified p53 functional yeast assay [23,24],
and Sanger sequencing. In addition, ddPCR systems for each unique TP53 mutation
were established to determine the percentage of the TP53 mutant cells in cell culture
(Table 1).

BRCA1 and BRCA2 mutations were determined by Sanger sequencing [25].
Hot spot mutations in KRAS (c.35G>C, c.34G>C, c.35G>A, c.34G>T, c.34G>A; 35G>T,

c.34G>C; 35G>T, c.34G>A, c.35G>T, c.38G>A, c.37G>T) and BRAF (V600E, c.1799T>A)
were examined with a reverse oligonucleotide hybridization assay (KRAS-BRAF
StripAssay (ViennaLab Diagnostics GmbH, Vienna, Austria)).

Immunohistochemical staining (IHC)

Formalin fixed paraffin embedded (FFPE) tissues were sectioned at 3 μm. The
IHC was performed with the Dako LSAB+ System-HRP kit (Code K0690; Dako, CA,
USA) and all steps were performed according to the manufacturer’s instructions.

Cytospin preparations were fixed in 4% formaldehyde and incubated with 0.5%
X Triton X-100 for 10 min before further processed.

Primary antibodies were diluted with Dako REAL Antibody diluent (Agilent Tech-
nologies, St. Clara, California) and incubated overnight at 4 °C. FLEX Negative Control
Mouse Cocktail (Agilent Technologies) and Negative Control Rabbit IgG (Biocare
Medical, Concord, USA) were used as isotype controls.

Nuclei were stained with hematoxylin solution modified according to Gill III
(Merck Millipore Darmstadt, Germany) before mounting the slide with Kaisers
Glyceringelatine (Merck Millipore).

Antibodies: anti-cytokeratin 8/18/19 (IgG1, mouse, clone A45-B/B3; AS Diagnostik,
Hueckeswagen, Germany) at 1:100; anti-vimentin, ready to use (CONFIRM Anti-
vimentin (V9) Primary Antib, Ventana, Roche Diagnostics, Basel, Switzerland); CD44
(IgG1, mouse, clone 8E2F3; ProMab, Richmond, USA) at 1:4000; EpCAM (IgG, rabbit,
clone E144; abcam, Cambridge, UK) at 1:300; CA125 (IgG, rabbit, clone OV185:1;
Leica Biosystems, Nussloch, Germany) at 1:200.

The staining was scored by a semi quantitative method as described previ-
ously [26].

In vitro chemosensitivity assay

A total of 1 × 104 cells/well were seeded in 96-well plates. Carboplatin (Enzo Life
Sciences, NY, USA) at concentrations of 20, 10, 5, 2.5, 1.25, 0.6, 0.3, 0.16, 0.08, and
0.04 μg/mL was added in quadruplicates. Cells were incubated at 37 °C and 5% CO2

Table 1
ddPCR systems for individual TP53 mutation.

Mutation Forward primer Reverse primer Probe 1 FAM Probe 2 VIC

Cd_del170 5′-cgccatggccatctacaag-3′ 5′-gctcaccatcgctatctgagc-3′ 5′-FAM-agcacatggaggttg-3′-MGB 5′-VIC-gcacatgacggaggt-3′-MGB
Cd_187_Intron Splice

site, ggt>gat
5′-gcagtcacagcacatgacgg-3′ 5′-cagtgaggaatcagaggcctg-3′ 5′-FAM-agatagcgatgatgagc-3′-MGB 5′-VIC-agatagcgatggtgagc-3′-MGB

Cd_193, cat>cct 5′-ccaggcctctgattcctcac-3′ 5′-catagggcaccaccacactatg-3′ 5′-FAM-tcctcagcctcttat-3′-MGB 5′-VIC-tcctcagcatctta-3′-MGB
Cd_273, cgt>cat 5′-gtggtaatctactgggacgg-3′ 5′-cggagattctcttcctctgt-3′ 5′-FAM-tgaggtgcatgtttg-3′-MGB 5′-VIC-tgaggtgcgtgtttg-3′-MGB
Cd_333-del c 5′-gtcagctgtataggtacttgaagtgcag-3′ 5′-gctctcggaacatctcgaagc-3′ 5′-FAM-ctgcagatcgtgggc-3′-MGB 5′-VIC-gcagatccgtgggc-3′-MGB
Cd_340_343,

gag-del10-ag-ctg
5′-ctcctctgttgctgcagatcc-3′ 5′-ctggagtgagccctgctcc-3′ 5′-FAM-cttcgagagctgaatg-3′-MGB 5′-VIC-cttcgagatgttccgagag-3′-MGB
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for 96 h. Cell viability was measured by a MTT assay (EZ4U, Salem, NH, USA). IC50

values were calculated using Origin Software V8.1 (OriginLab, Northampton, MA, USA).

