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Abstract 

Many years have passed since Baesens et al. published their benchmarking study of 

classification algorithms in credit scoring [Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., 

Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for 

credit scoring. Journal of the Operational Research Society, 54(6), 627-635.]. The interest in 

prediction methods for scorecard development is unbroken. However, there have been several 

advancements including novel learning methods, performance measures and techniques to reliably 

compare different classifiers, which the credit scoring literature does not reflect. To close these 

research gaps, we update the study of Baesens et al. and compare several novel classification 

algorithms to the state-of-the-art in credit scoring. In addition, we examine the extent to which the 

assessment of alternative scorecards differs across established and novel indicators of predictive 

accuracy. Finally, we explore whether more accurate classifiers are managerial meaningful. Our 

study provides valuable insight for professionals and academics in credit scoring. It helps 

practitioners to stay abreast of technical advancements in predictive modeling. From an academic 

point of view, the study provides an independent assessment of recent scoring methods and offers 

a new baseline to which future approaches can be compared. 
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1 Introduction 

The field of credit scoring is concerned with developing empirical models to support decision 

making in the retail credit sector (Crook, et al., 2007). This sector is of considerable economic 

importance. For example, the volume of consumer loans held by banks in the US was $1,132 bn in 

2013; compared to $1,541 bn in the corporate business.1 In the UK, loans and mortgages to 

individuals were even higher than corporate loans in 2012 (£11,676 m c.f. £10,388 m).2 These 

figures indicate that financial institutions require quantitative tools to inform lending decisions. 

A credit score is a model-based estimate of the probability that a borrower will show some 

undesirable behavior in the future. In application scoring, for example, lenders employ predictive 

models, called a scorecards, to estimate how likely an applicant is to default. Such PD (probability 

of default) scorecards are routinely developed using classification algorithms (e.g., Hand & Henley, 

1997). Many studies have examined the accuracy of alternative classifiers. One of the most 

comprehensive classifier comparisons to date is the benchmarking study of Baesens, et al. (2003). 

Albeit much research, we argue that the credit scoring literature does not reflect several recent 

advancements in predictive learning. For example, the development of selective multiple classifier 

systems that pool different algorithms and optimize their weighting through heuristic search 

represents an important trend in machine learning (e.g., Partalas, et al., 2010). Yet, no attempt has 

been made to systematically examine the potential of such approach for credit scoring. More 

generally, recent advancements concern three dimensions: i) novel classification algorithms to 

develop scorecards (e.g., extreme learning machines, rotation forest, etc.), ii) novel performance 

measures to assess scorecards (e.g., the H-measure or the partial Gini coefficient), and iii) statistical 

hypothesis tests to compare scorecard performance (e.g., García, et al., 2010). An analysis of the 

PD modeling literature confirms that these developments have received little attention in credit 

scoring, and reveals further limitations of previous studies; namely i) using few and/or small data 

sets, ii) not comparing different state-of-the-art classifiers to each other, and iii) using only a small 

set of conceptually similar accuracy indicators. We elaborate on these issues in Section 2.  

The above research gaps warrant an update of Baesens, et al. (2003). Therefore, the motivation 

of this paper is to provide a holistic view of the state-of-the-art in predictive modeling and how it 

                                                 

1 Data from the Federal Reserve Board, H8, Assets and Liabilities of Commercial Banks in the United States 

(http://www.federalreserve.gov/releases/h8/current/). 
2 Data from ONS Online, SDQ7: Assets, Liabilities and Transactions in Finance Leasing, Factoring and Credit 

Granting: 1st quarter 2012 (http://www.ons.gov.uk).  
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can support decision making in the retail credit business. In pursuing this objective, we make the 

following contributions: First, we perform a large scale benchmark of 41 classification methods 

across eight credit scoring data sets. Several of the classifiers are new to the community and for 

the first time assessed in credit scoring. Second, using the principles of cost-sensitive learning, we 

shed light on the link between the (statistical) accuracy of scorecard predictions and the business 

value of a scorecard. This offers some guidance whether deploying advanced – more accurate – 

classification models is economically sensible. Third, we examine the correspondence between 

empirical results obtained using different accuracy indicators. In particular, we clarify the 

reliability of scorecard comparisons in the light of recently identified limitations of the area under 

a receiver operating characteristics curve (Hand, 2009; Hand & Anagnostopoulos, 2013). Finally, 

we illustrate the use of advanced nonparametric testing procedures to secure empirical findings 

and, thereby, offer guidance how to organize future classifier comparisons.  

In the remainder of the paper we first review related work in Section 2. We then summarize the 

classifiers that we compare (Section 3), and describe our experimental design (Section 4). Next, 

we discuss empirical results (Section 5). Section 6 concludes the paper. The online appendix3 

provides a detailed description of the classification algorithms and additional results. 

2 Literature review 

Much literature explores the development, application, and evaluation of predictive decision 

support models in the credit industry (see, Crook, et al., 2007; Kumar & Ravi, 2007 for reviews). 

Such models estimate credit worthiness based on a set of explanatory variables. Corporate risk 

models employ data from balance sheets, financial ratios, or macro-economic indicators, whereas 

retail models use data from application forms, customer demographics, and transactional data from 

the customer history (e.g., Thomas, 2010). The differences between the types of variables suggest 

that specific modeling challenges arise in consumer as opposed to corporate credit scoring. Thus, 

many studies focus on either the corporate or the retail business. The latter is the focus of this paper. 

A variety of prediction tasks arise in consumer credit risk modeling. The Basel II Capital 

Accord requires financial institutions to estimate, respectively, the probability of default (PD), the 

exposure at default (EAD), and the loss given default (LGD). EAD and LGD models have recently 

become a popular research topic (e.g., Calabrese, 2014; Yao, et al., 2015). PD models are especially 

                                                 

3 Available at: (URL will be inserted by Elsevier when available) 
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well researched and continue to attract much interest. Topical research question include, for 

example, how to update PD scorecards in the face of new information (Hofer, 2015; Sohn & Ju, 

2014). The prevailing methods to develop PD models are classification and survival analysis. The 

latter facilitate estimating not only whether but also when a customer defaults (e.g., Tong, et al., 

2012). In addition, a special type of survival model called mixture cure model facilitates predicting 

multiple events of interest; for example default and early repayment (e.g., Dirick, et al., 2015; Liu, 

et al., 2015). Classification analysis, on the other hand, represents the classic approach and benefits 

from an unmatched variety of modeling methods. 

We concentrate on PD modeling using classification analysis. Table 1 examines previous work 

in this field. To confirm the need for an update of Baesens, et al. (2003), we focus on empirical 

classifier evaluations published in 2003 or thereafter and analyze three characteristics of such 

studies: the type of credit scoring data, the employed classification algorithms, and the indicators 

used to assess these algorithms. With respect to classification algorithms, Table 1 clarifies the 

extent to which advanced classifiers have been considered in the literature. We pay special attention 

to ensemble classifiers, which Baesens, et al. (2003) do not cover. 

