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Abstract 

Dam construction in the 1960’s to 1980’s significantly modified sediment supply from 

the Kenyan uplands to the lower Tana River. To assess the effect on suspended 

sediment fluxes of the Tana River, we monitored the sediment load at high temporal 

resolution for one year and complemented our data with historical information. The 

relationship between sediment concentration and water discharge was complex: at 

the onset of the wet season, discharge peaks resulted in high sediment 

concentrations and counterclockwise hysteresis, while towards the end of the wet 

season, a sediment exhaustion effect led to low concentrations despite the high 

discharge. The total sediment flux at Garissa (ca. 250 km downstream of the 

lowermost dam) between June 2012 and June 2013 was 8.8 Mt yr-1. Comparison of 

current with historical fluxes indicated that dam construction had not greatly affected 

the annual sediment flux. We suggest that autogenic processes, namely river bed 

dynamics and bank erosion, mobilized large quantities of sediments stored in the 

alluvial plain downstream of the dams. Observations supporting the importance of 

autogenic processes included the absence of measurable activities of the fall-out 

radionuclides 7Be and 137Cs in the suspended sediment, the rapid lateral migration of 

the river course, and the seasonal changes in river cross-section. Given the large 

stock of sediment in the alluvial valley of the Tana River, it may take centuries before 

the effect of damming shows up as a quantitative reduction in the sediment flux at 

Garissa. Many models relate the sediment load of rivers to catchment 

characteristics, thereby implicitly assuming that alterations in the catchment induce 

changes in the sediment load. Our research confirms that the response of an alluvial 

river to external disturbances such as land use or climate change is often indirect or 

non-existent as autogenic processes overwhelm the changes in the input signal. 
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Introduction 

Changes in the relationship between water discharge and sediment fluxes in rivers 

have often been used to infer changes in sediment supply due to variations in human 

pressure on the landscape (Dearing and Jones, 2003). The construction of 

reservoirs has often been found to result in decreased sediment fluxes downstream, 

a mechanism considered to override the effects of increased erosion due to land-use 

changes at the global scale (Vörösmarty et al., 2003; Syvitski et al., 2005). Another 

factor used to explain changes in the discharge-sediment flux relationship is climate: 

for example in the Yellow River (Huanghe) basin, 30% of the observed reduction in 

sediment fluxes over the past 60 years was attributed to a decrease in precipitation, 

the remainder being associated to reservoirs and soil conservation practices (Wang 

et al., 2007).  

Such interpretations of sediment flux dynamics assume that changes within the 

catchment are directly translated into a change in the output signal, i.e. the sediment 

flux leaving the catchment. Such a direct coupling is also assumed in the models 

currently used to predict present or past sediment fluxes to the ocean. Without 

exception, these models use catchment characteristics such as average catchment 

elevation, land use, precipitation and climate to predict sediment yields at the 

catchment outlet (Syvitski and Milliman, 2007; Kettner and Syvitski, 2008; 

Vanmaercke et al., 2014). By doing so, they implicitly assume a steady state 

whereby changes in catchment conditions are directly propagated to the sediment 

flux at the catchment outlet. A similar line of reasoning is often maintained when 

interpreting sedimentary archives in alluvial plains and deltas, where the temporal 
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evolution of sediments in the valley is often directly linked to land use changes on 

the catchment slopes and/or changes in climate (Macklin and Lewin, 2003; 

Hoffmann et al., 2009). Finally, catchment management plans often aim to reduce 

sedimentation in reservoirs by implementing soil conservation measures in well-

targeted areas, again supposing that a direct link exists between sediment 

production and catchment yield (e.g. Hunink et al., 2013). 

On the other hand, there is ample evidence that the response of rivers to changes in 

such external driving forces is not linear, and that considerably different responses to 

external forcing may be observed along a single river. Since the pioneering work of 

Schumm (1973), several papers have confirmed that the relationship between 

environmental change within the catchment and sediment flux at the catchment 

outlet is often indirect and may even be non-existent, even in small basins (Evans et 

al., 2000; Phillips et al., 2005; Fryirs et al., 2007; Fryirs, 2013; Nittrouer and Viparelli, 

2014).  

The inconsistent coupling between catchment characteristics and catchment 

sediment yields can be related to the importance of autogenic processes, i.e. 

processes taking place within the river channel, such as mobilization and deposition 

of river bed sediments and river bank erosion. Fluctuations in sediment transport 

rates occur even under steady boundary conditions as a result of such processes 

which are initiated once a threshold is reached (Jerolmack and Paola, 2010). Thus, 

rivers are not simply sediment conduits of hill slope derived sediments but may also 

act as buffers by storing sediments in alluvial plains for several millennia (Wittmann 

and Blanckenburg, 2009) and may supply sediment through channel enlargement or 

incision (Renwick et al., 2005). While it has become increasingly clear that autogenic 
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processes have an important impact on the sensitivity of the river system to 

catchment changes (Syvitski et al., 2003; Phillips, 2013), little quantitative 

information is available to allow evaluating their role in explaining river sediment 

dynamics (Phillips et al., 2005). This is an important gap as the timing and the 

magnitude of the response of a catchment to environmental changes can only be 

well understood if the impact of autogenic processes is properly accounted for.  

 Assessing the relative importance of autogenic and allogenic processes in sediment 

mobilization and transport is difficult as, in most cases, it requires detailed 

measurements of sediment fluxes from the hillslopes entering the river system as 

well as detailed investigations of within-river sediment dynamics. In some cases, 

however, the relative importance of autogenic processes is easier to detect because 

there has been a major shift in the sediment regime due to human action and the 

response of the river can directly be monitored. The Tana River in Kenya is such a 

case. The high sediment loads in the upper Tana River have often been attributed to 

land degradation and soil erosion in the upper catchment (e.g. Ongweny, 1979; 

Ongwenyi et al., 1993). However, the sediment flux from the headlands to the lower 

alluvial river system was largely cut off by the construction of five large dams 

between 1968 and 1988 which effectively trap > 80% of all sediment produced in the 

Kenyan highlands (Brown et al., 1996; Bunyasi et al., 2013; Hunink et al., 2013). 

