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ABSTRACT: Blast induced soil vibrations can cause structural damage even at large distances from the source, causing the need
for accurate prediction methods. The occurrence of shock waves and the high strain rates and deformations call for the use of
hydrocodes in the proximity of an explosion. At larger distance, the use of a more cost effective linear elastic calculation tool is
preferred. A coupled numerical model is proposed, which combines a 2D axisymmetric Finite Difference Time Domain modelin
Autodyn with a frequency domain linear elastic method. The Autodyn model uses a coupled Eulerian-ALE-Lagrangian solver and is
truncated in the linear elastic hydrocode domain. Spuriousreflections are avoided by adding an unsplit field Perfectly Matched Layer
to the truncated hydrocode domain. The results at an interface in the linear elastic hydrocode domain are used to computeresults in
the far field, based on the dynamic reciprocity theorem and the Green’s functions of a layered elastic halfspace. The methodology
is validated against a linear elastic reference solution and applied to a small subsurface explosion in a non elastic soil. The blast
induced vibrations are determined at distances up to 200 m from the source and are compared to empirical reference results.

KEY WORDS: Soil wave propagation; underground blast; FDTD hydrocode; Perfectly Matched Layer; Dynamic reciprocity.

1 INTRODUCTION

Subsurface explosions cause vibrations that can have detrimen-
tal effects on structures, even at large distances. Accurate
prediction of the soil vibrations is needed to control these
effects.

Empirical models [1, 2] are frequently used for this purpose,
but only give rough approximations based on a limited number
of input parameters. Their accuracy depends on the statistical
analysis of large experimental data sets.

Analytical models deliver closed form solutions to the dif-
ferential equations of wave propagation, applying considerable
simplifications to the geometry of the problem, the material
model and the blast loading [3].

In view of these limitations, numerical modeling can provide
results with more detail for realistic configurations. A
hydrocode enables the simulation of highly non-linear events
in the immediate surroundings of an explosion. Hydrocodes
were originally developed for fluid dynamics applications,
but have since been adapted to handle material strength
and solid material models, enabling elasto-plastic and linear
analysis. Adapted computational methodologies, combining
different solver types, are used to calculate the shock wave
propagation and extremely high material deformations [4].
These methods are computationally expensive and material
models that cover the entire deformation range - from linear
elastic to hydrodynamic - can be very complicated.

Hydrocodes have been used extensively for determining near
field effects of soil blast loading. Fiserova [5] determines
the effects of buried mines on protective plating with Eulerian
Autodyn models, using a compaction model. Luccioni et al. [6]
use a similar approach to investigate cratering by buried charges.
Gu et al. [7] investigate crater formation in a layered soil using
an elasto-plastic soil model in a coupled Eulerian-Aleatory
Lagrangian Eulerian (ALE) setup. These models avoid the

shortcomings of the hydrocode, by limiting the extent of the
modeled domain. Spurious reflections caused by this truncation
do not affect the solution, since only short term and short range
effects are investigated.

Hydrocode modeling of far field effects of underground
blast mainly focuses on rocks, in the context of mining or
underground ammunition storage. Oversized models with
viscous absorbing boundary conditions (ABC) are used to
reduce the effects of spurious reflections. Wu and Hao [8]
study the ground motion characteristics due to a large rock
chamber blast and the effects on surface structures with 2D
and 3D coupled Eulerian-Lagrangian models in Autodyn. The
hydrocode models extend to over 100 m from the source.

Coupled methodologies are usually limited to an Eulerian-
Lagrangian coupling, where the explosive source is Eulerian
and the soil is Lagrangian. Large deformations near the blast
source lead to heavily distorted meshes and early termination of
computations. Lu et al. [9] use a three-phase soil model [10]
to determine blast induced far field effects on buried structures,
using a coupled Eulerian-Smoothed Particle Hydrodynamic-
Lagrangian model. The Smoothed Particle Hydrodynamics part
accounts for the largest deformations surrounding the Eulerian
blast source, ensuring the continued integrity of the Lagrangian
part. Similarly, Jayasinghe et al. [11] use a coupled Euler-ALE
model to determine the response of a foundation pile to blast
induced vibration. The ALE remapping compensates for the
large mesh deformations.