TABLE 1: ANALYSIS OF CLASSIFIER COMPARISONS IN RETAIL CREDIT SCORING 

Retail credit scoring study  

(in chronological order) 
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(Baesens, et al., 2003) 8 4,875 21 17 X X   X X  P 

(Malhotra & Malhotra, 2003) 1 1,078 6 2 X    X   P 

(Atish & Jerrold, 2004) 2 610 16 5 X    X X  P 

(He, et al., 2004) 1 5,000 65 4 X    X    

(Lee & Chen, 2005) 1 510 18 5 X    X    

(Hand, et al., 2005) 1 1,000 20 4 X  X      

(Ong, et al., 2005) 2 845 17 6 X    X    

(West, et al., 2005) 2 845 19 4 X  X  X   P 

(Y.-M. Huang, et al., 2006) 1 10,000 n.a. 10 X    X    

(Lee, et al., 2006) 1 8,000 9 5 X    X    

(S.-T. Li, et al., 2006) 1 600 17 2 X X   X   P 

(Xiao, et al., 2006) 3 972 17 13 X X X  X   P 

(C.-L. Huang, et al., 2007) 2 845 19 4  X   X   F 

(Yang, 2007) 2 16,817 85 3  X   X    

(H. Abdou, et al., 2008) 1 581 20 6 X    X   A 

(Sinha & Zhao, 2008) 1 220 13 7 X X   X X  A 
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(C.-F. Tsai & Wu, 2008) 3 793 16 3 X  X  X   P 

(Xu, et al., 2009) 1 690 15 4  X   X    

(Yu, et al., 2008) 1 653 13 7   X X X    

(H. A. Abdou, 2009) 1 1,262 25 3     X    

(Bellotti & Crook, 2009) 1 25,000 34 4  X    X   

(Chen, et al., 2009) 1 2,000 15 5  X   X    

(Nanni & Lumini, 2009) 3 793 16 16 X X X  X X   

(Šušteršič, et al., 2009) 1 581 84 2 X    X    

(M.-C. Tsai, et al., 2009) 1 1,877 14 4 X    X   Q 

(Yu, et al., 2009) 3 959 16 10 X X X  X X  P 

(J. Zhang, et al., 2009) 1 1,000 102 4     X    

(Hsieh & Hung, 2010) 1 1,000 20 4 X X X   X   

(Martens, et al., 2010) 1 1,000 20 4  X   X    

(Twala, 2010) 2 845 18 5   X  X    

(Yu, et al., 2010) 1 1,225 14 8 X X X  X   P 

(D. Zhang, et al., 2010) 2 845 17 11 X X X  X    

(Zhou, et al., 2010) 2 1,113 17 25 X X X X X    

(J. Li, et al., 2011) 2 845 17 11  X   X    

(Finlay, 2011) 2 104,649 47 18 X  X  X   P 

(Ping & Yongheng, 2011) 2 845 17 4 X X   X    

(Wang, et al., 2011) 3 643 17 13 X X X  X    

(Yap, et al., 2011) 1 2,765 4 3     X    

(Yu, et al., 2011) 2 845 17 23 X X   X    

(Akkoc, 2012) 1 2,000 11 4 X    X X   

(Brown & Mues, 2012) 5 2,582 30 9 X X X   X  F/P 

(Hens & Tiwari, 2012) 2 845 19 4  X   X    

(S. Li, et al., 2012) 2 672 15 5  X X  X    

(Marqués, et al., 2012a) 4 836 20 35 X X X  X   F/P 

(Marqués, et al., 2012b) 4 836 20 17 X X X  X X  F/P 

(Kruppa, et al., 2013) 1 65,524 17 5   X   X   

(Abellán & Mantas, 2014) 3 793 16 5 X  X   X  A 

(C.-F. Tsai, 2014) 3 793 16 21 X  X  X   F/P 

Mean / counts 1.9 6,167 24 7.8 30 24 18 3 40 10 0 17 

* We report the mean of observations and independent variables for studies that employ multiple data sets. Eight 

studies mix retail and corporate credit data. Table 1 considers the retail data sets only. 

** Abbreviations have the following meaning: ANN=Artificial neural network, SVM=Support vector machine, 

ENS=Ensemble classifier, S-ENS=Selective Ensemble (e.g., Partalas, et al., 2010). 

*** Abbreviations have the following meaning: TM=Threshold metric (e.g., classification error, true positive rate, 

costs, etc.), AUC=Area under receiver operating characteristics curve, H=H-measure (Hand, 2009), 

ST=Statistical hypothesis testing. We use the following codes to report the type of statistical test used for 

classifier comparisons: P=Pairwise comparison (e.g., paired t-test), A=Analysis of variance, F=Friedman test, 

F/P=Friedman test together with post-hoc test (e.g., Demšar, 2006), Q=Press’s Q statistic. 
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Five conclusions emerge from Table 1. First, it is common practice to use a small number of 

data sets (1.9 on average), many of which contain only few cases and/or independent variables. 

This appears inappropriate. Using multiple data sets (e.g., data from different companies) facilitates 

examining the robustness of a scorecard toward environmental conditions. Also, real-world credit 

data sets are typically large and high-dimensional. The data used in classifier comparisons should 

be similar to ensure the external validity of empirical results (e.g., Finlay, 2011; Hand, 2006). 

Second, the number of classifiers per study varies considerably. This can be explained with 

common research setups. Studies that use fewer classifiers typically propose a novel algorithm and 

compare it to some reference methods (e.g., Abellán & Mantas, 2014; Akkoc, 2012; Yang, 2007). 

Studies with several classifiers often pair algorithms with ensemble strategies in a factorial design 

(e.g., Marqués, et al., 2012a; Nanni & Lumini, 2009; Wang, et al., 2011). Both setups have 

limitations. The latter focuses on preselected methods and omits a systematic comparison of several 

state-of-the-art classifiers. Studies that introduce novel classifiers may be over-optimistic because 

i) the developers of a new method are more adept with their approach than external users, and ii) 

the new method may have been tuned more intensively than reference methods (Hand, 2006; 

Thomas, 2010). Independent benchmarks complement the other setups in that they compare many 

classifiers without prior hypotheses which method excels. 

Third, most studies rely on a single performance measure or measures of the same type. In 

general, performance measures split into three types. Those that assess the discriminatory ability 

of the scorecard (e.g., AUC); those that assess the accuracy of the scorecard’s probability 

predictions (e.g., Brier Score) and those that assess the correctness of the scorecards’ categorical 

predictions (e.g., classification error). Different types of indicators embody a different notion of 

classifier performance. Few studies mix evaluation measures from different categories. For 

example, none of the reviewed studies uses the Brier Score to assess the accuracy of probabilistic 

predictions. This misses an important aspect of scorecard performance because financial 

institutions require PD estimates that are not only accurate but also well calibrated. Furthermore, 

no previous study uses the H-measure, although it overcomes conceptual shortcomings of the AUC 

(Hand, 2009). It is thus beneficial to also use consider the H-measure in classifier comparisons and, 

more generally, to assess scorecards with conceptually different performance measures. 

Fourth, statistical hypothesis testing is often neglected or employed inappropriately. Common 

mistakes include using parametric tests (e.g., the t-test) or performing multiple comparisons 

without controlling the family-wise error level (shown by a ‘P’ in the last column of Table 1). The 
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approaches are inappropriate because the assumptions of parametric tests are violated in classifier 

comparisons (Demšar, 2006). Similarly, pairwise comparisons without p-value adjustment increase 

the actual probability of Type-I errors beyond the stated level of  𝛼 (e.g., García, et al., 2010).  

Last, only two studies employ selective ensembles and they use rather simple approaches (Yu, 

et al., 2008; Zhou, et al., 2010). Selective ensembles are an active field of research and have shown 

promising results in many domains (e.g., Partalas, et al., 2010). The lack of a systematic evaluation 

of selective ensembles in credit scoring might thus be an important research gap.  

From the above observations, we conclude that an update of Baesens, et al. (2003) is needed. 

In particular, this study overcomes several of the above issues through i) conducting a large-scale 

comparison of several established and novel classification algorithms including selective ensemble 

methods, ii) using multiple data sets of considerable size, iii) considering several conceptually 

different performance criteria, and iv) using suitable statistical testing procedures. 

3  Classification algorithms for scorecard construction  

We illustrate the development of a credit scorecard in the context of application scoring. Let 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ ℝ𝑚 be an m-dimensional vector with application characteristics, and let 𝑦 ∈

{−1; +1} be a binary variable that distinguishes good (𝑦 = −1) and bad loans (𝑦 = +1). A 

scorecard estimates the (posterior) probability 𝑝(+|𝒙𝑖) that a default event will be observed for 

loan i; where 𝑝(+|𝒙) is a shorthand form of 𝑝(𝑦 = +1|𝒙). To decide on an application, a credit 

analyst compares the estimated default probability to a threshold 𝜏; approving the loan if 𝑝(+|𝒙) ≤

𝜏, and rejecting it otherwise. The problem of estimating 𝑝(+|𝒙) belongs to the field of classification 

analysis (e.g., Hand & Henley, 1997). A scorecard is a classification model that results from 

applying a classification algorithm to a data set 𝐷 = (𝑦𝑖, 𝒙𝑖)𝑖=1
𝑛  of past loans. 