Low coverage whole genome sequencing

Shot-gun whole genome libraries were prepared using KAPA library prepara-
tion kit (KAPA Biosystems) according to the manufacturer’s instructions, quantified
for the PCR products, and sequenced on a HiSeq2000 (Illumina) at low coverage gen-
erating 50 bp reads. Raw sequencing reads were mapped to the human reference
genome (NCBI37/hg19) using Burrows–Wheeler Aligner (BWA v0.5.8a). On average,
12 719 610 reads were mapped. PCR duplicates were removed by Picard (v1.43) re-
sulting in an average of 12 340 052 reads (3% duplicates). Using the QDNAseq package
v. 1.0.5 [27], copy-number alterations were identified by binning the reads in 100
kb windows. Bins in problematic regions were blacklisted. Read counts were cor-
rected for GC-content and mappability using LOESS regression and then normalized
by the median with the outliers smoothed. Segmentation of the bin values was per-
formed by ASCAT v. 2.0.7 [28].

RNA-sequencing, analysis and annotation

RNA libraries were created using the Illumina TruSeq RNA sample preparation
kit V2 according to the manufacturer’s instructions and sequenced on a HiSeq2000
(Illumina) using a V3 flowcell generating 1 × 50 bp reads. Raw sequencing reads were
mapped to the transcriptome and the human reference genome (NCBI37/hg19) using
TopHat 2.0 [29] and Bowtie 2.0 [30]. On average 32 859 670 reads were assigned
to genes with the HTSeq software package and normalized with EDASeq [31,32].

To present the transcriptomic landscape of the cell lines, we selected relevant
genes from important pathways in three pathway databases (KEGG, BioCarta,
PANTHER). Logarithmized read counts are visualized in a heatmap produced with
R (http://www.r-project.org) using the package heatmap.plus. Within each pathway,
genes are sorted by geometric mean read count. Clustering of cell lines was ex-
pressed by a dendrogram using the Euclidean distance and the default clustering
algorithm.

Results

Patients and tumor characteristics

Seven cell lines from six patients with HGSOC were estab-
lished. One cell line 8587 was derived from tumor tissue and all
others were from ascites. Two cell lines, 13363 and 15233, were
derived from the same patient with the first one taken at diagno-
sis and the second one under the treatment. The age of the patients
at diagnosis ranged from 33 to 67 with a median age of 55. All
primary samples set for cell culture were taken before any
chemotherapy.

All patients received standard treatments and presented differ-
ent clinical response to the first line chemotherapy (Table 2, Fig. 1).

Cell lines

In ascites, tumor cells often appeared in form of clusters, which
were easily separated and purified by filtration. In some primary
cultures, tumor cells formed an island-like structure surrounded by
fibroblasts (Fig. 2I) which mimicked the tumor structure in vivo. The
fibroblasts were reduced and finally eliminated by repeating se-
lective trypsinization, until pure tumor cell culture was obtained
(Fig. 2H). All cell lines have been passaged more than 35 times.

After TP53 mutations were determined by the functional yeast
assay in the corresponding tumor tissues, the purity of the cell
culture was determined using ddPCR. A cell line was defined when
the culture reached a 100% purity of specific TP53 mutant cells. STR

Table 2
Data of patients and characteristics of tumors.

Clinical parameters Patient

12370 13363 15233 13699 13914_1 14433_1 8587

Age at diagnosis 67 33 53 66 61 49
Histological type Serous Serous Serous Serous Serous Serous
Grade 3 3 3 3 3 3
FIGO IIIC IV IIIC IIIC IV IIIB
Rest tumor >5 cm <5 mm 0 0 0 0
Neoadjuvant therapy Carboplatin/Paclitaxel Carboplatin/Paclitaxel No No Carboplatin/Paclitaxel No
Cycles 3 3 6
1st adjuvant therapy Carboplatin/Paclitaxel+