In this paper, a coupled numerical methodology is proposed
to obtain a prediction of far field blast induced vibrations in
a halfspace. Results in a bounded subdomain, surrounding
the explosive source, are obtained with the Autodyn 2D
axisymmetric hydrocode, using a coupled Eulerian-ALE-
Lagrangian model. This subdomain is obtained by truncating
the halfspace at sufficient distance from the blast source, where
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the response is linear elastic. To avoid truncation errors,an 2D
axisymmetric unsplit field PML for elastic media, as proposed
by Kucukcoban and Kallivokas [12], is integrated in Autodyn’s
Lagrangian FDTD code. The tractions and displacements on an
interface near the truncated edge are used to compute the elastic
far field response based on the dynamic reciprocity theorem and
the Green’s functions of an elastic halfspace [13]. The coupled
methodology is validated considering the case of a surface load
on a linear elastic halfspace in section 5 and is applied on an
underground explosion in a homogeneous non-linear soil. Using
this methodology, blast induced vibrations in the far field can
be calculated in a cost efficient manner, taking into accountthe
non-linear behavior of the soil near the explosive source.

2 COUPLED METHODOLOGY

In the surroundings of an underground explosion, the behavior
of the soil changes with growing distance from the explosive
source. The 3D semi-infinite problem domainΩ is bounded
by a free surfaceΓt and is divided into three subdomains
Ω1, Ω2 and Ω3 (figure 1). In the hydrodynamic subdomain
Ω1, immediately surrounding the explosive source S, extreme
soil deformations occur at high speeds and the soil strength
is exceeded: the soil behaves hydrodynamically. At a larger
distance from the source, pressure waves are attenuated, but
are still in the non-linear range: in the subdomainΩ2 the
soil behavior is elasto-plastic. With further attenuationof
the pressure waves, the elastic limit of the soil is no longer
exceeded: in the semi-infinite subdomainΩ3, the soil has a
linear elastic behavior. SubdomainsΩ1 andΩ2 are separated
by the interfaceΣ12, while interfaceΣ23 separates subdomains
Ω2 andΩ3.

The size and shape of subdomainsΩ1 and Ω2 depends on
the soil properties and the amplitude and depth of the blast
source. For an underground explosion, the released energy is
generally high enough to cause elasto-plastic soil deformations
in the vicinity of the source. The stress levels are not necessarily
high enough to cause hydrodynamic soil behavior. If the ratio of
the depth to the amplitude of the source is sufficiently small,
the subdomain interfacesΣ12 and Σ23 can intersect the free
surfaceΓt. The soil at the free surface is significantly deformed,
resulting in visible surface effects such as dome formation, soil
ejection or cratering.

The high deformations and strain rates of the soil in the
hydrodynamic domainΩ1 require the use of computational
methods and material models that can handle this non-linear
behavior. The wave propagation in domainΩ2 can be studied
using non-linear, elasto-plastic methods, while inΩ3, a linear
elastic solver is used.

The complex constitutive behavior inΩ requires a computa-
tionally expensive hydrocode, applied to a bounded subdomain
Ω. To avoid spurious reflections, an ABC is applied toΩ
in the linear elastic domainΩ3. Ω is then bounded by the

truncated free surfaceΓt and equalsΩ1 ∪Ω2 ∪Ω3
, whereΩ3

is the truncated part ofΩ3. In this work, a PML is used:ΩPML

is coupled toΩ at the interfaceΣPML and is bounded by the free
surfaceΓPML

t and the fixed boundaryΓPML
u (figure 2).

Results in the far field, for which a hydrocode computation
is not possible or cost-efficient, are obtained using a linear
elastic method. The halfspaceΩe is a linear elastic copy of
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Figure 1. The problem domainΩ = Ω1 ∪Ω2∪Ω3, bounded
by the free surfaceΓt, containing the source S and the
interfacesΣ12 andΣ23.
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Figure 2. The truncated computational domain

Ω = Ω1∪Ω2∪Ω3
, bounded by the truncated free

surfaceΓt, containing the source S and the interfaceΣie,
coupled toΩPML in ΣPML.
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Figure 3. The linear elastic computational domainΩe, bounded
by the free surfaceΓt, containing the interfaceΣie.

