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Abstract mathematical representations such as integer polyhedra have shown to be useful to precisely
analyze computational kernels and to express complex loop transformations. Such transformations rely on
Abstract Syntax Tree (AST) generators to convert the mathematical representation back to an imperative
program. Such generic AST generators avoid the need to resort to transformation-specific code generators,
which may be very costly or technically difficult to develop as transformations become more complex. Ex-
isting AST generators have proven their effectiveness, but they hit limitations in more complex scenarios.
Specifically, (1) they do not support or may fail to generate control flow for complex transformations using
piecewise schedules or mappings involving modulo arithmetic; (2) they offer limited support for the spe-
cialization of the generated code exposing compact, straightline, vectorizable kernels with high arithmetic
intensity necessary to exploit the peak performance of modern hardware; (3) they offer no support for mem-
ory layout transformations; (4) they provide insufficient control over the AST generation strategy, preventing
their application to complex domain-specific optimizations.

We present a new AST generation approach that extends classical polyhedral scanning to the full general-
ity of Presburger arithmetic, including existentially quantified variables and piecewise schedules, and intro-
duce new optimizations for the detection of components and shifted strides. Not limiting ourselves to control
flow generation, we expose functionality to generate AST expressions from arbitrary piecewise quasi-affine
expressions which enables the use of our AST generator for data-layout transformations. We complement
this with support for specialization by polyhedral unrolling, user-directed versioning, and specialization of
AST expressions according to the location they are generated at, and complete this work with fine-grained
user control over the AST generation strategies used. Using this generalized idea of AST generation, we
present how to implement complex domain-specific transformations without the need to write specialized
code generators, but instead relying on a generic AST generator parametrized to a specific problem domain.
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1. INTRODUCTION

The development of high-level optimizations for domain-specific or general purpose
compilers can often be conceptually divided into two parts: the design of a high-level
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optimization strategy and the generation of program code according to this optimiza-
tion strategy. In many cases, the interesting scientific contribution is the new opti-
mization strategy. However, in practice, significant efforts are put into the generation
of efficient program code.

For loop programs with affine (and even non-affine [Venkat et al. 2014]]) control flow,
it is common to automatically generate optimized program code from an abstract de-
scription that models each statement instance (i.e., each dynamic execution of a state-
ment inside a loop nest) and each array element individually through the use of a
compact representation such as polyhedra [Loechner and Wilde 1997] or Presburger
relations [Pugh and Wonnacott 1994]. Optimizations, for example those of [Pugh and
Rosser [1997; Wonnacott [2002; [Bondhugula et al. [2008; Kong et al. [2013}|Zuo et al.
[2013] and |Bandishti et al. [2012]], are described by modifying an abstract schedule
that defines the execution order of the individual statement instances in a program.
According to this schedule, imperative program code is (re)generated using a tech-
nique called polyhedral scanning [Ancourt and Irigoin 1991], code generation [Kelly
et al. 1995; Bastoul 2004], or, more accurately, Abstract Syntax Tree (AST) generation.
Decoupling the optimization and program generation steps not only reduces the time
needed to implement a certain optimization strategy, it also speeds up the evaluation
of new optimization strategies [Pouchet et al. 2007; |Pouchet et al. 2008]. Furthermore,
being able to describe transformations on a highly abstract level enables the develop-
ment of complex transformations [Grosser et al. 2014] relying on the AST generator to
generate efficient imperative code.

Even though AST generators have many benefits, existing approaches focus on con-
trol flow generation [Bastoul 2004} Kelly et al. 1995; |(Chen 2012], provide only rudi-
mentary support for the specialization of the generated expressions, and limited con-
trol over code size vs. control overhead. These limitations often prevent their wider
usage. Missing support for generating user-provided AST expressions, e.g., to describe
memory locations, prevents their application to data-layout transformations [Wonna-
cott 2002; [Yuki et al. 2012; Henretty et al. 2013] or, to the mapping of data to software
managed caches [Holewinski et al. 2012]. Also, existing AST generators may produce
multiple code versions according to specific parameter values, to reduce control over-
head, but existing approaches do not natively support the generation of specialized
code. This would be particularly helpful for the separation of full and partial tiles [An-
court and Irigoin 1991; |Goumas et al. 2003; Kim et al. 2007|] or for the generation of
specialized code to handle possibly different conditions at iteration space boundaries.
Instead, versioning has to be enforced by generating several distinct copies of each
statement in the input description [Chen et al. 2008]. Similarly, performing unrolling
during AST generation is only possible by duplicating statements in the input descrip-
tion [[Chen et al. 2008; Bondhugula et al. 2008; |Shirako et al. 2014]. Besides being
conceptually unsatisfying, duplicating statements causes serious problems. Firstly, by
purposefully hiding the fact that statements are identical, the AST generator is forced
to generate duplicate code for them in all cases, missing redundancies in complex ex-
pressions and missing opportunities to factor colder parts of the code. Secondly, du-
plicating statements increases the complexity of the polyhedral operations involved in
the generation of imperative control flow, supporting optimizations such as full/partial
tile separation, and supporting express10n spemahzatwn or simplification for modulo
arithmetic. If we now wish to minimize code size for colder parts of the iteration space
(e.g., the partial tiles), we run into the next limitation. Even though AST generators
provide basic control over the desirable aggressiveness in separating statements or
control flow specialization (conditional hoisting), the level of control is way too coarse-
grained in existing methods and tools. Also, no guarantees are given about the maxi-
mal number of loop nests and the maximal number of statements generated, which is
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problematic for scenarios where code size is a major concern, such as AST generation
for many-core targets with software-managed caches, embedded processors, and high-
level synthesis [Zuo et al. 2013]]. Overall, existing approaches and tools are in many
ways not yet mature for complex AST generation problems.

This work presents an integrated AST generation approach that, in addition to clas-
sical control flow generation, allows the generation of AST expressions from arbitrary
user-provided piecewise affine expressionsE] We define a fine-grained “option” mech-
anism that enables the user to request maximal specialization where needed while
retaining control over code size. To enable aggressive specialization, we allow the user
to instruct the AST generator how to version the code, we provide an integrated poly-
hedral unrolling facility, and we make sure that AST expressions are specialized ac-
cording to the context they are generated in. Doing so is essential to correctly model
the floor-division and modulo arithmetic arising from abstract transformations of the
program, and to cast these expressions to efficient remainder and integer divisions, or
to lower-complexity operations, as provided by existing instruction set architectures
and programming languages. Finally, we present a miscellaneous set of optimizations
that improve the quality of the generated code, in comparison to existing polyhedral
scanning tools, but also optimizations made necessary to cover the wider application
scenarios of our AST generator.

Our contributions are as follows:

— AST generation with complete support for Presburger relations including support
for piecewise schedules, and their use in expressing index set splitting as a schedule-
only transformation.

— An aggressive simplification of AST expressions generated from piecewise quasi-
affine expressions within the context of their position in the AST, including the de-
tection of modulo and division operations. The generation of simplified AST expres-
sions is not only used to construct loop bounds and if conditionals from within the
AST generator, but is also exposed to the user, who can use this functionality to
generate custom index expressions and run-time checks.

— Fine-grained options to control AST generation including an atomic option that can
be used to control code size and to ensure that no program statements are dupli-
cated.

— Specialization through polyhedral unrolling and user directed versioning, in partic-
ular the user can specify a subset of the schedule space (e.g., full tiles) that should
be isolated from the rest of the schedule space (i.e., partial tiles).

— Algorithms for improved stride detection and the detection of reorderable compo-
nents.

— AST generation for structured schedules expressed as schedule trees.

— Evaluation in an advanced domain-specific optimizer and comparison to state-of-
the-art code generation techniques.

The remaining content of this paper is organized as follows. [Section 2| gives a high-
level overview of our new AST generation approach and presents new, illustrative use
cases. We then present theoretical background in [Section 3| the data structures in-
volved in [Section 4] our core AST generation approach in[Section 5| and its extension
to schedule trees in [Section 6| We finish with a set of experiments in [Section 7 the
discussion of related work in [Section 8| and the conclusion in[Section 9

3The entire approach is available at http:/repo.or.cz/w/isl.git in the development version isl-0.14-368-
223e8573, which will be included in the next releases of isl.
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2. ANEW APPROACH TO AST GENERATION

To give an idea of the new AST generation concepts proposed in this work, we present
them in the context of a complex AST generation scenario. One such ideal scenario
is our recent work on hexagonal/parallelogram tiling [[Grosser et al. 2014], a domain
specific optimization for generating efficient CUDA code for iterative stencil compu-
tations. It is implemented on top of PPCG [Verdoolaege et al. 2013]], a generic C to
CUDA/OpenCL translator, which uses Presburger relations to describe both the com-
putation itself and the program transformation to apply. Taking advantage of such an
abstract mathematical description, a new tiling scheme has been developed that in-
volves complex geometric shapes to address the most important performance issues
of compiling iterative stencils for GPUs, including the usage of shared memory, the
optimization of data-transfers, the increase of arithmetic intensity, the exploitation of
multiple levels of parallelism, and the avoidance of thread divergence. In the following
paragraphs, we show how we obtained highly efficient code using our new generic AST
generation approach without the need to develop a domain- or optimization-specific
generator.

When translating C code to CUDA, we start from code consisting of compute state-
ments and loops. To simplify the exposition, let us first assume in this section that
the program consists of a single perfectly nested set of loops, with one outer sequen-
tial loop, a set of inner parallel loops, and a single compute statement. To generate
CUDA code for this computation it is necessary to obtain a set of kernels that can be
launched sequentially and that each expose two levels of parallelism: coarse grained
parallelism, which will be mapped to so-called CUDA thread blocks, and fine grained
parallelism, which will be mapped to so-called CUDA threads. To obtain these two lev-
els of parallelism we divide the set of individual computations (statement instances)
enumerated by these loops into subsets (tiles). We do this by computing a polyhedral
schedule that enumerates the set of statement instances with two groups of loops. A
set of outer loops that enumerate the tiles (tile loops) and a set of inner loops (point
loops) that enumerate the statement instances that belong to a certain tile. The first
AST generation problem we encounter is that the hybrid-hexagonal schedule defining
the tile shapes decomposes the computation into phases and applies to each phase a
different schedule. This results in a piecewise schedule from which an AST needs to be
generated.

As a next step, we map the tile and point loops to a fixed number of thread blocks and
threads. We start by looking for a set of parallel point loops and a set of parallel tile
loops. We then strip-mine each loop by the number of thread blocks and threads. For
instance, to map a point loop with n iterations to a set of 1024 kernel threads, we strip-
mine the loop by a factor of 1024 such that each 1024'" iteration is executed by the same
thread. The next step is to produce a piece of CPU code that schedules instances of an
accelerated kernel, and the kernel code itself that defines the computation of a specific
thread in a specific thread block. No actual loops are generated that enumerate the set
of thread blocks and threads, but instead the CUDA run-time and hardware spawns
a set of blocks and threads and provides the block and thread ID as a parameter to
each thread executing the kernel code. To model this, we first generate the outer loop,
then we use a nested context to introduce the block and thread identifiers and, finally,
we generate kernel code that can reference values in the outer CPU code, taking into
account the AST generation context of the outer C code as well as the constraints
on the kernel and thread identifiers. Exploiting this information is very important to
generate high-quality code.

When generating kernel code we also need to rewrite all array subscripts in our
compute statement. Traditionally this is done textually by replacing all references to
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for (c2 = 0; c2 <= 1; c2 += 1)
for (c3 =1; c3 <= 4; c3 +=1)
for (c4 = max(((t1-c3+130) % 128) + c3 - 2, ((t1+c3+125) % 128) - c3 + 3);
c4 <= min(((c2+c3) % 2) + c3 + 128, -((c2+c3) % 2) - c3 + 134); c4 += 128)
if (c3 +c4d >= 7 || (cd == t1 && c3 + 2 >=t1 && t1 + c3 <= 6
&& t1 + c3 >= ((t1 + c2 + 2 *x c3 +1) % 2) +3
&& t1 + 2 >= ((t1 + c2 + 2 *x c3 + 1) % 2) + c3)
[l (c4 == t1 && c3 == 1 && t1 <=5 && t1 >= 4 && c2 <= 1 && c2 >= 0))
Alc2][6 * bO + c3]1[128 * g7 + c4 - 4] = ...;

Fig. 1: Copy code from hybrid hexagonal/parallelogram tiling (a single loop)

old induction variables with expressions that compute the values of the old induction
variables from new induction variables. When translating an access A[i+1] where 7
now is expressed as ¢0 + 1, a classical rewrite would yield A[(cO + 1) + 1]. With our
new approach we represent the expression i + 1 itself as a piecewise quasi-affine ex-
pression, perform the translation on the piecewise quasi-affine expression, simplify the
resulting expression and use our AST generator to generate an AST expression from
this piecewise quasi-affine expression. As a result we obtain the code A[cO + 2]. In this
example the only benefit is increased readability, as any compiler would constant-fold
the two additions. However, in general, this concept is a lot more powerful. It allows
the specialization of expressions according to the context in which they are generated.
If, for instance, an access A[i == 0 ? N - 1 : i - 1] is scheduled in a tile where we
know i is never 0, we can simplify the access to A[i - 1]. This simplification removes
the overhead of boundary condition handling from the core computation, a transforma-
tion for which a normal compiler misses context information and which traditionally
requires specialized statements for boundary and core computations. With our AST
generation approach, statements are automatically specialized as soon as boundary
computations and core computations are generated as specialized AST subtrees. This
is very natural for an AST generator that allows user-directed versioning.