Cisplatin/Gemcitabine
Carboplatin/Paclitaxel Carboplatin/

Paclitaxel
Carboplatin/
Paclitaxel

Carboplatin/Paclitaxel Carboplatin/
Paclitaxel

Cycles 6 + 1 8 6 6 2 6
Response at the

completion of
therapy

cPR cPR cCR cCR cCR cCR

Response 6 months
after treatment

Not applicable cPD cCR cCR cPD cCR

Previous history of
cancer

None None None Breast cancer (IDC,
g1) at ages 48 and
65

None None

Follow up (date of last
platinum dose from
1st line to last
medical contact)

Died 3 months after cPR during 2nd
chemotherapy, died 9
months after

16 months 15 months 7 months 17 months

TP53 mutation g.13339 t > g (His193Pro) g.13187_13189 del cgt
(Thr170)

g.17575 del c,
(Arg333Val fsX12)

g.17596_17605 del
(Met340Ser fsX2)

g.13239 g > a (Gly187Asp)a g.14487 g > a
(Arg273His)

Mutation type Missense Deletion Frameshift causing
a truncated protein

Frameshift causing
a truncated protein

Frameshift causing a
truncated protein

Missense

Localization of
mutation

DBD DBD OD OD DBD DBD

BRCA1/2 mutation None None None BRCA1
c.3481_3491 del
(Glu1161 fsPheX3)

BRCA2 c.8557a>t
(Lys2853X)

None

Mutation type Frameshift causing
a truncated protein

Nonsense mutation
causing a truncated protein

a Point mutation at intron 5 (bp 13239) leading to a variant splicing (g.13193_13238del, Val172Val), which causes a frameshift and a truncated protein (fsX60).
cPR: clinical partial response; cCR: clinical complete response; cPD: clinical progressive disease; DBD: central DNA-binding core domain; OD: homooligomerization domain.
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Fig. 1. CA125 plasma course of the patients. Time of collecting ascites or tumor tissues, operation, and chemotherapeutical treatment were indicated. A: 12370; B: 13363 and 15233; C: 13699; D: 13914_1; E: 14433_1; F: 8587.
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analyses were performed regularly to confirm the cell authentici-
ty and to avoid the cross contamination of cell lines, which is a
frequent problem in cell culture [33].

Morphology

All cell lines had a polymorphic appearance (Fig. 2). They pre-
sented with irregular sizes and shapes and had a high nucleus to
cytoplasm ratio (Fig. 2A).

Six cell lines grew in monolayer. One cell line (12370) grew as
a mixture of clusters and adherent “islands”. These clusters could
contain a couple of cells up to several hundred cells (Fig. 2B).

Growth and mobility

Split ratios of the cell lines differed from 1:2 to 1:3. Some cell
lines had a doubling time of 2–3 days (13363, 13699, 14433_1)
whereas others doubled in 6–9 days (12370, 15233, 13914_1, 8587).

Scratch assays showed that one cell line (13699) did not have
any mobility (Fig. 3D) while other lines had a similar migration rate,
filling around 1/3–4/5 of the scratched areas within 48 h
(Fig. 3A–C,E–G). The two cell lines derived from the same patient
(13363 and 15233) had similar high migration ability (Fig. 3B,C).

Genomic characteristics

Somatic TP53 mutations were found in tumors from all pa-
tients. Sites of mutations and their consequence are presented in
Table 2. Sanger sequencing of the corresponding blood DNA con-
firmed that none of the patients had a germline TP53 mutation. All
cell lines were proved to have the same mutation as their corre-
sponding tumors homozygously. ddPCR confirmed that the TP53
mutations were stable throughout all passages.

Additionally, homogeneous mutations in the BRCA2 and BRCA1
genes were found in the cell lines 14433_1 and 13914_1, respec-
tively. Sanger sequencing of the corresponding germline DNA showed
that these mutations were already present as heterozygous muta-
tions (Table 2).

No mutations in the KRAS and BRAF genes were detected in the
cell lines.

