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A performance study of NURBS-based isogeometric
analysis for interior two-dimensional time-harmonic

acoustics

Laurens Cooxa,∗, Elke Deckersa, Dirk Vandepittea, Wim Desmeta

aKU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300 box 2420,
B-3001 Leuven, Belgium

Abstract

This work evaluates the performance of a NURBS-based isogeometric finite ele-
ment formulation for solving stationary acoustic problems in two dimensions.
An initial assessment is made by studying eigenvalue problems for a square and
a circular domain. The spectral approximation properties of NURBS functions
of varying order are compared to those of conventional polynomials and are
found to be superior, yielding more accurate representations of eigenvalues as
well as eigenmodes. The higher smoothness of NURBS shape functions yields
better approximations over an extended frequency range when compared to con-
ventional polynomials. Two numerical case studies, including a geometrically
complex domain, are used to benchmark the method versus the traditional finite
element method. A convergence analysis confirms the higher efficiency of the
isogeometric method on a per-degree-of-freedom basis. Simulations over a wider
frequency range also illustrate that the method suffers less from the dispersion
effects that deteriorate the acoustic response towards higher frequencies. The
tensor product structure of NURBS, however, also imposes practical considera-
tions when modelling a complex geometry consisting of multiple patches.

Keywords: time-harmonic acoustics, Helmholtz problem, isogeometric
analysis, finite elements, NURBS

1. Introduction

Due to ever tightening regulations on noise emission and exposure to vibra-
tion levels, the vibro-acoustic behaviour has become a key factor in product
design in recent years. Even more so because of the current trend towards
lighter and more energy-efficient designs, which through their lower weight lead
to deteriorated noise and vibration properties. Furthermore, the acoustic char-
acter of a product has become an important commercial feature that is often
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linked to a quality assessment of the entire design. These strong legislative and
commercial requirements together with the availability of ever more performant
computer systems have made Computer Aided Engineering (CAE) techniques
indispensable to design engineers. These techniques enable the prediction of
product performance with good accuracy, even in the early design stages. Cur-
rent state-of-the-use CAE tools for deterministic modelling of acoustic prob-
lems are the Finite Element Method (FEM) [1, 2] and the Boundary Element
Method (BEM) [3, 4]. These element-based techniques are mostly limited to
lower frequency ranges; as the frequency increases, non-deterministic effects be-
come more important, making probabilistic methods such as geometrical acous-
tics [5] and Statistical Energy Analysis (SEA) [6] much more suited for modelling
high-frequency problems. This paper focuses on deterministic methods.

Although CAE has led to significantly shorter design cycles, there is still a
lot of room for improvement. Geometric representations in Computer Aided De-
sign (CAD) and the FEM are very different and mostly incompatible with each
other. Whereas CAD geometries are spline-based, FE representations are (typ-
ically linear) polynomial approximations of the exact CAD geometry. Because
the accuracy of the numerical results relies heavily on the FE mesh regular-
ity, this incompatibility requires a tedious and time-consuming meshing step to
obtain a suitable (but still approximative) geometry. Despite the multitude of
powerful mesh generation algorithms that exist nowadays [7], this meshing pro-
cess can form a real bottleneck, taking up to 80 % of the total analysis time [8].
Moreover, if mesh refinement is required, the necessary communication with the
CAD model is often difficult and sometimes not even possible. Especially for
problems of industrial complexity, where optimisation iterations are required,
this gap between CAD and CAE can drastically slow down product develop-
ment cycles. In a geometrical optimisation context, having the exact geometry
available can be crucial — especially for acoustic problems towards higher fre-
quencies. Moreover, the parametrised definition of spline-based geometries per-
fectly lends itself to more efficient representations of the design space. Motivated
by this, several papers have already investigated isogeometric shape optimisa-
tion, e.g. [9, 10]. Because CAD geometries are typically surface representations,
there is a strong and direct link between boundary element formulations and
isogeometric approaches. This makes isogeometric BEM frameworks especially
attractive [11–14], in particular for geometry optimisation procedures, as ex-
ploited in e.g. [15].

A second drawback of the FEM lies in the numerical dispersion effect and its
performance towards higher frequencies. As the frequency of interest increases,
the number of elements required to limit the pollution errors increases more than
linearly [16–18]. These numerical pollution errors introduce a frequency shift in
the acoustic response. This restricts the frequency range for which a given FE
model can be used to accurately represent the solution and it even introduces an
upper frequency limit above which the computational cost becomes prohibitive
for the use of the FEM. Pollution errors originate mainly from the use of simple
polynomial shape functions, and can be reduced by enriching the field variable
approximation with a priori known information about the dynamic solution.
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This is done in e.g. multiscale approaches or in generalised FE methods [19].
Also Trefftz-based approaches like the Wave Based Method (WBM) [20] or the
Variational Theory of Complex Rays (VTCR) [21] allow much better approxi-
mation properties than classical piecewise-polynomial spaces, by employing os-
cillating basis functions that inherently satisfy the Helmholtz equation.

This paper investigates the use of IsoGeometric Analysis (IGA) [8, 22] as
an alternative to the FEM in acoustic problems. IGA is a generalisation of the
FEM that aims at bridging the gap between design and analysis by introducing
CAD descriptions into a CAE environment. The conventional element-based
discretisation and the associated (usually low-order polynomial) shape function
expansions are replaced by CAD-based mappings and associated functions, typ-
ically spline-based ones. IGA is still an element-based approach with piecewise-
polynomial shape functions and as such does not remove the upper frequency
limit introduced by the dispersion effect. But the favourable approximation
characteristics of spline-based basis functions, such as the higher inter-element
continuity, can increase the computational efficiency and alleviate the frequency
limitations. The first implementations of IGA [8] were based on Non-Uniform
Rational B-Splines (NURBS), one of the most widely used computational geo-
metry representations in engineering designs. Mathematical studies of IGA
formulations were presented in [23, 24] and NURBS have been shown to possess
intrinsic advantages for analysis purposes [25]. IGA has already attained excel-
lent results in various fields of study, as illustrated by the overview given in [26].
Also acoustic problems have been studied, within BEM frameworks, in [12] using
a T-spline-based direct collocational formulation and in [27] using an indirect
variational approach. However, employing the isogeometric paradigm in a fi-
nite element formulation for time-harmonic acoustic problems remains mostly
uncharted territory, except for some preliminary studies by Hughes et al. in-
vestigating isogeometric formulations of Helmholtz problems [25, 28, 29]. This
research was, however, mostly restricted to either purely eigenvalue analyses or
one-dimensional problems.

This paper studies the performance of a NURBS-based isogeometric finite
element formulation for solving two-dimensional time-harmonic acoustics and
compares it to the conventional FEM. The remainder of the text is structured
as follows. First, the mathematical formulation of the acoustic problems under
study is given. Section 3 then introduces the preliminaries concerning NURBS-
based IGA. After that, numerical examples are presented: Section 4 first il-
lustrates the intrinsic quality of NURBS approximations for two-dimensional
Helmholtz problems by studying the eigenvalues and -modes for simple domains
in which analytical solutions are available. Two numerical verification case stud-
ies are presented in section 5 to assess the performance for the boundary value
problem. The paper ends with some concluding remarks.

2. Time-harmonic acoustics in two dimensions

Consider a general interior steady-state acoustic problem as depicted in fig. 1.
The acoustic domain Ω is filled with an acoustic fluid characterised by its speed
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of sound c and its fluid mass density ρ0. Assuming a harmonic time-dependency
(i.e. pa(r, t) = pa(r)ejωt), the steady-state dynamic behaviour in this acoustic
domain is described by the scalar acoustic pressure field pa(r), which is governed
by the Helmholtz equation [30]:

∇2pa(r) + k2pa(r) = −jρ0ωqa(r), r ∈ Ω, (1)

where r is the position vector, ω the angular frequency, k = ω
c the acous-

tic wavenumber, and qa(r) the volumetric source strength distribution. This
last term represents internal excitations of the domain, such as acoustic point

sources. The term ∇2• = ∂2•
∂x2 + ∂2•

∂y2 is the Laplacian operator, and j denotes

the imaginary unit (j2 = −1). Often the frequency f = ω
2π = kc

2π or the acous-
tic wavelength λ = 2π

k = c
f is used instead of the wavenumber k or angular

frequency ω when describing the problem.

y

x

Γp

ΓZ

Γv

Ω

r

Γ = ∂Ω = Γp ∪ Γv ∪ ΓZ

n

qa

Figure 1: Description of a general two-dimensional interior acoustic problem.