After having generated basic CUDA code including the rewritten data accesses, we
can start to optimize the code. An essential optimization is to switch from the use of
slow “global memory” to the use of fast, manually managed “shared memory*“. To do so
we need to change the code of each tile such that, before the actual computation takes
place, the relevant data from global memory is copied into shared memory, and at the
end, the modified data is copied back from shared to global memory. To perform the
computation in shared memory, we need to adjust all memory accesses such that they
point to the new shared memory arrays and the corresponding locations. How exactly
the mapping is computed is outside the scope of this paper, but how we generate the
relevant code is interesting. We derive from our mapping a set of piecewise quasi-affine
expressions that define the new data locations and generate AST expressions for them,
relying on the AST generator to ensure that efficient code is generated. This approach
enables us to use possibly complex mappings, without writing specialized code gener-
ation routines. To create the code that moves the data, we create new statements that
copy data from a given global memory location to a given shared memory location and
vice versa. In case there is more data to copy than there are threads we use a modulo
mapping to assign data locations to threads. shows the code generated to copy
data back to global memory. There are various interesting observations possible. First,
we see that our modulo expressions have been mapped to the C remainder operator
%, which will be translated to fast bitwise operations in case the divisor is a power-
of-two constant and the compiler can derive that the dividend is always non-negative.
Using the C remainder operator is only possible because we have context information
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A[OI[6 * b0 + 11[128 * g7 + (t1 + 125) % 128) - 1] = ..
A[01[6 * b0 + 2][128 * g7 + (t1 + 127) % 128) - 3] = ...;
if (t1 <= 2 && t1 >= 1)

A[01[6 * b0 + 2][128 * g7 + t1 + 128] = ...;

A[0I[6 * b0 + 3]1[128 * g7 + (t1 + 127) % 128) - 3] = ...;
if (t1 <= 2 && t1 >= 1)

AT0][6 * bO + 3][128 * g7 + t1 + 128] = ...;
A[0][6 * b0 + 4][128 * g7 + (t1 + 125) % 128) - 1]
A[11[6 * b0 + 11[128 * g7 + (t1 + 126) % 128) - 2] = ..
A[1]1[6 * b0 + 2]1[128 * g7 + (t1 + 126) % 128) - 2] = ...;
if (t1 <= 3 && t1 >= 2)

A[1]1[6 * b0 + 2][128 * g7 + t1 + 128] = ...;

A[1][6 * O + 3][128 * g7 + (t1 + 126) ¥ 128) - 2] = ...;
if (t1 <= 3 && t1 >= 2)

AT1]1[6 * b0 + 3][128 * g7 + t1 + 128] = ...;
A[11[6 * b0 + 41[128 * g7 + (t1 + 126) % 128) - 2] = ...;

Fig. 2: Copy code from hybrid hexagonal/parallelogram tiling (unrolled)

about the value of t1. Otherwise we would need to fall back to expensive floord or
intMod expressions, dealing with arbitrary (possibly negative) integers, as the state-
of-the-art AST generators CLooG and CodeGen+ do. Secondly, we see that we generate a
reasonably dense loop nest that enumerates the statements. Because of the presence
of existentially quantified variables in the input description, this is by itself non-trivial
(see[Section 7.3).

Nevertheless, we observe that the generated code is not very efficient. Every loop it-
eration performs very little computation and evaluates a complex condition. One might
hope the condition could be simplified further, but unfortunately the data modified
when moving a 5-point stencil forming a cross over a hexagonal tile shape is by itself
already non-convex. Applying another level of modulo scheduling makes the necessary
compute pattern even more complex, such that obtaining a simpler loop structure is
difficult. However, by using polyhedral unrolling on the inner three loops and by spe-
cializing the statements according to the iteration they are unrolled for, we can remove
almost all control overhead. The result is shown in The code is very smooth
and each array subscript is specialized to the specific location. We can also see that for
the conditionally executed statements the subscripts are optimized according to the
conditions such that the remainder operations disappear entirely. Unrolling this code
is not trivial, as it needs to be performed in the presence of multiple loop boundaries
as well as strides and we need to support the generation of guarded instructions when
unrolling. The guarded instructions at the innermost level are very cheap on a GPU, as
they can be implemented as predicated instructions. In this small example this is not
very visible, but for realistic tile sizes a larger number of statements share the same
conditions. We perform similar unrolling for the compute code in our kernel to ensure
sufficient instruction level parallelism is available.

The code in is now close to optimal. However, so far we have only looked at
a simplified example, a single tile that does not touch any iteration space boundaries.
If the iteration space boundaries are taken into account, the generated code becomes
a lot more complex. To ensure we can still use the “close to optimal” code most of the
time, we use user directed versioning to isolate the core computation (the full tiles)
from the set of tiles that need to take into account the boundary conditions (partial
tiles). Doing so gives us maximal specialization and best performance. However, we
now specialize and unroll not only the core computation, but also the code that was
introduced to handle the boundary cases, which increases the size of the generated
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code as well as the time necessary to generate it. When targeting a GPU this may be
acceptable, but for FPGAs [Zuo et al. 2013] the cost may be prohibitive. This problem
can be easily addressed by using fine-grained options to limit the amount of unrolling
and specialization in the boundary tiles.

In summary, extending AST generation beyond the creation of control flow makes it
possible to use automatic AST generation in complex scenarios. Even though existing
AST generators combined with workarounds such as duplicating statements before
running the AST generator can be used to solve some of the previously mentioned
AST generation issues, such workarounds only exist for some features, they apply only
in simple special cases and often inhibit other necessary transformations. By instead
carefully integrating several important new extensions into a single AST generation
approach, we significantly extend the concept of automatic AST generation such that
it is usable in complex AST generation scenarios. We ensure that the different features
do not block each other, but when combined provide novel opportunities and solutions
to complex AST generation problems. As a result we hope to not only significantly
simplify AST generation, but to enable its use in new optimization scenarios.

3. POLYHEDRAL MODEL

The polyhedral model [Feautrier and Lengauer 2011] is a powerful abstraction for an-
alyzing and transforming (parts of) programs that are “sufficiently regular”. The key
feature of this model is that it is instance based. That is, each statement instance (i.e.,
each dynamic execution of a statement inside a loop nest) and each array element
is treated individually through the use of a compact representation such as polyhe-
dra [Loechner and Wilde 1997]] or Presburger relations [Pugh and Wonnacott 1994].
A program is typically represented using iteration domains, containing the statement
instances, access relations, mapping statement instances to the accessed array ele-
ment(s), dependences, relating statement instances that depend on each other, and a
schedule, assigning an execution order to the statement instances.

In terms of AST generation, the most relevant elements are the iteration domain and
the schedule, where the iteration domain describes the statement instances that need
to be executed and the schedule describes the order in which they should be executed.
For the iteration domain, we use the representation proposed by [Verdoolaege [2011]],
where each statement instance is represented by a name (identifying the statement)
and a tuple of integers (identifying the instance). For each statement, the instances in
the iteration domain are described using a Presburger formula. We call such a set a
named Presburger set. Other representations of iteration domains can easily be con-
verted to such a named Presburger set.

Before defining Presburger formulas, let us first consider affine expressions, which
are terms composed of variables, integer constants, symbolic constants, addition (+)
and subtraction (—). Multiplication by an integer constant is available as syntactic
sugar for repeated addition or subtraction. Symbolic constants have a fixed but un-
known value and typically represent problem sizes. A quasi-affine expression addi-
tionally allows integer division by an integer constant (|-/d|). A Presburger formula is
then constructed from quasi-affine expressions, comparison (<) and the first order logic
operators: conjunction (A), disjunction (V), negation (—), existential quantification (3),
and universal quantification (V). A piecewise quasi-affine expression is a list of pairs
of named Presburger sets and quasi-affine expressions. The sets are pairwise disjoint
and the value of the piecewise quasi-affine expression at a given point is equal to the
value of the quasi-affine expression associated to the set that contains the point.

Binary relations on pairs of named integer tuples can be defined in a similar way and
are called named Presburger relations. Although we will use a more structured repre-
sentation for schedules in it is instructive to consider the basic case of rep-
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for (int i = 0; i < n; ++i) {

S1: s[i] = 0;
for (int j = 0; j < i; ++j)
S2: s[i] = s[i] + aljl[i] * bl[jl;
83: bl[i] = bl[i] - s[il;
}

Fig. 3: Example Program

resenting schedules as named Presburger relations proposed by |[Verdoolaege [2011]].
These named Presburger relations associate an integer tuple to each statement in-
stance and the execution order expressed by the schedule is given by the lexicographic
order of these integer tuples. Consider for example the program in The iter-
ation domain is

{S1(3):0<i<n;S2(i,j): 0<j <i<mS3(i):0<i<n} 1)
One way of expressing the original execution order is the schedule
{S1(i) = (i,0,0);52(i, j) — (i, 1,5);S3(é) = (4, 2,0) }. 2

That is, the statement instances are first ordered according to the first (or only) ele-
ment in their instance identifier tuple. Then, for those statement instances that have
the same value, the instance of S1 is executed before the instances of S2, which in turn
are executed before the instance of S3. Finally, the instances of S2 are executed accord-
ing to the second element in its instance identifier tuple. For the other two statements
all instances are already scheduled apart, so the final schedule coordinate does not
need to make a distinction between instances. It may therefore be set to an arbitrary
value (here 0).
An alternative execution order may be obtained through the schedule

{51(i) = (0,,0,0);82(¢, ) — (1,4,1,5);S3(i) — (1,i+1,0,0) }, 3)

where all instances of S1 are executed before any instance of S2 or S3. Among the
instances of S2 or S3, those where the first dimension of S2 is one more than the single
dimension of S3 are executed together, with the S3 instance being executed before the
S2 instances.

The purpose of the AST generator is to construct an AST that visits the elements
of the iteration domain in the lexicographic order of the integer tuples assigned to
the iteration domain elements by the schedule. The construction uses several oper-
ations on named Presburger sets and relations available in isl [Verdoolaege 2010],
including domain and range of a relation, intersection, union, set difference, projec-
tion, shared constraints (“simple hull”), simplification of a set (relation) with respect
to known constraints (“gist”), integer affine hull and coalescing (replacing pairs of dis-
juncts by single disjuncts without introducing spurious elements) [Verdoolaege 2015].
All these operations commonly change the elements contained in the sets (relations)
they operate on with the exception of coalescing, which only affects the representation
of a set (relation). Note that the AST generator presented in this paper does not use
the convex hull operation, as this may introduce constraints with large coefficients.

4. DATA STRUCTURES

The core AST generation algorithm translates schedule constraints into lower and up-
per bounds of the for loops of the generated AST. In order to be able to construct the
for loops, the algorithm may need to break down the schedule domain into several
pieces, resulting in a tree of for loops generated from outermost to innermost. There
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may, however, also be other constraints that cannot be directly encoded in the lower
and upper bounds of for loops and that need to be generated as if conditions instead.
In general, we want these conditions to be inserted as high up as possible. On the other
hand, we do not want to insert too many redundant conditions, while some conditions
may only be redundant with respect to the code that is generated underneath those
conditions. Moreover, some constraints, especially disjunctive constraints, may only
get discovered at later stages and need to be hoisted up. The AST therefore cannot be
constructed in a single pure pre-order depth-first traversal of the schedule. Instead, we
perform a single depth-first traversal with some pre-order operations, mainly decom-
posing the schedule, and some post-order operations, actually constructing the AST.
The details of the algorithm will be described in In this section, we introduce
vocabulary and data structures for passing information up and down the depth-first
traversal. These are necessary to describe the current part of the decomposed sched-
ule, the information that is passed down, the actual AST that is being constructed, and
the information that is passed up.

4.1. Executed Relation

In the base case of the AST generation algorithm, the schedule is given by a named
Presburger relation mapping statement instances to their relative multi-dimensional
execution times. The loops in the generated AST are derived from these multi-
dimensional execution times. During the AST generation, it is therefore more natural
to consider the inverse of this schedule relation, which we call the executed relation and
which maps execution time vectors to the statement instances that should be executed
at those times. For example, given the schedule relation in (3), the (initial) executed
relation (without domain constraints) is

{(0,51,0,0) — S1(s1);(1,s1,1,82) = S2(s1, $2); (1,51,0,0) = S3(s1 — 1) }. 4)

The levels of the depth-first pass over the schedule correspond to the input dimensions
of this executed relation. At each level, the domain of the executed relation is broken up
into pieces along that dimension and each piece of the executed relation is considered
in turn.

4.2. Stock

The AST node corresponding to a dimension in the domain of the executed relation is
constructed upon leaving that level during a depth-first traversal. However, the main
information about the AST node is already available when that level is first entered.
Some of this information needs to be stored and forwarded through the traversal. We
introduce the stock to collect this information that can be used to simplify the de-
scendant AST nodes. The stock mainly keeps track of two pieces of information, the
conditions on symbolic constants and outer loop iterators that are known to hold at
the current position, and a mapping from loop iterators to schedule dimensions. At
each level of the depth-first traversal, a new stock is created that is initialized from
the stock passed down from the higher level.

The conditions come in two groups, the generated conditions and the pending con-
ditions. The generated conditions are those for which the algorithm has already de-
cided that they will be enforced by the outer nodes in the AST. These are typically the
loop bounds on the outer loop nodes. The pending conditions are those that may end
up being enforced by the outer nodes. They may also get dropped if they turn out to
be implied by the inner AST nodes. Note that this distinction is only relevant at the
point where the actual AST nodes are being constructed. At other points in the AST
generation algorithm, we can simply consider the combination of the two groups of
constraints.
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The mapping from loop iterators to schedule dimensions is needed because unlike
other AST generators, ours exploits the fact that a schedule only specifies a relative
execution order. The loop iterators in the final AST may then not correspond exactly
to the schedule dimensions in the input schedule due to, e.g., scaling or strip-mining
by the AST generator, while these schedule dimensions may still be referenced from
other parts of the schedule through options (see or advanced schedule tree
nodes (see[Section 6).

4.3. Abstract Syntax Tree

The generated AST contains only syntactical information and has been designed to be
easily translatable to both C and compiler IR. Each node of the AST is of one of four
types, an if-node, a for-node, a block-node or a user-node. An if-node has an AST expres-
sion as condition, a then-node and optionally an else-node. A for-node has initializa-
tion, condition, and increment expressions, and a body-node. A block-node represents
a compound statement and maintains a list of nodes. Finally, the statement expressed
by a user-node is represented as an AST expression.

An AST expression is itself a tree with operators in the internal nodes and integer
constants or identifiers as the leaves. The set of operators contains the standard oper-
ators found in C-like programming languages, but also higher level operators such as
min and max. Boolean logical operators and the conditional operator (cond ? a : b)are
available in two forms, one using short-circuit evaluation and one using eager evalu-
ation. We found in our work on low-level compilers [[Grosser et al. 2012]] that eagerly
evaluating operands, instead of using C’s short-circuit evaluation, is often beneficial
as it reduces control overhead and simplifies the hoisting of loop invariant subexpres-
sions.