Ω (figure 3). The tractions and displacements onΣie, obtained
from the calculation inΩ, are used to compute the response in
Ωe, based on the dynamic reciprocity theorem and the Green’s
functions of an elastic halfspace [13]. InΩ, Σie is situated within

Ω3
(figure 2). The linear elastic material model inΩe matches

the hydrocode material behavior inΩ3.

3 INTERIOR SUBDOMAIN SIMULATION

The explosion source and the wave propagation inΩ are
simulated with ANSYS Autodyn, which offers a set of solvers,
material models and functionalities that enable non-linear
dynamic calculations [14]. The structure of the hydrocode
model and the associated PML are explained.
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3.1 The hydrocode model

Ω is modeled in Autodyn, using a 2D axisymmetric Eulerian-
ALE-Lagrangian multi-solver model in the time domain. This
model is subdivided in coupled subgrids, each using one of these
solvers. Autodyn only uses quadrilateral meshing, imposing
important restrictions on the geometry and the coupling strategy
of the subgrids.

The explosive source S and its gaseous explosion products
are modeled using a multi-material first order Eulerian Finite
Volume solver. In this part, a fine mesh is needed to obtain
correct generation of the detonation wave. For small charges,
this has a big impact on the time step used in the entire
model. While the shape of the Euler part normally matches the
explosive’s shape, a spherical approximation can be adopted for
compactly shaped charges. This enables a simplification of the
structure of the model and has little effect on the far field results.

Ω is modeled using a combination of Finite Difference Time
Domain (FDTD) solvers: the soil near the explosive is modeled
using an ALE FDTD solver. The applied motion constraints
depend on the shape of the charge and the post-blast explosion
cavity. The ALE part should be as small as possible, to limit
the computational cost. Other ALE subgrids can be included
wherever large deformations are expected. The remaining
volume of the model is calculated with a Lagrangian FDTD
model.

The hydrocode methodology is illustrated in detail using the
application in section 6.

3.2 The Perfectly Matched Layer

Autodyn uses a 1D viscous ABC, which is supposed to absorb
linear elastic waves propagating perpendicularly towardsthe
boundary. Due to a bug in the software, only positive pressures
are absorbed. To meet the truncation requirements expressed in
section 2, the unsplit field 2D axisymmetric PML methodology
developed by Kucukcoban and Kallivokas [12] is integrated
in the Lagrangian computational cycle of Autodyn, using
customizable user-subroutines.

ΩPML

Ω

ΣPML ΓPML
u

LPMLs so st

Figure 4. ΩPML, coupled toΩ in ΣPML. A wave passes through
ΣPML, decays with distance and reflects onΓPML

u .

Consider the PML domainΩPML, coupled toΩ at ΣPML,
as shown in figure 2. Ifs is the coordinate in the direction
normal toΣPML, ΩPML extends froms= so to s= st (figure 4).
An outgoing wave passes throughΣPML without reflections and
decays with distance withinΩPML. The coordinates is replaced

by a stretched coordinate ˜s, defined as [15]:

s̃=
∫ s

0
λs(s)ds= so+

∫ st

so

λs(s)ds (1)

where λs(s) is a frequency dependent, continuous, non-zero
complex valued stretching function [15, 16]:

λs(s) = 1+ f e
s (s)− i

f p
s (s)
ω

, (2)

whereω is the circular frequency, and the functionsf e
s (s) and

f p
s (s) cause attenuation of evanescent and propagating waves.

Within Ω and onΣPML, the attenuation functions are zero. This
guarantees the continuity of the stretch functions across the
interface and the perfectly matching properties of the PML.
To obtain sufficient yet gradual attenuation within the PML,a
quadratic formulation is used forf p

s (s) [12]:

f p
s (s) =











3Cp

2LPML log

[

1
R

][

(s− s0)

LPML

]2

if s0 ≤ s< st

0 if 0 ≤ s< s0

(3)

whereCp is the dilatational wave propagation velocity andR is a
reflection coefficient, indicating the needed attenuation at ΓPML

u .
A similar formulation is used forf e

s (s), whereCp is replaced by
a characteristic lengthb of the domainΩPML (e.g. the cell size
or LPML).