This study compares 41 different classification algorithms. Our selection draws inspiration 

from previous studies (e.g., Baesens, et al., 2003; Finlay, 2011; Verbeke, et al., 2012) and covers 

several different approaches (linear/nonlinear, parametric/non-parametric, etc.). The algorithms 

split into individual and ensemble classifiers. The eventual scorecard consists of a single 

classification model in the first group. Ensemble classifiers integrate the prediction of multiple 

models, called base models. We distinguish homogeneous ensembles, which create the base models 

using the same algorithm, and heterogeneous ensembles, which employ different classifiers. 

Figure 1 illustrates the modeling process using different types of algorithms.  
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Figure 1: Classifier development and evaluation process 

Given the large number of classifiers, it is not possible to describe all algorithms in detail. We 

summarize the methods used here in Table 2, and briefly describe the main algorithmic approaches 

underneath different classifier families. A comprehensive discussion of the 41 classifiers and their 

specific characteristics is available in an online appendix.4  

Note that most algorithms exhibit meta-parameters. Examples include the number of hidden 

nodes in a neural network or the kernel function in a support vector machine (e.g., Baesens, et al., 

2003). Relying on literature recommendations, we define several candidate settings for such meta-

parameters and create one classification model per setting (see Table 2). A careful exploration of 

the meta-parameter space ensures that we obtain a good estimate how well a classifier can perform 

on a given data set. This is important when comparing alternative classifiers. The specific meta-

parameter settings and implementation details of different algorithms are documented in Table A.I 

in the online appendix.5   

                                                 

4 Available at: (URL will be inserted by Elsevier when available) 
5 Available at: (URL will be inserted by Elsevier when available) 
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TABLE 2: CLASSIFICATION ALGORITHMS CONSIDERED IN THE BENCHMARKING STUDY 
 BM selection Classification algorithm Acronym Models 
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Bayesian Network  B-Net 4 

CART CART 10 

Extreme learning machine ELM 120 

Kernalized ELM ELM-K 200 

k-nearest neighbor kNN 22 

J4.8 J4.8 36 

Linear discriminant analysis1 LDA 1 

Linear support vector machine SVM-L 29 

Logistic regression1 LR 1 

Multilayer perceptron artificial neural network ANN 171 

Naive Bayes  NB 1 

Quadratic discriminant analysis1 QDA 1 

Radial basis function neural network  RbfNN 5 

Regularized logistic regression LR-R 27 

SVM with radial basis kernel function SVM- Rbf 300 

Voted perceptron  VP 5 

Classification models from individual classifiers 16 933 

H
o

m
o

g
en

o
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en
se

m
b

le
s 

n.a. 

Alternating decision tree ADT 5 

Bagged decision trees Bag 9 

Bagged MLP BagNN 4 

Boosted decision trees Boost 48 

Logistic model tree LMT 1 

Random forest RF 30 

Rotation forest RotFor 25 

Stochastic gradient boosting SGB 9 

Classification models from homogeneous ensembles 8 131 

H
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n.a. 

Simple average ensemble AvgS 1 

Weighted average ensemble AvgW 1 

Stacking Stack 6 

Static direct 

Complementary measure CompM 4 

Ensemble pruning via reinforcement learning EPVRL 4 

GASEN GASEN 4 

Hill-climbing ensemble selection HCES 12 

HCES with bootstrap sampling HCES-Bag 16 

Matchting pursuit optimization ensemble  MPOE 1 

Top-T ensemble Top-T 12 

Static indirect 

Clustering using compound error CuCE 1 

k-Means clustering  k-Means 1 

Kappa pruning KaPru 4 

Margin distance minimization MDM 4 

Uncertainty weighted accuracy UWA 4 

Dynamic 
Probabilistic model for classifier competence PMCC 1 

k-nearest oracle  kNORA 1 

Classification models from heterogeneous ensembles 17 77 

Overall number of classification algorithms and models 41 1141 
1 To overcome problems associated with multicollinearity in high-dimensional data sets, we use correlation-based 

feature selection (Hall, 2000) to reduce the variable set prior to building a classification model. 
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3.1 Individual classifiers 

Individual classifiers pursue different objectives to develop a (single) classification model. 

Statistical methods either estimate 𝑝(+|𝒙) directly (e.g., logistic regression), or estimate class-

conditional probabilities 𝑝(𝒙|𝑦), which they then convert into posterior probabilities using Bayes 

rule (e.g., discriminant analysis). Semi-parametric methods such as artificial neural networks or 

support vector machines operate in a similar manner, but support different functional forms and 

require the modeler to select one specification a priori. The parameters of the resulting model are 

estimated using nonlinear optimization. Tree-based methods recursively partition a data set so as 

to separate good and bad loans through a sequence of tests (e.g., is loan amount > threshold). This 

produces a set of rules that facilitate assessing new loan applications. The specific covariates and 

threshold values to branch a node follow from minimizing indicators of node impurity such as the 

Gini coefficient or information gain (e.g., Baesens, et al., 2003). 

3.2 Homogeneous ensemble classifiers 

Homogeneous ensemble classifiers pool the predictions of multiple base models. Much 

empirical and theoretical evidence has shown that model combination increases predictive 

accuracy (e.g., Finlay, 2011; Paleologo, et al., 2010). Homogeneous ensemble learners create the 

base models in an independent or dependent manner. For example, the bagging algorithm derives 

independent base models from bootstrap samples of the original data (Breiman, 1996). Boosting 

algorithms, on the other hand, grow an ensemble in a dependent fashion. They iteratively add base 

models that are trained to avoid the errors of the current ensemble (Freund & Schapire, 1996). 

Several extensions of bagging and boosting have been proposed in the literature (e.g., Breiman, 

2001; Friedman, 2002; Rodriguez, et al., 2006). The common denominator of homogeneous 

ensembles is that they develop the base models using the same classification algorithm. 

3.3 Heterogeneous ensemble classifiers 

Heterogeneous ensembles also combine multiple classification models but create these models 

using different classification algorithms. In that sense, they encompass individual classifiers and 

homogeneous ensembles as special cases (see Figure 1). The idea is that different algorithms have 

different views about the same data and can complement each other. Recently, heterogeneous 

ensembles that prune some base models prior to combination have attracted much research (e.g., 

Partalas, et al., 2010). This study pays special attention to such selective ensembles because they 

have received little attention in credit scoring (see Table 1).  
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Generally speaking, ensemble modeling involves two steps, base models development and 

forecast combination. Selective ensembles add a third step. After creating a pool of base models, 

they search the space of available base models for a ‘suitable’ model subset that enters the 

ensemble. An interesting feature of this framework is that the search problem can be approached 

in many different ways. Hence, much research concentrates on developing different ensemble 

selection strategies (e.g., Caruana, et al., 2006; Partalas, et al., 2009). 

Selective ensembles split into static and dynamic approaches, depending how they organize the 

selection step. Static approaches perform the base model search once. Dynamic approaches repeat 

the selection step for every case. More specifically, using the independent variables of a case, they 

compose a tailor-made ensemble from the model library. Dynamic ensemble selection might 

violate regulatory requirements in credit scoring because one would effectively use different 

scorecards for different customers. In view of this, we focus on static methods, but consider two 

dynamic approaches (Ko, et al., 2008; Woloszynski & Kurzynski, 2011) as benchmarks.  