The integer division operator also comes in different forms, one of them correspond-
ing to the mathematical operation |a/b|. Unfortunately, this operation cannot be trans-
lated directly into a / b in C because the /-operator in C rounds toward zero ([ISO
1999, 6.5.5]) rather than toward negative infinity. A correct translation to C involves
a condition on the sign of a, which can bring significant extra costs on some architec-
tures such as GPU devices. We therefore also have a form of the integer division where
the result is known to be an integer (such that rounding becomes irrelevant) and one
where the dividend is known to be non-negative. The user can specify a preference
for these latter forms in which case the AST expression generator will look for op-
portunities to use them (see [Section 5.10). Similarly, the remainder operator comes in
two special forms, one where the dividend is known to be non-negative and one where
the result of the operations is only compared against zero. In these special cases, the
remainder operator can be translated into the %-operator in C.

4.4. Annotated AST

The AST nodes are created after having visited all the children in the depth-first
traversal of the schedule. The AST generator may however decide to not encode some
of the conditions that need to be satisfied by the symbolic constants in the generated
AST nodes such that these conditions may be hoisted up to higher levels. An anno-
tated AST keeps track of both the (purely syntactical) AST itself and such extra pieces
of polyhedral information. Besides the conditions described above that still need to be
enforced by the AST at higher levels, the annotated AST also keeps track of the condi-
tions that have been enforced already. This latter set of conditions can then be used to
simplify or even eliminate some of the pending conditions in the stock at higher levels.
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5. AST GENERATION

This section describes the core AST generation algorithm. In [Section 6.3 we will see
that this algorithm is applied for each band node in the schedule tree. Our core al-
gorithm is derived from the “Quilleré et al.” algorithm [Bastoul 2004} |Quilleré et al.
2000]], with several significant changes such as isolation, unrolling, if-hoisting, the
detection of components, shifted strides, and the optimized generation of AST expres-
sions.

5.1. Overview

Example 5.1. Before we delve into the details of the AST generation algorithm, let
us first apply it to the simple example of where our algorithm essentially
coincides with the standard “Quilleré et al.” algorithm. In particular, let us consider
the schedule of (2). The initial executed relation, including the domain constraints of

@, is

{(4,0,0) = S1(3) : 0 < i < n3 (4,1,7) = S2(i,7) : 0 < j <i <n;(i,2,0) = S3(1) :0<i<n}.

(5)
The outermost loop of the generated AST is derived from the first dimension in the
domain of this relation. A projection onto this first dimension yields

{():0<i<n} (6)

In this simple case, we find a set described by a single disjunct and the lower and
upper bound of the generated outermost for loop can be trivially read off from the
constraints. If the projection were described by multiple disjuncts, then we would have
to combine them or break them up into disjoint pieces first. Moving on to the second
dimension, we would, in principle, find the following projection onto the outer two
dimensions

{(,t): 0<i<nA0<t<2} (7

and generate a loop iterating over the values 0 to 2. However, we can see that no
instance of S1 is ordered after any instance of S2 or S3 at this level and similarly for
S2 with respect to S3. We therefore have a trivial case of our component detection
and continue generating an AST for S1, S2 and S3 separately in that order. Note that
other AST generators handle this special case through different mechanisms. In each
of the components, the second dimension has a fixed value, so no loop needs to be
generated. The same is true for the third dimension in the components containing S1
and S3, respectively. The component containing S2 does result in an extra loop, which
is handled in the same way as the outer loop.

[Algorithm 3|forms the core of the AST generation and creates a (possibly degenerate)
for AST node for a given schedule dimension after generating AST nodes for the next
schedule dimensions through a call to [Algorithm 1l The process of creating such a
for-node is detailed in [Section 5.3| The input is a single-disjunct set corresponding
to the current dimension in the schedule domain. The actual schedule domain at this
dimension may however consist of several disjuncts.[Algorithm 2|takes care of breaking
up (or overapproximating) the schedule domain into disjoint single-disjunct pieces and
calling [AIgorithm 3| on each of them. The different ways of breaking up the schedule
domain are explained in [Section 5.4] and [Section 5.5 In [Example 5.1 the relevant
schedule domains all consist of a single disjunct such that no additional processing is
required.

Finally,[Algorithm 1]is the main driver that is called (recursively) for each dimension
in the schedule space (i.e., the domain of the executed relation). It calls [Algorithm 2
after detecting some special cases. In particular, as long as the inner level has not been
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ALGORITHM 1: Generate Next Schedule Dimension (“next”)
Input: — stock

— executed relation
if at inner level then
\ return terminate(stock, executed)
end
list := ()
foreach sorted component do

/* detect shifted strides and record mapping in f, see */

(stock, executed, f) := detect shifts(stock, executed)

/* project domain of executed on outer level dimension, see [Section 5.2 */

domain := project(executed, level)
if has isolation domain then
(before, domain, after, other) = split on isolation(domain)
list’ := base(stock, executed, before, false)
list’ += base(stock, executed, domain, true)
list’ += base(stock, executed, after, false)
list’ += base(stock, executed, other, false)
else
\ list’ := base(stock, executed, domain, false)
end
/* undo schedule modification in case of shifted strides, see */
list += transform(list’, f)
end
return list

reached, the algorithm first looks for components as described in In
three components are detected at the second schedule dimension. In each
component, the algorithm checks for shifted strides as explained in [Section 5.8] possi-
bly modifying the executed relation if any shifted strides were detected. The domain
of the executed relation is then projected onto the outer level dimensions as explained
in [Section 5.2] In [Example 5.1] this projection yields the set {(i) : 0 < i < n} (6)
at the outer schedule dimension. Finally, if the user specified a piece of the schedule
space that needs to be isolated (see[Section 5.6), then the algorithm splits the schedule
domain into four parts, the part that comes before the isolated part, the isolated part
itself, the part that comes after and the part that is incomparable to the isolated part.

When the inner level has been reached, the schedule makes no further distinction
between the statement instances in the range of the current executed relation. We
therefore generate an AST for each statement separately. Usually, the executed rela-
tion will only associate a single statement instance to a given schedule point and we
simply create and return a user node. Otherwise, the AST still needs to iterate over
the different instances and it can do so in any order. We therefore extend the domain
of the executed relation with a copy of the range and continue processing the new di-
mensions in the domain of the executed relation until the inner level is reached again,
in which case the executed relation is guaranteed to have only a single statement in-
stance associated to a given schedule point.

5.2. Local Schedule Domain Constraints

The lower and upper bounds of a for loop generated at a given level are derived from
the constraints in the domain of the executed relation that involve the current schedule
dimension. These constraints may also involve other schedule dimensions, both those
corresponding to outer for loops and those corresponding to inner for loops. Since the
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ALGORITHM 2: Generate Component (“base”)

Input: — stock
— executed relation
— domain: part of schedule domain at current level for which AST should be generated
— isolated: boolean indicating whether domain refers to isolated part
type := generation type(level, isolated)
if type = unroll then
(bound, n) := find lower bound(domain)
list := ()
for 0 <i<ndo
/* select domain elements at offset i from the lower bound */
domain’ := slice(domain, bound, 7)
domain’ := shared constraints(domain’)
list += (create(stock, executed, domain’))
end
return list
end
if type = separate then
| domain list := separate(domain, executed)
else if type = atomic then
| domain list := (shared constraints(domain))
else
| domain list := make disjoint(domain)
end
list := ()
foreach domain in sorted domain list do
| list += (create(stock, executed, domain))
end
return list

ALGORITHM 3: Create for-node (“create”)
Input: — stock
— executed relation
— bounds: single disjunct set describing bounds on current level for which an AST

should be generated
domain := bounds intersected with domain of executed

stock’ := detect strides(stock, domain)
stock’ := check for single iteration(stock’, bounds)
list := next(stock’, executed)

/* combine a list of annotated ASTs into a single annotated AST, see */

list := combine(list, stock, stock’)
return construct for loop(bounds, stock, list)

lower and upper bounds of a for loop can only refer to iterators of outer loops and (ob-
viously) not to those of inner loops, we first need to project the domain of the executed
relation onto its first level dimensions. This operation may introduce additional exis-
tentially quantified variables, which cannot be encoded directly in AST expressions.
We therefore need to remove them in some way.

One way of removing the existentially quantified variables is to perform quantifier
elimination. This process preserves the meaning of the set and therefore ensures that
only those values of the current schedule dimension that have any associated state-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: 2015.



A:14 Grosser et al.

ment instances will be executed. On the other hand, quantifier elimination may break
up the schedule domain into several pieces. In particular, is1 performs quantifier elim-
ination by applying parametric integer programming [Feautrier 1988|] to compute ex-
plicit, quasi-affine representations of the quantified variables. In general, this may
split the domain into several parts, each with its own quasi-affine expressions. Other
quantifier elimination algorithms lead to similar decompositions of the schedule do-
main.

Another way of removing the existentially quantified variables is to perform Fourier-
Motzkin elimination on them. This may result in an overapproximation of the sched-
ule domain, but it is guaranteed not to break up the schedule domain into several
disjuncts. In our AST generator, we take this second option in order to avoid the code
size expansion resulting from the first option. That is, we apply Fourier-Motzkin elim-
ination to remove all existentially quantified variables for which we do not have an ex-
plicit representation yet. Note that we will only consider the constraints of the possible
overapproximation as having been generated at this level, such that any constraint on
the actual schedule domain that is not satisfied by this overapproximation will end up
getting enforced at a deeper level.

Example 5.2. As an example of a case where these two approaches produce differ-
ent results, consider the following projection of some schedule domain onto the outer-
most schedule dimension,

{(#):Fa:a>-1+tA2a>1+tAa<tANda < N+2)}, (8

where N is a symbolic constant. Applying quantifier elimination to the set description
in (8) results in

{@):(t>3N2t<4+N)V({E<2At>1A2t<N)} 9

Note that this is the same set, but that it is described in a different way, without
existentially quantified variables. Also note that the description now consists of two
disjuncts. Applying Fourier-Motzkin elimination on the « variable in on the other
hand results in

{{t):2t<4+NAN>2At>1}. (10)

This set contains an extra element that is not an element of the set in (§). In particular,
it contains the extra element

{(2):2< N <3} (11)

Figure 4] shows the elements of the set in in black for 0 < N < 7. These are the

same as those in the set description in (9) that results from quantifier elimination.

The additional element (if any) introduced by Fourier-Motzkin is shown in red.
Using the set in (9) would produce the code

for (int cO0 = 1; cO <= min(2, floord(N, 2)); cO += 1)
// body

for (int c0 = 3; c0 <= floord(N, 2) + 2; cO += 1)
// body

whereas using the set in produces the code

for (int c0 = 1; cO <= floord(N, 2) + 2; cO += 1)
// body

As explained above, isl’s quantifier elimination may replace a quantified variable
by a quasi-affine expression. During the simplification of set descriptions, is1 may per-
form a similar substitution. We therefore need to take into account that the projection
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Fig. 4: Quantifier elimination (blue area) and Fourier-Motzkin (black dots + red circles)
applied to (8) (black dots).

of the schedule domain, even after eliminating the existentially quantified variables
using Fourier-Motzkin elimination, may involve such quasi-affine expressions. If any
of these quasi-affine expressions depend on the current level, then they are also elimi-
nated using Fourier-Motzkin elimination since a lower bound of a loop cannot depend
on the value of the loop iterator. Similarly, a constraint involving such an expression
cannot be used to construct an upper bound since it may fail to hold for some values
of the iterator while being satisfied by higher values of the iterator. Note that this pro-
cess also removes any stride information, but this information will be recovered from

the executed relation as explained in[Section 5.3.1]

Example 5.3. Consider an iteration domain

{Sﬁy3{z+1J§iAi20Ai§3} (12)
with schedule
{S(z) — (4) }. (13)
The schedule domain and its projection onto the outermost (and only) level is
{@%3{z+1J<iAi>0Ai<3}. (14)

The constraint 3 | (i + 1)/3| < i involves a quasi-affine expression in terms of the cur-
rent level and therefore cannot be used in the construction of the for loop bounds.
Instead, the expression is eliminated, resulting in the schedule domain

{(@):i>0Ai<3} (15)

The eliminated constraint is then taken into account at the innermost level, resulting
in the following code.

for (int c0 = 0; cO0 <= 3; cO0 += 1)
if ((cO0 + 1) % 3 >= 1)
S(c0);

Note that when reaching the innermost level, we can no longer perform any approxi-
mations and we have to perform quantifier elimination on any remaining existentially
quantified variables. This may then result in a disjunctive condition around the gen-
erated statement. Also note that the quantifier elimination procedure of the Omega
library is different from the one used by isl, but it may also result in splitting the
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domain. A detailed comparison of the two is beyond the scope of the present article. It
is not clear at which point and how far CodeGen+ applies quantifier elimination, but it
appears to be tailored to constraints that only involve a single existentially quantified
variable.

5.3. For Node Construction

5.3.1. Stride Detection. Besides the stock and the executed relation, for
creating a for-node takes as extra input a convex set called “bounds” from which the
bounds of the for-node will be extracted. The first step is the detection of strides, but
this information is not available in bounds since it does not involve any quasi-affine
expressions that depend on the current level. Instead, we use the intersection of the
bounds set with the domain of the executed relation. The strides are extracted from
the integer affine hull [Verdoolaege 2010]| of the resulting set. This operation extracts
the equality constraints satisfied by the elements of the set and preserves (most of) the
stride information. Let

h(p) +u(vi+ sf(a)) =0 (16)

be one of these equality constraints, with i the current schedule dimension, p the sym-
bolic constants and outer dimensions and « the existentially quantified variables. Fur-
thermore, v and s have no common factor and f and h are affine expressions such that
the coefficients of f have no common factor. If v is nonzero and s is greater than one,
then this equality represents a non-trivial stride constraint. Using Bézout’s identity
av + bs = 1, we can rewrite to

ui = —ah(p) + us (bi — af(cx)) a7

so that —ah(p) is a multiple of v and 7 is equal to o(p) = —ah(p)/u modulo s. The
offset o(p) and the stride s are stored in the stock. If there is more than one equality
with a non-trivial stride, then the offsets and strides can be combined and the overall
stride will be the least common multiple of the strides. In particular, if we have two
offset/stride pairs

=01 (p) + 51 f1 (a) (18)
i = 02(p) + s2 fa() (19)

then let g be the greatest common divisor of s; and sy and let ¢ and d be such that
cs1 + dsy; = g (Bézout’s identity once more). Multiplying the equation in by t; =
d s2/g and the equation in by t2 = cs1/g, we obtain

i=(dsy+cs1)/gi=1101(p) +t202(P) + (5152)/9 (fi(a) +afa(ar)). (20)

That is, the combined offset is ¢;01(p) + t202(p), while the combined stride is (s; s2)/g,
the least common multiple of s; and s,.