In the 2D axisymmetric geometry proposed in section 3.1,
the stretch is applied to ther and z coordinate. The stretch
functions are introduced in the governing wave equations inthe
frequency domain of an axisymmetric linear elastic medium,as
shown in [12]. The constitutive equation of the linear elastic
medium is unaffected by the coordinate stretch. The stretched
wave equations are then transformed to the time domain by an
inverse Fourier transform and solved using a Lagrangian FDTD
scheme, based on the Autodyn code.

A known instability issue with this type of PML is expected
to cause some spurious reflections [17]. This instability can
be delayed by applying a gradual, real stretch toΩPML in
the direction of the stretched coordinates, without additional
computational cost and with equally perfectly matching
behavior of the PML. It can also be reduced by lowering
the reflection coefficientR. To compensate for the reduced
attenuation,ΓPML

u can be replaced by a viscous ABC [18], which
absorbs a large part of the remaining outgoing waves.

4 EXTERIOR SUBDOMAIN SIMULATION

The tractions̄tn and displacements̄u at Σie that result from the
calculation inΩ are imposed onΩe. The displacements inΩe

can then be related to the imposed tractions and displacements
by applying the dynamic reciprocity theorem [19, 20]. If body
forces are neglected andΩe is initially at rest, the introduction of
the Green’s functions of an elastic halfspace [13] in the dynamic
reciprocity equation yields the following integral representation:

ui(x′, t) =
∫

Σie

[

uG
i j (x

′,x, t)tn
j (x, t)− tGn

i j (x′,x, t)u j(x, t)
]

dS (4)
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whereui(x′, t) is thei-th displacement component in any pointx′

in Ωe, uG
i j (x

′,x, t) andtGn
i j (x′,x, t) are the Green’s displacements

and tractions ofΩe and u j(x, t) and tn
j (x, t) are the j-th

component of the displacements and tractions in any pointx
on Σie, with outward normal vectorn. A Boundary Element
(BE) discretization of the integral equation atΣie, followed by
a forward Fourier transformation, allows the calculation of the
wave propagation inΩe:

û(ω) = Û(ω)t̂(ω)− T̂(ω)û(ω) (5)

where an underlined variable collects vectors at multiple
receivers or nodes.̂u(ω) contains the displacement components
at the receiver locations inΩe, û and t̂ contain the components
of the displacement and traction vectors applied on the
interpolation nodes ofΣie. Û(ω) andT̂(ω) are the displacement
and traction BE system matrices.

5 VALIDATION

The coupled methodology is validated using the case of a
concentrated surface load on a homogeneous linear elastic
halfspace. In that case,Ω = Ω3.

The material has a densityρ = 1800 kg/m3, a dilatational
wave velocity Cp = 300 m/s and a shear wave velocity
Cs = 150 m/s. The linear elastic material model in the FDTD
computation inΩ∪ΩPML has no hysteretic material damping.
In order to validate the functioning of the coupled methodology,
the material behavior inΩ beΩe should correspond as much as
possible. Therefore, the hysteretic material damping ratios in
Ωe, necessary for the computation of the Green’s functions, are
set to a very small value:Dp = Ds = 10−4.

A vertical transient point loadF(t) is applied onΓt at
r = 0, corresponding to a second order Ricker wavelet, with a
characteristic frequencyfc = 300 Hz and an offsetts = 0.01 s:

F(t) =
[

2[π(t − ts) fc]
2−1

]

e−[π(t−ts) fc]
2

(6)

The geometry of the model corresponds to figures 2 and 3,
whereΣie, ΣPML andΓPML

u have a square shape, with sides of 2
m, 2.25 m and 3.5 m side lengths.

The displacements and tractions onΣie are determined using
the methodology presented in section 3. A Lagrangian solver
is used throughout the FDTD domain.Ω is discretized by 270
x 270 equal elements.ΩPML is discretized with 30 elements
in the direction normal toΣPML. This corresponds to a real
stretch of 500%. The PML stretch functionsf p

r (r) and f p
z (z)

are quadratic andf p
r (2) = f p

z (2) = 720 Hz, which results in
a reflection coefficientR = 10−2 [12]. f e

r (r) and f e
z (z) are

equal to 0: no additional real stretch is applied. The time
history atΣie is padded with zeros to a period of 1 s, to obtain
an acceptable frequency resolution. A time domain window
based on a sigmoid function is imposed to avoid a discontinuity
between the calculated and the padded part of the time history.