Ongwenyi et al. (1993) estimated the sedimentation in Kindaruma reservoir (before 

the construction of the upstream Masinga Dam) to be in the order of 6-7 Mm³ y-1 (~9-

11 Mt yr-1). Later estimates of the sediment deposition in Masinga Reservoir were in 

the order of 8 Mt yr-1 (Hunink et al., 2013), which is the same order of magnitude 

(5.9-8.7 Mt yr-1) as the present-day sediment fluxes measured 400 km farther 
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downstream at Garissa (Tamooh et al., 2014). 

The main objective of this paper is to investigate to what extent this natural 

experiment has affected river sediment fluxes in the Tana River downstream of the 

dams, and to determine the relative importance of autogenic processes in controlling 

the river’s response through a detailed analysis of historical and recent sediment flux 

data, sediment ages, and a first assessment of sediment remobilization rates in the 

lower Tana River. Finally, we aim to provide a first quantitative estimate of the time 

scale over which the disturbance induced by dam construction may affect sediment 

fluxes at Garissa, where the discharge station is located.  

1. Materials and methods 

1.1. Study area 

The Tana River is the largest river in Kenya (~ 1100 km long), draining an area of 

approximately 95 500 km² (Figure 1). The river originates in the highlands of the 

Aberdare Mountain Range (~3500 m) and Mount Kenya (5199 m). On its way to the 

ocean, between 900 and 770 km from the river mouth, the water passes through a 

cascade of five reservoirs located at altitudes between 1055 m (Masinga reservoir) 

and 700 m (Kiambere reservoir). The reservoirs, constructed between 1968 and 

1988, were primarily installed to provide hydro-electricity and to a lesser extent for 

irrigation and discharge control. The catchment area upstream of the reservoirs is 

ca. 8500 km² (9% of the total catchment area). Between the dams and the beginning 

of the floodplain near Mbalambala, several perennial and seasonal tributaries, 

draining the eastern flank of Mt. Kenya and the Nyambene Hills and having a total 

catchment area of ca. 19 000 km² (20% of the catchment area), enter the main Tana 
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River. Further downstream, there are no permanent tributaries: the total drainage 

area of the ephemeral river systems (also called lagas) up to Garissa is ca. 4000 km² 

(4% of the catchment area). An extended and vegetated alluvial floodplain starts ca. 

25 km upstream of Mbalambala at an altitude of ca. 250 m. From here on, the river 

meanders extensively with intermittent tributaries draining the arid savannah outside 

the floodplain, until it finally discharges to the Indian Ocean through a deltaic system. 

Many of the ephemeral streams are only active for a few days per year. 

The catchment experiences two rainfall seasons per year: the long wet season 

between April and June and the short wet season in November-December. The 

spatial distribution of precipitation is highly variable with rainfall amounts up to 1800 

mm yr-1 in the highlands, less than 400 mm yr-1 in Garissa and 600-1000 mm yr-1 

near the delta (FAO, 2005; Knoop et al., 2012; MEMR, 2012). The interannual 

variability is also very high: in 1961, 1968 and 1997, Garissa received a total rainfall 

amount of more than 900 mm which is three times the annual average of 300 mm 

(Gadain et al., 2006). As a consequence of this uneven distribution, a 

disproportionate amount of the river discharge originates from the upper catchment. 

The construction of the reservoirs has significantly impacted the hydrological regime 

of the river. In Garissa, where the most extensive dataset has been collected by 

government institutions (WRMA, Water Resource Management Authority), the peak 

discharges during the long wet season have declined by up to 20% (Maingi and 

Marsh, 2002). Discharges during the short wet season are unaffected, while the low 

flows during some months in the dry seasons have augmented up to 40% (Maingi 

and Marsh, 2002). Monthly average discharges in the post-dam period (1982-1996) 

ranged between 80 m³ s-1 and 302 m³ s-1 (Maingi and Marsh, 2002). 
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1.2. Sampling and analysis 

Three types of new data were collected in Garissa for this research: (1) total 

suspended matter concentrations, (2) activities of the radionuclides 7Be and 137Cs, 

and (3) discharge measurements (Table 1). 

Total suspended matter (TSM) concentrations were measured in Garissa by taking 

grab water samples in the middle of the river from 22/06/2012 to 21/06/2013 on a 

daily basis during most of the wet seasons and at least biweekly during the dry 

seasons (184 measurements in total). 25-200 ml of water was filtered on pre-

weighed, pre-combusted (4 h at 450°C) 47mm Whatman GF/F filters (pore size: 0.7 

µm). The filters were air-dried in the field and oven-dried at 50°C in the lab prior to 

re-weighing to determine sediment loads. The sampling period allowed us to sample 

the variation over the dry seasons (22/06/2012-8/10/2012 and 25/01/2013-

19/03/2013), the short rains of 2012 (9/10/2012-24/01/2013), and the long rains of 

2013 (20/03/2013-21/06/2013). The sediment concentrations were not corrected for 

concentration gradients within the river as additional sampling across the river profile 

showed that the concentrations did indeed not vary significantly with depth and with 

the lateral position (Data in Supporting information: Table S.1). 

To determine activities of the radionuclides 7Be and 137Cs, daily suspended sediment 

samples were taken in Garissa during the discharge peak from May 2nd to June 22nd 

2013, by filtering a sufficient amount of surface water on 100 mm cellulose-acetate 

filters (pore size 0.45 µm) to retain at least 1.0 g (dry weight) of sediment for 

analysis. After air-drying the filters, the sediment was put in the examination vials. A 

subset of 18 of these samples were analyzed for the activity of 7Be and 137Cs using 
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an HPGe Well detector (Canberra) placed in a lead shield for at least 48 h. Samples 

were measured between 13 and 47 days after sampling with an average of 32 days. 

Given the half-life of 7Be of 53 days, between 84% and 54% of the initial activity of 

7Be was still present at the time of analysis. Calibration of the detector was 

performed with IAEA standards (IAEA-RGU-1 and IAEA-385). The minimum 

detectable activities of 7Be and 137Cs were resp. 2.2 ± 0.3 Bq kg-1 and 3.1 ± 0.4 Bq 

kg-1, based on background spectra. 