Example 5.4. Consider the schedule domain
{(1):30,f:0<i<100An—i+6a=0Am—i+108=0}, (21)

with n and m symbolic constants. For the constraint n — i + 6 = 0, we have, using the
notation of (I6), h(p) = n,u = 1,v = —1, s = 6 and f(a) = a. We may take a = —1
and b = 0 to find o0, (p) = n with s; = 6. We similarly find o2(p) = m and s, = 10. We
have g = 2 and may take ¢ = 2 and d = —1, resulting in a combined stride of 30 and
a combined offset of —5n + 6m. To see that this combined offset satisfies both stride
constraints, note that the combination of the original two stride constraints implies
that n — m is a multiple of two. That is, the bounds set (from which the existentially
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quantified variables have been eliminated) is of the form

m—-n

HD:O<i<]OOA2{23J:7n—n}. (22)

We therefore have that m — (—5n + 6m) = 5(n — m) is indeed a multiple of 10.

5.3.2. Loop Constraints. After detecting the strides, we add the constraints enforced by
the for loop generated for the current schedule dimension to the stock that will be
used in the construction of descendant nodes such that these constraints may be used
to simplify those descendant nodes. The actual construction of the for loop correspond-
ing to the current schedule dimension is only performed after these descendant nodes
have been created. At that point we will need to make a distinction between the con-
straints that are enforced by the bounds of the for loop and the constraints that may
need to be enforced by an extra if conditional. We therefore take this difference into
account while updating the stock, even though this distinction has no influence on the
descendant nodes.

In order to determine which constraints are enforced by the for loop correspond-
ing to the current schedule dimension, we first need to know if we are even going to
construct a for loop. In particular, based on the constraints in the current stock, the
constraints in bounds and the stride constraints (if any), we may be able to determine
that the current schedule dimension can attain only a single value. In this case, we
will generate a special “degenerate” for loop which we allow the user to translate to
an assignment of the initial value to the loop iterator. Note that this single value will
in general be specified as a piecewise quasi-affine expression in the symbolic constants
and the outer loop iterators. If it turns out that this expression consists of a single
quasi-affine expression, then we do not generate any for loop at all, but instead sub-
stitute the current schedule dimension for this single quasi-affine expression in the
executed relation. We refer to this case as an eliminated for loop. The reason for only
performing this substitution when the single value is described by a single quasi-affine
expression is that otherwise we would be introducing additional disjuncts in the exe-
cuted relation. In the eliminated case, we eliminate the current schedule dimension
from bounds and add the result to the pending constraints. In the other cases, we add
the constraints in bounds that do not involve the current schedule dimension to the
pending constraints and we add the remaining constraints in bounds as well as the
stride constraint (i.e., the fact that the schedule dimension is equal to the offset plus a
multiple of the stride) to the generated constraints.

Example 5.5. Consider the schedule domain
{uyi>1An—1<i<nA4V;2J:i—QL (23)

where n is a symbolic constant. The stride constraint 4 |(i — 2)/4] = i — 2 does not
appear in bounds, but it is added back for the purpose of looking for a single value.
From these constraints, we can see that ¢ attains a single value of 4 [(n + 2)/4] —2 and
that this value is represented as a single quasi-affine expression. Substituting this
value in the schedule domain, we obtain

{0:nz2n 7| <n-2} (24)

These constraints are then added as guards to the annotated AST at the innermost
level.
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Note that degenerate loops that are not also eliminated are fairly rare in practice.
We only report our handling of this situation for completeness, but it may very well
not be close to optimal. In most of the remaining rare cases, the loop could in fact be
eliminated, but we simply fail to derive an appropriate single quasi-affine expression.
In fact, these cases used to occur more frequently, but most of these have been resolved
through an improved detection of single quasi-affine expressions.

After generating an annotated AST for the body of the for-node, we know which con-
straints on the symbolic constants and outer loop iterators are enforced by this subtree
and we can (optionally) use them to simplify the pending constraints. Additionally, the
pending constraints are simplified with respect to the generated constraints. The sim-
plified pending constraints are then combined with the constraints hoisted from the
annotated AST for the body (see and an additional set of implied con-
straints. The implied constraints are those constraints that are implied by the gener-
ated constraints, but that may not be implied by their AST expression counterparts. In
particular, these are the constraints implied by the stride constraints. In case of a de-
generate loop, this also includes the constraints implied by the generated constraints.
Since we are allowing the user to consider a degenerate for loop as an assignment,
the fact that the upper bound is greater than or equal to the lower bound (i.e., that
there even is a single iteration of the loop) is not enforced by this assignment and
therefore needs to be considered separately. The combination of the simplified pending
constraints, the hoisted constraints and the implied constraints will then definitely be
generated either at the current level or hoisted up to a higher level. From this point
on, in particular for the construction of the AST expressions for the if conditions that
have not been hoisted out of the body and those for the bounds of the for loop, they
may therefore be considered as generated constraints.

Example 5.6. As an example of the effect of exploiting enforced constraints, con-
sider the iteration domain

{S(,7): 0<i<mA0<j<n}, (25)
where m and n are symbolic constants, with schedule
{5, 4) = (,4) }- (26)
Projection of the schedule domain onto the outer dimension yields
{({):0<i<mAn>1}. 27

The single pending constraint at this level is therefore n > 1. At the inner level, the
schedule domain, simplified with respect to the stock constraints, is

{(i,5):0<j<n} (28)

The for loop generated at this inner level enforces the constraint n > 1 so it can
optionally be used to simplify the pending constraint at the outer level. If we exploit
this enforced constraint, we generate the code

for (int cO = 0; cO < m; cO += 1)
for (int c1 = 0; ¢c1 < nj; cl1 +=1)
S(c0, cl1);

Otherwise, the pending constraint is turned into an if condition and we generate the
code

if (n >= 1)
for (int cO = 0; cO < m; cO += 1)
for (int c¢1 = 0; ¢c1 < nj; cl1 +=1)
S(c0, cl1);
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Example 5.7. As an example of constraints implied by a stride constraint, consider

the schedule
{S{#t)—= (t) : Ja:2t—n=4aN0<t <100}, (29)

with n a symbolic constant. Stride detection finds a stride of 2 and an offset of n/2. The
stride constraint (n/2 — t) mod 2 = 0 is encoded as

2t
n —+ JO'

n—2t—4 L (30)
This constraint implies that n is a multiple of 2. Since this stride constraint is added
to the generated constraints, this fact may be simplified away at the deeper levels.
However, it is not implied by the actually generated for loop. We therefore eliminate ¢
from and add the resulting constraints to the constraints that need to be generated
at the outer level. The final code is

if (n % 2 == 0)
for (int ¢c0 = (n / 2) + 2 * floord(-n - 1, 4) + 2; cO <= 100; cO += 2)
S(c0);

Note that we have exploited the fact that n is a multiple of 2 while generating the loop
initialization.

5.3.3. AST Expressions. Let us now consider the construction of the initialization and
the condition of the generated for loop from the lower and upper bounds on the cur-
rent schedule dimension. Since the bounds set may be an overapproximation of the
schedule domain, it may in rare cases not involve lower and/or upper bounds. If they
are missing, then we derive a single piecewise quasi-affine bound from the domain
set using parametric integer programming [Feautrier 1988]. If this set does not have
a lower bound, then an error is reported. If it has no upper bound, then an infinite
for-node is generated. In the standard case where there is one or more lower bound
constraint h(p) + vi > 0 with v > 0, each of the constraints is converted to a lower
bound /(p) = [—h(p)/v] and the lower bound on the for-node is set to the maximum
(as an AST expression) of these lower bounds. If the loop is strided, however, then we
need to make sure that this lower bound has the right value modulo the stride. We
therefore first replace each of the lower bounds ¢(p) by o(p) + s [(I(p) — o(p))/s].

Example 5.8. Consider the iteration domain

{51(i) : 0 <@ < M;52() }, (31)
where M is a symbolic constant, with schedule
{S1(:) — (3,0);S2() — (0,1) }. (32)

Assume that at the outer level, we want to generate a single loop for both statements,
as explained in |[Section 5.4 with bounds set { (i) : ¢ > 0}. This bounds set does not
have any upper bound on the current schedule dimension so we consider the schedule
domain

{(0);(¢1):0<i< M} (33)
instead. From this set, we can derive the upper bound
0 if M <0
{M —1 otherwise. (@4)

The generated code is as follows.
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for (int cO0 = 0; cO <= (M <=070 : M); cO +=1) {

if (M >= c0)
S1(c0);
if (c0 == 0)
52(0);
}

Example 5.9. Continued from [Example 5.4] The bounds set in has only a single
lower bound on the current schedule dimension, i > 0. The default for loop initializa-
tion would therefore be max{[—0/1]} = 0. This value may however not satisfy the
stride constraint, depending on the values of m and n. It is therefore replaced by

5n6m—‘ 5n6m+29J

(35)

5n+6m+30[ 30 30

= —d5n + 6m + 30 {

Depending on a user setting, the for-node upper bound condition is constructed ei-
ther as a single comparison of the loop iterator to a minimum of upper bounds, derived
analogously to the lower bounds, or as a conjunction of comparisons, each derived di-
rectly from an upper bound constraint. The single upper bound is expected by the
OpenMP support of some compilers while the conjunction is more efficient on FPGAs
[[Zuo et al. 2013]l. Finally, the independent constraints are added to the annotated AST
holding the for-node.

Example 5.10. Consider upper bounds of the form
M >c3+1Acy > 3c3+8 (36)

If the user has selected the generation of a single upper bound, then an upper bound
condition of the form ¢3 < min((c1 + 1) / 3 - 2, M) is generated, while in the other
case, an upper bound condition of the form M >= ¢3 + 1 && c1 >= 3 * c3 + 8is gen-
erated.

5.4. Separation

The schedule domain(s) computed in may be arbitrary Presburger sets,
which in isl are represented in disjunctive normal form. The creation of a for-node
in [Algorithm 3] however, takes a single-disjunct set as input. The responsibility of
the intermediate [Algorithm 2|is then to replace the schedule domain by an ordered
sequence of disjoint single-disjunct domains. There are essentially two ways to obtain
such single-disjunct domains, either the entire domain is approximated by a single-
disjunct domain or the domain is broken up into single-disjunct parts. The first option
may require the introduction of additional guards in the descendants of the currently
constructed for-node, possibly leading to run-time overhead. The second option can
lead to code duplication since different instances of the same domain may end up in
different single-disjunct schedule domain parts.

For each schedule dimension, the user can specify which of these options to take.
Alternatively, the user may also specify that the schedule dimension should be un-
rolled or she may leave the option unspecified, in which case the schedule
domain is broken up into a list of single-disjunct domains in a pragmatic way.

Let us consider the two main options in some more detail. If the “separate” option
is specified, then the schedule domains are computed for each statement separately.
Each of these schedule domains is broken up into disjoint single-disjunct sets and a
common refinement is computed. This is the standard separation of the “Quilleré et
al.” algorithm [Quilleré et al. 2000; Bastoul 2004]. In the “atomic” case, the shared
constraints are used. That is, the constraints of the disjuncts are considered in turn
and only those are kept that are satisfied by the entire schedule domain. This process
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may in some cases result in the absence of a lower and/or upper bound, a case we

discussed in

Example 5.11. Continued from [Example 5.8, Consider the schedule domain at the
outer dimension in (33), repeated here

{(0):()): 0<i< M} (37)

In case of separation, we consider the schedule domains for each statement separately,
ie, {(0)}and { (i) : 0 <i < M}, and apply the standard separation algorithm, break-
ing up these sets into disjoint single-disjunct sets, resulting in

{(0): M<-1}, {(0):M>0} and {(i):1<i<M}. (38)
The generated code is as follows.

if (M <= -1) {
52(0);
} else {
S1(0);
52(0);
for (int cO = 1; c0 <= M; cO += 1)
S1(c0);
}

In the atomic case, we consider the constraints shared by the disjuncts in (33). In this
example, there is only one such constraint, i.e., i« > 0. Note that the equality constraint
i = 0 in the first disjunct is equivalent to i > 0 A i < 0. The generated code for this case
is shown in [Example 5.8

5.5. Unrolling

Unrolling in the AST generation works by taking slices of the schedule domain for
successive values of the current schedule dimension and by calling “create” for each
of these slices. By construction, the schedule dimension has a fixed quasi-affine value
in each of the slices and no actual for-node will be created. Two factors play an im-
portant role in unrolling: stride detection and the selection of the most appropriate
lower bound. Stride detection is performed as explained in If any stride
is found, then it is substituted (i = o(p) + si’) in the schedule domain for the purpose
of selecting a lower bound.

Example 5.12. If the schedule domain is of the form
{i:0<i<1024Aimod256=0}, (39)
then it is replaced by {7 : 0 <’ < 4}.

The lower bound identification requires a single disjunct so we consider once more
the shared constraints of the schedule domain, although in this case we also allow
constant shifts of the constraints. For each lower bound constraint i(p) + vi > 0 with
v > 0, we compute the maximum value of i+1— [—h(p)/v] over the schedule domain. If
the maximum exists and has value n then we know we can cover the schedule domain
with at most n slices of the form i = [—h(p)/v] + ¢ with 0 < ¢ < n. We take the lower
bound with the smallest such n. If no suitable lower bound can be found, then we
report an error.

Example 5.13. For the schedule domain
{i:0<i<1000AN <i<N+4}, (40)
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we would prefer the lower bound N (with 4 slices) over the lower bound 0 (with 1000
slices).

5.6. Isolation

Isolation in is controlled by an option specified by the user. If set, the
option describes a part of the schedule domain that should be isolated from the other

parts of the schedule domain. The typical use cases are the isolation of full tiles from
partial tiles or the isolation of a vectorizable loop from its prologue and epilogue. The
atomic/separate/unroll option can be specified separately for the isolated part and the
rest of the schedule domain. For any given level, the isolated domain is first projected
onto the first level dimensions as in[Section 5.2] In particular, the inner dimensions are
projected out and all existentially quantified variables and all quasi-affine expressions
involving the current dimension are eliminated. We subsequently replace the set by its
shared constraints to ensure that the center part is contiguous. An intersection with
the current schedule domain yields the center part of the isolation. The “before” part is
obtained by first constructing a set of iterations that are executed before some iteration
in the center part and then subtracting that center part. Similarly, the “after” part is
obtained by first constructing a set of iterations that are executed after some iteration
in the center part and then subtracting both the center part and the “before” part.
The “other” part is obtained by subtracting the before, center, and after parts from the
current schedule domain and consists of those iterations that are incomparable to the
center part. If any atomic/separate/unroll option is specified for the rest of the schedule
domain, then it is applied to the before, after, and other part separately.

