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We present an extended X-ray absorption fine structure investigation of the local environment of

Sn atoms in strained and relaxed Ge1�xSnx layers with different compositions. We show that the

preferred configuration for the incorporation of Sn atoms in these Ge1�xSnx layers is that of a a-Sn

defect, with each Sn atom covalently bonded to four Ge atoms in a classic tetrahedral configuration.

Sn interstitials, Sn-split vacancy complexes, or Sn dimers, if present at all, are not expected to

involve more than 2.5% of the total Sn atoms. This finding, along with a relative increase of Sn

atoms in the second atomic shell around a central Sn atom in Ge1�xSnx layers with increasing Sn

concentrations, suggests that the investigated materials are homogeneous random substitutional

alloys. Within the accuracy of the measurements, the degree of strain relaxation of the Ge1�xSnx

layers does not have a significant impact on the local atomic surrounding of the Sn atoms. Finally,

the calculated topological rigidity parameter a**¼ 0.69 6 0.29 indicates that the strain due to

alloying in Ge1�xSnx is accommodated via bond stretching and bond bending, with a slight pre-

dominance of the latter, in agreement with ab initio calculations reported in literature. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913856]

I. INTRODUCTION

Despite its potential, Ge1�xSnx technology is still in its

infancy with various unresolved fundamental questions. A

better understanding of the local environment of Sn atoms

and its variation with the lattice strain and the alloy composi-

tion would give valuable insight into the specific Ge1�xSnx

growth/relaxation mechanism and it would allow more accu-

rate band structure calculations. In addition, such under-

standing could indicate the possible physical origin of the

diverse properties observed in Ge1�xSnx layers grown using

various techniques, such as the thermal stability1 or the types

of electronic defects.2 Theoretical analyses3,4 and experi-

mental Ge1�xSnx growth/strain relaxation studies5–7 suggest

the formation of either a-Sn substitutional defects, full-

vacancy (FV) structures, Sn interstitials, Sn pair-defects

(SS), Sn-split vacancy complexes (SV), or 7-Sn cluster-

defects (CD). In the a-Sn defects, the Sn atoms occupy sub-

stitutional sites in the Ge lattice; the same occurs in the SS

and FV structures, but with another Sn atom or a Ge va-

cancy, respectively, as first neighbor. The SV or CD struc-

tures have an octahedral coordination, with Sn atoms

surrounded by six Ge or Sn atoms, respectively. The Sn

incorporation configuration influences the Ge1�xSnx

crystallographic, electrical, and optical properties.8,10 For

example, theoretical investigations9 show that the presence

of SV complexes increases the minimum Sn concentration

needed to have direct bandgap Ge1�xSnx. Therefore, recog-

nizing and controlling the presence of specific Sn-vacancy

complexes, Sn clusters (i.e., aggregations of two or more Sn

atoms directly bonding), or Sn interstitials is also important

from an application point of view. Rutherford backscattering

and channeling spectrometry (RBS/C) experiments and

(224) X-ray diffraction reciprocal space mapping (XRD

RSM) analyses11 indicate that Sn atoms are substitutionally

incorporated in our Ge1�xSnx layers. However, RBS and

XRD reveal the average structure of the solid. Even when a

high channeling degree is observed by RBS and the average

lattice parameter determined by XRD is preserved, it is

likely that several atoms are not perfectly located on the lat-

tice sites. As a consequence, a macroscopically ordered ma-

terial may still exhibit a certain degree of local disorder at

the atomic level or contain Sn clusters or Sn-vacancy com-

plexes. In addition, XRD mainly provides information about

the coherent portions of the material, ignoring disordered

regions. It is clear that a detailed description of the local
complexity of the atomic configuration and composition

around the Sn atoms is still missing. Extended X-ray

Absorption Fine Structure12 (EXAFS) is sensitive to the na-

ture, number, and distance of the neighboring atoms around

a target atom. It allows experimentally establishing the local

environment of the Sn atoms in the Ge1�xSnx layers, thus
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addressing the existence of complexes, clusters or intersti-

tials. Therefore, this work presents an EXAFS investigation

of the local atomic structure around the Sn atoms in both

strained and relaxed Ge1�xSnx layers with different composi-

tions and thicknesses in order to understand their exact incor-

poration in the Ge lattice and how they are influenced by

strain. In this context, the alloying-induced strain accommo-

dation behavior of Ge1�xSnx is discussed.

II. EXPERIMENTAL DETAILS

We investigate 17 monocrystalline Ge1�xSnx (0.06� x

� 0.124, as determined by (224) XRD RSM) layers grown

on Ge virtual substrates13 via atmospheric pressure chemical

vapor deposition (CVD) at 320 �C.14 The thickness of the

Ge1�xSnx layers increases from 45 to 542 nm, as determined

from the fringes visible in the XRD (004) 2h-x scans of the

fully strained layers or by differential mass measurements

and scanning or transmission electron microscopy inspection

of the strain relaxed ones. The strain relaxation degrees

(SRDs) of these layers vary in the range of 0%–71%. Such

SRDs are calculated as SRD¼ 100 � (aGe1�xSnx

== � a//
Ge)/

(a0
Ge1�xSnx� a//

Ge), where aGe1�xSnx

== and a//
Ge are the in-plane

Ge1�xSnx and Ge lattice constants, respectively, as deter-

mined by (224) XRD RSM. a0
Ge1�xSnx is the relaxed

Ge1�xSnx lattice constants of the grown layers, calculated as

a0
Ge1�xSnx¼ (a?

Ge1�xSnxþ 2 aGe1�xSnx

== C12/C11)/(1þ 2 C12/

C11). a?
Ge1�xSnx is the out-of-plane Ge1�xSnx lattice con-

stant, as determined by (224) XRD RSM. C11 and C12 are

the Ge1�xSnx elastic constants in the contracted index

notation.

EXAFS data were collected at the Dutch-Belgian

Beamline DUBBLE (BM26A)15 of the European

Synchrotron Radiation Facility (ESRF, Grenoble, France),

operating in uniform mode, with a current of 160–200 mA.

EXAFS signals were measured in fluorescence mode at the

Sn K-edge (29.2 keV) using a nine-channel Ge detector.