In order to have a unique solution, the Helmholtz equation (1) requires one
imposed boundary condition at each point on the problem boundary Γ = ∂Ω.
This boundary can be divided into three non-overlapping parts, assuming three
types of common acoustic boundary conditions: Γ = Γp ∪ Γv ∪ ΓZ . These
are the Dirichlet, Neumann and Robin boundaries, respectively. The boundary
conditions on Γ can then be written as follows:

pa(r) = p̄a(r) r ∈ Γp, (2a)

j

ρ0ω

∂pa(r)

∂n
= v̄n(r) r ∈ Γv, (2b)

j

ρ0ω

∂pa(r)

∂n
=
pa(r)

Z̄n(r)
r ∈ ΓZ . (2c)

The quantities p̄a, v̄n and Z̄n are the imposed pressure, imposed normal velocity
and imposed normal impedance, respectively. The vector n is the outward facing
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unit normal on the boundary. The Helmholtz equation (1) together with the
boundary conditions (2) fully define the acoustic pressure field pa(r) in the
entire problem domain Ω.

3. NURBS-based isogeometric analysis for acoustics

This section introduces the terminology and formulae regarding NURBS
surfaces and their corresponding basis functions in the context of IGA. First the
construction of NURBS from B-splines is discussed. Then their use in acoustic
isogeometric analysis as well as their features of importance in this work are
examined. A more detailed explanation about IGA can be found in [8, 22] and
about NURBS in particular in [31].

3.1. From B-spline bases to NURBS surfaces

NURBS are built starting from B-splines. A set of B-splines of polynomial
order p is defined by a knot vector Ξ = [ξ1, ξ2, . . . , ξn+p+1]. This is a sequence
of non-decreasing coordinates in the parameter space ξ, where ξk ∈ R (k =
1, 2, . . . , n + p + 1) with n the number of basis functions forming the B-spline.
Open knot vectors, where the first and the last knot each have a multiplicity of
p+1, are standard in CAD. Starting from a knot vector, B-spline basis functions
Np
i (ξ) (i = 1, . . . , n) are defined recursively using the Cox – de Boor recursion

formula [32, 33]:

p = 0 : N0
i (ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
,

p > 0 : Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ).

(3)

These functions are piecewise polynomial.
By assigning a weight wi to every B-spline function, a NURBS basis can be

generated. The NURBS basis functions Rpi (ξ) of polynomial order p are then
given by

Rpi (ξ) =
Np
i (ξ)wi
W (ξ)

=
Np
i (ξ)wi∑n

iw=1N
p
iw

(ξ)wiw
with i = 1, . . . , n, (4)

with W (ξ) the weighting function. Each Rpi (ξ) is a piecewise rational function,
since Np

i (ξ) and W (ξ) are both piecewise polynomial. If all the weights are
equal, then Rpi (ξ) = Np

i (ξ): the basis functions are no longer rational and the
NURBS degenerates into a B-spline. B-splines are therefore a subset of NURBS.

Multivariate NURBS entities are generated by taking the tensor product of
univariate NURBS bases. Given two polynomial orders p and q, and a pair
of knot vectors Ξ = [ξ1, ξ2, . . . , ξn+p+1] and H = [η1, η2, . . . , ηm+q+1], a
bivariate NURBS basis is defined as

Rp,qi,j (ξ, η) =
Np
i (ξ)Mq

j (η)wi,j∑n
iw=1

∑m
jw=1N

p
iw

(ξ)Mq
jw

(η)wiw,jw
with i = 1, . . . , n

j = 1, . . . ,m, (5)
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where Np
i (ξ) and Mq

j (η) represent univariate B-spline basis functions of order
p and q, associated with knot vectors Ξ and H, respectively. To obtain a
NURBS surface geometry S(ξ, η), a linear combination of these basis functions
is made using a net of vector-valued weighting coefficients Bi,j ∈ Rd called
control points:

S(ξ, η) =

n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Bi,j . (6)

It is worth noting that the control points are not necessarily interpolatory, i.e.
they do not lie on the surface they define.

Equation (6) represents a single NURBS surface patch, but for generating
more complex geometries, several interconnected patches are usually required —
so-called multipatch surfaces.

3.2. NURBS in an isogeometric finite element formulation for acoustics

By invoking the isoparametric concept, the mapping of the NURBS basis
in eq. (5) can be used in a shape function expansion much in the same way
as it is done in the conventional FEM. The acoustic pressure field can then be
approximated as

pa(r) ≈ p̂a(r) =

nd∑
k=1

Nk(r) · dk = Nd r ∈ Ω, (7)

where d is the nd × 1 vector of unknowns collecting the control variables or
Degrees Of Freedom (DOFs) dk, and N the 1×nd vector containing the NURBS
basis functions Nk(r) of the acoustic surface geometry under study. Employing
this shape function expansion in the weak form of Galerkin’s weighted residuals
formulation of the Helmholtz problem described by eqs. (1) and (2) yields a
linear system of equations that can be written in matrix form:(

K + jωC− ω2M
)
d = Fa, (8)

where K, C and M are the stiffness, damping and mass matrix, respectively,
and Fa an acoustic force vector. These arrays are defined as follows (using row
index i and column index j):

Kij =

∫
Ω

(∇Ni(r) ·∇Nj(r)) dΩ, (9)

Cij =

∫
ΓZ

(
ρ0

Z̄n
Ni(r)Nj(r)

)
dΓ, (10)

Mij =

∫
Ω

(
1

c2
Ni(r)Nj(r)

)
dΩ, (11)

Fa,i =

∫
Γv

(−jρ0ωNi(r)v̄n) dΓ +

∫
Ω

(Ni(r)qa(r)) dΩ. (12)
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The prescribed pressure, i.e. Dirichlet boundary condition (2a), still needs to be
enforced. This is straightforwardly done in the case of a homogeneous prescribed
pressure by directly applying the prescribed pressure values to the control vari-
ables. Inhomogeneous Dirichlet conditions, however, require more care due to
the non-interpolatory nature of the basis functions. The boundary conditions
must be approximatively satisfied using functions lying in the employed NURBS
space, e.g. by means of a least-squares best-fit.

The arrays in eq. (8) can be assembled via the same procedure as in the
conventional FEM. The matrices are sparse and symmetrical, and, assuming
a proper numbering of the DOFs, have a banded structure. This allows the
use of efficient matrix solvers. Moreover, the mass and stiffness matrix are
frequency-independent, and so is the damping matrix if the prescribed normal
impedance does not depend on frequency. In that case the system matrices
can be reused for calculating multiple frequency lines. While the elements of
the mass and stiffness matrices are always real-valued, those of the damping
matrix are usually complex because the imposed normal impedance is typically
complex.

Following remarks can be made for a NURBS-based isogeometric framework:

• The mesh for a NURBS patch results from the tensor product of the un-
derlying knot vectors: the mapped knot spans divide the problem domain
into elements. A NURBS basis function of order p always has a support
of p + 1 knot spans (including repeated knots) in one dimension, which
is much larger for higher orders as compared to classical FEM functions.
However, this does not lead to an increased matrix bandwidth. In fact,
the total number of functions that any given shape function can share
support with is no more than 2p+1 (itself included) regardless of whether
the basis is a NURBS or a traditional FE basis, as illustrated for quadratic
functions in fig. 2. The resulting system matrices therefore have the same
bandwidth, and solving them requires a similar computational cost for
both IGA and the FEM with a given number of DOFs of a given polyno-
mial order. In spite of this similar solving cost, the matrix assembly will be
more expensive for IGA. This is due to the wider support of the NURBS
basis functions as compared to the FEM, which constructs shape func-
tions per element. However, especially in applications like time-harmonic
acoustics, where typically a wide frequency range is studied and where
the system matrices can be reused for calculations at different frequen-
cies, (repeatedly) solving the system of equations is more of a bottleneck
than the (one-off) matrix assembly. This is the reason why it can be con-
sidered valuable and meaningful to compare the performance of IGA and
FE models on a per-DOF basis, even though the true basis of comparison
should be computational cost and not DOFs.