The displacements inΩe are determined using the methodol-
ogy presented in section 4.Σie is discretized with 240 equally
sized, nodally collocated BEs, that coincide with the hydrocode
element faces atΣie. The Green’s functions of an elastic
halfspace are used to obtain reference solutions inΩe and on
Σie, using EDT [13].
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Figure 5. Time history (left) and frequency content (right)of
the vertical displacement at (a)(r,z) = (2,0) m, onΣie, (b)
(r,z) = (10,0) m and (c)(r,z) = (20,0) m. The reference
solution (black) is compared to the coupled solution (gray).

Figure 5(a) compares the vertical displacement onΣie at
(r,z) = (2,0) m of the FDTD simulation to the reference
solution. The small amplitude difference is the result of the
absence of hysteretic material damping in the FDTD material
model. Small spurious vibrations due to the onset of the PML
instability appear between 0.04 and 0.05 s. They appear more
clearly in the frequency domain, where the low frequency range
of the FDTD solution deviates from the reference solution.

Figures 5(b) and 5(c) compare the results of the coupled
calculation to the reference solution inΩe at (r,z) = (10,0) m
and(r,z) = (20,0) m. The small amplitude difference between
both solutions, as observed in figure 5(a), does not change at
larger distances from the source, since the material damping
in Ωe of the coupled solution and in the reference solution
is identical. Apart from this amplitude offset, the resultsare
satisfactory and prove the validity of the coupled methodology.

Since the PML induced instability is situated in the low
frequency range, it is attenuated less than the high frequency
content of the outgoing wave; its influence is therefore expected
to become more prominent at larger distance fromΣie. In
this validation, this is prevented by the very low attenuation
coefficient. When considering materials with a higher material
damping ratio, the PML induced error can dominate the solution
at large distances from the source. A more stable PML
formulation for Autodyn or the application of an improved time
domain window or high-pass frequency filter on the results at
Σie can solve this problem.
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6 APPLICATION

The coupled methodology is applied to the underground
explosion of a 1 kg sphere of C4 explosive at a depth of 2 m
in a homogeneous halfspace.

A single soil model is used throughoutΩ, based on the model
of Luccioni et al. [6]. The bulk compressibility of the soil
is modeled using a Mie-Grüneisen equation of state, based on
the shock Hugoniot of the material [14]. The hydrodynamic
pressurep(t) equals

p(t) = pH(t)+ γρ0

[

e(t)− pH(t)µ(t)
2ρ0(1+ µ(t))

]

(7)

where the Hugoniot pressurepH(t) is

pH(t) =
ρ0 µ(t)(1+ µ(t))

√

Cp
2− 4

3Cs
2

[1− (sH−1)µ(t)]2
(8)

with γ = 0.11 the Grüneisen coefficient,sH = 1.5 the
linear shock Hugoniot slope coefficient,ρ0 = 1920 kg/m3

the soil density,Cp = 600 m/s the dilatational wave velocity,
Cs = 300 m/s the shear wave velocity,ρ(t) the density,e(t)
the specific internal energy andµ(t) = [ρ(t)/ρ0] − 1 the
compression rate.ρ0, Cp andCs are considered atp = 0. A
hydrodynamic bulk failure limit pressurepmin is set at -1 MPa.
In terms of Von Mises stress, the yield strengthσy is determined
by a piecewise linear Drucker-Prager criterion:

σy =

{

α p+β [MPa] if pmin ≤ p ≤ 6.88 MPa

6.2 MPa if p > 6.88 MPa
(9)

whereα = 0.74 andβ =1.11 MPa depend on the soil’s cohesion
and internal friction angle. At low pressures, this material
model approaches a linear elastic model, with wave velocities
Cp andCs and densityρ0. This model is used inΩPML. In
Ωe, this material is used in combination with hysteretic material
damping ratiosDp = Ds = 0.02. The explosive material model
is the Jones-Wilkins-Lee equation of state for C4, as used in
Autodyn [6, 14].