Data were collected up to a wave number k¼ 15 Å�1 in am-

bient conditions under a relative grazing incidence configu-

ration of �10�, with typical acquisition times of 45 min (i.e.,

1–20 s per data point). Three spectra were averaged to

improve the signal to noise ratio. Some glitches systemati-

cally appeared in the EXAFS signals, especially for thin

samples, probably due to parasitic diffraction originating

from the high crystallinity and the strong epitaxial character

of the deposited layers. The appearance of these glitches was

minimized by carefully rotating the samples in the X-ray

beam in order to avoid the diffraction conditions and by soft-

ware and manual deglitching. However, the quality of the

EXAFS of the thinner films was affected by this issue and

their useful signal was limited to k¼ 9–10 Å�1. As a conse-

quence, the data corresponding to the thinner films exhibit

the larger error bars. Data reduction of the experimental

X-ray absorption spectra was performed with the program

EXBROOK21.16 Background subtraction and normaliza-

tion17 was carried out by fitting (i) a linear polynomial to the

pre-edge region in order to remove any instrumental back-

ground and absorption effects from other edges and (ii) cubic

splines simulating the absorption coefficient from an isolated

atom to the post-edge region. EXAFS refinements were per-

formed with the EXCURVE package.16 Phase shifts and

backscattering factors were calculated ab initio using Hedin-

Lundqvist potentials.18

III. RESULTS AND DISCUSSION

The structural results of the Sn K-edge EXAFS refine-

ments of the investigated Ge1�xSnx materials are summar-

ized in Table I. All the obtained k3-weighted EXAFS spectra

are plotted as a function of the wave number k in Fig. 1 and

all the Fourier Transforms (FT) of the k3 weighted EXAFS

spectra are plotted as a function of the radial distance d from

a central Sn atom in Fig. 2. For every sample, the phase-

corrected FT of the k3-weighted EXAFS signal plot shows a

main peak at �2.6 Å, corresponding to a first-neighbor

(1NN) Ge atomic shell around a representative Sn atom. The

fitted Sn-Ge 1NN distances dSnGe vary between 2.59 and

2.64 Å. A second peak at �4.0 Å is also observed, corre-

sponding to a second-neighbor (2NN) mixed Ge/Sn atomic

shell. The fitted 2NN Sn-Ge distances dSnGe vary between

4.00 and 4.10 Å. The 2NN Sn-Sn distances dSnSn vary

between 3.98 and 4.11 Å. Finally, a third peak observed at

�4.7 Å is associated to a Ge third-neighbor (3NN) atomic

shell. The fitted 3NN Sn-Ge distances dSnGe vary between

4.65 and 4.81 Å. However, the abovementioned limited

k-range (9–10 Å�1) of the thinner layers does not allow

including a third shell in their EXAFS model. In addition,

the data quality does not allow determining whether Sn

atoms are also present in the third shells.

For the samples with a useful signal extending beyond

k¼ 12 Å�1, the quality of the fittings can be further

improved by including the contribution of an O shell at a dis-

tance dSnO between 2.09 and 2.21 Å and of a Sn shell at a

distance dSnSn between 3.20 and 3.50 Å. These distances,

presented in Fig. 3 as a function of the Sn content and the

SRDs of the underlying Ge1�xSnx layers, correspond to aver-

ages of the typical Sn-O and Sn-Sn distances found in SnO

(2.22 Å and 3.50 Å, respectively) and in SnO2 (2.05 Å and

3.20 Å, respectively).19 This indicates that a native oxide in

which the surroundings of the Sn atoms are similar to those

found in the pure Sn oxides is likely present at the surface of

the Ge1�xSnx films. Although this oxide layer is likely very

thin (�1–3 nm), grazing incidence significantly increases the

effective distance travelled by the X-rays in this layer, thus

enhancing their absorption probability. The presence of a

Ge1�xSnx native oxide on these samples was confirmed by

XPS analysis, which also revealed that the Sn atoms exhibit

a larger propensity to oxidation than the Ge atoms, resulting

in higher Sn/Ge ratios in the oxide as compared to the under-

lying Ge1�xSnx layer.

A. Sn incorporation’s configuration in the Ge lattice

The fitted 1NN Sn-Ge distances dSnGe, which correspond

to the Sn-Ge bond length RGeSn, are plotted as a function of

the Sn content and for different SRDs in Fig. 4. These dSnGe

values are slightly shorter than the sum of the covalent radii

of Ge and Sn (i.e., rGeþ rSn¼ 1.225 Åþ 1.405 Å¼ 2.63 Å)

095702-2 Gencarelli et al. J. Appl. Phys. 117, 095702 (2015)
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TABLE I. Summary of the structural results of the Sn K-edge EXAFS refinements of the Ge1�xSnx materials along with the corresponding native oxides

(which comprise Sn atoms that are not included into the Ge1�xSnx layers models). For analysis purposes, the Ge1�xSnx samples are grouped in four classes (A,

B, C, and D) with increasing average strain relaxation degrees (2%, 24%, 45%, and 68%). Each class is characterized by increasing indices (between 1 and 5)

associated with increasing SnCl4/Ge2H6 partial pressure ratios (between 0.04 and 0.24) employed to grow the corresponding samples, corresponding to increas-

ing nominal Sn contents. h ¼ thickness of the Ge1�xSnx layer. SRD ¼ strain relaxation degree of the Ge1�xSnx layer. Ef ¼ correction of the zero photoelectron

wave vector relative to the origin of k. kmax ¼ maximum photoelectron wave number included in the fitting. Ni ¼ coordination number and element type of the

ith atomic shell included in the fitting model. di ¼ radial distance of the neighboring atoms in the ith shell. Ai ¼ Debye-Waller term of the ith shell (A¼2r2,

with r ¼ Debye-Waller disorder factor, i.e., the mean square deviation of the radial distance d). i ¼ 1: first neighbors Ge atomic shell in the Ge1�xSnx layer.

i ¼ 2 or 3: second neighbors Sn or Ge atomic shell in the Ge1�xSnx layer. i ¼ 4: third neighbors Ge/Sn atomic shell in the layer. i ¼ 5 or 6: first neighbors Sn

or O atomic shell in the native oxide layer. i ¼ 7: first neighbors Sn atoms in the Ge1�xSnx layer. Numbers in brackets represent the absolute error on the last

significant cipher. (x) error: the fit quality was not high enough to obtain significant values. The amplitude reduction factor due to many-electron processes

(AFAC) was calibrated with a Sn metal foil and set to 1 for all samples. r ¼
P

j ðdataj � fitjÞ2=
P

j ðdatajÞ2: fitting agreement factor.