Additionally, water height was recorded daily from a stage board at Garissa bridge. 

In order to translate water heights to discharge, five river cross profiles were 

measured at the bridge in Garissa with an Acoustic Doppler Current Profiler (ADCP, 

Teledyne RDI RiverRay) equipped with a depth sounder and GPS (GPS Hemisphere 

A100). Four measurements were taken during high water levels (May 9th, 10th, and 

18th, 2012 and November 6th, 2012), and one measurement was taken on October 

5th, 2012 just before the onset of the wet season. The ADCP measured water 

velocities over the entire river profile (accuracy of 2 mm s-1) as well as the depth to 

the river bed (accuracy of 1%). These data were used to supplement an existing 

dataset of manual discharge measurements (using current meters) so that a rating 

curve could be established. Additionally, the ADCP profile data allowed us to assess 

the stability of the river cross section (see Discussion). It should be realized that, 

despite calibration, discharge estimates are always prone to some uncertainty as the 

cross-sectional area of the Tana River does vary through time (see Discussion). 
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1.3. Existing datasets 

The new dataset is complementary to existing datasets: (1) historical sediment flux 

data in Garissa, (2) monthly measurements at three different sampling locations, and 

(3) single sediment concentrations at different locations along the river during three 

different seasons (Table 1). 

Historical sediment flux estimates and corresponding discharge data from Garissa 

prior to the construction of the dams were reported in graphical form by Dunne 

(1988) for the periods 1948-1954, 1961-1962, 1963 and 1965-1966. The discharge 

and sediment flux data were digitized from a log-log plot and used to calculate 

corresponding sediment concentrations. It is important to note that in 1961, 1962 and 

1963, severe floods occurred in the region. 

Between January 2009 and December 2011, sediment concentrations were 

measured on a monthly basis at the outlet of the Masinga Reservoir, Kora, Garissa, 

and at the mouth of the Ura tributary (Tamooh et al., 2013, Tamooh et al., 2014, 

unpublished data) (Figure 1). The monthly measured sediment concentrations in 

Masinga dropped significantly (by a factor of 10) after June 25th 2010. The high 

sediment concentrations observed before this date occurred when the water levels of 

the reservoir were extremely low after a prolonged period of exceptionally low 

precipitation (Bunyasi et al., 2013). We hypothesize that during this period the 

residence time of the water was reduced due to the low water level. Therefore, less 

sediment was able to settle and/or scouring of the reservoir bed took place, both 

leading to higher concentrations at the outlet. Because of these exceptional 

conditions, only the data from Masinga with normal water levels (after 25/06/2010) 
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were taken into account in the discussion. 

Data on longitudinal variations in suspended sediment concentrations along the 

whole river course have been presented by Bouillon et al. (2009) and by Tamooh et 

al. (2012). We did not use all of these data, but limited ourselves to the lower river 

section, between the outlet of Masinga Reservoir and Garissa. At most of the 

sampling locations, Tamooh et al. (2012) took two sediment concentration 

measurements: one during the initial discharge peaks of the short wet season 

(October-November 2009) and one at the end of the long wet season (June-July 

2010) when river discharges were already approaching dry season values. Bouillon 

et al. (2009) measured a single sediment concentration value for a subset of the 

locations used by Tamooh et al. (2012) during the dry season in February 2008. 

1.4. Sediment flux calculations 

Based on our own sediment sampling, the annual sediment flux for the period June 

22, 2012 till June 21, 2013, was calculated by multiplying the daily discharge with the 

measured sediment concentration. For dates when no suspended sediment 

sampling had taken place (n=61, 12 and 108 for respectively short wet season, long 

wet season and dry seasons), the concentration was estimated based on 3 non-

linear rating curves between sediment concentration and water discharge with a 

differentiation according to the season (Table 2). Alternative calculations based on 

discharge averaged concentrations, either per season, either over the whole year, 

indicate that the uncertainty on the annual flux due to the interpolation method is less 

than 5%.  
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The data used to construct the rating curves for the pre-dam period are incomplete: 

data do not cover a full year and the exact time at which a sample was taken is not 

known. Therefore, two methods were used to estimate annual sediment fluxes for 

the pre-dam period. In the first method a single non-linear rating curve was 

constructed for each observation period (Table 2). Daily sediment concentrations 

were calculated based on the daily discharge data provided by WRMA (Water 

Resource Management Authority, Kenya), and the summing of the daily sediment 

fluxes resulted in an annual sediment flux. The error on the annual fluxes is 

estimated to be ca. 3 Mt yr-1, based on a comparison with fluxes calculated as the 

annual discharge multiplied by the discharge-weighted average concentration during 

the respective time period. The same method was applied for the monthly samplings 

of Tamooh et al. (2014). 

The second method was based on the observation that the Tana River has two basic 

sediment regimes (see Results, Table 2). During low discharges, sediment 

concentration rises rapidly with increasing discharge (strong response). This is no 

longer the case when a prolonged period of high discharges occurs: after such a 

period, sediment concentrations drop and remain low for the rest of the wet season 

(weak response). We used two different rating curves to represent these distinct 

regimes. In order to estimate annual sediment fluxes, we always used the average 

strong response rating curve except for periods following a sustained wet period (i.e. 

discharges > 550 m³ s-1 for ≥ 5 days, until the discharge dropped below 150 m³ s-1) 

for which the weak response curve was used.  
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2. Results 

2.1. Relationship between TSM and discharge  

Our dataset contains records from two wet seasons: the short wet season of 

October-December 2012 and the long wet season of April-May 2013 (Figure 2a). 

During the short wet season, 5 individual discharge peaks, each lasting less than 6 

days, were sampled for sediment concentrations while the second part of the short 

wet season was not sampled. The maximum discharge at Garissa during the short 

wet season was 650 m3 s-1, and no significant flooding occurred in the lower Tana 

River during this period. During the dry seasons, discharge was not constant but 

decreased slowly from 250 m³ s-1 to 75 m³ s-1. In contrast to what was observed 

during the short wet season, the long wet season was characterized by a seasonal 

discharge pulse extending over ca. 2 months, on which minor individual discharge 

peaks lasting less than 5 day were superimposed. The maximum discharge 

observed in Garissa was ca. 950 m³ s-1, and resulted in an extended period of 

flooding throughout the lower reaches of the Tana River.  