In this case, it is possible to perform the hydrocode simulation
in two steps. The first 2.55 milliseconds after the detonation are
modeled with an Eulerian 1D spherical symmetric starter model.
It has a length of 2 m from the center of the explosive to the free
surface and is discretized by 2000 equally sized elements. The
explosive, which has a radius of 0.055 m, is situated at the center
of this model and is surrounded by soil. The wave propagation
is modeled from the detonation up to the moment the shock
wave reaches the free surface. The 1D results are subsequently
remapped onto the full model, which has been dimensioned to
correspond to the deformed state at the end of the 1D simulation.
The radius of the explosive productsR1 at t = 2.55 ms equals
0.268 m.

The starter model contains explosive and soil material in a
single multi-material Eulerian mesh. The interface between both
materials risks blurring due to diffusion [21]. If soil material is
remapped into the Euler part of the full model, this leads to local
errors in the Eulerian part and in the fluid-structure interface and
can stop or delay the computation.

The use of a two step hydrocode methodology has several
advantages. Autodyn uses explicit time integration with a
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Figure 6. Hydrocode domainΩ and ΩPML, indicating the
Eulerian (dark) and ALE (double hatched) calculation
domains.

leapfrog second order time integrator. The time step, which
is identical for all subgrids in the model, is determined at
each time step, based on the Courant-Friedrichs-Lewy stability
condition. It depends on the cell size and the local dilatational
wave propagation velocity. The very high velocities and dense
mesh needed for the high quality simulation of the initial shock
wave generation near the explosive source result in extremely
small time steps. In the two step methodology, this is limited
to the 1D starter model. By the end of the its computation, the
velocities in the soil have dropped and a dense mesh near the
source is no longer needed. This allows for larger time steps
and coarser meshes for the full model computation.

In the second step, the results of the starter model are
propagated in the full model, which contains the hydrocode
calculation domainΩ and the PML (figure 6). The size ofΩ
is R2 = 6 m byZ2 = 5 m and it is modeled using a combination
of Finite Difference Time Domain (FDTD) solvers on different
coupled subgrids. The preferred size of these subgrids is
determined by running preliminary simulations with a coarse
mesh.

The Eulerian calculation domain is limited to the spherical
volume of the explosive source att = 2.55 ms, with a radiusR1

and is meshed with equally sized, 10 mm by 10mm cells.

The Eulerian domain is surrounded by an ALE domain with
radiusR3 = 0.5 m and a radial expansion ALE constraint on a
radial mesh. This configuration is most practical for matching
the expanding explosion cavity and preserving the shape of
the outgoing wave near a compact charge [21]. A second,
rectangular ALE domain is situated at the free surface to handle
the large deformations caused by the reflected pressure wave.
The size of this domain isR4 = 2 m by Z4 = 0.6 m. A
bilinear ALE constraint is applied, according to the axes ofthe
nodal coordinate system of the model. Since the time steps
are small, the cell deformation per time step is limited and
satisfactory results can be obtained when performing the ALE
remapping every 5 to 10 time steps, reducing the cost of the
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ALE remapping. Nodes at subgrid interfaces are not subjected
to the ALE motion constraints, to ensure correct coupling.

The remaining parts ofΩ use the Lagrangian FDTD solver
and are meshed with equally sized, 10 mm by 10 mm cells.
At large distances from the blast source, spherical meshing
needs to be avoided, since acceptable cell size ratios can only
be obtained by introducing multiple transition parts, which
needlessly complicate the structure of the model. In this
configuration, only one transitional discretization subgrid is
needed to couple the rectangular Lagrangian subgrid to the
radial ALE subgrid.

ΩPML uses the adapted Lagrangian FDTD solver discussed
in section 3.2. The domain has a widthLPML = 1 m and
is discretized with 50 rectangular elements in the direction
normal to ΣPML, with a linearly increasing real stretch.
The PML stretch functionsf p

r (r) and f p
z (z) are quadratic

and f p
r (7) = f p

z (6) = 1800 Hz, which results in a reflection
coefficientR= 10−2 in accordance with the stretch formulations
in [12]. f e

r (r) and f e
z (z) are constant and equal to 1: no

additional real stretch is applied.
Σie is parallel to theΣPML interface, at a distance of

D = 0.15 m. This interface is discretized with 1070 equally
sized and nodally collocated BEs that coincide with the
hydrocode element faces atΣie.