• Across a knot, the basis functions have a Cp−m continuity, with m the
multiplicity of the knot. NURBS bases are therefore quite flexible regard-
ing inter-element continuity, and virtually arbitrarily high continuities can
be obtained. Being a second-order problem, the Helmholtz equation only
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i(
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]

(a) Quadratic polynomial shape func-
tions for equally spaced nodes.

0

0.5

1

ξ [-]

N
i(
ξ)

[-
]

(b) Quadratic NURBS shape functions
N2

i (ξ) as defined in eq. (3), using a uni-
form open knot vector.

Figure 2: One-dimensional quadratic shape functions for a mesh consisting of seven
nodes (indicated by •) using (a) conventional polynomials and (b) NURBS.

requires C0 continuity, but this higher smoothness of NURBS can nonethe-
less increase the computational accuracy as compared to conventional C0-
continuous finite elements [25].

• Mesh refinement can be done by knot insertion and by order elevation.
These procedures enable conventional h- and p-refinement, but there is
also an additional possibility called k-refinement. This technique first in-
creases the polynomial order and then inserts knots, which also increases
the smoothness of the basis and has no analogue in traditional FEM ap-
proaches [8].

• Multiple NURBS patches are by default not continuous at the borders,
but compatibility in multipatch geometries is typically obtained by em-
ploying the same NURBS discretisation on both sides of patch interfaces.
Because of the tensor product structure, this means that mesh refinement
propagates from patch to patch. Even in single patches, local refinement
is not inherently possible because of this tensor product structure. There
are techniques to alleviate these restrictions [34–37] but they require ex-
tra treatment. Another option is to use spline descriptions that inherently
allow for local refinement, such as T-splines [38–40].

• Because the control variables are in general not interpolated by the basis
functions, their values do not represent nodal values of the solution, in
contrast to traditional FEM DOFs. This also means that the control
mesh (i.e. the grid of the control points) is in general not the same as the
element mesh (i.e. the grid formed by the mapping of the knot vectors).

• The fact that even the most coarse geometry description is an exact one
can be exploited in isogeometric analysis by using non-isoparametric ap-
proaches, thus avoiding the use of redundant data [41]. Or consider a sit-
uation where the original CAD geometry is very finely discretised, (much)
finer than the field variable discretisation requires for an accurate solu-
tion. This is very common for CAD files of industrial complexity. In
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that case, choosing independent discretisation schemes for geometry and
field variables could be computationally more efficient. This also holds for
applications where the geometric basis functions are not well-suited for
approximating a particular solution [42], for instance when the solution is
non-smooth but the geometry is.

4. The intrinsic quality of a NURBS basis for Helmholtz problems

This section studies the potential of NURBS as basis functions as compared
to traditional polynomials for a better representation of these higher frequency
pressure fields governed by the Helmholtz equation. NURBS-based isogeometric
formulations have already been shown to exhibit advantageous properties for
analysis purposes as compared to FEM, in particular with respect to spectral
approximation properties [25, 28, 29]. In [25] Hughes et al. study this in par-
ticular also for elliptic problems by analysing the variational form of Poisson’s
equation. They conclude that the poor representation of higher eigenmodes
is not an issue for such problems, because those modes do not contribute sig-
nificantly to the solution. This is true, but it is not the entire story for all
elliptic problems. In the case of the Helmholtz equation (1), the wavenumber
of analysis is also of importance — Poisson’s problem is a special case of the
Helmholtz problem with zero wavenumber. Higher modes usually do not partic-
ipate strongly in the solution at lower wavenumbers and the poor representation
is in that case indeed not of major concern. At higher frequencies, however, the
higher modes may dominate the response. With increasing frequency, the mesh
needs to become increasingly finer in order to improve the numerical representa-
tion of these modes. This limits the frequency range that can be studied with a
given model and makes the representation of the higher eigenmodes important
for stationary acoustics and for dynamic problems in general.

The solution accuracy is determined by the accuracy of the eigenfrequen-
cies and -modes of the system matrices. If this accuracy can be conserved
towards higher frequencies, the frequency response of a system can be calcu-
lated more efficiently. It will be shown that IGA can in that sense alleviate
the mesh requirements. Both eigenfrequencies and eigenmodes are studied for
simple square and circular problem domains, for which analytical solutions ex-
ist. As the eigenfrequencies have already been studied to some extent in other
works [25, 28, 29], this paper mainly focuses on the eigenmodes. In contrast
to these other works, the analysis of the circular domain also allows to assess
the influence of the geometrical error present in the FEM approximations. All
the IGA simulations in this work are carried out in MATLAB with an in-house
code based on the GeoPDEs framework [43], and the FEM simulations with the
commercial software COMSOL Multiphysics [44].

4.1. Square domain

Consider an acoustic fluid with unit density and speed of sound in a unit
square domain with zero pressure boundary conditions. The governing equations
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are then:

∇2pa(x, y) + k2pa(x, y) = 0, (x, y) ∈ Ω = [0, 1] m× [0, 1] m,

pa(x, y)
∣∣∣
∂Ω

= 0.
(13)

The solution for this problem can be analytically calculated [45] and yields the
following description for the exact natural wavenumbers kmn and mode shapes
umn:

kmn = π
√
m2 + n2, m, n = 1, 2, 3, . . . , (14)

umn(x, y) = Umn sin(mπx) sin(nπy), m, n = 1, 2, 3, . . . , (15)

with Umn a scaling factor. These analytical results are compared to numerical
solutions obtained using different orders of shape functions.

4.1.1. Eigenvalues

In [28, 29] the numerical eigenfrequencies using NURBS-based IGA models
of varying polynomial order are studied (both in 1D and in 2D with largely
analogous results) and it is found that the specific parametrisation used is of
great importance. For the detailed study the reader is referred to [28], but its
main conclusion of interest for the current work is that by using a uniformly
sized net of control points (as in fig. 3a) instead of uniformly sized elements (as in
fig. 3b), a more accurate discrete eigenfrequency spectrum can be obtained. The
use of uniformly spaced control points results in a non-linear parametrisation
instead of a linear1 one. Although it is the more straightforward option, a linear
parametrisation in this case leads to so-called optical branches in the upper part
of the eigenfrequency spectrum: spurious discontinuities in the spectrum which
result in large errors in the higher eigenfrequencies.

As the discrete eigenfrequency spectra for these two discretisations have al-
ready been extensively treated in [28], they will not again be compared at length
here. Only the better performing version with uniformly spaced control points
(fig. 3a) is studied. Figure 4a shows this mesh’s normalised eigenwavenumber
spectrum (which is the same as the normalised eigenfrequency spectrum here)
for both FE and IGA models of varying polynomial order. The vertical axis
shows the ratio of the numerical eigenwavenumber ki versus the corresponding
exact one ki,ex. On the horizontal axis, the index i indicates the number of the
modes when they are ordered from low to high in wavenumber, with N the total
number of DOFs in the system. The quantity i/N is referred to here as the nor-
malised mode index. These curves are obtained using models of approximately
1000 DOFs. It is worth noting that the exact shape of these curves depends
on the fineness of the applied discretisation, but that they converge to a shape
that characterises the accuracy of the numerical method and of the discretisa-
tion topology. Also note that the first-order models give the same results in

1The term linear here refers to the fact that the Jacobian determinant of the mapping is
constant, not to the order of the B-splines used in the parametrisation.
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(a) Mesh with a uniformly sized con-
trol net (resulting in a non-linear map-
ping), as proposed in [28].