Suspended sediment concentrations also showed strong seasonal variations (Figure 

2b). During the short wet season, each discharge peak resulted in a rise in sediment 

concentrations, leading to maximum values around 5700 mg L-1. Throughout the dry 

season, the sediment concentrations were generally low, between 100 and 250 mg 

L-1. During the long wet season, sediment concentrations rose again, and the peak 

values in sediment concentration, which were around 5000 mg L-1, preceded peak 

values in discharge. 
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There was no simple relationship between discharge and sediment concentration 

(Figure 3a and b). However, if discharge peaks during the short wet season were 

analyzed in more detail, a clear counterclockwise hysteresis could be discerned for 

all individual peaks (Figure 3c). During the long wet season, seasonal variations 

were most prominent (Figure 3d). The strong decrease in sediment concentration at 

maximum discharge resulted in a clear seasonal clockwise hysteresis. 

2.2. Comparison with pre-dam measurements 

The combination of all available sediment concentration data indicated that there 

was a high variability in sediment concentrations, before as well as after the 

construction of the dams (Figure 4a). For discharges between 100 m³ s-1 and 500 m³ 

s-1, the variation in sediment concentration was very similar before and after dam 

construction. In the lower discharge range (< 100 m³ s-1), many more measurements 

were taken before dam construction and the sediment concentrations were higher 

compared to the measurements in 2009-2011. At very high discharges (> 750 m³ s-1) 

which most frequently occurred in the beginning of the 1960’s, relatively low 

sediment concentrations were measured. The sediment rating curves for the 

different observation periods indicated two sediment regimes: one regime occurred 

in periods with sustained high discharges (>600 m3 s-1) during the wet seasons while 

a second regime occurred in periods where the river discharge rarely exceeded 500 

m3 s-1, even during the wet season (Figure 4b and Table 2). The slope of the rating 

curves in the first regime was low (low response rating curves), as can be seen in 

the rating curves of 1961-1962, 1963 and 2013 (Figure 4b). For the second regime, 

the slope of the rating curve was much higher (high response rating curves). Rating 

curves did not show a clear shift due to dam construction (Figure 4b). 
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Given the limited information that is available with respect to the older 

measurements, we cannot verify whether the relative frequency with which these two 

regimes occur has changed due to dam construction.  

2.3. Longitudinal variations in sediment concentration 

The data from the monthly measurements were used to construct cumulative 

frequency curves and showed a clear distinction between the measurement stations 

(Figure 5). The sediment concentrations at the outlet of Masinga Reservoir were 

always significantly lower than those measured in Kora and Garissa, which are 

located 200 km and 400 km downstream of Masinga. At Kora, lower sediment 

concentrations occurred in comparison to Garissa during lower river stages. The 

systematic downstream increase in sediment concentration during low river stages 

period is a sign of an efficient sediment pick-up zone between Masinga and Garissa. 

However, during high river stages sediment concentrations at Garissa and Kora 

were similar, suggesting that sediment pickup mainly took place between Masinga 

and Kora. The data of the detailed longitudinal surveys confirmed that significant 

sediment pickup occurs immediately downstream of the reservoirs: at the Masinga 

Dam outlet, sediment concentrations were very low, both during the dry and the wet 

season (Figure 6). At Irira, which is located ca. 20 km downstream of the lowermost 

reservoir, a sediment concentration of 4500 mg L-1 was observed during the wet 

season of 2009. The longitudinal variations in sediment concentrations that were 

observed during this wet season survey were explained by discharge variations: 

samples at Irira, Usueni and Kora were taken during a falling stage, with 

progressively lower discharges. Samples downstream of Mbalambala were taken 

during the rising and peak stage of the consecutive flood peak. 
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2.4. Sediment fluxes 

The calculated sediment flux at Garissa between June 22, 2012 and June 21, 2013 

was 8.8 Mt yr-1, based on 184 actual measurements. These measurements covered 

ca. 66% of the total sediment flux, as measurements were mainly carried out during 

flood periods.  

Estimates of the annual sediment fluxes from 2009 until 2011 varied between 3.5 

and 8.7 Mt yr-1 (6.7 Mt yr-1 on average), resulting in a total of 20.1 Mt for this 

observation period. This estimate is similar to the estimates derived by Tamooh et al. 

(2014) for the same period (17.7 to 26.1 Mt), which were calculated based on the 

same data using either a discharge weighted average method or a regression model. 

 

The calculated annual fluxes for the pre-dam period (1948-1966) using the first 

method ranged between 2.5 and 12.2 Mt yr-1 except for one outlier of 31.6 Mt yr-1 in 

1951, resulting in a pre-dam average annual flux of 9.4 Mt yr-1 (Figure 7). The high 

value in 1951 was likely an overestimate as the prolonged periods of high water 

discharge up to 700 m³ s-1 were expected to have resulted in a sediment regime 

requiring a low response rating curve rather than the high response curve which was 

used for the entire period 1948-1954. Using method 2, a similar range in values was 

calculated (range 2.2-14.2 Mt yr-1, average 8.8 Mt yr-1), whereas a much lower 

annual flux was obtained for 1951. 
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2.5. Fall-out radionuclides 

7Be and 137Cs are fall-out radionuclides which are rapidly adsorbed to the fine 

fraction of surface sediments (Taylor et al., 2012). Due to the short half-life of 53 

days for 7Be and 30.1 yr for 137Cs, the radionuclides can be used a proxy for recently 

eroded topsoil (Walling, 2013). Background topsoil values of 137Cs in western Kenya 

range from 6.96 to 9.49 Bq kg-1 (DeGraffenried and Shepherd, 2009). However, we 

did not find measurable activities of 7Be or 137Cs in any of the suspended sediment 

samples that we analyzed. This suggests that the contribution of surface soils to the 

total amount of sediment present in the Tana River was minimal during the wet 

season of 2013 when discharges decreased from ~770 m³ s-1 to ~150 m³ s-1.  