The average time step of the hydrocode simulation is
5 x10−3 ms, for a duration of 50 ms. Figure 7 shows the norm
of the velocity field inΩ at different time steps. At 2.55 ms,
immediately after the exportation of the starter model datato
the full model (figure 7(a)), the spherically symmetric pressure
wave approaches the free surface. High velocities surrounding
the explosion cavity indicate its ongoing expansion.

At 4 ms (figure 7(b)), the dilatational blast wave has hit and
reflected from the free surface surrounding the epicenter. High
particle velocities occur where the soil has failed: the tensile
stresses from the reflected dilatational wave have reachedpmin.
In reality, this would result in a projection of soil particles.
In this model, this large deformation is handled by the ALE
solver. For extended simulations, it can lead to excessive mesh
deformation. Extended time histories can be computed by
applying an erosion rule or by the local use of a particle method.

At 8 ms (figure 7(c)), this expansion has nearly stopped. The
dilatational wave is transmitted without reflection intoΩPML. A
reflected dilatational and shear wave follow the main dilatational
wave. The noise behind the leading dilatational wave results
from the slow expansion and pulsation of the explosion cavity
and the interaction of reflected waves with this cavity.

At 11 and 20 ms (figures 7(d) and 7(e)), the explosion cavity
has stabilized completely. The leading dilatational wave and the
reflected waves as well as the trailing vibrations are correctly
transmitted. A distinct surface wave has not developed within Ω.

At 50 ms (figure 7(f)),Ω is silent, except for the spalling
action at the free surface near the epicenter. There is some
indication of the instability of the PML affectingΩ near the right
edge of the domain.

Figure 8 shows the non-elastic domainΩ1∪Ω2 within Ω
that has undergone plastic deformation and/or tensile failure.
The extension of this domain along the free surface is caused
by the reflection of the dilatational blast wave. This reflected
wave induces tensile stress and therefore lower yield strength in

(a) (b)

(c) (d)

(e) (f)

Figure 7. Norm of the velocity field inΩ at (a) 2.55 ms,
(b) 4 ms, (c) 8 ms, (d) 11 ms, (e) 20 ms and (f) 50 ms.

Ω1∪Ω2

Σie

Ω

Figure 8. The non-elastic domainΩ1∪Ω2 (gray) inΩ andΣie.

the top layer of the soil. The shape of the plastic deformation
domain justifies the use of a rectangularly shapedΩ andΣie.

Figure 9 shows the components of the velocities and tractions,
normal and tangential to the interfaceΣie at the free surface. The
high frequency content of the waveforms is explained by the
lack of material damping and the time history of the explosive
source, which approximates an impulse. This justifies the
use of a dense mesh throughoutΩ. The outgoing waves are
transmitted properly intoΩPML but the velocities and tractions
do not attenuate entirely before the onset of the PML instability.
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Figure 9. Time history (left) and frequency content (right)of the
(a) normal and (b) and tangential component of the velocity
and (c) the normal component of the tractions onΣie at
z= 0.

The time histories of the velocities and tractions onΣie

are padded with zeros to a period of 2 s. A time domain
window based on a sigmoid equation is applied to smoothen
the transition between the the original time histories and the
padded extensions. The application of this window enhances
the quality of future frequency domain transformations and,
in addition, reduces the effect of the instability of the PML.
The displacements atΣie are obtained from the padded time
histories of the velocities. To avoid discontinuities, a similar
time domain window is applied to attenuate the final 5 ms of the
padded displacement time histories. The velocities and tractions
are then transformed to the frequency domain, using a forward
Fourier transform.