(b) Mesh with uniformly sized ele-
ments (resulting in a linear mapping
with a constant Jacobian).

Figure 3: Two types of parametrisations for a square domain (generated using
quadratic B-spline basis functions). Solid blue lines delineate the elements, while
the dashed black lines form the control net connecting the control points in red.
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Figure 4: Assessment of the accuracy of the discrete eigenwavenumber spectra for a
unit square domain obtained using models of varying polynomial order p. The IGA
models retain the accuracy of the eigenvalues up to much higher frequencies, allowing
the use of IGA toward higher frequencies in comparison to FEM.
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both cases, since their shape functions are identical when p = 1. Although all
the models deteriorate towards higher frequencies, the IGA eigenwavenumbers
retain their accuracy far longer than the FEM ones. Moreover, the eigenvalue
accuracy for the IGA models converges with increasing polynomial order in the
upper part of the spectrum, whereas the curves diverge in the FEM case. To
give a clearer picture of the lower frequency performance, fig. 4b shows the rel-
ative error of the normalised discrete eigenwavenumbers in the lower part of the
spectrum. These curves show that for the lower modes, both IGA and FEM
accuracy increase with increasing order and that also for lower wavenumbers
the IGA models outperform the FEM ones. In both cases the lower part of the
spectrum converges with increasing polynomial order.

It should be noted that the fact that the uppermost part of the eigenfre-
quency spectrum is more accurately represented for NURBS does not neces-
sarily contribute to higher solution accuracies. In that part of the spectrum,
also the IGA eigenvalues already show significant error — too significant to still
contribute to the solution accuracy. In practice this means that a given mesh
will never be used in its entire spectral range, as the higher modes are too much
distorted and have no approximability anyway, as will be shown in the next
section. In numerical engineering practice, rules of thumb are used to ensure
proper use of numerical models and correct interpretation of the results:

• When using a modal analysis instead of a direct one, all modes with a
frequency up to twice the frequency of interest should be included. For
this set of modes, that means that the highest valid frequency is the one
at a normalised mode index of i/N = 0.25.

• For a linear mesh at least 6 elements per wavelength are necessary in order
to keep interpolation errors acceptable — and with regard to the pollution
error even stricter limitations are necessary toward higher frequencies [16,
18, 46]. Following this rule limits the use of this mesh to a normalised
mode index of 0.085, an even stricter limit. The accuracy of the linear
discrete spectrum at that point is about 4 %.

These rules of thumb stem from FEM simulations and indicate the region where
the linear FE discretisation still yields acceptable results. But thanks to the
higher accuracy of the IGA discretisation in the extended lower frequency region,
this rule of thumb can be relaxed. For the quadratic IGA discrete spectrum, for
instance, a 4 % error is not reached until a normalised mode index of i/N = 0.55,
while the quadratic FE model already exceeds this error level at i/N = 0.23.
Nonetheless, the quality of the IGA discretisations is not such that the entire
spectrum can contribute to the solution accuracy up to also the very high modes:
an upper limit well below the highest eigenfrequency remains. This can be
illustrated by the accuracy of the eigenmodes with increasing mode number.

4.1.2. Eigenmodes

The solution error is determined not only by the accuracy of the eigenvalues
but also by that of the eigenmodes. A commonly used tool for comparing mode
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shapes is the Modal Assurance Criterion (MAC) [47]. The MAC value between
two modal vectors u and v is a scalar number relating the degree of consistency
between these two vectors and is defined as follows:

MAC(u,v) =

∣∣uHv
∣∣2

(uHu) (vHv)
, (16)

where •H denotes the Hermitian or complex conjugate transpose. The modal
vectors u and v are vectors containing evaluations (in the same points) of the
mode shapes under comparison. A large set of evaluation points spread out over
the problem domain is used: sufficiently large to avoid aliasing, in this case 4356
points. Typically a MAC matrix is calculated, collecting MAC values between
the modes of two given mode sets, again sorted from low to high wavenumber.
The MAC can take on values between zero, indicating no consistent similarity
between u and v, and one, representing a perfect match. Hence, if two mode sets
are identical, the diagonal of the MAC matrix comparing them will be a unity
diagonal. This does not mean that the MAC matrix should be the identity
matrix in case of an exact match: because modal vectors are in general not
directly orthogonal (but only mass-orthogonal), the off-diagonal MAC values
are not necessarily exactly zero — although they will generally be very close to
zero.

In general it is expected that the lower numerical modes show good agree-
ment with the analytical ones, while the higher modes are increasingly less
well approximated. The point where this starts to become noticeable, however,
comes much sooner for the FEM than for IGA. Figure 5 shows the MAC matrix
of the first 150 eigenmodes for a fifth-order FE model compared to the cor-
responding analytical modes. The total number of DOFs (and thus the total
number of modes present) used in this approximation is 196. This means that
the modes shown in the MAC matrix go up to three quarters into the normalised
spectrum (cf. fig. 4). Although the identity matrix structure is clearly present
for the lower modes, mismatches between modes are introduced after mode 30.
Increasing the mode number further, beyond 50, the MAC matrix starts to de-
viate significantly from the identity matrix. This indicates that some modes in
the numerical mode set are switched, i.e. they are ordered in a different way, as
fig. 6 shows for modes 49 through 52. The 49th FEM mode, for instance, corre-
sponds to the 51st analytical mode, while the 49th analytical mode matches the
50th FEM mode. These mismatches clearly express themselves in fig. 5 through
the non-zero off-diagonal values close to one around mode 50. Such switching
phenomenon is detrimental to the solution accuracy, as it will introduce a fre-
quency shift in the resulting frequency responses. Also the effect of the shifted
eigenfrequencies indicated in fig. 4 already plays a role here. More thorough
investigation of the MAC matrix also shows non-zero off-diagonal values that
are not close to one but rather close to zero (the grey data in fig. 5). In this
particular case of the square domain, these off-diagonal should be zero for a
perfect match, since the analytical modal vectors are directly orthogonal here.
The non-zero values indicate that some modes overlap to some extent: parts of
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Figure 5: MAC matrix for the first 150 eigenmodes of a unit square domain using
fifth-order FEM (horizontal index) compared to the analytical eigenmodes (vertical
index). The diagonal structure of the matrix quickly starts to fade above mode 50,
representing modes present at incorrect frequencies.

the mode shape correspond between a numerical mode shape and an analytical
one, even though they do not represent the same mode.

Figure 7 shows the corresponding MAC matrix when using 196 NURBS
functions of fifth order. As already hinted by the good match between the IGA
and the analytical mode shapes in fig. 6, the identity matrix structure is clearly
retained up to much higher modes than in the FEM case. Only above mode 100
the diagonal structure starts to break down. The off-diagonal elements are less
pronounced as well. These MAC matrices highlight that also the mode shapes
are represented more accurately up to significantly higher frequencies, and not
just the eigenvalues. This confirms that, for a given number of DOFs, an IGA
model can calculate frequency responses more accurately over a higher frequency
range than an equivalent FE model. MAC matrices obtained when using fifth-
order shape functions are shown here, but lower-order analyses indicate the
same trend.

For the sake of completeness, fig. 8 also shows the MAC matrix obtained for a
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Figure 6: Analytical mode shapes number 49 through 52, as described by eq. (15),
compared to the corresponding numerically calculated modes with both FEM (cf.
fig. 5) and IGA (cf. fig. 7). In contrast to the IGA modes, the FEM mode shapes
appear in the wrong order.

fifth-order IGA model when using the straightforward linear parametrisation (cf.
fig. 3b) instead of the non-linear one (cf. fig. 3a) used in figs. 4 and 7. Although
the resulting modes are still more accurate than in the corresponding FEM case,
the correspondence with the analytical modes is worse than in fig. 7 — despite
the lower off-diagonal values. The importance of the applied discretisation found
in [28] based on the accuracy of the eigenvalues is confirmed by these findings
based on the eigenmodes’ approximability.