Example 5.14. Assume we have an iteration domain

{S(E):m<i<n}, (41)
where m and n are symbolic constants, with initial schedule
{S() = (@)} (42)

and that we want to strip-mine the loop by 4, a factor that has been derived to allow the
backend compiler to vectorize the inner loop, e.g., by considering the data types used
in the computation or the target vector instruction set. We first modify the schedule to

{S@) — (4 MJ,Z‘)} (43)

and then we want to single out those iterations that result in an inner loop of exactly
four iterations. In particular, we need to make sure that the first schedule dimension
t = 4|i/4| belongs to the schedule domain of the second dimension and that so does
t + 3. We therefore isolate the values of the first schedule dimension that satisfy

{@#)  m<tAt+3<n}. (44)

Projecting out inner dimensions and replacing the set by its shared constraints does
not modify the isolated set. The before part is

{#):n>44+mAt<m-—1}, (45)
the after part is
{t):n>44+mAt>n—-3} (46)
and the other part is
{#):m—-3<t<n—1An<m+3An>m+1} 47)
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The generated code (shown below) consists of a single loop performing the prologue
computation, two—now easily vectorizable—loops that enumerate the center part, and
one loop that forms the epilogue computation. There is also an additional loop nest for
the other part, which is executed in case the values of n and m yield an empty center
part. In certain cases, it is possible to avoid the generation of dedicated code for the
other part by instead enumerating the relevant iterations as part of the before and
after parts. We currently do not perform such an optimization.

{
if (n >=m + 4)
for (int ¢l = m; cl <= 4 * floord(m - 1, 4) + 3; cl += 1)
S(cl);
for (int c0 = 4 * floord(m - 1, 4) + 4; cO < n - 3; cO += 4)
for (int c1 = c0; cl1 <= ¢c0 + 3; cl += 1)
S(cl);
if (m>=m + 4 && 4 * floord(n - 1, 4) + 3 >=n) {
for (int c1 = 4 * floord(n - 1, 4); c1 < n; ci1 += 1)
S(cl);
} else if (m + 3 >= n)
for (int c0 = 4 * floord(m, 4); cO < n; cO += 4)
for (int c1 = max(m, c0); cl1 <= min(n - 1, cO + 3); cl1 += 1)
S(cl);

Example 5.15. We also briefly illustrate isolation on multiple dimensions. Assume
we have an iteration domain

{S(i,j):0<i<nAO<j<m}, (48)
where n and m are symbolic constants, with initial schedule
{53, 4) = (,4) } (49)

which we want to tile to improve register reuse. To implement such a register tiling
(e.g., by 3 x 4), we modify the schedule to

{S(,5) — (3 Ma; mz i)} (50)

We then want to single out those iterations that result in two inner loops with together
exactly 12 iterations, aiming to generate loops that can be fully unrolled without in-
troducing conditions that hinder the use of registers. To implement this, we isolate the
tiles of the schedule dimensions t3 = i,t4 = j that lie entirely in the schedule domain
{(tg,t4) 0<t3<nA0< 1ty < m} In particular, the tile at t1 =3 I_IL3/3J ,lo = 4 I_t4/4J
belongs to the schedule domain if both (¢4, t2) and (¢, +2, t2+3) satisfy these constraints.
We therefore isolate the values of the first two schedule dimensions that satisfy

{(tl,tg)ZOétl/\tl—‘rZ<TL/\O§t2/\t2+3<m}. (51)

The generated AST for this example (shown below) consists of two loop nests at the
outer level. The first iterates over tiles that are complete in the first dimension, while
the second iterates over tiles that are partial in this dimension. At the second level
inside the first loop nest, the tiles are further split into those that are complete and
those that are partial in the second dimension. Note that when generating the AST
below, we have specified in the input (through a context node, see [Section 6) that n
and m are known to not be very small (n > 2 A m > 3). Without this extra piece of
information, the AST generator would generate additional code for such small values
of n and m, corresponding to the “other” parts of the isolation.
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{
for (int ¢0 = 0; cO < n - 2; c0 += 3) {
for (int c¢1 = 0; ¢c1 <m - 3; cl += 4)
for (int c2 = c0; c2 <= c0 + 2; c2 += 1)
for (int ¢3 = c1; c3 <= cl1 + 3; c3 += 1)
S(c2, c3);
if ((m - 1) % 4 <= 2)
for (dnt c2 = c0; c2 <= c0 + 2; c2 += 1)
for (int ¢c3 =-((m - 1) % 4) +m-1; c3 <m; c3 += 1)
S(c2, c3);
}
if ((n-1) %3 <=1)
for (int c1 = 0; c1 < m; cl1 += 4)
for (int c2 = -((n - 1) % 3) +n -1; c2 < n; c2 += 1)
for (int ¢3 = c1; ¢c3 <= min(m - 1, cl + 3); c3 += 1)
S(c2, c3);
}

5.7. Components

It is important to understand that the schedule only defines a relative execution order
of statement instances with respect to other statement instances and that the gener-
ated loops do not need to correspond exactly to the schedule dimensions. In some cases,
we can generate much simpler code by taking a closer look at this relative execution
order.

Example 5.16. As a simple example, take an iteration domain

{S0();51(3): 0<i< 10} (52)
with schedule

{So() = (0); S1(4) — (4) }. (53)
The schedule domains for the two statements separately are { (0) } and {(i) : 0 < i <
10 }. The latter is also equal to the combined schedule domain. Applying separation
would therefore split off iteration 0 from S;, while using an atomic domain would gen-
erate a single loop with a condition on Sy for the iterator to be equal to 0. A closer look

at the schedule reveals, however, that Sy() is not scheduled after any iteration of 51, so
that we can simply generate code for Sy first, resulting in

S00);
for (int i = 0; i < 10; ++i)
S1(1);

In the general case, we construct a graph with as nodes the statements and an edge
between node a and node b if any instance of b is scheduled after any instance of a and
if these instances are mapped to the same value of the outer schedule dimensions. The
strongly connected components in this graph may be scheduled in topological order.
The above property is evaluated by considering each of the schedule dimensions in
turn. If the value for b is always smaller, then the property does not hold. If it may
be greater, then the property holds. Otherwise, if the value may be the same, then we
continue to the next schedule dimension. If we reach the inner level, then we assume
that the instances may be scheduled in any order.

5.8. Shifted Stride Detection

The stride detection of only works if there is a consistent stride across the
entire schedule domain. In some cases, the schedule domains for individual statements
may be strided, while the combined schedule domain is not.
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Example 5.17. Take an iteration domain
{A(#):0<i<10;B(i):0<i<10} (54)
with schedule
{A@) — (20); B(i) = (2¢+ 1) }. (55)

Both schedules generated by Feautrier’s algorithm [Feautrier 1992] and shifted linear
schedules [[Darte et al. 2001] may be of this form. While the schedule domains per
statement have stride 2 (with offsets 0 and 1), the combined schedule domain is simply
{(t) : 0 <t < 20}. If we replace the above partial schedule by the equivalent { A(i) —
(2i,0); B(#) — (2¢,1) }, then the schedule domain in the outer dimension becomes { (¢) :
0<t<20Atmod2=0} and the stride can be exploited.

To be able to apply the transformation illustrated in the example, we look for a state-
ment where the current schedule dimension does not have an obviously fixed value.
Note that it does not make sense to look for any strides if all of them have a fixed
value. We then consider pairs of statements where the first is the selected statement
and the second is any statement. If for all of these pairs we find that the differences
between the values of the schedule dimension are of the form m;x + r; with m; and r;
constant values and m; > 1, then we take the greatest common divisor m of the m; and
reduce the r; modulo m. If m is greater than one and not all of the r; are equal, then
we apply the transformation (...,¢,...) = (...,t —r;,7;,...) to the schedule domain of
statement 7. Since this transformation changes the dimension of the schedule domain,
it needs to be undone in the resulting annotated ASTs so that they can be combined
with other annotated ASTs.

Example 5.18. Continued from The differences between the values
of the schedule dimension for B and A in (55) are { (¢) : —17 <t < 19Atmod2 =0},
such that m; = 2 and r; = 1. For pairs of A instances, we similarly find my = 2 and
ro = 0.

Note that this transformation is mainly meant to make our AST generator generate
nice code even when presented with schedules from outside users that contain such
hidden strides. The scheduler that comes with isl also implements a Feautrier style
scheduler, but it will detect and adjust such shifted strides during the scheduling it-
self. On the other hand, the Pluto style scheduler [Bondhugula et al. 2008] of is1 may
occasionally construct a schedule with several distinct shifted strides. Detecting them
during scheduling is therefore complicated, but they may still be detectable in the AST
generator since the detection is applied on different components separately. Further-
more, the transformation can also be applied if the schedule itself does not contain
an explicit scaling factor but if instead the scaling can be derived from the iteration
domain.

5.9. Combining Annotated ASTs

In several parts of the AST generator, we need to combine a list of annotated ASTs
into a single annotated AST. This single annotated AST may be used in the same or
in an outer stock. In particular, we may want to move to a stock of an outer loop, in
which case the extra loop iterator needs to be projected out from both the guard and
the enforced condition attached to the ASTs. The shared constraints in these projec-
tions are hoisted to the single annotated AST and the original guards are simplified
with respect to the hoisted guard. Note that if there is more than one element in the
list of annotated ASTs, then some of the constraints may not be explicitly available in
the guards of each element. We therefore first intersect the guards with both the stock
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domain and the enforced constraints of each individual annotated AST. The shared
constraints are then still selected from the original guards, but they only need to sat-
isfy the intersections to be considered for hoisting. In general, the shared constraints
form a single disjunct set. However, as a special case, if all annotated ASTs in the list
have the same guard, then we allow this guard to be hoisted even if it is described in
terms of multiple disjuncts.

Example 5.19. Assume that at the outer level, we have decided to construct a for
loop with bounds {(¢) : 1 < ¢ < 8}. Assume furthermore that at the inner level, we
have constructed three annotated ASTs with the following guards (g;) and enforced
constraints (f;).

g ={):t<6} g={({#):t>2} gs={(t):t>2}
fi={):t22} ={®:t<5} fi={():t<s}

If we only consider the guards g; themselves, then we cannot hoist any guards since
t < 6 is not satisfied by g and g3 while ¢ > 2 is not satisfied by g;. After intersection
with the stock domain and the corresponding enforced constraints, we find

g ={(H):2<t<6) gh={(:2<t<5} gh={(W:2<t<8}. (57

Considering the original two constraints ¢ < 6 and ¢ > 2 once more, we now find that
t > 2 is satisfied by all three ¢, and that we may therefore hoist this constraint, which
can then be used to simplify the original guards to

gl ={®):t<6} g={®} g5={®)} (58)
The simplified guards (if non-trivial) then need to be expressed as if-nodes around
the corresponding AST node. We do not, however, treat every annotated AST in the list
separately. Instead, we incrementally build up a tree of if-nodes, keeping track of a list
of if-nodes that can still be extended without changing the execution order. For each of
these if-nodes, we keep track of the condition enforced by the node and its parents as
well as the condition enforced by the corresponding else-branch. For each annotated
AST in the original list, we look for the deepest if-node such that one of the attached
conditions is implied by the current guard. The guard is then simplified in terms of
this condition and the AST node (with an enclosing if-node if needed) is inserted in the
corresponding branch. Finally, the list of if-nodes is updated to reflect the insertion.

(56)

Example 5.20. Assume an outer generated domain of

with [, u and n symbolic constants, and a list of four annotated ASTs with the following
simplified guards.

g1 ={(lo,31): I <igANig+1<iy} (s0)
g2 = { (lo,41) 199 <1} (s3) (60)
g3 ={(io,41): Il <ipNip+1<i3 Au<n} (s2)
94 = {(io,i1) } (s1)

When we consider g;, the list of if-nodes is still empty, so we create a first if-node with
condition ¢y = g; and complement ¢, = D \ g1, and add the graft to the final list of
grafts. Guard g, N D is not a subset of ¢y, but it is a subset of ¢y (ip < [ is satisfied
by the complement of [ < iy). We therefore simplify g, in the context of ¢;, which has
no effect in this case, and extend the else-branch of this if-node with the second graft.
We also extend the list of if-nodes with condition ¢; = g» and complement ¢; = ¢ \ go.
The following guard g; N D is a subset of neither ¢; nor ¢;, but it is a subset of ¢;. We

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: 2015.



Polyhedral AST generation is more than scanning polyhedra A:27

therefore simplify g5 in the context of ¢, which yields g5 = { (i, 1) : v < n } and extend
the then-branch of the if-node with the third graft. Since we are extending the first
element in the list of if-nodes, we drop all subsequent elements in the list of if-nodes
so that they can no longer be extended. This ensures that this combination step never
changes the order of the statements, even though it may be slightly too conservative.
We also extend the list of if-nodes with a new second if-node with condition ¢ = ¢}
and ¢j = ¢ \ g4. The final guard g3 N D is a subset of none of the if-node guards or
complements. We therefore clear the list of if-nodes and add the graft directly to the
final list of grafts. The generated code then has the following form.

if (cO0 >= 1b && c1 >= cO0 + 1) {

s0(c0, cl);
if (n >= ub + 1)
s2(c0, cl1);

} else if (1b >= cO0 + 1)
s3(c0, c1, 1b, c0, cl);

for (int c3 = max(lb, c0); c3 <= ub; c3 += 1)
s1(c0, c1, c3);

5.10. Generating AST Expressions

Most of the operations performed by the AST generator are performed on isl data
types that represent Presburger sets and relations or piecewise quasi-affine functions.
It is only during the final construction of the if- and for-nodes that these objects are
converted to syntactic AST expressions. Internally in isl, quasi-affine functions are
expressed in terms of greatest integer parts (|-]). In principle, these expressions can
be translated directly into their AST expression counterparts, but as explained in [Sec
for some use cases it is important to know if the first argument of an integer
division is non-negative or if the division is exact. Moreover, we typically want an ex-
pression of the form m | (a(i)/m)] to be translated to a(i) — (a(i) mod m), provided again
that a(i) is non-negative.