The goal of an ensemble is to predict with high accuracy. To achieve this, many selective 

ensembles chose base models so as to maximize predictive accuracy (e.g., Caruana, et al., 2006). 

We call this a direct approach. Indirect approaches, on the other hand, optimize the diversity among 

base models, which is another determinant of ensemble success (e.g., Partalas, et al., 2010).  

4 Experimental Setup 

4.1 Credit scoring data sets 

The empirical evaluation includes eight retail credit scoring data set. The data sets Australian 

credit (AC) and German credit (GC) from the UCI Library (Lichman, 2013) and the Th02 data set 

from Thomas, et al. (2002) have been used in several previous papers (see Section 2). Three other 

data sets, Bene-1, Bene-2, and UK, also used in Baesens, et al. (2003), were collected from major 

financial institutions in the Benelux and UK, respectively. Note that our data set UK encompasses 

the UK-1, …, UK-4 data sets of Baesens, et al. (2003). We pool the data because it refers to the 

same product and time period. Finally, the data sets PAK and GMC have been provided by two 

financial institutions for the 2010 PAKDD data mining challenge and the “Give me some credit” 

kaggle competition, respectively. 

The data sets include several covariates to develop PD scorecards and a binary response 

variable, which indicates bad loans. The covariates capture information from the application form 
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(e.g., loan amount, interest rate, etc.) and customer information (e.g., demographic, social-graphic, 

and solvency data). Table 3 summarizes some relevant data characteristics.  

TABLE 3: SUMMARY OF CREDIT SCORING DATA SETS 

Name Cases 
Independent 

Variables 

Prior  

default rate 

Nx2 cross-

validation 
Source 

AC 690 14 .445 10 (Lichman, 2013) 

GC 1,000 20 .300 10 (Lichman, 2013) 

Th02 1,225 17 .264 10 (Thomas, et al., 2002)6 

Bene 1 3,123 27 .667 10 (Baesens, et al., 2003) 

Bene 2 7,190 28 .300 5 (Baesens, et al., 2003) 

UK 30,000 14 .040 5 (Baesens, et al., 2003) 

PAK 50,000 37 .261 5 http://sede.neurotech.com.br/PAKDD2010/ 

GMC 150,000 12 .067 3 http://www.kaggle.com/c/GiveMeSomeCredit 

 

The prior default rates of Table 3 represent the fraction of bad loans in the whole data set. For 

example, GC includes 1,000 loans, 300 of which defaulted. Thus, the prior default rate is 0.3.  

It has been shown that class imbalance impedes classification. In particular, a classifier may 

overemphasize the majority class while paying insufficient attention to the minority group. 

Resampling approaches such as under-/oversampling or SMOTE have been proposed as a remedy 

(e.g., Verbeke, et al., 2012). However, we refrain from balancing classes for three reasons. First, 

our objective is to examine relative performance differences across different classifiers. If class 

imbalance hurts all classifiers in the same way, it would affect the absolute level of observed 

performance but not the relative performance differences among classifiers. If on the other hand 

some classifiers are particularly robust toward class imbalance, then such trait is a relevant 

indicator of the classifier’ merit. Resampling would mask differences associated with imbalance 

robustness/sensitivity. Second, it is debatable how prevalent resampling is in the corporate 

landscape. This also suggests that it is preferable to give an unbiased picture of the performance of 

alternative classification algorithms. Last, Table 3 reveals that most of our data sets exhibit a 

moderate imbalance. We observe a more severe imbalance for two larger data sets (UK and GMC). 

Due to their size, these data sets still include a sizeable number of defaults, so that classification 

algorithms should be able to discern default patterns. 

                                                 

6 An anonymous referee indicated that some editions of the book may not include a CD with the data set. In such case, 

we are happy to make the data available upon request. 
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4.2 Performance indicators 

We consider six indicators to measure the predictive accuracy of a scorecard: the percentage 

correctly classified (PCC), the AUC, a partial Gini index (PG), the H-measure, the Brier Score 

(BS), and the Kolmogorov-Smirnov statistic (KS). We chose these indicators for two reasons; they 

are popular in credit scoring and cover the three types of measures (see Section 2). The PCC and 

KS assess the correctness of categorical predictions, the AUC, H-measure and PG assess 

discriminatory ability, and the BS assesses the accuracy of probability predictions. For all 

measures, we calculate accuracy on the basis of the estimated 𝑝(+|𝒙). Since some classifiers do 

not produce probabilistic predictions, we calibrate scorecard estimates using Platt’s (2000) method. 

The PCC is the fraction of correctly classified observations. It requires discrete class 

predictions, which we obtain by comparing 𝑝(+|𝒙) to a threshold 𝜏, and assigning 𝒙 to the positive 

class if 𝑝(+|𝒙)  > 𝜏, and the negative class otherwise. In practice, appropriate choices of 𝜏 depend 

on the costs associated with granting credit to defaulting customers or rejecting good customers 

(e.g., Hand, 2005). Lacking such information, we compute 𝜏 (for every data set) such that the 

fraction of examples classified as positive equals the fraction of positives in the training set. 

The BS is the mean-squared error between 𝑝(+|𝒙) and a zero-one response variable (e.g., 

Hernández-Orallo, et al., 2011). The KS is also based on 𝑝(+|𝒙), but considers a fixed reference 

point. In particular, the KS is the maximum difference between the cumulative score distributions 

of positive and negative cases (e.g., Thomas, et al., 2002). The AUC equals the probability that a 

randomly chosen positive case receives a score higher than a randomly chosen negative case.  

The PCC and the KS embody a local scorecard assessment. They measure accuracy relative to 

a single reference point (i.e.,  or the KS point). The AUC and the BS perform a global assessment 

in that they consider the whole score distribution. The former uses relative (to other cases) score 

ranks. The latter considers absolute score values. A global perspective assumes implicitly that all 

thresholds are equally probable. This is not plausible in credit scoring (e.g., Hand, 2005). 

Considering that only applications with a score below the threshold will be accepted, the accuracy 

of a scorecard in the lower tail of the score distribution is particularly important. The PG 

concentrates on one part of the score distribution 𝑝(+|𝒙)  ≤ 𝑏 (Pundir & Seshadri, 2012). We 

chose b=0.4 and compute the Gini index among the corresponding cases. 

The H-measure gives a normalized classifier assessment based on expected minimum 

misclassification loss; ranging from zero to one for a random and perfect classifier, respectively. 
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Hand (2009) shows that the AUC suffers some deficiencies, which the H-measure overcomes. In 

particular, the AUC assumes different cost distributions for different classifiers. Instead, the 

distribution of misclassification costs should depend on the classification problem, and not on the 

classifier (Hand & Anagnostopoulos, 2013). Therefore, the H-measure uses a beta-distribution7 to 

specify the relative severities of classification errors in a way that is consistent across classifiers.   

Given that the class distributions in our data show some imbalance (see Table 3), it is important 

to reason whether and how class skew affects the performance measures. The AUC is not affected 

by class imbalance (Fawcett, 2006). This feature extends to the other ranking measures (i.e., the 

PG and the H-measure), because these ground on the same principles as the AUC. The BS and the 

KS are based on the score distribution of a classifier. As such, they are robust toward class skew in 

general (e.g., Gong & Huang, 2012). However, class imbalance could exert an indirect effect in 

that it might bias the scores that the classifier produces. Finally, using the PCC in the presence of 

class imbalance is often discouraged. A common critic is that PCC reports high performance for 

naïve classifiers, which always predict the majority class. However, we argue that this critic is 

misleading in that it misses the important role of the classification threshold A proper choice of  

for example according to Bayes rule, reflects the prior probabilities of the classes and thereby 

mitigates the naïve classifier problem; at least to some extent.  