4.2. Circular domain

The study carried out in the previous section for the square domain can
also be conducted for a circular problem domain. Here, the geometrical error
presents an additional disadvantage for the FEM. Indeed, quadratic (and higher-
order) NURBS can exactly represent circles, whereas conventional FEM shape
functions cannot. Consider a circle of unit radius filled with a fluid with unit
properties and with zero pressure boundary conditions. Using a transformation
to polar coordinates r and θ and leaving out the (r, θ) dependency of pa(r, θ)
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Figure 7: MAC matrix for the first 150 eigenmodes of a unit square domain using
fifth-order IGA with uniformly spaced control points (horizontal index) compared to
the analytical eigenmodes (vertical index). The match between numerical and exact
modes is clearly present up to much higher modes than in the FE model.

for the sake of brevity, the governing equations become:

∂2pa
∂r2

+
1

r

∂pa
∂r

+
1

r2

∂2pa
∂θ2

+ k2pa = 0, (r, θ) ∈ Ω = [0, 1] m× [0, 2π[ ,

pa

∣∣∣
∂Ω

= 0.

(17)

The analytical solution for this problem involves Bessel functions of the first
kind. The exact eigenwavenumbers kmn and eigenmodes umn are [45]:

kmn = λmn, m = 0, 1, . . . , n = 1, 2, . . . , (18)

umn,cos(r, θ) = Umn,cosJm(λmnr) cosmθ, m = 0, 1, . . . , n = 1, 2, . . . , (19)

umn,sin(r, θ) = Umn,sinJm(λmnr) sinmθ, m = 1, 2, . . . , n = 1, 2, . . . , (20)

with Jm(•) the Bessel function of the first kind and order m, and λmn the n-th
positive root of Jm. The factors Umn,? are again scaling factors.
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Figure 8: MAC matrix for the first 150 eigenmodes of a unit square domain using
fifth-order IGA with uniform elements (horizontal index) compared to the analytical
eigenmodes (vertical index). The match between numerical and exact modes is still
better than in the FEM case, but worse than when using IGA with uniform control
points.

4.2.1. Eigenvalues

Again the performance of IGA calculations is compared to that of conven-
tional FE models. Given the importance of the applied discretisation in the
case of the square domain, multiple types of IGA geometry discretisations have
been investigated here as well. In particular two types have been studied, as
shown in fig. 9: a polar mapping (i.e. where the mesh grid consists of radial and
circumferential lines (cf. fig. 9a) and a Cartesian one (i.e. a typical square mesh
deformed to a circular shape, cf. fig. 9b). However, no large differences in per-
formance between these isogeometric mappings are found. Although the exact
shapes of the discrete spectra are different, both mappings perform similarly
without qualitative discrepancies between them. Because the Cartesian mesh
(fig. 9b) of the domain was found to perform better overall, only those results
are shown here.

Figure 10a shows the normalised discrete eigenwavenumber spectrum for
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(a) Mesh consisting of a polar map-
ping, with one parametric coordinate
running in the radial direction and the
other one tangentially.

(b) Mesh generated by deforming a
square mesh to fit a circular boundary.

Figure 9: Two types of parametrisations for a circular domain (generated using
quadratic NURBS basis functions). Solid blue lines delineate the elements, while
the dashed black lines form the control net connecting the control points in red.

both IGA and FEM solutions of eq. (17). Calculations are carried out with
around 1000 DOFs — the exact number may vary slightly depending on the
discretisation in order to generate a good quality mesh. Applying the same rule
of thumb of 6 elements per wavelength indicates a validity of the linear models
up to a normalised mode index i/N = 0.055. In contrast to the square case,
now also the IGA curves diverge with increasing order in the upper part of
the spectrum. Interesting to notice here is also the difference between the two
first-order models. While the linear IGA and the linear FEM simulations yield
the same wavenumbers for the lower modes, a discrepancy is introduced above
a normalised mode index of about 0.4. Although linear NURBS are identical to
linear polynomial shape functions in the FEM, the meshes used here in the two
cases are different. In order to obtain a good quality FE mesh to have a fair
comparison, triangular elements are used, yielding a different discretisation with
different shape functions. In the IGA case, a tensor product mesh needs to be
used, yielding quadrilateral elements. This introduces some distorted elements
near the boundaries.

Investigation of the higher order discretisations shows that the IGA models
outperform the FEM for about the lowest 70 % of the complete set of modes, but
after that their performance deteriorates. In fact, the error for the higher IGA
wavenumbers becomes very high, yielding completely wrong eigenvalues — even
more so than for the square domain. Also the FEM curves show exceedingly
large errors for the higher frequencies. Here it should again be noted that this is
not necessarily an issue; the same reasoning as for the square domain also holds
here: the highest modes anyway have no approximability and do not contribute
to the solution accuracy. It is rather because of the higher accuracy in the
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Figure 10: Assessment of the accuracy of the discrete eigenwavenumber spectra for
the circular domain obtained using models of varying polynomial order p. Even more
so than was the case for the square domain, the IGA models retain the accuracy of
the eigenvalues up to much higher frequencies. This is partially due to the geometrical
error present in the FE models.

extended lower frequency part of the spectrum that IGA discretisations can be
used more efficiently up to higher frequencies. Figure 10b shows this better
performance for the lower modes more clearly by plotting the eigenwavenumber
error on a logarithmic scale.

As the discrete error spectrum shows, the IGA accuracy increases with in-
creasing polynomial order for the lower modes up to about 50 % of the spectrum.
The accuracy also strongly increases with decreasing mode index for a given or-
der. In contrast to the IGA models, all the FEM curves stagnate around the
same error level for the lowest modes. This was not observed for the square
domain (cf. fig. 4b), hinting that this stagnation point is caused by the geomet-
rical error present in the FE discretisations. Representing the circular boundary
by a polygon introduces a geometrical error that limits the maximum solution
accuracy that can be obtained and that can be characterised by the resulting
error on the circular surface area. Discretising a circle of radius R with nb linear
segments of equal length reduces the surface area of the circle by an amount of

(πR
2

nb
− R2

2 sin 2π
nb

) for each segment. The total relative error ε◦ on the surface
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area of the circle is then

ε◦ =
πR2 − nbR

2

2
sin

2π

nb
πR2 = 1− nb

2π
sin

2π

nb
. (21)

The linear FE mesh used here consists of 93 boundary segments. This yields a
relative surface area error of 7.61 · 10−4, which can be used as an indicator for
the geometrical error inherently present in this discretisation. The lowest mode
obtained using this mesh gives a relative error of 7.13 ·10−4, indicating that the
stagnation point of the FEM curves is indeed induced by the geometrical error.

4.2.2. Eigenmodes

Also here the numerically obtained eigenmodes can be compared to the an-
alytical ones in eqs. (19) and (20) using MAC matrices. Figure 11 shows the
MAC matrix for the first 150 modes for a second-order FE model compared
to the corresponding analytical ones. The total number of DOFs used in this
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Figure 11: MAC matrix for the first 150 eigenmodes of a circular domain using second-
order FEM (horizontal index) compared to the analytical eigenmodes (vertical index).
From around mode 55, the numerical modes quickly start deteriorating.
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approximation is 336, the modes shown thus go up to a normalised mode index
of i/N = 0.45. This is a relatively lower region than is studied for the square
domain, because the errors are for both FEM and IGA larger in the circular
case and so the eigenmodes will also degenerate more rapidly. As is the case
for the square domain, the lower modes are well approximated, up until almost
the first 40 FE modes in this case. However, after that the mode accuracy de-
creases, especially beyond mode 60. The diagonal structure starts to fade, and
above mode 130 few analytical modes seem to still be well represented by any
of the numerically calculated ones. When solving a boundary value problem,
the contribution of these higher modes is not incorporated properly because the
mode shapes are not correctly represented, limiting the frequency range this
model can be used for. The already decreasing accuracy of the eigenfrequencies
in this region of the spectrum adds to this effect.