3. Discussion 

3.1. Rating curves and sediment flux calculations 

The estimates of the sediment fluxes in Garissa before dam construction averaged 

9.4 Mt yr-1 using method 1 and 8.8 Mt yr-1 using method 2 (Figure 7). Present-day 

fluxes at Garissa have an average of 7.2 Mt yr-1. Evidently, there is a large 

uncertainty on our estimates of sediment fluxes, especially for the pre-dam period for 

which important information is lacking. Furthermore, sediment transport in the Tana 

River is characterized by important hysteresis effects (both over weekly and 

seasonal time scales), which are not fully accounted for when rating curves are 

used. Nevertheless, we believe that our estimates of the average sediment flux for 

the pre-dam period are robust as the results obtained using two different methods 

(one of which explicitly accounts for seasonal hysteresis) are very similar.  
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Thus, we may conclude that the annual sediment flux in the lower Tana River was 

not strongly affected by reservoir construction. This is remarkable, as the sediment 

retention in the Masinga Reservoir only was estimated at ca. 8.0 Mt yr-1, based on 

bathymetric surveys (Brown et al., 1996; Hunink et al., 2013). Sediment retention in 

the whole series of five reservoirs is therefore likely to be equal to or even exceeding 

the annual sediment flux of the Tana River at Garissa.  

Although there was no clearly observed change in the sediment fluxes at Garissa, 

there can still be a change in the sediment composition and grain size distribution if 

the source of the sediment has changed. It is not possible to determine to what 

extent this has been the case due to lack of information on historical sediment 

characteristics. 

3.2.  A conceptual model to explain sediment dynamics in the lower Tana River 

A model of the sediment dynamics in the Tana River which can explain why the 

sediment flux was not drastically changed due to the construction of the dams, 

should account for the following observations: 

1. The major part of the sediment transported by the upper Tana River into 

Masinga Reservoir is trapped behind the dams due to a trapping efficiency 

between 75% and 98% (Bunyasi et al., 2013), which resulted in very low 

sediment fluxes immediately below the dam. Nevertheless, the sediment 

concentrations at Garissa can nowadays still be as high as they were before 

dam construction, at least for discharges exceeding 100 m³ s-1 (Figure 4 and 

Figure 7).  

2. The relationship between discharge and sediment concentrations is complex 
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and differs strongly between and within seasons (Figure 3). At the beginning 

of the wet season, sediment concentrations increased rapidly with increasing 

water discharge. This resulted in individual peaks, lasting several days, which 

were characterized by counterclockwise hysteresis. At a seasonal time scale, 

however, clockwise hysteresis was observed, provided that a period of 

sustained high discharges occurred. 

3. The sediments transported by the Tana did not contain detectable amounts of 

137Cs and/or 7Be, indicating that a major fraction of the suspended sediment 

was not originating from recent topsoil erosion. 

First of all, a source of sediments needs to be identified which can compensate for 

the loss of sediment due to the dams. Hillslopes and tributaries downstream of the 

dams are definitely a source of sediment to the Tana River. The measurements at 

the Ura River outlet confirmed that these river systems can indeed carry significant 

sediment loads (between 25 mg L-1 and 3640 mg L-1). However, there is no reason 

to assume that the contribution of these hillslopes and tributaries has changed due to 

the construction of the dams and one would therefore expect a significant reduction 

in sediment concentrations and annual sediment fluxes at Garissa if these systems 

were the only remaining providers of sediment to the main Tana River.  

Therefore, a considerable amount of the sediment passing through Garissa must 

have been mobilized within the river and its alluvial plain downstream of the 

Kiambere dam (i.e. the last dam in the cascade). This would also explain the 

absence of detectable amounts of radionuclides in the suspended sediments during 

the wet season as most of these sediments were stored at depth and were not 

affected by radionuclide fallout. 
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It follows from the above that the additional sediment must be mobilized by 

autogenic processes. Furthermore, these processes are operating in such a way that 

both clockwise and counterclockwise hysteresis occurs, over different time scales 

(seasonal vs. weakly).  

To explain the double hysteresis loops, the river cross section can be conceptualized 

as a rectangular to trapezoidal shape, representing the river bed and river banks 

which have certain resistance against erosion (Figure 8). Inside the river bed, point 

bars, sand bars and dunes are present and are made up of easily erodible sediment. 

The sequence of events over a cycle with one dry and one wet season can then be 

described as follows: 

1) During the dry season, the river channel occupies only a part of the full river 

width due to low discharge: there are relatively large amounts of sediment 

present within the river bed as a result of sedimentation in the falling stage of 

the previous wet season. Sediment concentrations are generally low as the 

river is overdimensioned and little or no sediment is mobilized by lateral river 

migration and/or bed widening.  

2) At the onset of the wet season and during following discharge peaks, river 

bed sediments which were deposited during the previous wet season are 

mobilized. During each discharge pulse, the channel is widened and 

deepened to accommodate the changing discharges. This sediment 

mobilization results in high sediment concentrations.  

The sediments that are mobilized during the rising stage of a discharge pulse 

travel, on average, somewhat slower than the river water due to deposition 

and resuspension cycles during the downstream transport. As a 
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consequence, sediment concentrations at Garissa, which is located 200 km 

downstream of the beginning of the alluvial plain, will be higher during the 

falling stage than during the rising stage of the discharge peak, resulting in 

counterclockwise hysteresis.  

3) Step 2 is repeated for subsequent discharge pulses until the river cross-

section is again in equilibrium with the wet season discharge and a relatively 

stable cross section is achieved. However, even during this stage the 

equilibrium cross-section is still dynamic and the migration of river bends, with 

active bank erosion and point bar deposition still continues. As sediment 

concentrations during this stage are low in comparison to sediment 

concentration observed during the first discharge peaks of the wet season, a 

clockwise hysteresis is observed when considering the wet season in its 

entirety. 