The displacements inΩe are obtained in the frequency
domain according to the procedure presented in section 4 and
are derived to obtain the velocities. These are transformedto the
time domain using an inverse fast Fourier transform. Figures 10
and 11 show the velocities at the free surface, at 10 and 50 m
from the epicenter of the explosion. The leading dilatational
wave dominates the wave form for tens of meters from the
epicenter. A surface wave has developed, but its amplitude is
of the same order of magnitude as the dilatational wave. Due to
the high frequency content of the input, the frequency content of
the waves is high, even at large distances from the source.

The effects of the instability of the PML, as seen in section 5,
are not observed in this application. This can be attributedto the
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Figure 10. Time history (left) and frequency content (right) of
the radial (a) and vertical component (b) of the velocity at
10 m from the epicenter.
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Figure 11. Time history (left) and frequency content (right) of
the radial (a) and vertical component (b) of the velocity at
50 m from the epicenter.

high frequency content of the input, which reduces the relative
importance of the low frequency instabilities.

The peak particle velocity (PPV) is determined for the radial
and vertical velocity component at a series of points at the
free surface inΩ andΩe, from 3 to 200 m from the epicenter
of the explosion. This distance is scaled by the cube root
of the TNT equivalent weight of the C4 explosive, which
is 1.32 kg. The computed PPVs are compared to empirical
reference relationships. The empirical formulation for the PPV
developed by Drake and Little [2] is valid up to a scaled
distance of 5 m/3

√
kg. This formulation only depends on the

soil properties through an attenuation coefficientm. It is used
as a reference inΩ with attenuation coefficientsm = 2.25
and m = 1.5. The first value is estimated based onρ0 [2],
while the second value corresponds to a soil with low material
damping [22]. Westine’s relationships for the radial PPV [1] is
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Figure 12. PPV in function of scaled distance. Radial (black)
and vertical (gray) components are compared to empirical
reference results with regular (dashed) and with very low
material damping (dotted).

valid up to 245 m/3
√

kg and is used inΩe. This relationship is a
function of the densityρ0 and the dilatational wave velocityCp

of the soil.
The computed PPVs are consistently higher than the

empirical relationships of Westine [1] and Drake and Little[2]
with m = 2.25 (figure 12). The attenuation of the computed
radial PPVs in the linear elastic domain, which corresponds
to the angle of inclination of the curves, corresponds well
to Westine’s reference result, but depends strongly on the
choice of Dp and Ds. The formulation of Drake and Little
with m = 1.5 (dotted line in figure 12(a)) has a very good
correspondence with the computed FDTD results inΩ. This
improved correspondence can be attributed to the absence of
material damping in the hydrocode soil model. This results
in a strong similarity with the parameters for a soil with low
damping, as used in the empirical approach wherem = 1.5.

Only limited conclusions can be drawn from this comparison,
since only one computed result is compared to empirical
methods for which the statistical parameters are unknown. It
does however indicate the large impact of the material damping
in the relatively small hydrocode domain on the results of the
coupled method at large distances.

7 CONCLUSIONS

In this paper, a coupled methodology is presented to calculate
the wave propagation due to an underground explosion, to
overcome the limitations imposed by analytical and empirical
modeling. The method successfully combines an Autodyn
hydrocode computation for the soil near the blast source with
a cost efficient linear elastic model, based on the dynamic
reciprocity theorem and the Green’s functions of an elastic
halfspace. Within the bounded hydrocode domain, different
solvers - Eulerian, ALE and Lagrangian - are combined to
obtain a coherent solution to the non-linear blast induced wave
propagation. A PML is integrated in the Autodyn code to avoid
spurious reflections on the truncated edges of the hydrocode
domain.

The accuracy of the methodology is demonstrated in a linear
elastic validation example. The low frequency PML induced
instability errors, which seem negligible at first, are shown
to gain importance with increased attenuation of the outgoing
wave. Increased accuracy can be obtained by improving the

stability of the PML implementation or by reducing the impact
of the PML induced instability.

The method is successfully applied to an underground
explosion in a halfspace, using a non-linear soil model in
the hydrocode calculation domain. The application indicates
the possibility to determine blast induced vibrations at large
distances from the source. A comparison to empirical reference
methods shows that the velocities obtained by this specific
application of the coupled methodology are considerably higher
and that the absence of material damping in the hydrocode
soil model has a large impact on the results of the coupled
methodology.
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