Figure 12 shows the corresponding MAC matrix when using 324 NURBS
functions of second order. Although this model is slightly smaller than in the
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Figure 12: MAC matrix for the first 150 eigenmodes of a circular domain using second-
order IGA (horizontal index) compared to the analytical eigenmodes (vertical index).
The numerical IGA modes remain accurate much longer than the FE modes, allowing
more efficient calculations toward higher frequencies.
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FEM case, it approximates the mode shapes with a significantly higher accuracy:
Aside from a few switched modes, the first 90 modes are accurately represented.
And although the accuracy decreases with increasing mode number, the diagonal
structure remains clearly visible up to mode 120. This shows that not only the
eigenvalues are more accurately represented for the lower modes for IGA as
compared to the FEM, also the eigenmodes are more closely approximated. For
the sake of brevity, only second-order calculations are shown here, but similar
conclusions can be drawn for higher-order shape functions.

Note that whereas in the square case the inaccuracies are mostly due to
the switched order of appearance of the modes, the circular domain introduces
more distortions in the mode shapes themselves, especially in the FEM case.
Figure 13 illustrates this for modes 57 through 60 by comparing the FEM and
the IGA mode shapes to the corresponding analytical ones. The FEM modes
appear in the wrong order, i.e. modes 57 and 59 are switched. Additionally,
even though the exact modes can be recognised in the FEM mode shapes, there
are clear distortions present. These inaccuracies are also clearly expressed in
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Figure 13: Analytical mode shapes number 57 through 60, as described by eqs. (19)
and (20), compared to the corresponding numerically calculated modes with both FEM
(cf. fig. 11) and IGA (cf. fig. 12). In contrast to the IGA mode shapes, the FEM ones
appear in the wrong order and do not match the exact ones well.
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fig. 11 by the rather low MAC values around mode 60. In contrast to this, the
IGA modes appear in the correct order and match the exact ones very well.

5. Numerical verification studies

This section presents two numerical verification cases to confirm whether
the findings previously derived from eigenvalue problems can also be extended
to boundary value problems. First a relatively simple quadrilateral domain is
studied. Convergence curves are shown for different frequencies of analysis,
and the influence of the geometrical error is investigated into more detail. The
second case study is a 2D car cavity consisting of multiple NURBS patches. This
problem includes Robin boundary conditions to introduce a damping matrix and
the acoustic response is studied over a wider frequency range. Also the accuracy
of secondary variables is assessed.

5.1. Quadrilateral geometry

Consider the problem depicted in fig. 14 with governing equations (1) and
(2b). The acoustic domain is excited by a unit normal velocity of the lower
boundary while the other boundaries are rigid (i.e. zero normal velocity). All
boundaries are described by biquadratic B-splines.

5.1.1. Convergence analysis

Several simulations are done using both IGA and FE models of various
polynomial orders for calculating multiple frequency responses. In both cases,
quadrilateral elements are used, as shown in the example meshes in fig. 15. The
acoustic pressure response is evaluated in the 100 points indicated by red circles

ρ0 = 1.225 kg
m3

c = 340 m
s
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Figure 14: The bent quadrilateral geometry enclosed by 3 rigid boundaries (in solid
blue) and excited by a unit normal velocity on the lower boundary (in dashed green).
The red circles are the evaluation points used in the convergence study. The data
defining the precise geometry is given in appendix in table 1.
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(a) Isogeometric mesh containing 529
quadratic B-spline elements.

(b) Finite element mesh containing 522
quadratic Lagrangian elements.

Figure 15: Meshes of the quadrilateral geometry generated using (a) quadratic B-
splines and (b) quadratic polynomials.

in fig. 14. The discrete l2 relative error norm ‖ε‖2 is then calculated as follows
using these 100 response points (np = 100):

‖ε‖2 =
‖pa(r)− pa,ref(r)‖2
‖pa,ref(r)‖2

=

√∑np

i=1 |pa(ri)− pa,ref(ri)|2√∑np

i=1 |pa,ref(ri)|2
, (22)

where pa,ref is the reference pressure response, in this case calculated with a
cubic FE model with 460 000 DOFs.

Figure 16 plots this relative error versus the number of DOFs at a frequency
of 250 Hz both for IGA and for FE models from polynomial order 1 to 5. Here
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Figure 16: Convergence of IGA and FE models of various polynomial order p for the
problem depicted in fig. 14 studied at 250 Hz. For a given model size and polynomial
order, IGA is almost half an order of magnitude more accurate than the FEM at this
frequency.
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again the two linear models yield the same result, as the shape functions are
in both cases identical. Looking at higher orders, it is clear that for a given
number of DOFs, the IGA models are about half an order of magnitude more
accurate than the FE models of the same polynomial order. The step from
linear to quadratic shape functions yields the biggest accuracy gain. Elevating
the order above cubic does not result in much additional accuracy. This is due
to the relatively low frequency where the resulting pressure field is still rather
simple and the higher order of the shape functions cannot add a lot of value to
the already good lower-order approximations.

As the frequency increases, the pressure field becomes more complicated, as
the contour plots in fig. 17 illustrate. More dynamic responses can be described
more efficiently by the higher-order shape functions. Figure 18 shows the same
convergence curves as in fig. 16 but now for a frequency of 1000 Hz. Here the step
from cubic to quartic or quintic NURBS does improve the accuracy. Going to
even higher frequencies would show the quartic and quintic IGA curves moving
away from each other as well. It is also worth noting that to obtain the same
accuracy at 1000 Hz as for 250 Hz, a finer model is necessary both for FEM and
for IGA, because of the more complicated pressure field. When comparing IGA
to FEM at this frequency, the superiority of IGA is even larger. Now more than
an order of magnitude in accuracy is gained for a given order and number of
DOFs when going from conventional polynomials to NURBS.

These results confirm the findings of section 4 that IGA models can analyse
acoustic problems more efficiently than corresponding FE models, even more so
as the frequency of analysis increases.

5.1.2. Influence of the geometrical error

An important advantage of IGA is that geometrical errors due to the dis-
cretisation can be avoided. In contrast to FEM, there is no need for going back
to the original CAD description when refining the mesh, as already the most
coarse parametrisation can exactly describe the geometry. The influence of the
geometrical error for this problem is studied by starting from three initial first-
order FE meshes and refining them without updating the initial geometrical
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Figure 17: Contour plots of the pressure responses in the quadrilateral geometry of
fig. 14 at 250 and 1000 Hz, both computed using a quadratic IGA model containing
1024 DOFs.
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Figure 18: Convergence of IGA and FE models of varying order for the problem
depicted in fig. 14 studied at 1000 Hz. This higher frequency makes the use of IGA
models even more advantageous, with the higher-order IGA models outperforming the
FEM by two orders of magnitude.

discretisation. Figure 19 shows the three initial geometries, referred to as X×Y
with X and Y the original numbers of elements in x- and y-direction, respec-
tively. Figure 20 illustrates what is meant by refining these models without
refining the geometry.

These three models are used for calculating the acoustic response at 250 Hz.
Figure 21 shows convergence plots, according to eq. (22), when refining the mesh
without refining the geometry. For comparison purposes, the relative errors for
the linear IGA and FE model with geometry refinement are also shown. The
accuracy for the three models stagnates at an error level which is indicative of
the geometrical error present in each model. To confirm this, these geometrical
errors are calculated; they are given by the relative error εSA of the surface area
(SA) of the starting geometries (cf. fig. 19) with respect to the exact surface
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Figure 19: The starting geometries for the FE models used to study the geometrical
error in the problem depicted in fig. 14. The crosses indicate the vertices, which are
linearly interpolated.
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Figure 20: Three linear FE meshes generated from the split 3×2 model (cf. fig. 19a).
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Figure 21: Convergence of FE models of various geometrically flawed meshes for the
problem depicted in fig. 14 studied at 250 Hz. The geometrical errors present in these
models (indicated by the horizontal dashed lines) clearly introduce a stagnation in
accuracy.

area (cf. fig. 14): εSA = |SA − SAexact|/SAexact. The coloured dashed lines
in fig. 21 represent these geometrical error levels for each of the split models.
They match the stagnated accuracies of the models well. Even the split 15×10
model, which visually seems to approximate the exact geometry already quite
well, stagnates at a relatively large error value compared to the fully refined
models. It should be noted that with increasing frequency, the geometrical
error becomes more important: as higher-frequency waves diffract less easily,
they are more sensitive to geometrical details.