Sample A2 A3 A4 A5

At. % Sn 7.2 8.1 9.1 10.5

h (nm) 68 45 59 45

SRD (%) 4 1 3 0

Ef (eV) �6.6 (x) �16.2 (x) �10.0 (x) �10.5 (x)

kmax (Å�1) 10 9.5 9.7 9.5

N1 4.0 (9) Ge 3.6 (9) Ge 4.0 (8) Ge 3.9 (8) Ge

d1 (Å) 2.58 (2) 2.64 (3) 2.61 (1) 2.6 (1)

A1 (Å�2) 0.013 (5) 0.009 (6) 0.01 (3) 0.013 (3)

N2 1.8 (x) Sn 1.6 (x) Sn 1.4 (x) Sn 1.0 (5) Sn

d2 (Å) 4.00 (9) 4.08 (9) 4.11 (6) 4.01 (9)

A2 (Å�2) 0.001 (2) 0.001 (1) 0.006 (x) 0.001 (1)

N3 3.1 (x) Ge 1.8 (x) Ge 2.7 (x) Ge 2.3 (8) Ge

d3 (Å) 4.02 (9) 4.08 (9) 4.10 (3) 4.04 (4)

A3 (Å�2) 0.001 (2) 0.003 (1) 0.005 (9) 0.001 (1)

N4 … … … …

d4 (Å) … … … …

A4 (Å�2) … … … …

N5 … … … …

d5 (Å) … … … …

A5 (Å�2) … … … …

N6 … … … …

d6 (Å) … … … …

A6 (Å�2) … … … …

N7 … … … …

d7 (Å) … … … …

A7 (Å�2) … … … …

r (%) 40% 33% 22% 17%

Sample B1 B2 B3 B4 B5

At. % Sn 6.7 6.8 8.5 9.5 12.0

h (nm) 144 113 112 118 116

SRD (%) 32 19 24 32 19

Ef (eV) �10.3 (x) �12.0 (9) �9.5 (9) �10.5 (x) �4.5 (9)

Kmax 9.5 12 12 9.5 12

N1 3.8 (8) Ge 3.7 (7) Ge 3.3 (5) Ge 3.0 (5) Ge 3.4 (6) Ge

d1 (Å) 2.60 (1) 2.594 (9) 2.594 (9) 2.604 (9) 2.59 (1)

A1 (Å�2) 0.009 (3) 0.009 (3) 0.005 (2) 0.003 (3) 0.007 (2)

N2 1.6 (9) Sn 2.5 (9) Sn 1.2 (9) Sn 2.5 (9) Sn 2.5 (9) Sn

d2 (Å) 4.10 (9) 4.05 (6) 4.04 (8) 4.02 (4) 3.98 (3)

A2 (Å�2) 0.06 (x) 0.001 (1) 0.001 (1) 0.001 (1) 0.001 (1)

N3 2.7 (x) Ge 4.3 (7) Ge 2.1 (9) Ge 3.2 (9) Ge 2.8 (7) Ge

d3 (Å) 4.10 (6) 4.05 (5) 4.05 (5) 4.02 (3) 4.04 (4)

A3 (Å�2) 0.002 (x) 0.002 (4) 0.001 (4) 0.001 (9) 0.001 (4)

N4 … 0.5 (5) Ge 0.4 (4) Ge … 0.5 (3) Ge

d4 (Å) … 4.76 (5) 4.76 (7) … 4.68 (4)

A4 (Å�2) … 0.001 (4) 0.001 (1) … 0.001 (4)

N5 … 1.1 (3) Sn 0.1 (1) Sn … 0.2 (2) Sn

d5 (Å) … 3.33 (3) 3.40 (9) … 3.50 (9)

A5 (Å�2) … 0.002 (3) 0.002 (9) … 0.002 (1)

N6 … 0.1 (6) O 0.1 (3) O … 0.1 (1) O

095702-3 Gencarelli et al. J. Appl. Phys. 117, 095702 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

134.58.253.57 On: Mon, 08 Jun 2015 13:23:46



TABLE I. (Continued.)

Sample B1 B2 B3 B4 B5

d6 (Å) … 2.14 (2) 2.16 (9) … 2.19 (9)

A6 (Å�2) … 0.001 (2) 0.001 (9) … 0.001 (2)

N7 … 0.4 (9) Sn … … 0.3 (7) Sn

d7 (Å) … 3.05 (5) … … 3.08 (4)

A7 (Å�2) … 0.001 (1) … … 0.001 (1)

r (%) 26% 19% 22% 17% 26%

Sample C2 C3 C4

At. % Sn 7.2 8.2 10.1

h (nm) 210 240 213

SRD (%) 39 52 44

Ef (eV) �9.3 (9) �10.0 (9) �7.4 (x)

kmax (Å�1) 14.5 14.5 14.5

N1 3.5 (3) Ge 3.8 (3) Ge 3.1 (3) Ge

d1 (Å) 2.592 (4) 2.599 (5) 2.587 (6)

A1 (Å�2) 0.005 (1) 0.007 (1) 0.006 (1)

N2 1.5 (9) Sn 1.5 (9) Sn 1.4 (7) Sn

d2 (Å) 4.01 (2) 4.04 (2) 4.03 (2)

A2 (Å�2) 0.001 (2) 0.001 (2) 0.001 (1)

N3 2.9 (8) Ge 2.7 (6) Ge 2.5 (7) Ge

d3 (Å) 4.03 (2) 4.06 (2) 4.04 (1)

A3 (Å�2) 0.001 (4) 0.001 (2) 0.001 (3)

N4 1.0 (9) Ge 0.4 (9) Ge 0.5 (3) Ge

d4 (Å) 4.65 (2) 4.79 (2) 4.72 (3)