For the reasons outlined above, we consider each of the six performance measures a viable 

approach for classifier comparisons. In addition, further protection from class imbalance biasing 

the benchmarking results comes from our approach to calibrate predictions prior to assessing 

accuracy (see above). Calibration ensures that we compare different classifiers on a common 

ground. More specifically, calibration sanitizes a classifier’s score distribution and thus prevents 

imbalance from indirectly affecting the BS or the KS. For the PCC, we set  such that the fraction 

of cases classified as positive is equal to the prior default probability in the training set. With these 

strategies in place, we argue that the residual effect of class imbalance on the observed results 

comes directly from different algorithms being more or less sensitive toward imbalance. Such 

effects are useful to observe as class imbalance is a common phenomenon in credit scoring. 

4.3 Data preprocessing and partitioning 

We first impute missing values using a mean/mode replacement for numeric/nominal attributes. 

Next we create two versions of each data set; one which mixes nominal and numeric variables and 

                                                 

7 We use a beta-distribution with parameters 𝛼 = 𝛽 = 2. 
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one where all nominal variables are converted to numbers using weight-of-evidence coding (e.g., 

Thomas, et al., 2002). This is because some classification algorithms are well suited to work with 

data of mixed scaling level (e.g., classification trees and Bayes classifiers), whereas others (e.g., 

ANNs and SVMs) benefit from encoding nominal variables (e.g., Crone, et al., 2006).  

An important pre-processing decision concerns data partitioning (see Figure 1). We use Nx2-

fold cross-validation (Dietterich, 1998). This involves i) randomly splitting a data set in half, ii) 

using the first and second half for model building and evaluation, respectively, iii) switching the 

roles of the two partitions, and iv) repeating the two-fold validation N times. Compared to using a 

fixed training and test set, multiple repetitions of two-fold cross-validation give more robust results, 

especially when working with small data sets. Thus, we set N depending on data set size (Table 3). 

This is also to ensure computational feasibility.  

Recall that we develop multiple classification models with one classification algorithm. These 

models differ in terms of their meta-parameter settings (see Table 2). Thus, prior to comparing 

different classifiers, we identify the best meta-parameter configuration for each classification 

algorithm. This requires auxiliary validation data. We also require validation data to prune base 

models in selective ensemble algorithms. To obtain such validation data, we perform an additional 

(internal) five-fold cross-validation on every training set of the (outer) Nx2-cross-validation loop 

(Caruana, et al., 2006). The classification models selected in this stage enter the actual benchmark, 

where we compare the best models from different algorithms in the outer Nx2 cross-validation 

loop. Given that model performance depends on the specific accuracy indicator employed, we 

repeat the selection of the best model per classifier for every performance measure. This way, we 

tune every classifier to the specific performance measure under consideration and ensure that the 

algorithm predicts as accurately as possible; given the predefined candidate settings for the meta-

parameters (see Table A.1 in the online appendix for details8). 

5 Empirical Results 

The empirical results consist of performance estimates of the 41 classifiers across the eight 

credit scoring data sets in terms of the six performance measures. Interested readers find these raw 

results in Table A.2 – A.7 in the online appendix9. Below, we report aggregated results.  

                                                 

8 Available at: (URL will be inserted by Elsevier when available) 
9 Available online at: (URL will be inserted by Elsevier when available). 
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5.1 Benchmarking results  

In the core benchmark, we rank classifier performance across data sets and accuracy indicators. 

For example, the classifier giving the highest AUC on the AC data sets receives a rank of one, the 

second best classifier a rank of two, and the worst classifier a rank of 41.  

Table 4 shows the average (across data sets) ranks per accuracy indicator. The second to last 

column of Table 4 gives a grand average (AvgR), which we compute as the mean classifier rank 

across performance measures. The last column translates the AvgR into a high score position (e.g., 

the overall best performing classifier receives the first place, the second best place two, etc.)  

The average ranks of Table 4 are also the basis of a statistical analysis of model performance. 

In particular, we employ a nonparametric testing framework to compare the classifiers to a control 

classifier (Demšar, 2006). The control classifier is the best performing classifier per performance 

measure. The last row of Table 4 depicts the test statistic and p-value (in brackets) of a Friedman 

test of the null-hypothesis that all classifier ranks are equal. Given that we can reject the null-

hypothesis for all performance measures (p < .000), we proceed with pairwise comparisons of a 

classifier to the control classifier using the Rom-procedure for p-value adjustment (García, et al., 

2010). Table 4 depicts the p-values corresponding to these pairwise comparisons in brackets. An 

underscore indicates that we can reject the null-hypothesis of a classifier performing equal to the 

control classifier (i.e., p < .05).  

A number of conclusions emerge from Table 4. First, it emphasizes the need to update Baesens, 

et al. (2003) who focused on individual classifiers. With an average rank of 18.8, the best individual 

classifier (ANN) performs only midfield. This evidences notable advancements in predictive 

learning since 2003. Similar to Baesens, et al. (2003), we observe ANN to perform slightly better 

than the industry standard LR (AvgR 19.3). Some authors have taken the similarity between LR 

and advanced methods such as ANN as evidence that complex classifiers do not offer much 

advantage over simpler methods (e.g., Finlay, 2009). We do not agree with this view. Our results 

suggest that comparisons among individual classifiers are too narrow to shed light on the value of 

advanced classifiers. For example, the p-values of the pairwise comparisons indicate that the 

individual classifiers predict significantly less accurately than the best classifier. This shows that 

advanced methods can outperform simple classifiers and LR in particular. 
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TABLE 4: AVERAGE CLASSIFIER RANKS ACROSS DATA SETS FOR DIFFERENT PERFORMANCE MEASURES 

Classifier 

family 

BM 

selection 
Classifier AUC PCC BS H PG KS AvgR 

High 

score 

In
d

iv
id

u
al

 c
la

ss
if

ie
r 

n
.a

. 

ANN 16.2 (.000) 18.6 (.000) 27.5 (.000) 17.9 (.000) 14.9 (.020) 17.6 (.000) 18.8 14 

B-Net 27.8 (.000) 26.8 (.000) 20.4 (.000) 28.3 (.000) 23.7 (.000) 26.2 (.000) 25.5 30 

CART 36.5 (.000) 32.8 (.000) 35.9 (.000) 36.3 (.000) 25.7 (.000) 34.1 (.000) 33.6 38 

ELM 30.1 (.000) 29.8 (.000) 35.9 (.000) 30.6 (.000) 27.0 (.000) 27.9 (.000) 30.2 36 

ELM-K 20.6 (.000) 19.9 (.000) 36.8 (.000) 19.0 (.000) 23.0 (.000) 20.6 (.000) 23.3 26 

J4.8 36.9 (.000) 34.2 (.000) 34.3 (.000) 35.4 (.000) 35.7 (.000) 32.5 (.000) 34.8 39 

k-NN 29.3 (.000) 30.1 (.000) 27.2 (.000) 30.0 (.000) 26.6 (.000) 30.5 (.000) 29.0 34 

LDA 21.8 (.000) 20.9 (.000) 16.7 (.000) 20.5 (.000) 24.8 (.000) 21.9 (.000) 21.1 20 

LR 20.1 (.000) 19.9 (.000) 13.3 (.000) 19.0 (.000) 23.1 (.000) 20.4 (.000) 19.3 16 

LR-R 22.5 (.000) 22.0 (.000) 34.6 (.000) 22.5 (.000) 21.4 (.000) 21.4 (.000) 24.1 28 

NB 30.1 (.000) 29.9 (.000) 23.8 (.000) 29.3 (.000) 22.2 (.000) 29.1 (.000) 27.4 33 

RbfNN 31.4 (.000) 31.7 (.000) 28.0 (.000) 31.9 (.000) 24.1 (.000) 31.7 (.000) 29.8 35 

QDA 27.0 (.000) 26.4 (.000) 22.6 (.000) 26.4 (.000) 23.6 (.000) 27.3 (.000) 25.5 31 

SVM-L 21.7 (.000) 23.0 (.000) 31.8 (.000) 22.6 (.000) 19.7 (.000) 21.7 (.000) 23.4 27 

SVM-Rbf 20.5 (.000) 22.2 (.000) 31.8 (.000) 22.0 (.000) 21.7 (.000) 21.3 (.000) 23.2 25 

VP 37.8 (.000) 36.4 (.000) 31.4 (.000) 37.8 (.000) 34.6 (.000) 37.6 (.000) 35.9 40 

H
o

m
o

g
en

eo
u

s 
en

se
m

b
le

 

n
.a

. 