Analysis of the copy number alterations with low-coverage whole
genome sequencing revealed a high degree of chromosomal insta-
bility in each cell line (Fig. 4), which was expected for HGSOC.
Noticeably, focal amplifications affecting PIK3CA were observed in
6/7 cell lines, but not in the 12370. BRAF and MYC were also found
amplified albeit not frequently. TP53, BRCA1 and BRCA2 were fre-
quently affected by deletions. The presence of homozygous mutation

Fig. 2. Morphology of cells (brightfield microscopy). A: HE staining of 13914_1; B: 12370; C: 13363; D: 15233; E: 13699; F: 13914_1; G: 14433_1; H: 8587 in pure culture;
I: 8587, showing tumor cell islands surrounded by fibroblasts.
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in TP53 indicated loss of heterogeneity (LOH) on chromosome 17
in tumor cells, which aligned with LOH of the BRCA1. The muta-
tions in BRCA1 and BRCA2 were heterozygous in germ-line but
homozygous in the cell line, again indicating the LOH in this region
(Fig. 4F,G).

Landscape of gene expression

Gene expression profiles of key pathways are shown in Fig. 5. The
cell lines presented dominant epithelial cell phenotype, with el-
evated expression of the epithelial markers like KRT8/18/19 and
EpCAM, and low expression of the principal mesenchymal markers.
They also showed uniformly high expression of most of the genes
involved in proliferation and DNA repair with the exception of NHEJ1
and DNTT, which had very low expression in all cell lines. The stem
cell markers had very heterogeneous expression in all lines. Many
downstream genes of the p53 signaling pathway had high expres-
sion in almost all cell lines. CCND2 showed heterogeneous expression
in different lines and GADD45G had very low expression in all lines.
It seemed that genes involved in Ca2+ rises or ER stress induced

apoptosis, such as BAD and BAX, were homogeneously highly ex-
pressed in all lines, whereas the other apoptotic related genes were
quite differently expressed. Adhesion molecules and molecules in-
volved in the mobility were very inhomogeneous in their expression.
Notably, the line 12370 had a specific lower expression pattern, being
in line with its partly adherent and partly suspended growth pattern.
Other cancer related genes showed different expression patterns in
each cell line. HER2 (ERBB2) and CA125 (MUC16) had high expres-
sion in all lines. ESR1 was not detected in the matched cell lines and
MPO expression was generally low. Notably, the two lines derived from
the same patient exhibited the smallest distance, constituting a cluster
apart from all other cell lines. Interestingly, lines 13914_1 and 14433_1,
bearing BRCA1 and BRCA2 mutation respectively, formed a sepa-
rated cluster as well.

Antigen expression of the cell lines and the corresponding tumors

Antigen expression of the established cell lines was compared
with the staining in the corresponding tumor tissues (Table 3).

Fig. 3. Scratch assays showing cell mobility. Pictures were taken at 0 h and 48 h after scratching (brightfield microscopy). The scratched area at 0 h was defined as 100%;
the percentage of the remaining cell free area was indicated at 48 h. A: 58%* remaining cell free area was manually calculated because of cell clustering.
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Fig. 4. Results of the low coverage whole genome sequencing of the cell lines. Blue lines indicate the positions of the specific genes indicated at the top of the graphic. Red
lines represent an estimation of the neutral copy number level in each cell line. The light salmon lines represent the estimations of the alternative copy number levels
(i.e. the first, the second and the third lines above the red line indicate amplifications with copy numbers 3, 4, 5, respectively, and the line below indicates a deletion with
copy number 1).
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Fig. 5. Transcriptomic landscape of the cell lines. Values in the color key refer the read counts of gene expression.
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Cytokeratins 8/18/19 and EpCAM were expressed in all tumor
cells in tissues as well as in the cell lines (Fig. 6A,B,G,H).

CA125 was expressed in the majority of the cell lines as well as
in tumor tissues (Fig. 6M–P).

Most of the patients had very few CD44 and Vimentin positive
tumor cells in tissues (Fig. 6D,F,J,L). In the cell lines, the expres-
sion of these two proteins was quite heterogeneous (Fig. 6C,E,I,K).

In vitro chemosensitivity

Five cell lines did not show any remarkable differences in the
responsiveness to carboplatin, all being highly sensitive to the drug.
Two cell lines 13914_1 and 15233 were highly resistant (Fig. 7).

Discussion

Experimental models are very important to study the cellular
and molecular mechanisms underlying HGSOC. At the Helene Harris
Memorial Trust meeting on ovarian cancer held in 2011, findings
in basic, translational and clinical research were summarized and
discussed by leading researchers in this field. Within the recom-
mendations proposed for further research, better experimental
models were requested as one of the most important issues [34].
As different histological types of ovarian cancers have been con-
firmed as being derived and driven from different molecular
mechanisms, it is essential to have cell line models with defined
pathological indications. In this work, we successfully established

Table 3
Score of the immunohistochemistry staining.