A4 (Å�2) 0.001 (1) 0.001 (1) 0.001 (1)

N5 0.1 (9) Sn 0.1 (9) Sn 0.1 (1) Sn

d5 (Å) 3.47 (3) 3.48 (3) 3.37 (5)

A5 (Å�2) 0.001 (3) 0.001 (1) 0.001 (1)

N6 0.2 (1) O 0.1 (1) O 0.1 (1) O

d6 (Å) 2.21 (4) 2.20 (4) 2.10 (6)

A6 (Å�2) 0.001 (9) 0.001 (1) 0.001 (1)

N7 … … …

d7 (Å) … … …

A7 (Å�2) … … …

r (%) 21% 18% 21%

Sample D1 D2 D3 D4 D5

At. Sn % 6.0 7.9 8.5 10.5 12.4

h (nm) 542 499 420 305 466

SRD (%) 63 69 64 69 71

Ef (eV) �7.4(9) �11.3(9) �7.0(9) �9.9 (9) �6.5(9)

Kmax (Å) 14.5 14.5 14.5 14.5 14.5

N1 3.4 (4) Ge 3.7 (3) Ge 3.3 (3) Ge 3.4 (2) Ge 3.1 (2) Ge

d1 (Å) 2.585 (9) 2.599 (5) 2.593 (4) 2.595 (5) 2.599 (6)

A1 (Å�2) 0.006 (6) 0.007 (1) 0.0054 (7) 0.007 (1) 0.005 (1)

N2 1.3 (9) Sn 1.8 (6) Sn 1.8 (7) Sn 1.9 (7) Sn 1.7 (6) Sn

d2 (Å) 4.00 (2) 4.08 (2) 4.01 (2) 4.05 (2) 4.07 (2)

A2 (Å�2) 0.001 (1) 0.001 (1) 0.001 (1) 0.001 (1) 0.001 (1)

N3 4.8 (9) Ge 3.0 (6) Ge 3.1 (7) Ge 3.3 (7) Ge 2.7 (5) Ge

d3 (Å) 4.02 (1) 4.08 (1) 4.03 (1) 4.06 (1) 4.08 (2)

A3 (Å�2) 0.006 (1) 0.001 (1) 0.001 (1) 0.003 (4) 0.001 (2)

N4 0.8 (2) Ge 0.5 (2) Ge 0.7 (2) Ge 0.6 (3) Ge 0.4 (2) Ge

d4 (Å) 4.66 (3) 4.79 (2) 4.75 (2) 4.76 (3) 4.81 (3)

A4 (Å�2) 0.001 (1) 0.001 (1) 0.001 (1) 0.001 (1) 0.001 (1)

N5 0.2 (1) Sn 0.18 (9) Sn 0.15 (6) Sn 0.1 (1) Sn 0.17 (9) Sn

d5 (Å) 3.46 (4) 3.33 (3) 3.25 (3) 3.37 (5) 3.30 (2)

A5 (Å�2) 0.001 (3) 0.001 (3) 0.002 (3) 0.001 (1) 0.001 (1)

N6 0.4 (1) O 0.3 (1) O 0.4 (2) O 0.2 (1) O 0.2 (1) O

d6 (Å) 2.22 (4) 2.14 (4) 2.09 (4) 2.11 (4) 2.11 (2)

095702-4 Gencarelli et al. J. Appl. Phys. 117, 095702 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

134.58.253.57 On: Mon, 08 Jun 2015 13:23:46



obtained by halving the accepted equilibrium bond lengths in

bulk Ge and Sn crystals (i.e., RGe0¼ 2.45 Å and

RSn0¼ 2.81 Å). By definition, covalent radii are expected to

be additive for homonuclear single bonds.20 However, a per-

fect covalent radii additivity is not to be expected in the case

of heteronuclear bonds, whose length is influenced by the

chemical environment around the involved atoms.21,22 The

shorter GeSn bond lengths observed in this work as compared

to the sum of the Ge and Sn covalent radii might be a conse-

quence of factors such as the alloying-induced strain arising

from the insertion of the relatively large Sn atoms in the Ge

lattice or the partially polar nature of this bond deriving from

the different electronegativities of the two atoms.20 Following

a recent work published by Lang and Smith,21 the distance

dGeSn between covalently bonded Ge and Sn atoms in a crys-

talline structure can be estimated as: dGeSn¼ rGeþ rSn�C

jxGe� xSnjr, with22 C¼ 0.1 Å and r¼ 0.5. Using xGe¼ 1.62

and xSn¼ 1.49 as the electronegativity value of Ge and Sn,

respectively,22 and rGe¼ 1.225 Å and rSn¼ 1.405 Å as the Ge

and Sn covalent radii, one obtains dGeSn¼ 2.594 Å, which is

comparable to the average dGeSn value (2.598 Å) observed in

this work.

The average coordination number of 1NN Ge atoms in

the Ge1�xSnx layers is 3.5 6 0.5. This average was calculated

after estimating that around �7% of the probed Sn atoms—

based on their coordination number—reside in the native ox-

ide. The combination of this finding and of the fitted RGeSn

values suggests that Sn atoms are covalently bonded to four
Ge atoms in a tetrahedral configuration. The absence of Sn-

Sn dimers or Sn clusters is indicated by fitted Sn-Sn atomic

distances values (plotted as a function of the Sn content for

different SRDs in Fig. 5) close to �4.0 Å, i.e., much higher

than the sum of two Sn covalent radii (2 rSn¼ 2.81 Å).

The Sn-Sn distances are comparable to the most-

probable 1NN distance that the Sn atoms should have in a

random Ge1�xSnx solid solution,23 i.e., dSnSn0¼ (1/(2 pi

C0))1/3, where C0 is the volume concentration of the Sn

atoms. For x values between 0.06 and 0.124, the dSnSn0 val-

ues are distributed between 4 and 3 Å. However, the fitted

dSnSn values are close to 4.0 Å, irrespective of the Sn content

(or the SRD). This occurs because the possible atomic dis-

tances between substitutional atoms in a crystalline material

are discrete. Therefore, the Sn atoms are obliged to sit either

as 1NN (dSnSn0¼�2.8 Å) or as 2NN (dSnSn0¼�4 Å) in

order to keep their substitutionality. Our analysis indicates

that the situation with the Sn atoms being substitutional and

2NN is preferred, possibly due to the repulsive force theoret-

ically expected between substitutional Sn atoms.24

TABLE I. (Continued.)