ADT 22.0 (.000) 18.8 (.000) 19.0 (.000) 21.7 (.000) 19.4 (.000) 20.0 (.000) 20.2 17 

Bag 25.1 (.000) 22.6 (.000) 18.3 (.000) 23.5 (.000) 25.2 (.000) 24.7 (.000) 23.2 24 

BagNN 15.4 (.000) 17.3 (.000) 12.6 (.000) 16.5 (.000) 15.0 (.020) 16.6 (.000) 15.6 13 

Boost 16.9 (.000) 16.7 (.000) 25.2 (.000) 18.2 (.000) 19.2 (.000) 18.1 (.000) 19.0 15 

LMT 22.9 (.000) 23.4 (.000) 15.6 (.000) 25.1 (.000) 20.1 (.000) 22.9 (.000) 21.7 22 

RF 14.7 (.000) 14.3 (.039) 12.6 (.000) 12.8 (.004) 19.4 (.000) 15.3 (.000) 14.8 12 

RotFor 22.8 (.000) 21.9 (.000) 23.0 (.000) 21.1 (.000) 21.6 (.000) 22.9 (.000) 22.2 23 

SGB 21.0 (.000) 19.9 (.000) 20.8 (.000) 21.2 (.000) 22.5 (.000) 20.8 (.000) 21.0 19 
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H
et
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o

g
en

eo
u
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en

se
m

b
le

 

n
o

n
e 

AvgS 8.7 (.795) 10.8 (.812) 6.6 (.628) 9.2 (.556) 12.0 (.420) 9.2 (.513) 9.4 4 

AvgW 7.3 ( / ) 12.6 (.578) 7.9 (.628) 7.3 ( / ) 10.2 ( / ) 7.9 ( / ) 8.9 2 

Stack 30.6 (.000) 26.6 (.000) 37.4 (.000) 29.6 (.000) 30.7 (.000) 29.5 (.000) 30.7 37 

S
ta

ti
c 

d
ir

ec
t 

 
CompM 18.3 (.000) 15.3 (.004) 36.5 (.000) 17.2 (.000) 20.0 (.000) 18.2 (.000) 20.9 18 

EPVRL 8.2 (.795) 10.8 (.812) 6.8 (.628) 9.3 (.556) 13.7 (.125) 11.0 (.226) 10.0 5 

GASEN 8.6 (.795) 10.6 (.812) 6.5 (.628) 9.0 (.556) 11.4 (.420) 9.0 (.513) 9.2 3 

HCES 10.9 (.191) 11.7 (.812) 7.5 (.628) 10.2 (.449) 14.8 (.020) 13.1 (.010) 11.4 9 

HCES-Bag 7.7 (.795) 9.7 ( / ) 5.8 ( / ) 8.2 (.559) 12.5 (.420) 9.2 (.513) 8.8 1 

MPOE 9.9 (.637) 10.1 (.812) 9.4 (.126) 9.9 (.524) 15.1 (.018) 10.9 (.226) 10.9 6 

Top-T 8.7 (.795) 11.3 (.812) 10.0 (.055) 9.8 (.524) 14.8 (.020) 12.3 (.048) 11.2 8 

S
ta

ti
c 

in
d

ir
ec

t CuCE 10.0 (.637) 12.0 (.812) 10.1 (.050) 10.8 (.220) 12.1 (.420) 11.2 (.226) 11.0 7 

k-Means 12.6 (.008) 13.6 (.118) 9.8 (.073) 11.2 (.109) 14.9 (.020) 12.0 (.077) 12.4 10 

KaPru 27.7 (.000) 25.3 (.000) 15.7 (.000) 28.1 (.000) 25.1 (.000) 25.4 (.000) 24.5 29 

MDM 24.4 (.000) 24.0 (.000) 11.6 (.002) 23.7 (.000) 21.7 (.000) 23.7 (.000) 21.5 21 

UWA 9.3 (.795) 11.8 (.812) 19.5 (.000) 10.1 (.453) 14.3 (.049) 10.9 (.226) 12.7 11 

D
y

n
a-

m
ic

 

kNORA 27.1 (.000) 26.7 (.000) 28.1 (.000) 28.1 (.000) 23.4 (.000) 25.9 (.000) 26.6 32 

PMCC 40.1 (.000) 38.6 (.000) 32.9 (.000) 39.5 (.000) 39.9 (.000) 38.8 (.000) 38.3 41 

Friedman 𝜒40
2   2775.1 (.000) 2076.3 (.000) 3514.4 (.000) 2671.7 (.000) 1462.3 (.000) 2202.6 (.000)   

Bold face indicates the best classifier (lowest average rank) per performance measure. Italic script highlights classifiers that perform best in their family (e.g., best 

individual classifier, best homogeneous ensemble, etc.). Values in brackets give the adjusted p-value corresponding to a pairwise comparison of the row classifier to 

the best classifier (per performance measure). An underscore indicates that p-values are significant at the 5% level. To account for the total number of pairwise 

comparisons, we adjust p-values using the Rom-procedure (García, et al., 2010). Prior to conducting multiple comparisons, we employ the Friedman test to verify 

that at least two classifiers perform significantly different (e.g., Demšar, 2006). The last row shows the corresponding 𝜒2 and p-values.  
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On the other hand, a second result of Table 4 is that sophisticated methods do not necessarily 

improve accuracy. More specifically, Table 4 casts doubt on some of the latest attempts to improve 

existing algorithms. For example, ELMs and RotFor extend classical ANNs and the RF classifier, 

respectively (Guang-Bin, et al., 2006; Rodriguez, et al., 2006). According to Table 4, neither of the 

augmented classifiers improves upon its ancestor. Additional evidence against the merit of 

sophisticated classifiers comes from the results of dynamic ensemble selection algorithms. 

Arguably, dynamic ensembles are the most complex classifiers in the study. However, no matter 

what performance measure we consider, they predict a lot less accurately than simpler alternatives 

including LR and other well-known techniques.  

Given somewhat contradictory signals as to the value of advanced classifiers, our results 

suggest that the complexity and/or recency of a classifier are misleading indicators of its prediction 

performance. Instead, there seem to be some specific approaches that work well; at least for the 

credit scoring data sets considered here. Identifying these ‘nuggets’ among the myriad of methods 

is an important objective and contribution of classifier benchmarks.  

In this sense, a third result of Table 4 is that it confirms and extends previous findings of Finlay 

(2011). We confirm Finlay (2011) in that we also observe multiple classifier architectures to predict 

credit risk with high accuracy. We also extend his study by considering selective ensemble 

methods, and find some evidence that such methods are effective in credit scoring. Overall, 

heterogeneous ensembles secure the first eleven ranks. The strongest competitor outside this family 

is RF with an average rank of 14.8 (corresponding to place 12). RF is often credited as a very strong 

classifier (e.g., Brown & Mues, 2012; Kruppa, et al., 2013). We also observe RF to outperform 

several alternative methods (including SVMs, ANNs and boosting). However, a comparison to 

heterogeneous ensemble classifiers – not part of previous studies and explicitly requested by Finlay 

(2011, p. 377) – reveals that such approaches further improve on RF. For example, the p-values in 

Table 4 show that RF predicts significantly less accurately than the best classifier.  

Finally, Table 4 also facilitates some conclusions related to the relative effectiveness of 

different types of heterogeneous ensembles. First, we observe that the very simple approach to 

combine all base model predictions through (unweighted) averaging performs competitive. 