Whenever generating an if or for condition or a for initialization or upper bound
expression from an expression involving greatest integer parts, we first check for op-
portunities to extract modulo expressions and then check the signs of the remaining
greatest integer parts. Note that when generating a conjunction of constraints, we first
generate expressions for the constraints not involving greatest integer parts and then
add those constraints to the stock so that they can be used to simplify the remaining
constraints. It does not matter in which order these conditions get evaluated in the
generated code, but we do need to consider a particular order to ensure that there
are no cycles in constraints being used to simplify other constraints. The functions for
generating AST expressions from isl objects are also available to the user and can for
example be used to generate an AST expression from an access function.

Example 5.21. Consider the code in[Figure 7b| The constraints for the loop epilogue
are of the form n > 2 An — 4 |n/4| > 2. We first generate a condition for the constraint
n > 2 so that it can be used to simplify the condition generated from n — 4 [n/4| > 2.

If we are generating an equality constraint, we first check if the equality encodes a
stride. If so, the stride can be expressed in the AST using an expression of the form
x % m == 0. In this case, the sign of x is of no importance. For other constraints or
expressions in general, if we find a subexpression of the form fm |a(i)/m]| and we
can prove that a(i) is non-negative based on the constraints in the stock, then the
expression is replaced by f - a(i) — f - (a(i) mod m). If a(i) may be negative, but —a(i) +
m—1 can be proved to be non-negative, then it is replaced by f-(m+1—a(i))— f-((m+
1—a(i)) mod m) instead, exploiting the fact that |a/b] = — [—a/b] = — | (—a+b—1)/b].
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S1(i) = (2); 526, 5) — (2); Ss(i) — (1)

sequence

P N
Si(i)  Sa(ing)  Sa(i)
|

Sa(i,5) = (4)

Fig. 5: Schedule tree representation of the original schedule

Moreover, the a(i) inside the argument of mod can be replaced by any o’(i) = a(i) +
me(i). We therefore look for constraints i (i) > 0 among the shifted shared constraints
of the context with coefficients that are either equal or opposite to those of a(i) modulo
m. Since h(i) is known to be non-negative in the context, it can be used directly as o' (i).
If no such constraint can be found, we check if a(i) or —a(i) + m — 1 themselves can
be proved to be non-negative by solving an ILP problem. The latter test is also used to
check if the first arguments of the remaining integer divisions are non-negative. These
simple heuristics appear to work out fairly well in practice.

Example 5.22. Continued from The constraint n — 4|n/4| > 2 has
a subexpression of the form fm |a(i)/m], with f = 1, m = 4 and a(i) = n. Since we
have added the constraint n > 2 to the generated constraints of the stock, we can take
h(i) = n—2. We may therefore replace 4 |n/4| by n—(n mod 4) and obtain the constraint
n mod 4 > 2.

6. SCHEDULE TREES

This section describes our schedule representation that generalizes on other schedule
representations such as named Presburger relations and explains how to adjust the
AST generation algorithm to take such a schedule tree as input.

6.1. Motivation

Schedules used in polyhedral compilation naturally have the form of a tree. This is
clearly the case of schedules that represent the original execution order of a program,
as they deal with loops and compound statements. In particular, a compound state-
ment first executes all statement instances in the first “macro statement” (which may
itself be a loop or a compound statement) and then all statement instances in the next
macro statement. This order can be expressed by a “sequence” node that expresses
that its children should be executed in order. The execution order of a loop can be ex-
pressed as an affine function that expresses the loop iterator (or its negative) in terms
of the statement instances. The statement instances are then executed in increasing
order of this affine function. For example, a schedule tree representation of the original
execution order (2) is shown in |[Figure 5

Similarly, automatic scheduling algorithms [Darte et al. 2001; Bondhugula et al.
2008]|] typically construct a schedule recursively. At each level of the recursion, the
algorithms analyze the remaining dependences and determine which statements need
to be scheduled together and how these groups of statements need to be scheduled
with respect to each other (either in sequence or in an arbitrary order). Each group
of statements is then scheduled according to a partial schedule, which is typically an
affine function and which may be multi-dimensional in case of algorithms that look
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S1(2) = (0,4); Sa2(4,5) — (4, 1); S3(¢) — (4,14)

sequence

PN

S1(1)  Ss(i)  Sa(i,5)

Fig. 6: Schedule tree computed by isl for the program in

for tiling opportunities [Bondhugula et al. 2008]. Within each group, the dependences
are then updated to only include those dependences that are not carried by the partial
schedule and the algorithm proceeds to the next level of the recursion. For example,
the schedule tree in is a possible outcome of such an automatic scheduling
algorithm.

Previously proposed generic schedule representations such as Kelly’s abstraction
[Kelly and Pugh 1995], “2d + 1”-schedules [Girbal et al. 2006 and named Presburger
relations [Verdoolaege 2011]] are essentially an encoding of such schedule trees. While
such encodings are in principle sufficient as input to an AST generator, they make
intermediate operations such as tiling specific nodes in the schedule tree much more
cumbersome. By taking schedule trees as input to our AST generator, we allow the
user to construct an initial schedule tree (either corresponding to the original execu-
tion order or obtained from an automatic scheduler), perform various manipulations
on the tree such as affine transformations of partial schedules (including interchange,
skewing, reversal), statement reordering, fusion, distribution, index set splitting, strip-
mining and tiling and then send the result to the AST generator without having to
convert the schedule tree to another representation. For more details on how these
operations are performed on schedule trees and a comparison to other schedule repre-
sentations we refer to|Verdoolaege et al. [2014].

The additional node types allow the user to express that a collection of groups of
statements may be executed in any order and that some symbolic constants are only
available in specific subtrees of the schedule tree. They also allow the user to introduce
extra statements relative to the current position in the schedule tree. These features
are of crucial importance for a clean implementation of a polyhedral compiler such as
PPCG [Verdoolaege et al. 2013|]. PPCG takes a sequential C program as input, applies
an automatic scheduler to detect and exploit parallelism and tiling opportunities, and
then maps the resulting schedule tree to a CUDA or OpenCL device. If the outer node
in the result of the scheduler identifies groups of statements that can be executed in
any order, then PPCG can map each of these groups independently, possibly mapping
some of them to the CPU rather than to the device. The other groups may also have
some of the outermost nodes mapped to the CPU and it is therefore important to be
able to express that the symbolic constants corresponding to the block and thread iden-
tifiers (using CUDA terminology) of the device are only available in the subtrees that
are actually going to be executed by the device. Additional statements for synchro-
nization and for copying data between global memory and shared memory or registers
can be inserted directly at the appropriate positions in the schedule tree. Although
it is technically possible to write a tool such as PPCG without schedule trees it re-
quires much more effort to get right, it is more cumbersome to extend and specialize

4In fact, the initial implementation of PPCG was built on top of an earlier version of our AST generator
taking only named Presburger relations as input [Verdoolaege et al. 2013].
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for target-specific optimizations, and may involve nested calls to the AST generator,
which are more difficult to understand and debug.

6.2. Nodes

Besides the iteration domain and the schedule, an AST generator usually also takes
a third piece of information as input, namely a set of constraints on the symbolic
constants called the context. This context can be used to simplify expressions in the
generated AST. In our schedule trees, the context and iteration domain are included
as additional outer nodes, requiring only a single object as input. It should be noted
though, that although these nodes are included in the same schedule tree object, the
information about which statement instances need to be executed (available in the do-
main node) and in which order they need to be executed (available through most of
the other nodes) is still kept separate. Another reason for including these nodes in the
schedule tree is that context nodes are also allowed in other positions of the schedule
tree, where they express information that cannot be expressed in any other commonly
used schedule representation.

The following types of nodes are available in our schedule trees. We only consider
the properties that are relevant to AST generation.

Domain. A domain node appears as the root of a schedule tree and introduces the
statement instances that are scheduled by the descendants of the domain node. The
statement instances are described by a named Presburger set.

Context. A context node introduces symbolic constants and known constraints on
those symbolic constants. The introduced symbolic constants can be used in the
descendants of the context node. Guards involving the symbolic constants are not
allowed to be hoisted outside of the AST that corresponds to the subtree of the con-
text node. The context node typically appears as the child of the root of the schedule
tree, but additional context nodes in the tree may also be useful to introduce sym-
bolic constants that are only available in specific subtrees, e.g., block and thread
identifiers in PPCG. Symbolic constants referenced by the root domain node do not
need to be introduced by a context node.

Filter. A filter node selects a subset of the statement instances introduced by outer
domain, expansion or extension nodes and retained by outer filter nodes. Filter
nodes are typically used as children of set and sequence nodes (described next),
where the siblings select the other statement instances. Filters can also be used to
select the statement instances that are mapped to a given value of a symbolic con-
stant introduced in an outer context node. For example, PPCG uses filter nodes to
select the instances mapped to a given block or thread identifier.

Sequence. A sequence node expresses that its children should be executed in order.
These children must be filter nodes, with mutually disjoint filters.

Set. A set node is similar to a sequence node except that its children may be exe-
cuted in any order.

Band. A band node contains a partial schedule on the statement instances intro-
duced by outer domain, expansion or extension nodes and retained by outer filter
nodes. This partial schedule may be piecewise quasi-affine, but is required to be
total on those statement instances. Additionally, a band node contains options that
control the AST generation, e.g., separation (Section 5.4), unrolling or
isolation (Section 5.6). The ability to specify AST generation options for each band
separately allows for great flexibility for more complicated programs with state-
ments that, after scheduling, are spread over different, possibly nested, loop nests.
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Each band node contains an unstructured schedule of the type accepted by the AST
generator in
Leaf. A leaf of the schedule tree. Leaf nodes do not impose any ordering.

Mark. A mark node can be used to attach any kind of information to a subtree of
the schedule tree.

Expansion. An expansion node maps each of the domain elements that reach the
node to one or more domain elements. The image of this mapping forms the set
of domain elements that reach the child of the expansion node. Expansion nodes
are useful for grouping instances of several statements into an instance of a single
virtual statement to ensure that those instances are always executed together.

Extension. An extension node instructs the AST generator to add additional domain
elements that need to be scheduled. The additional domain elements are described
in terms of the outer schedule dimensions. A typical use case of such extension
nodes is the introduction of data copying statements for locality optimization. This
is expressed as a relation between the outer schedule dimensions and the set of ar-
ray elements accessed by the statement instances scheduled to a give value of those
schedule dimensions. The new statement instances of extension nodes are only in-
troduced if any of the instances introduced in outer nodes may still be executed at
the given position of the schedule tree.

Guard. A guard node describes constraints on the symbolic constants and the
schedule dimensions of outer bands that need to be enforced by the outer nodes in
the generated AST. This allows the user to rely on a given set of constraints being
enforced at a given point in the schedule tree, independently of the simplification of
guards performed by the AST generator.

Sequence and set nodes have one or more children. A leaf node has no children. All
other types of nodes have exactly one child.

6.3. AST Generation

AST generation for a schedule tree performs a depth-first traversal of the schedule
tree, where is applied on each band node. Termination of this algorithm
is replaced by a visit to the child of the band node in the schedule tree, while the
original termination is performed at the leaves of the schedule tree. The handling of
the other node types is fairly straightforward. Sequence and set nodes simply handle
their children in order and combine the resulting annotated ASTs. Filter nodes and
context nodes impose the given constraints on either the range of the executed relation
or (a prefix of) its domain. When annotated ASTs are combined on leaving a context
node, any symbolic constants introduced by the context node are projected out from
the guard and the enforced condition. Guard nodes add the associated conditions to the
conditions that still need to be enforced by the AST at higher levels. Expansion nodes
expand the range of the executed relation, while extension nodes add extra elements
to this relation.

The core algorithm needs to be slightly adjusted to the presence of descendant nodes
in the schedule tree. In particular, the shifted stride detection of is skipped
if any of the descendants (or in fact the current band node itself) refers to the schedule
dimensions of outer nodes, i.e., context, guard and extension nodes or band nodes with
an isolation domain. For the band nodes that are nested inside other band nodes, the
isolation domain is expressed in terms of the schedule dimensions of both the current
and the outer band nodes. The reason for skipping shifted stride detection is that the
schedule space is modified on a per statement basis, such that there is no way to ex-
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press the mapping between the original and the transformed schedule space. Other
changes to the schedule space are taken into account through the mapping from loop
iterators to schedule dimensions in the stock.

Likewise, the detection of components of [Section 5.7 needs to take into account the
descendants of the current node, while checking if an instance of statement b is sched-
uled after any instance of statement a. In particular, if the child of the band node is a
sequence node and if ¢ and b are mapped to different children, then their order deter-
mines whether the property holds. If the child is a set node and a and b are mapped to
different children, then the property does not hold since the instances of ¢ and b may
be scheduled in any order with respect to each other. As long as the property has not
been evaluated (and therefore some instances of ¢ and b may be scheduled together),
the traversal of the schedule tree continues. When reaching a leaf node, the instances
may be scheduled in any order. Note that it is important that the entire schedule tree
is available for the AST generator to be able to evaluate this property. Otherwise, the
AST generator would have to conservatively assume that the property holds for in-
stances that are co-scheduled by the known part of the schedule.

7. EXPERIMENTAL RESULTS

Let us now consider quantitative aspects of our AST generator, evaluating how it fares
compared to the state of the art. The version of isl used in these experiments is
is1-0.14-368-g23e8573.

7.1. Robustness

One of the major goals of our AST generator is that it should accept any well-formed
input and that it should produce correct code. In order to test the correctness of our
AST generator, we collected inputs from the CLooG and CodeGen+ distributions and
verified that we produce correct code for each of them. Since the types of inputs of
these tools form a strict subset of the inputs accepted by our AST generator, the inputs
can be easily converted to schedule trees with three nested nodes, a domain, a context
and a band node. To verify the correctness of the output, we parse the output using pet
[Verdoolaege and Grosser 2012] and verify that the statement instances executed by
the output are the same as those specified by the input and that they are executed in an
order that matches the input schedule. Moreover, if the input schedule is single-valued
(which is usually the case), then we check that each statement instance is executed
exactly once. We perform this test for various settings of the options that control the
shape of the output. Although we are aware of work that checks that different versions
of CLooG produce equivalent output [Verdoolaege et al. 2012]], we are not aware of prior
work that systematically verifies that the generated AST matches the input schedule.