Sample D1 D2 D3 D4 D5

A6 (Å�2) 0.001 (1) 0.003 (1) 0.003 (8) 0.001 (1) 0.001 (1)

N7 … 0.1 (1) Sn … … 0.1 (1) Sn

d7 (Å) … 2.89 (6) … … 2.83 (6)

A7 (Å�2) … 0.001 (1) … … 0.001 (1)

r (%) 24% 18% 26% 17% 15%

FIG. 1. k3-weighted EXAFS spectra

versus reciprocal coordinate k of the

GeSn investigated thin films. The solid

lines are the experimental data and the

dotted lines are the best fit.
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The Ge1�xSnx samples with the lowest Sn content have

the lowest coordination number for the 2NN Sn atoms.

Complementarily, these samples have the highest coordina-

tion number for the 2NN Ge atoms. This situation is depicted

in Fig. 6, where the increasing (decreasing) coordination

numbers of the 2NN Sn (Ge) atoms around a central Sn atom

are plotted as a function of the Sn content for the most strain

relaxed Ge1�xSnx samples. This suggests that the analyzed

Ge1�xSnx materials are random homogeneous alloys, in

which samples with a lower Sn concentration have more

separated Sn atoms and exhibit a relative higher abundance

of Ge atoms in the 2NN atomic shells around the Sn atoms.

This observation is expected to have a general validity for

the investigated samples. However, the relatively large error

bars on the coordination numbers only allow to observe this

variation for the thicker, more strain relaxed samples, which

are characterized by the highest data quality.

It should be mentioned that in four samples (B2, B5,

D2, and D5) a weak EXAFS contribution attributed to 1NN

Sn-Sn distances can be included in the fit, revealing the exis-

tence of a minute quantity of Sn dimers. Such a minute quan-

tity of dimers only involves �2.5% of the total Sn atoms, as

estimated from the coordination number of these 1NN Sn

atoms. In one of these samples (D5), the value of the fitted

1NN Sn-Sn distance (dSnSn¼ 2.83 Å) is close to the

FIG. 2. Fourier Transforms of the k3-

weighted EXAFS spectra versus radial

distance d of the GeSn investigated

thin films. The solid lines are the ex-

perimental data and the dotted lines are

the best fit.

FIG. 3. Fitted atomic distances between a central Sn atom and other Sn

atoms (open markers) or O atoms (filled markers) in the native oxides as a

function of the Sn content and for different SRDs. As a reference, common

1NN distances between a central Sn atom and other Sn atoms (dSnSn, dashed

lines) or O atoms (dSnO, solid lines) in SnO (red) and SnO2 (black) are also

shown.

FIG. 4. Experimental (fitted) and VCA-predicted 1NN Sn-Ge distance as a

function of the Sn content, for different SRD.
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equilibrium bond length in bulk a-Sn (RSn0¼ 2.81 Å). This

suggests that the corresponding Sn atoms occupy neighbor-

ing substitutional sites in the Ge1�xSnx lattice. In the other

three samples, larger dSnSn are obtained from the fittings

(3.08 Å, 3.05 Å, and 2.89 Å, respectively). This observation

indicates that these Sn atoms likely assume a b-Sn configura-

tion, which is characterized by 1NN Sn-Sn distances of 3.02

Å.25 The appearance of these 1NN Sn neighbors and the dif-

ferences between their distances do not show specific trends

with the parameters differentiating the investigated samples,

i.e., composition, thickness, and SRD. As a consequence, it is

not clear what their origin is or why they are only detected in

four layers. The aggregation of substitutional Sn atoms in

the bulk Ge1�xSnx layer is unlikely, due to the repulsive

force expected between them.24 Sn dimers or clusters might

result during Ge1�xSnx growth after the random collision

of two or more Sn atoms on the surface, followed by their

immobilization by the subsequent deposition of Ge atoms.

Concentrations lower that 2.5% of the total Sn atoms might be

incorporated as Sn dimers also in other samples. However, it

is not possible to confirm or exclude their presence within the

accuracy of these measurements because features related to a

small concentration of Sn atoms may have too weak EXAFS

signals as compared to the noise to be clearly distinguished.

Analogous considerations are valid for the fraction of Sn

atoms possibly incorporated as interstitials, clusters, or in

non-tetrahedral configurations. These defects, if present, are

also expected to involve less than �2.5% of the total Sn

atoms, as estimated from the minimum coordination number

of the 1NN atoms which can be distinguished. Interstitials

Sn atoms would be sitting between lattice sites regularly

occupied by Ge atoms. Therefore, they would result in much

shorter 1NN Sn-Ge distances than to the sum of Sn and Ge

covalent radii—which were not observed. Similarly, the SV

complexes predicted by Ventura et al.3—which would have

dSnGe¼ 3.082 Å—were not observed. Hence, the SV com-

plex configuration is not the most favorable one for Sn incor-

poration in these layers. This finding is advantageous, for

example, for the optical applications of Ge1�xSnx. In fact,

the presence of SV complexes would have increased the

minimum Sn concentration necessary to achieve a direct

bandgap material.9 Ventura et al.3 determined a temperature-

dependent critical Sn concentration (20 at. % Sn at room

temperature) beyond which the formation of these com-

plexes is favorable in thermal equilibrium. Therefore, one

could argue that the Sn concentration in our samples is below

the critical concentration needed for the nucleation of the SV

complexes at a growth temperature of 320 �C. Ventura3 cal-

culated this critical Sn concentration for temperatures up to

131 �C. However, a simple linear extrapolation of such criti-

cal Sn concentration at 320 �C from Ref. 1 provides a value

of only 2.3 at. % Sn, which is significantly lower than the Sn

concentration of our samples. This might be attributed to the

far-from-equilibrium growth conditions typical of CVD, dur-

ing which the achievement of energetically favorable situa-

tions may be hindered by kinetic constraints. In this case,

annealing these metastable Ge1�xSnx layers could allow the

bulk migration of the incorporated vacancies and/or Sn

atoms, followed by the formation of SV complexes.24

Alternatively, the absence of SV complexes may be due to a

relatively low density of vacancies in our samples. In fact,

their growth temperature of 320 �C may be sufficiently high

to allow the recombination of existing Frenkel defects, i.e.,

pairs of a vacancy and an interstitial atom. Analogously,

Kamiyama et al.,26 who recently used EXAFS to investigate

two Ge1�xSnx films grown by molecular beam epitaxy,

attributed the absence of SV complexes to a much lower den-

sity of vacancies as compared to Sn atoms. In fact, in Ref. 5

(reporting the experimental observation of the SV com-

plexes) a high concentration of vacancies was introduced in

the close surroundings of the Sn atoms as a consequence of

the Sn ions implantation in the Ge lattice. Therefore, in that

case both the positive energy gain (0.56 eV (Ref. 5))