Antibody 12370 13363 15233 13699 13914_1 14433_1 8587

Cell line TT Cell line TT Cell line Cell line TT Cell line TT Cell line TT Cell line TT

Cytokeratin 8,18,19 4 2 4 4 4 4 4 4 4 4 2 4 4
EpCAM 4 2 4 4 4 4 4 4 2 4 2 4 4
CA125 4 2 4 1 3 4 4 4 4 4 4 4 0
Vimentin 3 0 1 3 3 3 0 4 2 4 0 4 2
CD44 4 1 1 1 0 3 3 4 1 4 3 0 1

TT = tumor tissue; 0: no expression; 1: weak expression in the minority of the cells; 2: weak expression in the majority of the cells; 3: strong expression in the minority of
the cells, 4: strong expression in the majority of the cells.

Fig. 6. Examples of immunohistochemistry staining from cell lines and the corresponding tumor tissues (brightfield microscopy).
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seven cell lines from HGSOC and provided the major genomic al-
terations and the transcriptomic landscapes of them. Every cell line
was confirmed to consist of pure tumor cells, all harboring a unique
TP53 mutation corresponding to that of the original tumor and
expressing cytokeratins 8/18/19 and EpCAM. Two cell lines were
derived from the same patient, one was established before treat-
ment and is sensitive to carboplatin, while the other was established
during the second line chemotherapy and is highly resistant. Two
cell lines were derived from germline BRCA mutation carriers, one
of which also had breast cancer. This panel of cell lines is not only
genetically and pathologically well defined, but they also have the
uniqueness that all donors were treated with standard therapy.

Ovarian cancer is being recognized as a disease with distinct mo-
lecular backgrounds [35]. Seventy-five percent of EOC are of the high-
grade serous type, making it a very important research target.
However, most of our knowledge on ovarian cancer was gener-
ated from cell line models, which were neither well defined nor
molecularly well characterized. An overwhelming number of pub-
lications on ovarian cancer were based on cell lines, which were
“most unlikely high grade serous” [16]. Several current works [18,36]
have been compiled which were based on three sets of matched
cell lines established in the late 1980s [19]. Matched cell lines es-
tablished from primary and recurrent tumor materials obviously
provide new opportunities to study chemoresistance. Of the three
cell line series, the first originated from low grade serous ovarian
cancer, the second from a high grade carcinoma but without his-
topathological indication, and in the third series, all the cell lines
were generated from ascites undergoing chemotherapy. It was argued
that the detection of the TP53 mutation could be an indicator of the
high grade serous histological type [18], which is supported by other
cellular and molecular analyses [37]. Molecular characteristics may
help us to interpret the data generated previously. However, pa-
thology is still a very important component to study the mechanisms
of the disease. In reality, TP53 mutations do not only occur in HGSOC,
they are also detected in clear cell and mucinous tumors [38]. Con-
firmed by experienced pathologists, all cell lines established in our
study were from HGSOC, thus providing a solid basis for further
research.

Currently, the combination of carboplatin and paclitaxel is the
standard first line therapy for primary HGSOC [34]. All cell lines in
our study were established from patients receiving standard
treatment, providing another advantage, which other recently es-
tablished or used cell lines do not have [19–21].

Furthermore, two of our cell lines presented respective BRCA1
and BRCA2 mutations, each leading to a truncated protein. The BRCA1
deficient cell line 13914_1 presented a highly resistant phenotype
against carboplatin, while the BRCA2 mutant cell line 14433_1 was
sensitive. Cancer cells with BRCA mutations were known to be hy-
persensitive to DNA cross-linking drugs [39]. Hence, our two BRCA
mutated cell lines certainly provide very valuable models to further
study the role of BRCA genes and DNA repair mechanisms in
chemoresistance.

In summary, we established seven cell lines from HGSOC. They
all harbor specific TP53 mutation as their corresponding tumors and
express cytokeratins 8/18/19 and EpCAM. Two lines are from the
same patient, one being established at diagnosis and sensitive to
carboplatin and the other during chemotherapy and resistant to
carboplatin. Two cell lines have BRCA mutations. Taken together,
these cell lines are optimal models to investigate the molecular
mechanisms underlying the progression, treatment resistance and
recurrence of HGSOC.
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