5.2. Two-dimensional car cavity

This case study applies NURBS-based IGA to a more complex, multipatch
geometry. Consider the two-dimensional car cavity depicted in fig. 22. The
air inside the car is acoustically excited by a unit normal velocity applied to
the firewall (in red), representing the transfer of engine vibrations through this
panel. All boundaries are modelled as rigid (i.e. zero normal velocity), except
for the seats, where a normal impedance Z̄n is imposed (cf. eq. (2c)) to introduce
acoustic absorption. In general, the acoustic impedance is a complex, frequency-
dependent quantity, but for practical reasons a constant value is used here. The
complex impedance introduces a damping matrix with complex entries into the
system of equations (8), adding to the complexity of the problem.
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Figure 22: The multipatch 2D car cavity geometry, excited by a unit normal velocity of
the firewall (solid red) with prescribed normal impedance on the seats (dashed green).
The blue lines are the patch boundaries. The data defining the precise geometry is
given in appendix in table 2.

As already mentioned in section 3.2, multiple bordering NURBS patches are
by default discontinuous at the patch interfaces. To ensure continuity, conform-
ing patches (i.e. with identical parametrisation at the interfaces) are used here.
This has consequences for the geometry description that can be used. Not just
any combination of patches is analysis-suitable, and care should be taken to
generate a high-quality multipatch discretisation. Figure 22 shows the config-
uration of the 19 patches used here, with the blue lines in the interior of the
domain indicating the interfaces. All patches are parametrised using biquadratic
B-splines. They are C1-continuous except at the patch interfaces, where there
is only C0 continuity.

The car cavity is studied in a frequency range from 10 to 2500 Hz with a
frequency resolution of 2 Hz. Simulations are done using an IGA model con-
sisting of 2846 quadratic DOFs and a FEM mesh containing 2867 quadratic
DOFs. They are compared to a reference solution calculated using a quadratic
FE model with 375 000 DOFs.

Figure 23 shows the acoustic pressure response curves in the point with co-
ordinates (1.67 m;−0.06 m), indicated by the black cross in fig. 22. In the lower
frequency region both the IGA and the FE calculation show good agreement
with the reference. As the frequency increases, however, the curves start to
shift to the right as compared to the reference as the resonance peaks shift to
higher frequencies. This phenomenon is known as the pollution effect and is
the result of accumulated phase errors due to numerical dispersion. It has been
the subject of extensive research [16, 17, 46, 48] and is a prohibitive factor
for using the FEM for very high-frequency calculations. Increasing the polyno-
mial order reduces this effect but does not remove it. Figure 24 zooms in on
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Figure 23: Pressure response curves for the point (1.67 m;−0.06 m) in the 2D car
cavity, calculated with a quadratic IGA and a quadratic FE model. The FEM curve
starts deviating from the reference more rapidly than the IGA one, indicating a more
detrimental pollution effect in the FEM case.

the higher-frequency part of the acoustic response. This shows that although
the IGA model also suffers from the pollution effect, it follows the reference up
to higher frequencies than the FE discretisation does. The shift for the FEM
curve already sets in at around 1400 Hz, while the IGA model only starts dete-
riorating around 1700 Hz. Increasing the frequency even further, this pollution
effect clearly becomes stronger, although it does so less for the IGA model as
compared to the FE model. This again confirms the findings from the previous
sections, also for a complex problem setting.

Figure 25 shows the averaged relative error in the discrete l2 norm ‖ε‖2 (cf.
eq. (22)) of the acoustic pressure in 76 evaluation points spread out over the
entire car cavity (4 in each patch). Note that the complex values of the acoustic
pressure are used in eq. (22), not simply the absolute ones. This means that
also phase information is taken into account. This can be of importance here
because, in contrast to the quadrilateral geometry studied in section 5.1, not
all points are in phase with each other in this problem due to the impedance
boundary condition. The figure illustrates that even for the lower frequencies
the IGA model outperforms the FE discretisation. In the upper frequency region
the difference becomes smaller and the error is large because of the pollution
effect.

Evaluating secondary variables, such as the acoustic particle velocity, shows
a similar gain in accuracy of IGA over FEM. Whereas C0-continuous FEM shape
functions result in discontinuous secondary variables, the higher continuity of
NURBS yields smoother derived quantities.
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Figure 24: Close-up of fig. 23 between 1200 and 2500 Hz, more clearly showing the
larger pollution effect in the FEM solution in comparison to the IGA model.
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Figure 25: Averaged relative error of the pressure response over 76 points spread out
over the car cavity, calculated using quadratic shape functions.

5.2.1. On the practical limitations of NURBS

Although this numerical case study illustrates the increased efficiency of
NURBS-based IGA as compared to the conventional FEM, it is also a good
demonstration of the limitations of using NURBS in more realistic (i.e. more
geometrically complex) analysis cases. The main drawback is the tensor product
structure. The straightforward use of conforming patches to ensure inter-patch
continuity, without further treatment to allow for local refinement, means that
refinements propagate from patch to patch. If a series of thus related patches
change in size significantly from one patch to another, an unintentional and pos-
sibly undesired discrepancy in element sizes can occur. Comparing two different
discretisations of the car cavity illustrates this issue.

Figures 26 and 27 show these two discretisations with different patch config-
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Figure 26: A B-spline discretisation of the car cavity topologically identical to the
one used in the simulations. The blue lines delimit the elements, the red ones are the
patch boundaries.

urations but with the same maximum element size. The one in fig. 26 is of the
same topology (but larger element size) as the one that was used in the calcu-
lations discussed above. The deformation of the patches is limited and all the
elements are of roughly the same size. The same cannot be said for the discreti-
sation in fig. 27. Consider for instance the green patch. The element sizes there
are determined by those in the yellow patches because of the use of conforming
patches. The green patch therefore always contains finer elements than the yel-
low ones. This introduces elements that still contribute to the computational
cost but that are too fine to contribute to the solution accuracy — because the
latter is limited by the larger elements in other regions of the car cavity. The
same reasoning holds also for other parts of the mesh.

This is of course not a new issue and although the cause is in essence the
lack of local refinement possibilities in this framework, problems also arise in
the case of uniform refinement of the entire mesh here. Whether this really
poses a problem or not depends on the specific problem under study. It is
mentioned here because simulations for the car cavity have indicated that this
is indeed detrimental to the IGA efficiency and in very bad meshes can even
cause the IGA model to be outperformed by the FEM on a per-DOF basis.
More importantly, it undermines the primary purpose of IGA, namely rendering
the meshing step in the FEM redundant. The care that has to be taken in
dividing the problem domain into patches eventually boils down to a meshing
process, but on a super-element level. Solutions for this problem exist, for
instance in the form of geometrical technologies not suffering the tensor product
issues of NURBS, such as T-splines, or of local refinement techniques [11, 35–
37, 39, 40, 49]. Also hybrid techniques seem promising, such as the NURBS-
enhanced FEM [50] or the blending of NURBS functions and local maximum
entropy meshfree approximants [51]. In fact, the latter method has recently
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Figure 27: An example of a B-spline discretisation with a patch configuration inferior
to the one in fig. 26 but with the same maximum element size. The blue lines delimit
the elements, the red ones are the patch boundaries.

shown very positive results for time-harmonic acoustics in 2D, in particular
with respect to pollution errors [52]. However, the existence of techniques like
T-splines does not mean that the issue presented above is no longer relevant.
The aim of the isogeometric paradigm is to directly plug in CAD descriptions
into CAE environments, or in other words to change the analysis side while
leaving the design side unaltered. The vast majority of CAD programmes is
still NURBS-based. Applying isogeometric analysis would then ideally allow
to directly use these NURBS in analysis environments, without requiring too
many translation steps to more analysis-suitable geometries.