Performing the same check on CodeGen+ generated output from CLooG inputs, we
find that for 13 test cases (out of 94) CodeGen+ produces output containing N/A. This
means that CodeGen+ was unable to express the statement instance in terms of the
loop iterators in the scheduled code, possibly due to CodeGen+ applying the schedule
as a preprocessing step and doing the AST generation on the schedule domain, which
prevents the recovery of the statement instance in case of non-injective schedules.
We also found one test case (darte) where the generated code contains a condition on
a loop iterator outside of the loop over which it iterates and one test case (walters)
where some statement instances in the input do not appear in the generated codeﬁ
Note that the N/A issue also appears in four of the (disabled) test cases that come
with the CodeGen+ distribution. One of the original codegen test cases (p.delft2) also
produces the error “guard condition too complex to handle”. Performing a similar test

5These issues were reported to the authors in October 2013.
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iffgg ?: 3)2' i<=ms i+=2) | for (int c0 = 2; cO < n - 1; cO += 4) {
if (i%4 == 0) S
80(5); N S0(c0 ;
ifsig?;?)%4 =0 if (n>=2 &k n Y% 4> 2)
} 15 S1(-(n % 4) +n + 2);

(a) CLooG 0.18.1 generated code (b) is] generated code

#define intMod(a,b) ((a) >= 0 2 (a) 7 (b) : (b) - abs((a) 7 (b)) % (b))
for(i = 2; i <=n; i += 2)
if (intMod(i,4) == 0)
S0(1);
else
S1(i);
(c) CodeGen+ generated code

Fig. 7: Code for example from [[Chen 2012, Figure 8(b)] (style edited)

for(i=1; i<=n-2; i++) { for(i=1; i<=m; i++) { for (int c0=1;c0<=n;c0+=1) {
S0(i,i); if (i>=n +1) { S0(c0, c0);
S1(i,i); S2(i,n); for (int c1=c0;cl<=n;cl+=1)
for(j=i+l; j<=n-1; j++) } else { S1(c0, cl1);
S1(i,j); S0(i,1); S2(c0, n);
S1(i,n); S1(i,i); }
S2(i,n); if (i>=n) for (int cO=n+1;c0<=m;c0+=1)
¥ S2 (i,1i); S2(c0, n);
S0(n-1,n-1); }
S1(n-1,n-1); for(j=i+l; j<=n-1; j++) (c) isl codegen
S1(n-1,n); S0(i,j);
S2(n-1,n); if(n >= i+1) {
S0(n,n); S0(i,n);
Si(n,n); S2(i,n);
S2(n,n); }
for (i=n+1; i <= m; i++) }
S3(i,j);

(b) CodeGen+
(a) CLooG 0.14.1

Fig. 8: Code for youcefn taken from [Bastoul 2004} Figure 6] (style edited)

on CLooG with CodeGen+ inputs is not feasible since older versions of CLooG (prior to our
enhancements) would not allow existentially quantified variables in the input.

7.2. Generated Code Quality

We illustrate the improvements in code quality of our AST generator through exam-
ples from related work. compares the outputs on an input with iteration do-
main {S0(4) : Ja : 1 < i < nAi=40;81(4) : Ja : 1 < i <nAi=4a+2} and
schedule {80(i) — (i);S1(i) — (4) }, an example reconstructed from |Chen [2012] Figure
8(b)] with the iteration space extended to negative numbers. Notice that thanks to the
shifted stride detection of the modulo operation is removed from the inner
loop in the is1 output. During the construction of then % 4 >= 2 condition, we exploit
the fact that the body is only executed if the condition n >= 2 also holds, as explained
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in [Section 5.10| For the input of |(Chen [2012, Figure 8(a)], is1 produces the same AST
as CodeGen+.

illustrates the detection of components of|Section 5.7, The example is the
one used by Bastoul [2004, Figure 6]. Without the detection of components, some sep-

aration is needlessly applied as illustrated in[Figure 8b|for CodeGen+ and in
for CLooG 0.14.1. The code of |Bastoul [2004, Figure 7] is similar to the code that isl
produces, but was obtained either manually or using a preliminary implementation of
an “unisolate” technique that was never made public. As a further illustration, for the
darte input, each statement only occurs twice in the is1 output even with full separa-
tion. In the CLooG output, each statement occurs 5 times, and is surrounded by several
modulo conditions, some of which are redundant. As explained in|[Section 7.1} CodeGen+
produces incorrect output in this example.

Even though the C snippets just presented already allow the reader to under-
stand certain code properties, the instruction sequence that is executed on the tar-
get may noticeably differ from the C code we see and often depends very much on
the target compiler used. To understand how well the above ASTs can be understood
and optimized by regular C compilers, we analyze the size of the generated code as
well as the number of instructions executed when running this code and combine it
with an analysis of the generated assembly code. For this experiment, we compile
the code with clang 3.6, gcc 4.9.1 and icc 15.0.0 using the options -03 -std=gnu99
-march=corei7-avx -mtune=corei7-avx -fno-inline. In additional compilations, we
disable vectorization (-fno-vectorize, -fno-tree-vectorize, and -no-vec) and loop
unrolling (-fno-unroll-loops, -unroll=0). The size of the generated code is measured
as the size of the function it is located in, which we obtain by calling nm -S on the
object file. The number of dynamic instructions is measured with valgrind’s callgrind
tool, a profiling tool that traces the execution of the code and counts for each function
the number of instructions executed. When measuring the dynamic instruction count
we do not aim for a cycle-accurate performance prediction, but want to understand
the different compilers and their optimizations without getting lost in target specific
details.

Table I|shows the code size and instruction counts we obtain for the code in
and As statements we use A[x]++ and B [x] ++ for [Figure 7| while for [Figure 8]
we use A[x] [yl++, B[x] [yl++ and C[x] [y]l++. For the code in |[Figure 7| we see that
with clang the isl generated code is larger than the CLooG and CodeGen+ generated
code, due to the loop epilogue isl generates. Clang is able to exploit the knowledge
that i is positive to only retain the positive branch of CodeGen+’s intMod instruction,
but it cannot remove the if conditions that CLooG and CodeGen+ introduce in the loop
body. Similarly, gcc also simplifies the intMod instruction and leaves the conditional
control flow in the loop. As the isl generated code does not evaluate conditions in the
loop body, it executes notably fewer instructions (around 190 instructions) than the
CodeGen+ and CLooG generated code (355 — 506 dynamic instructions). Neither clang
nor gec unroll or vectorize any of the generated code. icc, on the other hand, vectorizes
and unrolls the code. In case we disable both, icc does not succeed in eliminating the
negative branch of intMod () and also does not transform the remainder computation
to a bitwise and (i.e., 1% (2°n) into i&(2°n-1)). As a result, the icc generated code for
CodeGen+ and CLooG is not only noticeably larger but also requires 878 or even 1105
dynamic instructions, compared to the 192 instructions executed when running the
code icc derives for the isl generated AST. In case we allow unrolling, icc success-
fully eliminates the intMod branch, but still fails to express the remainder as a bitwise
and, a transformation that gcc and clang apply in all important cases. When enabling
automatic vectorization, icc derives vector code only for the isl generated AST. Vec-
torization induces a large code size increase (240 bytes to 1104 bytes), but slightly

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: 2015.



Polyhedral AST generation is more than scanning polyhedra A:35
reduces the instruction count. A larger decrease of the dynamic instruction count is
not possible as the memory access pattern of our test case is strided and memory ac-
cesses on AVX require additional scalar loads or shuffle instructions. Instruction sets
that allow gather and scatter instructions are likely to show more visible benefits from
vectorization. The same holds for loop kernels that contain more complex statements,
where the increased complexity of the memory accesses has a lower relative impact.

The performance results we obtain for youcefn in show that with unrolling
and vectorization disabled, the is1 AST generator has a clear code-size benefit across
all compilers, with little difference visible in the dynamic instruction count. When
allowing loop unrolling, icc is the only compiler that exploits it and as a result reduces
the dynamic instruction count across all ASTs, with the largest effects visible for isl
and CodeGen+. Noticeably, the is1 generated code now only executes 16598 instructions
requiring only 784 bytes in code size. When additionally enabling vectorization, the
dynamic instruction count of all compilers is reduced even more significantly: the isl
generated code compiled with icc yields 10489 dynamic instructions, which is very
close to the 10383 instructions yielded by CLooG compiled with icc, while its size is only
1008 bytes compared to 2960 bytes for the latter (one third of the code size for a similar
dynamic instruction count).

Wrapping up this code quality study, isl can perform control flow optimizations
that notably improve performance, complementing loop nest transformations exposing
parallelism and locality. These optimizations are not performed by normal C compilers,
and conversely, some of them enable further compiler optimizations such as automatic
vectorization. The code generated by isl is also significantly smaller in general. Note
that the latter may open opportunities for further unrolling and vectorization for a
given code size budget.

Code Size [Byte] Inst. Count

clang gce icc | clang gce icc

Figure 7 CLooG 0.18.1 74 89 272 506 356 497
CodeGen+ 68 67 256 381 355 471

isl 125 113 1104 193 188 188

CLooG 0.18.1 272 497

CodeGen-+ 256 471
- no vector isl 240 182
Figure 7 CLooG 0.18.1 112 1105
- no vector CodeGen+ 160 878
- no unrolling isl 112 192
CLooG 0.14.1 801 1057 2960 | 16260 13412 10383

youcefn CodeGen+ 552 914 2160 | 15548 14235 10594
isl 625 812 1008 | 13845 13409 10489

CLooG 0.14.1 398 443 1632 | 26853 26271 20928

youcefn CodeGen+ 245 289 1280 | 27266 26868 17322
- no vector isl 181 218 784 | 26762 26570 16598
youcefn CLooG 0.14.1 464 27738
- no vector CodeGen+ 400 27679
- no unrolling isl 208 31917

Table I: Code size and dynamic instruction count for [Figure 7| and [Figure 8 (with
increment in stmts)
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// Simple

// Simple for(i = intMod(n,128); i <= 127; i += 128)

S(n % 128); S(i);

// Shifted // Shifted

S(((t1 + 121) % 128) + 7); for(i = 7+intMod(t1-7,128); i <= 134; i += 128)
S(1);

// Conditional

if ((t1 + 121) % 128 <= 123) // Conditional

S(((t1 + 125) % 128) + 3); for(i = 7+intMod(t1-7,128); i <= 130; i += 128)

S(i);

(a) isl
(b) CodeGen+

Fig. 9: Modulo conditions (examples not supported by CLooG)

// Two e.q. wvariables

for (int c0 = 0; c0 <= 7; cO += 1) // Two e.q. wvariables
if (2 * (2 * cO / 3) >= c0) S(0); S(2); s(3);
S(c0); S(4); s(8); s(6); 5(7);
// Multiple bounds // Multiple bounds
for (int c0 = 0; cO0 <= 1; cO += 1) if (t1 >= 126)
for (int cl = max(tl - 384, t2 - 514); S(0, t1 - 384);
cl < t1 - 255; cl1 += 1) S(0, t1 - 256);
if (c1 + 256 == t1 || if (t1 >= 126)
(t1 >= 126 && t2 <= 255 && c1 + 384 == t1) || S(1, t1 - 384);
(t2 == 256 && c1 + 384 == t1)) S(1, t1 - 256);
S(c0, cl1);
(b) isl unrolled
(a) isl

Fig. 10: Existentially quantified variables (examples not supported by CLooG/CodeGen+)

7.3. Modulo Mappings and Existentially Quantified Variables

Our algorithm aims to generate a valid and efficient AST for any Presburger rela-
tion. Dealing with existentially quantified variables is one area not sufficiently cov-
ered in These can result from modulo mappings from global to shared
memory, or from a full iteration space to a set of thread identifiers. Indeed, gener-
ating an efficient AST in the presence of existentially quantified variables requires
particular care with modular arithmetic, eliminating remainders of integer divisions,
or simplifying them whenever possible. We start with a simple modulo operation
{S[i] = [i] : i = nmod 128} (in a context where n > 0) to verify that modulo oper-
ations can be detected at all. Since older versions of CLooG (prior to our enhancements)
do not allow existentially quantified variables, we do not compare against it in this
section. For isl and CodeGen+, shows that isl uses a single statement with
a remainder operation, whereas CodeGen+ generates a loop. Using a loop is very in-
efficient due to the call to intMod and the additional control flow overhead. However,
it can be optimized by observing that the expression n%128 is an invariant of all sur-
rounding loops, which should be accessible to the loop-invariant code motion pass of
a compiler. Two slightly more complicated examples are mappings from a set of iter-
ations to a set of threads ¢1 with 0 < ¢1 < 128. The first mapping is the one-to-one
mapping {S[i] — [{] : 7 < i < 134 Aimod 128 = t1} which isl again translates into a
single instruction, the second is the mapping {S[i] — [{] : 7 < < 130 A i mod 128 = ¢1}
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Code Size [Byte] Inst. Count
clang gce icc | clang gee icc
CodeGen+ 100 66 400 15 5 42
Modulo — simple isl 38 28 32 9 8 8
isl (unsigned mod) 12 11 16 3 3 3
CodeGen+ 116 145 416 14 15 43
Modulo — shifted isl 45 33 48 10 9 8
isl (unsigned mod) 16 16 32 4 4 4
CodeGen+ 116 145 416 14 15 43
Modulo — conditional isl 78 63 80 19 18 18
isl (unsigned mod) 29 29 32 8 8 8
Two e.q. variables ?Sl 49 49 64 8 8 8
isl unrolled 49 49 48 8 8 6
Multiple bounds isl 260 367 160 | 1966 2120 3392
isl unrolled 140 150 112 20 21 20

Table II: Code size and dynamic instruction count for [Figure 9| and [Figure 10|

which maps 124 iterations to 128 threads. is1 lowers this mapping to a single condi-
tional statement. CodeGen+ generates for both cases a full loop nest. It is interesting to
note that all previously shown loops are degenerate loops with just a single iteration.
CodeGen+ is not able to detect those loops, whereas isl is designed to always recognize
degenerate loops (see [Section 5.3).

For the previous test cases only a single existentially quantified variable was intro-
duced due to the single modulo operation in the schedule. For more complex use cases,
e.g., a modulo mapping of access functions that already contain modulo expressions
or nested modulo mappings, it is often possible that multiple existentially quantified
variables are introduced. The first test case {S[i] — [i] : (e, 5 : i = 2a+ 38 A0 <
a<3AN0<BA0<i<8)}involves two existentially quantified variables in a single
equality. CodeGen+ aborts here with the message guard condition too complex to han-
dle. In we see that isl is able to generate valid code (see for
details), which can be unrolled both for better efficiency and to better understand the
computation that is performed. The next test case is {S[i,j] — [¢,7] : (e, 5 : 0 < i <
IAtl=j+128aA0<j+28<128A510 < 2+28 <514A0< 23— 2 < 5)}, which
was reduced from the example in [Figure 1l CodeGen+ aborts with Can’t generate mul-
tiple wildcard GEQ guards right now. isl either generates a loop with multiple loop
bounds or, if unrolled, a set of conditional statements. As|Chen [2012] does not discuss
how existentially quantified variables are handled, the scope of support in CodeGen+ is
unclear. When inspecting the source code of CodeGen+ we found several code paths that
require a single existentially quantified variable per constraint. is1 has no limitations
on the number of existentially quantified variables per constraint (see[Section 5.2).