expected for the formation of a SV complex as compared to

the case of isolated Sn atoms and vacancies and the proxim-

ity between Sn atoms and numerous vacancies favored the

formation of these structures.

The fitted coordination numbers for the 1NN Ge atoms

are slightly lower than the ideal value of 4. A possible expla-

nation for this reduction might be the presence of vacancies

as 1NN of the Sn atoms. In fact, Sn atoms effectively attract

FIG. 5. Fitted atomic distances between the central Sn atom and 1NN (filled

markers) or 2NN (open markers) Sn atoms as a function of the Sn content

and for different SRDs.

FIG. 6. Decreasing (increasing) coordination number of the 2NN Ge (Sn)

atoms around a central Sn atom as a function of Sn content.
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and stabilize vacancies in the Ge lattice in order to locally

release part of the induced compressive strain.3,5,8,24

However, Fuhr et al.24 showed that the resulting FV struc-

tures—with one substitutional Sn atom having a vacancy as

1NN—are not stable. According to their calculations, these

structures should spontaneously relax to a SV configuration,

which was not detected in this work. Therefore, no vacancies

are expected to be present as 1NN of the substitutional Sn

atoms and the a-Sn substitutional defects are expected to be

the preferred configuration for the incorporation of Sn in the

Ge lattice with the used growth conditions. Even lower coor-

dination numbers are observed for the 2NN (1.8–6.8, instead

of 12) and 3NN (0.4–1, instead of 12) atoms. These fitting

results are a direct consequence of the weak intensity for the

second and third atomic shells in the FT signals (as visible in

Fig. 2, for radial distance values d> 3 Å). This weak FT in-

tensity may indicate that the second and third shells corre-

spond to few atoms, thus implying the presence of a

significant number of Ge vacancies in Ge1�xSnx in the

second and third atomic shells. However, ab initio calcula-

tions by Fuhr et al.24 show that when a Ge vacancy and

a substitutional Sn atom are separated by one Ge atom there

is an energy barrier of only 0.02 eV for the formation of

a SV complex. At the growth temperature used for our

samples, the available thermal energy—estimated as kT

¼�0.05 eV—should be sufficient to overcome this energy

barrier. On the one hand, the fact that the SV complexes

were not detected in these samples might indicate a contra-

diction with the theoretical findings in Ref. 24, with a va-

cancy and a substitutional Sn atom keeping their position

when they are separated only by a Ge atom. On the other

hand, the low coordination numbers in the 2NN shells may

not be due to the presence of vacancies. The latter option is

more reasonable, since the extremely high vacancy concen-

trations which should be present in order to justify such low

coordination numbers are unlikely for these CVD-grown

Ge1�xSnx layers. No conclusive considerations can be made

about this aspect with the current information. Therefore,

complementary measurements, such as Positron Annihilation

Spectroscopy, may be useful to determine the concentration

of vacancies in these Ge1�xSnx layers and their configuration

around the Sn atoms. An alternative, more likely explanation

for the weak FT intensities corresponding to the second and

third atomic shells would be a large static disorder present

around the Sn atoms. This disorder indicates that Sn atoms

do not have exactly the same position in the Ge lattice and

consequently they have slightly different distances from the

next neighbors. This situation results in weaker and broader

averaged signals as compared to the strong sharp peaks

expected for ideal perfect materials. Such disorder is espe-

cially significant in the localized amorphous Ge1�xSnx

regions27 present in the investigated layers (as confirmed by

TEM inspection27). In fact, amorphous regions likely contain

several different configurations corresponding to very weak

EXAFS signals. Finally, it should be mentioned that a rela-

tively light atom such as Ge may not be fully visible at the

relatively long distances of 4 Å or 4.7 Å from the scattering

Sn atom, thus contributing to the observed reduction of the

coordination numbers.

B. Impact of lattice strain on the Ge12xSnx atomic
structure

The resistance offered by the Ge lattice to the local Sn-

incorporation-induced radial expansion can be described by

the topological rigidity parameter28 a**. This parameter

ranges between 0 (Vegard limit29) and 1 (Pauling limit30)

depending on a lattice propensity to change the bond lengths

or the bond angles, respectively, in order to accommodate

the alloying strain. For Ge1�xSnx, we obtain31 a**¼ 1�H/

(RSn0�RGe0)¼ 0.69 6 0.29 using H¼ 0.11, RSn0¼ 2.81 Å,

and RGe0¼ 2.45 Å. H¼ 0.11 represents the slope of the lin-

ear fit of the Ge-Sn bond length as a function of the Sn con-

tent, as extracted from Fig. 4 for the �68% strain-relaxed

Ge1�xSnx samples (having the highest data quality). RSn0

and RGe0 are the equilibrium bond lengths for bulk a-Sn and

Ge, respectively. Despite its considerable uncertainty, this

a** value is in agreement with the one predicted for

Ge1�xSnx using ab initio calculations32 (a**¼ 0.69). It indi-

cates that the strain due to alloying in Ge1�xSnx is accommo-

dated via both bond stretching and bond bending, with a

slight predominance of the latter. Such a predominantly

Pauling-type behavior implies that the bond-bending force

constant b is lower than the bond-stretching force constant a.