4) Finally, discharges start falling at the end of the wet season and the river 

cross-section will readjust to the dry season discharge regime. The storage of 

sediment within the river increases as the sediment that is mobilized by lateral 

erosion (bank collapse) can no longer be transported downstream and this 

sediment is therefore stored in sedimentary bodies such as point bars and/or 

bed forms.  

The whole cycle is repeated during each dry season-wet season cycle, albeit that the 

nature of the wet season will evidently play a key role: if discharges strongly increase 

over a period of several weeks, river cross section adjustment will be more important 

and sediment stocks will be strongly depleted, resulting in low sediment 

concentrations during the last part of the wet season. If, on the other hand, the wet 
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season only leads to a series of isolated discharge pulses each lasting 3-4 days, 

sediment stock depletion and stock replenishment at the end of the wet season will 

both be much less important, allowing sediment concentrations to remain high during 

the whole duration of the wet season. Thus, there is a balance between stock 

depletion and stock replenishment over several seasons. 

3.3. Sediment supply 

The model formulated above can only be correct if the river section expansion at the 

start of the wet season can mobilize sufficient amounts of sediment to keep the cycle 

going. Indeed, there is a net down slope transport of sediment, mostly during the 

rising stage(s) in each wet season, that needs to be replenished during the dry 

season.  

The total sediment flux at Garissa between June 22nd, 2012 and June 21st, 2013, 

was estimated at 8.8 Mt yr-1, and assuming a bulk density of 1500 kg m-3 for loose 

sands, this corresponds to a total sediment volume of ca. 5.9 106 m³.  

The distance along the river between the last reservoir and Garissa is approximately 

250 km, which means that on average 23 m³ yr-1 (m river length) -1 has to be eroded 

(and replenished) to provide sufficient sediment for the observed sediment flux at 

Garissa. This is a maximum estimate as there is still a significant sediment supply 

from the tributaries and hillslopes which (partly) refill the alluvial sediment reservoir. 

Although these volumes of sediment are certainly significant, they do not require 

excessive morphological changes: if this sediment would have to be supplied by 

vertical incision only, the river would have to change its cross-section by 23 m² (e.g. 

through a 0.23 m incision over its entire width of ca. 100 m). Assuming a vertical 
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river bank height of 5 m, an overall lateral erosion of ca. 4.5 m yr-1 would be sufficient 

to deliver enough sediment.  

Our ADCP profiles did confirm that the cross-section of the Tana River is highly 

dynamic and that important widening and some deepening did occur during the wet 

season (Figure 9). At Garissa, we measured a reduction in cross-section of 58 m² 

between the wet season in May 2012 and the end of the dry season in October 

2012. This is considerably higher than our estimate of the minimum mobilization rate 

required: the latter is normal, given the fact that a lot of the mobilized sediment can 

be expected to be re-deposited before it reaches Garissa.  

Lateral river migration is also important. Ndlovu (2013) studied meander migration 

rates in the Tana River just upstream of Garissa over a period of 35 years (1975-

2010) by use of Landsat imagery. Migration rates for individual observation periods 

of 7 to 10 years varied between 4.1 and 10.4 m yr-1. The longer term average (1985-

2010) was 2.3 m yr-1, suggesting that some changes observed over shorter time 

spans were annihilated over a longer time span. Assuming a total river bank height 

of 5 m, the longer term average river migration rate would result in the annual 

mobilization of 2.9x106 m³ of sediments, showing that lateral river migration may 

indeed contribute significantly to the river’s sediment supply.  

It is also interesting to consider the fate of the natural sediment load from the upper 

catchment in the absence of the dams. The calculated fluxes and the sediment 

dynamics model indicate that, before dam construction, the lower Tana River was in 

near-equilibrium as the amount of sediment exported towards the delta was very 

similar to the amount of sediment coming from upstream. Autogenic processes were 



 

 
 

This article is protected by copyright. All rights reserved. 

certainly active before the construction of the dams as the discharge regime was 

similar, but instead of mobilization of sediment being the dominant processes, the 

mobilization and deposition of sediment was of the same order of magnitude, 

keeping the sediment load near transport capacity along the entire lower Tana river. 

The sediment which is now trapped behind the dam was deposited within the 

floodplain, while older sediments were picked up in a dynamic exchange process.  

3.4. How long will the sediment last?  

The model we propose assumes that the river may locally be in a quasi steady-state, 

alternating between dry and wet season equilibrium. However, as there is an 

important net sediment flux at Garissa, there will be a net loss of sediments from the 

river system between Masinga and Garissa. So the question arises how long it will 

take before the trapping of the dams will be visible in the sediment flux record at 

Garissa.  

A simple 1-box model, similar to the approach proposed by Hoffmann (2013) was 

developed where the box contains all the sediments in the floodplain upstream of 

Garissa (=storage, S) which are on the long term available for mobilization. The box 

has an input (I) and output (O) and the discrepancy between those is responsible for 

increase or decrease of the storage. While the input is assumed to be constant, the 

output is assumed to be in proportion to the storage according to a specific rate p, 

which is constant over time. 
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Solving the equation for the storage at time t results in 

         
 

 
          

 

 
 

With S(t) the storage at time t, S0 the initial storage at time 0, I the constant input, p 

the specific rate and O(t) the output at time t. The specific rate is calculated based on 

the output and storage at t equal to 0. 