6. Conclusions

This work studies the performance of a NURBS-based isogeometric frame-
work for solving stationary acoustic problems in two dimensions. A first as-
sessment is done by studying the corresponding eigenvalue problem for simple
domains with analytical solutions. It is shown that when using NURBS shape
functions instead of conventional polynomials, not only the eigenvalue error in-
creases less rapidly with increasing frequency, but also the mode shapes are
represented more accurately. The increased accuracy over the extended lower-
frequency part of the spectrum makes IGA more efficient than the FEM for
calculating system responses, especially at higher frequencies. Two numerical
case studies are done to further benchmark NURBS-based IGA versus the con-
ventional FEM. A convergence analysis on a simple acoustic domain shows that
IGA outperforms the FEM on a per-DOF basis. The higher the frequency of
analysis, the larger the accuracy gain of IGA. The influence of the geometrical
error is briefly studied, indicating the importance of using the exact geometry
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when refining the mesh. Studying a multipatch car cavity geometry with ab-
sorbing boundaries over a wide frequency range confirms the findings that IGA
can model stationary acoustics more efficiently than the conventional FEM. In
particular in the higher frequency range, IGA seems to suffer less from the pol-
lution effect than the FEM. Finally, the practical consequences of the inherent
tensor product structure of NURBS are discussed. Without additional treat-
ment, the propagation of refinement steps from patch to patch can compromise
the efficiency of IGA calculations, and the care taken to produce a good multi-
patch discretisation could defeat the purpose of IGA as a bridge between CAD
and CAE.
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Appendix A. Geometrical problem data

This appendix lists the geometrical data necessary to recreate the problem
domains studied in section 5. All domain boundaries are described by quadratic
B-spline curves, defined by knot vectors and control points (cf. section 3):

C(ξ) =

n∑
i=1

Np
i (ξ)Bi, (23)

with Np
i (ξ) from eq. (3) with p = 2.

A.1. Quadrilateral geometry

Table 1 presents the knot vectors and control points of the 4 quadratic B-
spline segments forming the boundary of the quadrilateral geometry studied in
section 5.1.
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Table 1: Quadratic B-spline data defining the boundary segments describing the geo-
metry in fig. 14.

Boundary Knot vector Ξ [-] Control points Bi [m]

1 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.000, 0.000)
B2 = (-0.100, 0.200)
B3 = (0.300, 0.500)

2 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.000, 0.000)
B2 = (0.900, 0.350)
B3 = (0.800, 0.400)

3 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.000, 0.000)
B2 = (0.500, -0.100)
B3 = (1.000, 0.000)

4 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.300, 0.500)
B2 = (0.500, 0.500)
B3 = (0.800, 0.400)

A.2. Two-dimensional car cavity

Table 2 presents the knot vectors and control points of the 32 quadratic B-
spline segments forming the boundary of the two-dimensional car cavity studied
in section 5.2.

Table 2: Quadratic B-spline data defining the boundary segments describing the geo-
metry in fig. 22.

Boundary Knot vector Ξ [-] Control points Bi [m]

1 Ξ = {0, 0, 0, 0.5, 1, 1, 1}
B1 = (0.420, -0.190)
B2 = (0.469, -0.140)
B3 = (0.496, -0.042)
B4 = (0.485, -0.005)

2 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.270, 0.070)
B2 = (0.540, 0.225)
B3 = (0.690, 0.320)

3 Ξ = {0, 0, 0, 0.5, 1, 1, 1}
B1 = (0.270, 0.070)
B2 = (0.358, 0.075)
B3 = (0.470, 0.043)
B4 = (0.485, -0.005)

4 Ξ = {0, 0, 0,
1

3
,

2

3
, 1, 1, 1}

B1 = (2.590, 0.220)
B2 = (2.481, 0.251)
B3 = (2.415, 0.267)
B4 = (2.231, 0.307)

– continues on next page –
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Table 2 – continued from previous page

Boundary Knot vector Ξ [-] Control points Bi [m]

B5 = (2.155, 0.320)

5 Ξ = {0, 0, 0,
1

3
,

2

3
, 1, 1, 1}

B1 = (2.645, -0.050)
B2 = (2.526, -0.049)
B3 = (2.414, -0.051)
B4 = (2.151, -0.046)
B5 = (2.115, 0.040)

6 Ξ = {0, 0, 0, 0.5, 1, 1, 1}
B1 = (2.590, 0.220)
B2 = (2.626, 0.134)
B3 = (2.649, 0.049)
B4 = (2.645, -0.050)

7 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (2.155, 0.320)
B2 = (2.100, 0.330)
B3 = (2.045, 0.340)

8 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (2.115, 0.040)
B2 = (2.050, 0.065)
B3 = (1.995, 0.040)

9 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.665, 0.395)
B2 = (1.855, 0.372)
B3 = (2.045, 0.340)

10 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.995, 0.040)
B2 = (1.908, -0.145)
B3 = (1.870, -0.470)

11 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.470, -0.370)
B2 = (1.670, -0.340)
B3 = (1.870, -0.470)

12 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.375, 0.420)
B2 = (1.500, 0.413)
B3 = (1.665, 0.395)

13 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.300, 0.050)
B2 = (1.365, 0.075)
B3 = (1.410, 0.040)

14 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.200, 0.430)
B2 = (1.293, 0.425)
B3 = (1.375, 0.420)

15 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.410, 0.040)
B2 = (1.365, -0.120)
B3 = (1.300, -0.360)

16 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.500, -0.540)
B2 = (1.435, -0.465)
B3 = (1.470, -0.370)

17 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.260, -0.530)
B2 = (1.280, -0.415)

– continues on next page –
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Table 2 – continued from previous page

Boundary Knot vector Ξ [-] Control points Bi [m]

B3 = (1.300, -0.360)

18 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.230, -0.670)
B2 = (1.335, -0.670)
B3 = (1.420, -0.670)

19 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.500, -0.540)
B2 = (1.490, -0.610)
B3 = (1.420, -0.670)

20 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.100, -0.530)
B2 = (1.180, -0.530)
B3 = (1.260, -0.530)

21 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.070, -0.630)
B2 = (1.130, -0.670)
B3 = (1.230, -0.670)

22 Ξ = {0, 0, 0, 0.5, 1, 1, 1}
B1 = (0.720, -0.480)
B2 = (0.838, -0.504)
B3 = (0.928, -0.519)
B4 = (1.100, -0.530)

23 Ξ = {0, 0, 0, 0.5, 1, 1, 1}
B1 = (0.730, -0.590)
B2 = (0.805, -0.630)
B3 = (0.915, -0.630)
B4 = (1.070, -0.630)

24 Ξ = {0, 0, 0, 0.5, 1, 1, 1}
B1 = (1.160, -0.460)
B2 = (1.182, -0.284)
B3 = (1.212, -0.139)
B4 = (1.300, 0.050)

25 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.160, -0.460)
B2 = (0.955, -0.330)
B3 = (0.730, -0.360)

26 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (1.200, 0.430)
B2 = (0.895, 0.445)
B3 = (0.690, 0.320)

27 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.420, -0.190)
B2 = (0.225, -0.190)
B3 = (0.010, -0.190)

28 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.010, -0.190)
B2 = (0.000, -0.245)
B3 = (-0.010, -0.320)

29 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.000, -0.450)
B2 = (-0.015, -0.395)
B3 = (-0.010, -0.320)

30 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.370, -0.590)
B2 = (0.160, -0.510)

– continues on next page –
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Table 2 – continued from previous page

Boundary Knot vector Ξ [-] Control points Bi [m]

B3 = (0.000, -0.450)

31 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.730, -0.590)
B2 = (0.550, -0.590)
B3 = (0.370, -0.590)

32 Ξ = {0, 0, 0, 1, 1, 1}
B1 = (0.730, -0.360)
B2 = (0.700, -0.420)
B3 = (0.720, -0.480)
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