This entails a lower energy required to change the bond

angles as compared to the bond lengths in response to short-

range electrostatic atomic interactions. Accordingly, the ratio

between the bond-stretching and the bond-bending force

constants (b/a) extracted from28 a**¼ (1þ 1.25(b/a))/

(1þ 3.60(b/a)þ 1.17(b/a)2) is b/a¼ 0.21 when using the

Ge1�xSnx topological rigidity parameter experimentally

determined in this work.

The Ge1�xSnx topological rigidity parameter is slightly

larger than the one measured for Si1�yGey using EXAFS34

(a**¼ 0.63), indicating that the Ge1�xSnx lattice is slightly

less rigid than the Si1�yGey lattice. The lower ratio between

the bond-bending and bond-stretching force constant (b/a)

for Sn as compared to Si and Ge is also theoretically pre-

dicted by ab initio DFT calculations.35 A predominantly

Pauling behavior is typical of a wide range of semiconductor

alloys.34,36 This is due to the strong repulsive force existing

between covalently or ionically bonded atoms, due to the

Pauli exclusion principle. Such forces result in rather rigid

bonds, which hinder the approach of 2NN and 3NN atoms to

the fourth and further next neighbors when an impurity atom

is introduced. Therefore, the lattice reacts by changing the

bond angles in order to minimize the alloying-induced strain.

This explains why the distortion in the Ge1�xSnx layers

investigated in this work is rather local, being limited to the

first atomic shell. As a consequence, the observed 2NN and

3NN distances remain close to those of a pure Ge lattice

(�4.0 and 4.7 Å, respectively) instead of reaching the larger

values that would be caused by a rigid lattice expansion

(�4.2 and 5 Å, respectively).

The Virtual Crystal Approximation (VCA) model33 is

based on the assumption that all atoms occupy the average

lattice positions defined by the lattice constant, with a linear

compositional dependence of bond lengths. As a conse-

quence of the observed mixed Vegard-Pauling behavior of
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Ge1�xSnx, the Ge-Sn bond length does vary with the compo-

sition. However, it varies to a lesser extent than that pre-

dicted by the VCA model. In fact, the slope of the linear fit

of the Ge-Sn bond length as a function of the Sn content

(H¼ 0.11) is lower than the one predicted by the VCA

model (HVCA¼ 0.36). Here, HVCA¼ 0.36 was extracted

from the weighted linear interpolation of the Ge and Sn bond

lengths in Ge1�xSnx, which is plotted as a dashed line in

Fig. 4. In addition, substantially higher RGeSn values are

obtained from the fittings as compared to those predicted by

the VCA model (Fig. 4). The observed deviations between

the experimental Ge-Sn and Sn-Sn bond lengths and their

VCA-predicted values are as large as 6.5% and 17%, respec-

tively. These discrepancies might explain why the VCA pre-

dictions for Ge1�xSnx are often in disagreement with the

experimental findings.37–41 Hence, this knowledge might be

used to refine the current band-structure calculations of

Ge1�xSnx alloys based on the VCA model by including the

experimentally determined atomic distances.

VCA-predictions of the band structure of Si1�yGey

alloys are in better agreement with the experimental find-

ings.42,43 One explanation might be that VCA offers a more

reliable picture of the atomic structure of Si1�yGey than it

does of Ge1�xSnx. In fact, the deviations between the experi-

mental Ge-Ge, Ge-Si, and Si-Si bond lengths (as measured

by EXAFS) and the average bond length value predicted by

the VCA model are lower than 3%.44,45 This lower level of

distortion of the local bonding geometry can be attributed to

the lower lattice constant and atomic radius mismatch

between the involved alloying elements in Si1�yGey (4% and

8%, respectively) as compared to Ge1�xSnx (15% and 16%,

respectively). As pointed out by Maurizio et al.,46 the VCA

models is more suitable to describe the atomic structure of

alloys with a relatively small mismatch of the lattice con-

stants and the atomic radii of their constituents. As an exam-

ple, their EXAFS measurements46 show that the VCA model

provides a correct picture of the local atomic structure of

AuxAg1�x, where the mismatch of the lattice parameters and

the atomic radii of Au and Ag is lower than 0.3%.

Structural models use small periodic structures that pre-

serve the chemical identity of the elements and reproduce

the main features of the alloy. These models provide better

predictions than the VCA model for Ge1�xSnx. For example,

structural models based on eight-atom supercells47 predict a

large and composition-dependent positive bowing for the

direct gap in Ge1�xSnx alloys, in good agreement with the

experimental findings,37,48 while a much smaller bowing is

predicted by VCA models.49,50 However, structural models

still fail to provide an accurate atomic description of

Ge1�xSnx. For example, much smaller RGeSn values

(�2.47–2.51 Å) have been calculated by Chibane and

Ferhat51 as compared to the experimental ones determined in

this work (�2.6 Å) for a similar composition range (i.e.,

x¼ 0.0625–0.1250). These discrepancies may be due to the

use of a zincblende structure in Ref. 51 instead of a random

alloy (as suggested by these EXAFS measurements).

Therefore, the results of these EXAFS measurements can be

useful to develop more accurate atomistic models of

Ge1�xSnx based upon an experimentally verified description

of the local surrounding of the Sn atoms.