In the baseline scenario, the initial floodplain sediment storage is calculated as the 

area of the floodplain upstream of Garissa (400 km², based on delineation of the 

floodplain area in Google Earth), multiplied by an estimated thickness of the alluvial 

sediments (10 m based on the depth soundings at Garissa, Figure 9). The initial 

output is assessed at 6.0 106 ton yr-1 and no sediment input at the upstream 

boundary was assumed as most sediment is retained in the reservoirs. To examine 

the sensitivity of the model towards the different variables (S0, O0 and I), three 

alternative scenarios were set up, whereby the value of one model variable was 

modified compared to the baseline scenario (Table 3): (1) the initial amount of stored 

sediment was reduced by 50% (e.g. because the thickness of alluvial deposits was 

overestimated) (2) the initial output was increase to 9.0 106 ton yr-1 (e.g. due to 

climate change), (3) there was a continuous input of sediment of 6.0 105 ton yr-1 (e.g. 

due to dam flushing and the contribution of the tributaries downstream of the dams) 

We assumed that a change in sediment output became visible when it lowered to 

75% of the initial output, i.e. to 4.5 106 ton yr-1. Simulations show that the river-

floodplain system will be able to buffer changes in sediment input for hundred to 

several hundreds of years, depending on the different scenarios (Table 3).  
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This time span can be compared with estimates of the life span of the reservoir 

system. After the construction of the first dams (Kindaruma in 1968 and Kamburu in 

1974), it became clear that about 12.6 106 m³ had accumulated in Kindaruma 

between July 1968 and December 1970 (Ongwenyi et al., 1993), which implied that 

the life time of the reservoir was less than 20 years. The construction of Kamburu 

Reservoir and later Masinga Reservoir upstream of Kindaruma extended the life time 

of the downstream reservoirs. Upon design, the life time of Masinga Reservoir was 

estimated to be 500 years (Jacobs et al., 2007). However, it lost 6% of its capacity 

during the first 8 year of operation (Saenyi, 2004), and unless interventions are 

undertaken, complete siltation is expected to occur within 65 years (Jacobs et al., 

2007).  

3.5. Implications 

The Tana River has two main characteristics which explain why the autogenic 

processes are dominant. First, the river has extended floodplains with a massive 

stock of sediments, which are a prerequisite for the necessary sediment buffering 

capacity. Secondly, the river has the possibility to rework these sediments because, 

despite the dams, there is still a clear alteration in discharges between dry seasons 

and wet seasons and the river has the freedom to migrate throughout the floodplain. 

In large river systems where the external (human) impact had a clear impact on the 

sediment flux, at least one of these characteristics was not present. In the Nile River, 

like the Tana River, most of the sediment load is trapped behind the dams, but this 

sediment retention couldn’t be compensated for by sediment mobilization further 

downstream because damming also induced changes in the fluvial regime which 



 

 
 

This article is protected by copyright. All rights reserved. 

severely reduced the peak discharges (Stanley, 1996). The Yangtze River 

experienced a strong reduction of the sediment flux because of dam construction, 

although the discharge regime remained relatively stable (Yang et al., 2011). Yet 

sediment loads were strongly reduced as autogenic river processes only 

compensated for only 20% of the amount of sediment retained in the dams (Yang et 

al., 2011). In this case the limiting factor was the absence of an easily mobilized 

sediment stock, as the river is disconnected from its floodplain due to the presence 

of an extensive levee system. 

An example of a river system where both characteristics can be found is the lower 

Trinity River (USA) downstream of the Livingston Dam (Phillips et al., 2005). For 60 

km below the dam, river incision and widening were observed. However, further 

downstream towards the delta damming had no discernable morphological effects, 

which was due to the large sediment storage capacity of the floodplain (Phillips et al., 

2005). Also in the Mississippi River, the sand flux towards the delta will be 

unaffected by upstream dams for several centuries due to the sand stock that is 

present on the river bed (Nittrouer and Viparelli, 2014). 

Our data show on the one hand that the annual sediment fluxes are confined within 

certain limits, and on the other hand that the annual water flux and its variability have 

a large impact on the variability in sediment fluxes. Both observations are important 

for catchment management: while the implementation of soil conservation measures 

will limit the sediment flux into the Tana River system, their effect on present-day 

sediment fluxes within the Tana River will be very limited. It follows from this that the 

effect of conservation measures cannot be assessed by measuring river sediment 

fluxes. At the same time, it should be realized that any modification of the water 
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regime of the lower Tana River may have a significant impact on the amount of 

sediment transported by the river and may therefore have important consequences 

for the preservation of the Tana Delta ecosystem.  

4. Conclusions 

The comparison of historical and actual estimates of the suspended sediment load of 

the Tana River showed that no major change in annual sediment fluxes has taken 

place, despite the construction of five major dams in the upper catchment. The 

stability of the annual sediment flux can be explained as the result of sediment 

supply by autogenic processes, i.e. seasonal river bed incision and lateral river 

migration. Various observations supported the importance of autogenic processes: 

(1) a counterclockwise hysteresis was observed during individual discharge peaks, 

each lasting several days. However on the seasonal time scale, if water discharge 

was high over a longer time period, clockwise hysteresis was noticed. (2) the 

absence of fall-out radionuclides, indicating that the suspended sediment in the river 

is not recently eroded topsoil; (3) lateral river migration in the Tana River is very 

intense and is therefore an important source of sediment to the river; (4) the cross-

sectional profile of the river changes considerably throughout the year. 

An important requirement for the effectiveness of the autogenic processes is a 

sufficient supply of sediment that is easily mobilized. The available sediment stock 

will determine how long it will take before the construction of the dams will be visible 

in the sediment flux downstream. Based on a rough estimate of the available 

sediment stocks between the dams and Garissa and the actual sediment flux, we 

expect the appearance of the damming effects at Garissa to take several centuries. 
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These findings have implications for catchment management. Erosion reduction 

measures, which are generally implemented in the uplands, will have a limited effect 

on the downstream sediment flux in the case of the Tana River. However, water 

management decisions such as the reduction of peak flows due to dam buffering 

may have a noticeable impact on the timing and the magnitude of sediment transport 

towards the ocean.  

Finally, current sediment yield models do not account for autogenic river processes: 

they assume a direct coupling between catchment characteristics and sediment load. 

These models cannot correctly capture the effects that human activity or climatic 

change may have on sediment yields for fluvial systems in which autogenic 

processes are important. In such systems, the response of sediment yield to human 

or climatic perturbations may be buffered for several centuries, if not millennia.  