Overall, the AvgS ensemble gives the fourth-best classifier in the comparison. Moreover, AvgS 

predicts never significantly less accurately than the best classifier. Second, we find some evidence 

that combining base models using a weighted average (AvgW) might be even more promising. 

This approach produces a very strong classifier with second best overall performance. Third, we 



20 

 

observe mixed results for selective ensembles classifiers. Direct approaches achieve ranks in the 

top-10. In many pairwise comparisons, we cannot rejecting the null-hypothesis that a direct 

selective ensemble and the best classifier perform akin. The overall best classifier in the study, 

HCES-Bag (Caruana, et al., 2006), also belongs to the family of direct selective ensembles. Recall 

that direct approaches select ensemble members so as to maximize predictive accuracy (see the 

online appendix for details10). Consequently, they compose different ensembles for different 

performance measures from the same base model library. In a similar way, using different 

performance measures leads to different base model weights in the AvgW ensemble. On the other 

hand, performance-measure-agnostic ensemble strategies tend to predict less accurately. 

Exceptions to this tendency exist, for example the high performance of AvgS or the relatively poor 

performance of CompM. However, Table 4 suggests an overall trend that the ability to account 

explicitly for an externally given performance measure is important in credit scoring. 

5.2 Comparison of selected scoring techniques 

To complement the previous comparison of several classifiers to a control classifier (i.e., the 

best classifier per performance measure), this section examines to what extent four selected 

classifiers are statistically different. In particular, we concentrate on LR, ANN, RF, and HCES-

Bag. We select LR for its popularity in credit scoring, and the other three for performing best in 

their category (best individual classifier, best homogeneous/heterogeneous ensemble). 

Table 5 reports the results of a full pairwise comparison of these classifiers. The second column 

reports their average ranks across data sets and performance measures, and the last row the results 

of the Friedman test. Based on the observed 𝜒3
2 = 216.2, we reject the null-hypothesis that the 

average ranks are equal (p < .000), and proceed with pairwise comparisons. For each pair of 

classifiers, i and j, we compute (Demšar, 2006): 

𝑧 = 𝑅𝑖 − 𝑅𝑗 √
𝑘(𝑘 + 1)

6𝑁
⁄  (1) 

where Ri and Rj are the average ranks of classifier i and j, respectively, k (=4) denotes the 

number of classifiers, and N (=8) the number of data sets used in the comparison. We convert the 

z-values into probabilities using the standard normal distribution, and adjust the resulting p-values 

for the overall number of comparisons using the Bergmann-Hommel procedure (García & Herrera, 

                                                 

10 Available at: (URL will be inserted by Elsevier when available) 
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2008). Based on the results shown in Table 5, we conclude that i) LR predicts significantly less 

accurately than any of the other classifiers, that ii) HCES-Bag predicts significantly more 

accurately than any of the other classifiers, and that iii) the empirical results do not provide 

sufficient evidence to conclude whether RF and ANN perform significantly different. 

TABLE 5: FULL-PAIRWISE COMPARISON OF SELECTED CLASSIFIERS 

  
AvgR 

Adjusted p-values of pairwise comparisons 

  ANN LR RF 

ANN 2.44    

LR 3.02 .000   

RF 2.53 .167 .000  

HCES-Bag 2.01 .000 .000 .000 

Friedman 𝜒3
2 216.2 .000     

 

5.3 Financial implications of using different scorecards 

Previous results have established that certain classifiers predict significantly more accurately 

than alternative classifiers. An important managerial question is to what degree accuracy 

improvements add to the bottom line. In the following, we strive to shed some light on this question 

concentrating once more on the four classifiers LR, ANN, RF, and HCES-Bag. 

Estimating scorecard profitability at the account level is difficult for several reasons (e.g., 

Finlay, 2009). For example, the time of a default event plays an important role when estimating 

returns and EAD. To forecast time to default, sophisticated profit estimation approaches use 

survival analysis or Markov processes (e.g., Andreeva, 2006; So & Thomas, 2011). Estimates of 

EAD and LGD are also required when using sophisticated profit measures for binary scorecards 

(e.g., Verbraken, et al., 2014). In benchmarking experiments, where multiple data sets are 

employed, it is often difficult to obtain estimates of these parameters for every individual data set. 

In particular, our data sets lack specific information related to time, LGD or EAD. Therefore, we 

employ a simpler approach to estimate scorecard profitability. In particular, we examine the costs 

that follow from classification errors (e.g., Viaene & Dedene, 2004). This approach is commonly 

used in the literature (e.g., Akkoc, 2012; Sinha & Zhao, 2008) and can, at least, give a rough 

estimate of the financial rewards that follow from more accurate scorecards.  

We calculate the misclassification costs of a scorecard as a weighted sum of the false positive 

rate (FPR; i.e., fraction of good risks classified as bad) and the false negative rate (FNR; i.e., 
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fraction of bad risks classified as good), weighted with their corresponding decision costs. Let 

𝐶(+|−) be the opportunity costs that result from denying credit to a good risk. Similarly, let 

𝐶(−|+) be the costs of granting credit to a bad risk (e.g., net present value of EAD*LGD – interests 

paid prior to default).  Then, we can calculate the error costs of a scorecard, C(s), as:  

𝐶(𝑠) = 𝐶(+|−) ∗ FPR + 𝐶(−|+) ∗ FNR (2) 

Given that a scorecard produces probability estimates 𝑝(+|𝒙), FPR and FNR depend on the 

threshold 𝜏. Bayesian decision theory suggests that an optimal threshold depends on the prior 

probabilities of good and bad risks and their corresponding misclassification costs (e.g., Viaene & 

Dedene, 2004). To cover different scenarios, we consider 25 cost ratios in the interval 

𝐶(+|−): 𝐶(−|+) = 1: 2, … , 1: 50, always assuming that it is more costly to grant credit to a bad 

risk than rejecting a good application (e.g., Thomas, et al., 2002). Note that fixing 𝐶(+|−) at one 

does not constrain generality (e.g., Hernández-Orallo, et al., 2011). For each cost setting and credit 

scoring data set, we i) compute the misclassification costs of a scorecard from (2), ii) estimate 

expected error costs through averaging over data sets, and iii) normalize costs such that they 

represent percentage improvements compared to LR. Figure 2 depicts the corresponding results. 

 
Figure 2: Expected percentage reduction in error costs compared to LR across different settings 

for 𝐶(−|+) assuming 𝐶(+|−) = 1 and using a Bayes optimal threshold.  

Figure 2 reveals that the considered classifiers can substantially reduce the error costs of a LR-

based scorecard. For example, the average improvements (across all cost settings) of ANN, RF, 

and HCES-Bag over LR are, respectively, 3.4%, 5.7%, and 4.8%. Improvements of multiple 

percent are managerial meaningful, especially when considering the large number of decisions that 

scorecards support in the financial industry. Another result is that the most accurate classifier, 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50

C
o

st
 r

e
d

u
ct

io
n

 c
o

m
p

ar
e

d
 t

o
 L

R

C(-|+)

ANN

RF

HCES-Bag



23 

 

HCES-Bag loses its advantage when the cost of misclassifying bad credit risks increases. This 

shows that the link between (statistical) accuracy and business value is far from perfect. The most 

accurate classifier does not necessarily give the most profitable scorecard. 

RF and ANN achieve a larger cost reduction than HCES-Bag when misclassifying a bad risk is 

eleven and eighteen times more expensive than the opposite error, respectively. Using a Bayes-

optimal threshold, higher costs of misclassifying a bad risk lower the threshold and thus the 

acceptance rate. Hence, incorrect rejections of actually good risks become the main determinant of 

the error costs of a scorecard. This suggests that the partial superiority of RF (and ANN) over 

HCES-Bag results from the latter producing too conservative predictions for clients with low credit 

risk. It could be interesting to examine whether this pattern persists if HCES-Bag were setup to 

minimize error costs directly (i.e., within ensemble selection). We leave this test to future research.  