These EXAFS results do not contradict the validity of

Vegard’s law for the Ge1�xSnx lattice constant. In fact,

Vegard’s law describes the composition dependence of the

average lattice constant a0
Ge1�xSnx , resulting from the

weighted average of locally varying distances. This average

lattice constant is related to the average Ge-Sn bond length

(hR(x)i) predicted by the VCA model as52 a0
Ge1�xSnx

¼ 4hR(x)i/�3. Here, hR(x)i can be calculated from the exper-

imental Sn-Sn, Ge-Ge, and Ge-Sn bond lengths (RSnSn,

RGeGe, and RGeSn, respectively) as hR(x)i¼ x2 RSnSn

þ (1� x)2 RGeGeþ 2x(1� x) RGeSn. The latter two equations

can be used to compare the composition dependence of the

Ge1�xSnx lattice constant determined by EXAFS and by

(224) XRD RSM. Since in this work EXAFS signals were

collected at the Sn K-edge, only the RGeSn and RSnSn values

can be experimentally determined. In addition, the Sn-Sn

bond lengths are only available for a limited number of sam-

ples, thus making it difficult to extract an average RSnSn

value. If the Ge1�xSnx layers investigated in these work had

a purely Pauling behavior, the Ge-Ge and Sn-Sn bond

lengths would be equal to their equilibrium values, i.e.,

RGeGe¼R0
GeGe¼ 2.45 Å and RSnSn¼R0

SnSn¼ 2.81 Å,

respectively. However, in such a situation the Ge1�xSnx lat-

tice constant predicted by the VCA model would be signifi-

cantly lower than the one experimentally determined by

(224) RSM XRD. This situation is illustrated in Fig. 7, where

the curve VCA_R0 represents the VCA-predicted a0
Ge1�xSnx

value when adopting the equilibrium values of the Ge-Ge

and Sn-Sn bond lengths to calculate hR(x)i. However, the

partially Vegard-type behavior indicated by a topological ri-

gidity parameter smaller than unity entails a compositional

dependence of the bond lengths. Since EXAFS measure-

ments of Si1�yGey alloys showed that the Ge-Ge, Ge-Si, and

Si-Si bond lengths in Si1�yGey alloys have the same compo-

sitional dependence,45,53 one might expect that a similar sit-

uation is also valid for the bonds in Ge1�xSnx. Indeed, if the

same slope of the linear fit of the Ge-Sn bond length as a

FIG. 7. Comparison between the Ge1�xSnx lattice constant determined by

(224) RSM XRD and predicted by the VCA model, with hR(x)i calculated

using either the equilibrium values of the Ge-Ge and Sn-Sn bond lengths

(R0
GeGe and R0

SnSn, respectively, for the curve VCA_R0) or their estimated

values (Re
GeGe and Re

SnSn, respectively, for the curve VCA_Re).
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function of the Sn content (H¼ 0.11) is used to estimate the

Ge-Ge and Sn-Sn bond lengths for the calculation of hR(x)i,
a much better agreement is observed between the a0

Ge1�xSnx

values measured by (224) XRD RSM and the ones predicted

by the VCA model (represented by the VCA_Re curve in

Fig. 7). This suggests that in Ge1�xSnx alloys the three dif-

ferent bond types have a similar composition dependence (as

it was observed for Si1�yGey). In order to confirm this sce-

nario and to evaluate the validity of the VCA model for

Ge1�xSnx, EXAFS signals should be collected at the Ge K-

edge for the same samples to determine RGeGe and its com-

position dependence.

Finally, the different SRDs of the Ge1�xSnx layers are

not reflected in the local atomic surrounding of the Sn atoms

(within the accuracy of the measurements). Since the

Ge1�xSnx layers with different SRDS exhibit different levels

of compressive strain, one could expect a bimodal distribu-

tion of the Sn-Ge distances for each sample, reflecting the

different values for the in-plane and out-of-plane Ge1�xSnx

lattice constants measured by (224) RSM XRD.11 In addi-

tion, a rearrangement of the Sn-Ge distances in a series of

Ge1�xSnx samples with a similar concentration and different

SRDs could be awaited. However, neither a bimodal distri-

bution of the Sn-Ge distances in each sample nor the system-

atic rearrangement of the Sn-Ge distances for samples with

increasing SRDs were observed. This may be attributed to

the fact that the discrepancies between the in-plane and out-

of-plane lattice constants barely range between 0.5% and

3%, depending on the SRD. These discrepancies are too

small to allow the discrimination of two different atomic

shells in each sample, hypothetically corresponding to the

in-plane and out-of-plane neighbors. In fact, the differences

in the associated atomic distances (Dd¼ dSnGe//� dSnGe?)

would be of the same order as the experimental errors of

these EXAFS measurements (i.e., 0.004 Å–0.09 Å, depend-

ing on the SRD). As a consequence, these two atomic shells

would rather appear as a single shell at a corresponding aver-

age distance dSnGe¼ (dSnGe//þ dSnGe?)/2 in the EXAFS

measurements. Analogously, the expected differences

between the average Sn-Ge distances dSnGe in samples with

different SRDs are also comparable to the measurement ac-

curacy, explaining why no clear trend is observed.

IV. CONCLUSIONS

In summary, EXAFS measurements have been used to

probe the environment of Sn atoms in strained and relaxed

Ge1�xSnx layers with different compositions. The preferred

configuration for Sn incorporation in these layers is that of a

a-Sn defect, with each Sn atom covalently bonded to four Ge

atoms in a tetrahedral arrangement. This EXAFS analysis

indicates that the investigated materials are homogeneous

random substitutional alloys. Sn interstitials, SV complexes,

or Sn dimers or clusters, if present at all, are not expected to

involve more than 2.5% of the total Sn atoms (i.e., �1 �
1020 defects cm�3). This is advantageous for both electrical

and optical applications. For instance, these defects could (i)

reduce the carrier mobility in the Ge1�xSnx layers and

increase their contact resistance, (ii) compromise their

effectiveness as stressors, or (iii) increase the minimum Sn

concentration required to obtain direct bandgap materials.9

These EXAFS results can be useful to develop more accurate

VCA-based or atomistic models of Ge1�xSnx by including

an experimentally verified description of the local surround-

ing of the Sn atoms. Within the accuracy of these measure-

ments, the different SRDs of the examined layers are not

reflected in the local atomic surrounding of the Sn atoms.

The calculated topological rigidity parameter a**¼ 0.69

6 0.29 indicates that the alloying-induced strain in Ge1�xSnx

is accommodated via bond stretching and bond bending,

with a slight predominance of the latter, in agreement with

ab initio calculations reported in literature.32 This predomi-

nantly Pauling-type behavior allows the confinement of most

of the bond distortion in the first atomic shell around the Sn

atoms. This study suggests that the Ge-Ge, the Ge-Sn, and

the Sn-Sn bond lengths have a similar composition depend-

ence. In order to confirm this hypothesis and to address the

validity of the VCA model for Ge1�xSnx, EXAFS signals

should be collected at the Ge K-edge for the same samples to

determine RGeGe and its composition dependence.

Complementary measurements are also needed to explain

the low coordination numbers observed in these Ge1�xSnx

layers and, possibly, to detect specific Sn-vacancies configu-

rations or low concentrations of Sn interstitials or dimers.
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