Conversely, identifying river systems in which autogenic processes are important 

may help to correctly evaluate such models. Over a longer term, accounting for 

autogenic processes in catchment sediment yield models would be an important step 

forward.  
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Table 1. Overview of the different datasets on discharge and sediment load of the Tana river 

Suspended matter measurements in Garissa 

Number of 

observations 

Time frame Comments Reference 

184 22/06/2012-

21/06/2013 

Exact dates known 

Daily data during the wet 

seasons, at least biweekly 

during the dry seasons 

This study 

35 2009-2011 Exact dates known 

Monthly or biweekly data 

(Tamooh et al., 2014) 

32 1965-1966 Exact dates not known  

Digitized from log-log plot 

(Dunne, 1988) 

18 1963 Exact dates not known  

Digitized from log-log plot 

(Dunne, 1988) 

30 1961-1962 Exact dates not known  

Digitized from log-log plot 

(Dunne, 1988) 

127 1948-1954 Exact dates not known  

Digitized from log-log plot 

(Dunne, 1988) 

 
Locations of along-river measurements of suspended matter. At each location a 

measurement was taken during the dry season of 2008, the wet season of 2009 and at 

the end of the wet season of 2010. 

Locations Measurements 

per site 

 References 

Masinga 
Irira 
Usueni 
Kora 
Mbalambala 
Saka 
Sankuri 
Garissa 

1 per year 

Id. 
Id. 
Id. 
Id. 
Id. 
Id. 
Id. 

 (Bouillon et al., 2009; 

Tamooh et al., 2012) 

    

Monthly datasets of suspended matter 

Locations Number of 

measurements  

Time frame Reference 

Masinga 18 06/03/2009-25/06/2010  
(only normal water levels in 
the reservoir) 

Unpublished data 

Kora 34 30/01/2009-29/12/2011 (Tamooh, 2013; 
Tamooh et al., 2014) 

Garissa 37 31/01/2009-30/12/2011 (Tamooh et al., 2014) 

    

Ancillary data collection 
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Parameter Time frame Comments Reference 

Discharge 1948-2013 Daily at Garissa Water Resource 

Management 

Authority, Kenya 

River profiles 2012 5 measurements  

at Garissa 

This study 

Radionuclide 

activity 7Be and 
137Cs  

May-June 2013 18 measurements 

at Garissa 

This study 
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Table 2. Regression parameters of the sediment rating curves. N is the number of 

observations, a and b the regression parameters in the formula C=a.Qb. The last 

columns indicate the range of the discharge and sediment concentration of the 

observations for that period. 

Period N a b R² Range Q 

(m³ s-1) 

Range C 

(mg L-1) 

Method 1       

1984-1954 127 60.5765 0.7336 0.48 23-613 130-11693 

1961-1962 30 332.4511 0.1831 0.26 33-1880 380-2343 

1963 18 227.4499 0.1452 0.18 90-1396 276-895 

1965-1966 32 4.5897 1.0479 0.65 60-566 282-5217 

2009-2011 35 1.7815 1.2857 0.28 32-398 81-9386 

Method 2       

High response  74.6008 0.6575 0.36   

Low response  400.6040 0.1191 0.07   

2012-213       

Dry 55 0.8158 1.1233 0.25 87-169 77-309 

Short wet 47 5.5089 1.0556 0.35 53-650 132-5725 

Long wet 82 31.2337 0.6106 0.20 114-948 176-5396 
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Table 3. The time required in the different scenarios for the sediment load to 

decrease from the current sediment load (6 or 9 106 ton yr-1) to 4.5 106 ton yr-1 at 

Garissa.  

 Input (I) 
(105 ton yr-1)  

Initial storage (S) 
(109 ton)  

Output (O) 
(106 ton yr-1) 

Time to depletion 
(yr)  

Baseline  0 6.4  6  307  
Scenario #1 6  6.4  6  347  
Scenario #2 0  3.2  6  153  
Scenario #3 0  6.4  9  493  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 and Figure 8 are supplied in black and white for the printed version and in 

color for the online version.  
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Figure 1. The Tana River Basin. The black diamonds are the sampling points along 

the longitudinal river profile (Figure 6).  
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Figure 2. Time series of discharge (a) and total suspended matter (TSM) 

concentration (b) in Garissa. The individual discharge peaks occurred during the 

short wet season while the seasonal discharge peak occurred during the long wet 

season. TSM measurements on consecutive days are represented with a line to 

elucidate the pattern, while individual measurements are represented by points. 
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Figure 3. Variation of the sediment concentration with discharge between July 2012 

and June 2013: (a) all observations; (b) detail of the low discharge-low sediment 

range; (c) details of the counterclockwise hysteresis during two discharge peaks in 

the short wet season. The numbers indicate the days since 13/10/2012 and 

09/11/2012 for the squares and the circles respectively; (d) the seasonal clockwise 

hysteresis loop. The black points are 3-day average values of discharge and TSM. 

The numbers indicate the days since 20/03/2013. 
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Figure 4. (a) Comparison of the sediment concentrations before the construction of 

the dams (open symbols) and after the dam (closed symbols); (b) The rating curves 

used for the calculation of the annual fluxes (method 1). Rating curve coefficients of 

both methods are summarized in Table 2. Note the log-log axes on the left figure, 

and the linear axes on the right figure. 
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Figure 5. Cumulative frequency plot of the sediment concentrations at Masinga, 

Kora and Garissa collected by monthly samples from January 2009 till December 

2011. The arrows indicate the break between low and high concentrations. 
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Figure 6. Sediment concentrations at different locations along the river between the 

outlet of Masinga reservoir and Garissa. (Data: Bouillon et al., 2009; Tamooh et al., 

2012) 
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Figure 7. Estimation of the historical sediment fluxes at Garissa based on daily 

discharge data and rating curves based on the two methods (see text). Dam 

construction took place between 1968 and 1988. Note the broken y-axis to account 

for the outlier in 1951 with method 1. 
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Figure 8. Illustration of 4 steps in the dynamics of the Tana River cross-section over 

the cycle of a dry and wet season, illustrating the autogenic processes of river bed 

mobilization and river bank collapse (Q is the water discharge, Qs is the sediment 

discharge, vw is the water velocity, vs is the sediment velocity).  
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Figure 9. Change in cross-section of the Tana River at Garissa between the wet 

season (09/05/2012) and the end of the dry season (05/10/2012). 

 