5.4 Correspondence of classifier performance across performance measures 

Given that many previous studies have used a small number of accuracy indicators to assess 

retail scorecards, it is interesting to examine the dependency of observed results on the chosen 

indicator. Moreover, such an analysis can add some empirical evidence to the recent debate whether 

and when the AUC is a suitable measure to compare different classifiers and retail scorecards in 

particular (e.g., Hand & Anagnostopoulos, 2013; Hernández-Orallo, et al., 2011).  

Table 6 depicts the agreement of classifier rankings across accuracy indicators using Kendall’s 

rank correlation coefficient. With respect to the AUC, we find that empirical results do not differ 

much between this measure and the H-measure (correlation: .93). Thus, if a credit analyst were to 

choose a scorecard among alternatives, the AUC and the H-measure would typically give similar 

recommendations. In fact, Table 6 supports generalizing this view even further. Pairwise 

correlations around .90 indicate high similarity between classifier ranks in terms of the KS and the 

PCC with those of the AUC and the H-measure. Despite substantial conceptual differences between 

these measures (e.g., local versus global assessment; see Section 4.3), they rank classifiers rather 

similarly. Therefore, it appears sufficient to use one of them in empirical classifier comparisons.  

A different conclusion emerges for the BS and the PG. Using the same measurement approach 

as the AUC, the PG emphasizes the accuracy of a scorecard in the most important segment of the 

score distribution. Our results confirm that this captures a different aspect of scorecard 

performance. For example, the AUC is notably less correlated with the PG than with the H-

measure. However, we observe the smallest correlation between the BS and the other measures. 

The BS is the only indicator that assesses the accuracy of probability estimates. Table 6 reveals 
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that this notion of performance contributes useful information to a classifier comparison over and 

above those captured in the AUC, PCC, H-measure, and KS.  

Based on Table 6 we recommend that future studies use at least three performance measures: 

the AUC, the PG, and the BS. One could replace the AUC with the H-measure; and, to lesser 

degree, with the PCC or the KS. The PG and the BS offer an additional angle from which to 

examine the predictive accuracy and should routinely be part of scorecard comparisons.  

TABLE 6: CORRELATION OF CLASSIFIER RANKINGS ACROSS PERFORMANCE MEASURES  

 AUC PCC BS H PG KS 

AUC 1.00      

PCC .88 1.00     

BS .54 .54 1.00    

H .93 .91 .56 1.00   

PG .79 .72 .51 .76 1.00  

KS .92 .89 .54 .91 .79 1.00 

 

6 Conclusions 

We set out to update Baesens, et al. (2003) and to explore the relative effectiveness of 

alternative classification algorithms in retail credit scoring. To that end, we compared 41 classifiers 

in terms of six performance measures across eight real-world credit scoring data sets. Our results 

suggest that several classifiers predict credit risk significantly more accurately than the industry 

standard LR. Especially heterogeneous ensembles classifiers perform well. We also provide some 

evidence that more accurate scorecards facilitate sizeable financial returns. Finally, we show that 

several common performance measures give similar signals as to which scorecard is most effective, 

and recommend the use of two rarely employed measures that contribute additional information.  

Our study consolidates previous work in PD modeling and provides a holistic picture of the 

state-of-the-art in predictive modeling for retail scorecard development. This has implications for 

academia and industry. From an academic point of view, an important question is whether efforts 

into the development of novel scoring techniques are worthwhile. Our study provides some support 

but also raises concerns. We find some advanced methods to perform extremely well on our credit 

scoring data sets, but never observe the most recent classifiers to excel. ANNs perform better than 

ELMs, RF better than RotFor, and dynamic selective ensembles worse than almost all other 

classifiers. This may indicate that progress in the field has stalled (e.g., Hand, 2006), and that the 
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focus of attention should move from PD models to other modeling problems in the credit industry 

including, data quality, scorecard recalibration, variable selection and LGD/EAD modeling.  

On the other hand, we do not expect the desire to develop better, more accurate scorecards to 

end any time soon. Likely, future papers will propose novel classifiers and the “search for the silver 

bullet” (Thomas, 2010) will continue. An implication of our study is that such efforts must be 

accompanied by a rigorous assessment of the proposed method vis-à-vis challenging benchmarks. 

In particular, we recommend RF as benchmark against which to compare new classification 

algorithms. HCES-Bag might be even more difficult to outperform, but is not as easily available in 

standard software. Furthermore, we caution against the practice to compare a newly proposed 

classifier to LR (or some other individual classifier) only, which we still observe in the literature. 

LR is the industry standard and it is useful to examine how a new classifier compares to this 

approach. However, given the state-of-the-art, outperforming LR can no longer be accepted as a 

signal of methodological advancement. 

An important question to be answered in future research is whether certain characteristics of a 

classification algorithm and a data set facilitate appraising the classifier’s suitability for this data 

set a priori. We have identified classifiers that work well for PD modeling, but cannot explain their 

success. Nonetheless, our benchmark can be seen as a first step toward gaining explanatory insight 

in that it provides an empirical fundament for meta-analytic research. For example, gathering 

features of individual classification algorithms and characteristics of the credit scoring data sets, 

and using these as independent variables in a regression framework to explain classifier 

performance (as dependent variable) could help to uncover the underlying drivers of classifier 

efficacy in credit scoring. We believe this is a fruitful avenue for future research.   

From a managerial perspective, it is important to reason whether the superior performance that 

we observe for some classifiers generalizes to real-world applications, and to what extent their 

adoption would increase returns. These questions are much debated in the literature; Finlay (2011) 

provides an insightful summary. From this study, we can add some points to the discussion.  

First, we show that advancements in computer power, classifier learning, and statistical testing 

facilitate rigorous classifier comparisons. This does not guarantee external validity. Several 

concerns why laboratory experiments (as this one) may overestimate the advantage of advanced 

classifiers remain valid; and might be insurmountable (e.g., Hand, 2006). However, experimental 

designs with several cross-validation repetitions, different performance measures, and appropriate 

multiple-comparison procedures overcome some limitations of previous studies and, thereby, 
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provide stronger support that advanced classifiers have the potential to increase predictive accuracy 

not only in the laboratory but also in industry.  

Second, our results facilitate some remarks related to the organizational acceptance of advanced 

classifiers. In particular, a lack of acceptance can result from concerns that much expertise is 

needed to handle such classifiers. Our results show that this is not the case. The performance 

differences that we observe result from a fully-automatic modeling approach. Consequently, some 

advanced classifiers are well-prepared to predict significantly more accurately than simpler 

alternatives without manual intervention. Moreover, the current interest in Big Data and related 

concepts indicates a shift toward a data-driven decision making paradigm among managers. This 

might further increase the acceptability of advanced scoring methods. 

Finally, the business value of more accurate scorecard predictions is a crucial issue. Our 

preliminary simulation provides some evidence that the “higher (statistical) accuracy equals more 

profit” equation might hold. Furthermore, retail scorecards support a vast number of business 

decisions. Consider for example the credit card industry or scoring tasks in online settings (peer-

to-peer lending, offering installment plans in e-commerce, etc.). In such environments, one-time 

investments (e.g., for hardware, software, and user training) into a more elaborate scoring technique 

will pay-off in the long run when small but significant accuracy improvements are multiplied by 

hundreds of thousands of scorecard applications. The difficulties of introducing advanced scoring 

methods including ensemble models are more psychological than business related. Using a large 

number of models, a significant minority of which give contradictory answers is counterintuitive 

to many business leaders. Such organizations will need to experiment fully before accepting a 

change from the historic industry standard procedures. 

Regulatory frameworks and organizational acceptance constrain and sometimes prohibit the 

use of advance scoring techniques today; at least for classic credit products. However, considering 

the current interest in data-centric decision aids and the richness of online-mediated forms of credit 

granting, we foresee a bright future for advanced scoring methods in credit scoring.  
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