Using the approach presented in we again analyze the target code gen-
erated by different compilers for the examples above. The results in[Table Il show for
the different modulo conditions both a code size and especially a dynamic instruction
count benefit of is1 over CodeGen+, with the icc generated code being exceptionally bad
for CodeGen+. One exception is the code for the conditional modulo, where CodeGen+
uses slightly fewer dynamic instructions (14 vs. 19 for clang) due to the isl generated
code evaluating two modulo expressions, one in the condition and one in the statement
itself. It is interesting to note that a single modulo expression is expensive even though
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it uses a power-of-2 divisor which should be lowered to an efficient bitwise and oper-
ation. Indeed, none of the compilers tested has sufficient information to perform this
optimization when using signed types. As we know for this example that the dividend
of the remainder is always non-negative, we can transfer the necessary information
by manually casting the modulo dividends to unsigned integer types. isl marks re-
mainder instructions with a non-negative dividend and even actively forms them (see
[Section 5.10), such that the insertion of the relevant casts can be automatized, if de-
sired. As is clear from the results, the knowledge about the positivity of the dividend
allows all compilers to optimize the modulo conditions such that the isl generated
code across all compilers and all modulo test cases is now both notably smaller and
requires fewer dynamic instructions than the code produced by CodeGen+.

The kernel with two existentially quantified variables results in almost identical
target code for all compilers, independently of it being unrolled or not. As the size of
the loop is statically known and very small, all compilers unroll the loop automat-
ically. In contrast, the more complex loop in the “multiple bounds” test case is not
unrolled by any compiler, but instead a complex piece of code with a high number of
dynamic instructions is generated. By taking advantage of the context information
available in the AST generator we can unroll the code to an efficient sequence of (in
parts predicated) statements. This reduces code size and results in a large reduction
of the dynamic instruction count.

Overall, isl makes measurable progress in generating more efficient target code
from general Presburger relations with existentially quantified variables. This ability
allows a better decoupling between the exploration of complex loop transformations on
one side, and the (re)generation of efficient control flow on the other. is1 achieves this
by leveraging state-of-the-art optimizations for modular arithmetic, complementing
these with specific attention to the sign of operands and actively forming expressions
that have non-negative dividends. isl also leverages integer arithmetic to identify
cases where a loop is not needed, simplifying the generation of compact control flow. Fi-
nally, while for loops with constant trip and small instruction count, loop unrolling can
be performed by the C compiler, partial unrolling of more complex loops is preferably
performed by an AST generator due to the additional context information available.
This is confirmed and pushed further in these is1 experiments.

7.4. Index Set Splitting

Traditionally, when optimizing a loop program by changing the execution order of indi-
vidual statement instances, the order of the different instances is described by a sched-
ule that contains for each statement a single quasi-affine expression which assigns ex-
ecution times to statement instances. For certain transformations, such a single affine
expression is not expressive enough, but instead it is necessary to use different affine
expressions for different subsets of the iteration space. Optimizations that require such
piecewise schedules are called index set splitting [[Griebl et al. 2000]] transformations.
Two recent works, hybrid-hexagonal tiling [Grosser et al. 2014]] (see also |[Section 7.6)
as well as work on time-tiling of periodic stencil computations [Bondhugula et al. 2014]|
both necessarily produce schedules with split index sets. To regenerate highly efficient
control flow, both of these works benefit from the native support for piecewise sched-
ules available in our AST generator. In the case of the work on periodic stencils, this
control flow allowed the time tiling of swim, a large real-world application that is part
of the SPEC 2000 benchmark suite. The use of a tiling scheme based on index set split-
ting has been reported to result in notable performance improvements that were not
achievable using manual transformations because those were deemed to complicated
and hard to debug.
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#define mod(a, b) ((a) < 0 2 (a)+(b) : (a) >= (b) 2 (a) - (b) : (a))

for (t = 0; t < N; t++)
for (i = 0; i < 2N; i += 1)
S: A[(t+1)%2]1[i] = A[t%2] [mod(i+1, 2N)] + A[t%2] [mod(i-1, 2N)]

Fig. 11: Original stencil code with wrapping dependences

Figure 11| shows a simple 1D stencil code similar to the loops in the swim kernel.
The iteration domain of this kernel is

{S(t,i):0<t<TA0O<i<2N}, (61)
and the data dependences are

‘ S(t+1,i+1) ifi < 2N —1
S(t’Z)H{S(t+l,z‘+12N) ifi=2N —1 (62)
and
. S(t+1,i—1) ifi>0
St = {S(t+1,z’—1+2N) ifi = 0. (63)

To now exploit reuse along the ¢ dimension, it is necessary to tile the code across
multiple iterations of . Unfortunately, even though most data dependences have a
short dependence distance ((1,1); (1, —1)), there are also some with longer dependence
distances ((1,1 — 2N);(1,—1 + 2N)) at the iteration space boundaries. These latter
dependences block the application of such a time tiling. To address this problem, the
following piecewise schedule can be used:

((t,i,0) ifi < N
St:1) = {(t,ZN —i-1,1) ifi>N.

This schedule splits the iteration space into two parts and reverses the second part
such that dependent iterations can be moved close to each other and the dependence
distances are shortened to (1,0, 1);(1,0,—1);(1,—1,0);(1,1,0). We can directly use this
schedule to generate the code in or, with now shortened dependences, use it
as a base for further tiling.

With index set splitting natively supported by our AST generator, it is possible to
generate such codes without being forced to introduce new virtual statements that
model subsets of the iteration space to which different schedules have been assigned.
Even though such preprocessing is possible, it breaks an abstraction barrier by re-
quiring some AST generation steps to be taken in the scheduling optimizer. The use
of virtual statements also hides from the AST generator the fact that different pieces
of the schedule execute the same statement, which means there is no inherent reason
to duplicate these statements. Instead, the AST generator can be instructed to avoid
code duplication for rarely executed code paths (before or after parts when using iso-
lation) and use code duplication to maximize the performance of the center part of a
computation.

(64)

7.5. Run-Time Guards for Optimistic Transformations

When performing loop nest optimizations in the context of a regular C compiler, input
programs often do not provide sufficient static information to verify the validity of in-
teresting transformations. It is however still possibly to apply such transformations by
optimistically assuming the required program properties and only executing the trans-
formed code if the optimistic assumptions can be verified at run-time, falling back to
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for (int cO0 = 0; cO < T; cO += 1)
for (int c¢1 = 0; c1 < N; c1 +=1) {

S(c0, cl1);
S(cO0, 2 * N - cl - 1);
}
Fig. 12: AST generated code after index set splitting (no tiling applied)

B no run-time checks [ run-time checks|
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Fig. 13: Speedup of Polly with/without run-time checks in comparison to clang -03 on
polybench 3.2

an unoptimized version of the code if this run-time verification fails. The AST gener-
ating facility of can then be used to print efficient code for the collected
conditions that guard the optimistically transformed code.

One illustration of this AST generation feature can be found in LLVM’s Polly loop
optimizer [Grosser et al. 2012]]. Polly heavily depends on the AST generation of user-
provided expressions which allows Polly to conveniently derive necessary run-time
checks from constraints modeled as integer sets or from given affine expressions.
Polly uses this facility to provide an “assumption tracking” framework where anal-
yses and transformations performed in the context of Polly collect the assumptions
they take. Polly then collects these assumptions in an integer set, leverages isl to
simplify this set and finally uses the presented AST generator to derive AST ex-
pressions that verify the collected assumptions at run-time. Polly currently uses this
framework to track assumptions about multi-dimensional arrays. It assumes that ac-
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cesses into arrays of fixed size always remain within bounds. For polynomial access
functions to one-dimensional arrays (e.g., A[i + n * j] to A[]), Polly aims to recover
a multi-dimensional access shape and corresponding subscript expressions [Grosser
et al. 2015], as this transformation often turns a polynomial dependence analysis prob-
lem into a linear problem which is in general easier to solve. Polly also leverages fa-
cilities to build AST expressions to deal with pointer aliasing, where it optimistically
assumes the absence of aliases. To generate the run-time checks that prove absence of
aliasing, Polly derives the set of array accesses in the loop program and computes for
each array base pointer the lexicographically minimal and maximal (possibly multi-
dimensional) subscript vector accessed during the execution of the loop program as
a parametric quasi-affine expression, which are then translated to AST expressions
using the presented AST generator.

To give the reader an idea of the additional optimizations enabled by the emission
of run-time guards, we compile polybench 3.2 with Clang and Polly (r236223) once
using plain clang -03, then using clang and Polly without support for the genera-
tion of run-time checks and then again using clang and Polly with run-time check
generation enabled. The resulting binaries are run single-threaded on an Intel Xeon
E5430 CPU. We illustrate the results (median of 10 runs) in lu, jacobi-1d-
imper and reg_detect show a very high variance due to the default run-time being very
short and are consequently ignored in the subsequent analysis. Polly without run-
time check generation enabled yields for most benchmarks the same performance as
clang -03, which is mostly due to Polly being unable to statically model the loop ker-
nel and consequently not applying any transformation. When using run-time checks,
6 out of 29 benchmarks yield more than 50% speedup over clang -O3, and 3 additional
benchmarks yield at least 20% speedup. The improvements in Polly here are caused
by data-locality transformations (mostly tiling). The absolute speedup can vary sig-
nificantly between platforms, depends mostly on the choice of the right schedule and
good tile sizes and is specifically high as clang does not perform any loop tiling. There
are also a couple of test cases where the run-time checks we emitted enabled further
transformations, but where the transformations chosen by Polly’s heuristics degraded
performance compared to clang -O3 or to Polly without run-time check generation.

We emphasize that our contribution is not in finding the optimal code transformation
or even the definition of an assumption tracking framework. However, the examples
and numbers presented illustrate nicely what kind of optimizations can be enabled by
our AST generator’s support for the generation of AST expressions. There are different
ways to derive run-time checks and there is not always a need to use a polyhedral AST
generator to emit them. However, for the generation of more complex and (possibly
partially redundant) conditions, the use of an integer set based framework to collect
such conditions and the use of an AST generator to directly generate code for them
has shown to work well in Polly. An AST generator based approach also makes future,
more context-dependent optimizations directly available to the AST generation of ar-
bitrary affine schedules, and also to the generation of user-provided conditions and
expressions.

7.6. Performance Implications of AST Generation Strategies

To understand the performance implications of our new AST generation strategies,
we analyze their impact on the run-time of generated code. We ensure a realistic sce-
nario by analyzing a full end-to-end domain-specific compiler. As compiler we choose
the stencil compiler introduced in [Section 2} We remind the reader that this compiler
is based on the general purpose compiler PPCG. To create code that is optimized for
the domain of stencil computations, the computation of a generic execution schedule is
replaced with the computation of a hybrid hexagonal/parallelogram execution sched-
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heat 2D heat 3D
AST generation options GFLOPS | speedup | GFLOPS | speedup
a: no options enabled 2.1 1.0x 5.5 1.0x
b:  all optimizations enabled 28.4 13.4x 21.0 3.8x
c1:  all, except full/partial separation 21.5 10.2x 19.7 3.6x
co:  all, except 10 unrolling 5.1 2.4x 10.5 1.9x
c3: all, except compute unrolling 15.9 7.5x 11.3 2.1x
cq:  all, except modulo detection 29.1 13.7x 18.3 3.3x

Table III: AST generation strategy based performance (GFLOPS)

ule specifically optimized for the domain of stencil computations. Besides the domain
specific schedule, the only other domain specific piece is the parametrization of our
AST generator to isolate (Section 5.6) full tiles from partial tiles as well as to unroll
(Section 5.5) compute and IO code. AST expression generation (Section[5.10) is used to
specialize the access functions of statements, e.g., after unrolling or separation.

We perform the evaluation on an NVIDIA NVS 5200M GPU with CUDA compilation
tools V5.5.0 using a heat 2D and a heat 3D stencil as benchmark and report results
as the median over 10 samples. As performance results have shown large differences
between two and three dimensional stencils, we choose two benchmarks to cover the
most common dimensionalities. We limit ourselves to a single type of stencil, as the
general tendency between different types of stencils does not vary enough to give addi-
tional insights for this analysis. For further performance results on different hardware
and different stencil types, we refer to|Grosser et al. [2014]. shows the results
of our analysis. We see in a that normal AST generation with no further specialization
enabled yields very low performance with just 2.1 GFLOPS in the 2D case and 5.5
GFLOPS in the 3D case compared to b where we enable all optimizations and obtain
28.4 GFLOPS in the 2D case and 21.0 GFLOPS in the 3D case, a 13.4x speedup in the
2D case and a 3.8x speedup in the 3D case. To understand better where this speedup
comes from we individually disable certain optimizations. In ¢; we disable full/partial
tile separation, which reduces the performance by 24% for heat-2D and 6% for heat-
3D. The larger change on 2D is due to the higher percentage of full tiles. In 3D, already
a large amount of time is spent in partial tiles, so optimizations that speed up the exe-
cution of full tiles are less visible. In ¢ and c3 we see that for heat 3D disabling either
unrolling of 10 or unrolling of compute reduces the performance by around 50%. For
the 2D case, disabling unrolling of the compute code also reduces the performance by
44% and, even more importantly, without unrolling of the IO code over 80% of the per-
formance is lost. This large performance difference is due to both the increased ILP
after unrolling and the simplifications enabled by unrolling (see [Figure 2). In ¢, we
see that without modulo detection the performance for heat-3D is reduced by 13% and,
surprisingly, slightly increased by 2% in 2D. The increase for heat-2D is due to register
spilling caused by loop invariant code motion which again was made possible due to
the simpler code after modulo detection. Allowing nvcc, the NVIDIA compiler, to use
more registers prevents register spilling and modulo detection becomes again benefi-
cial with a new peak performance of 29.4 GFLOPS for heat 2D. Overall, we see that
just generating control flow using polyhedral scanning is by far not enough to generate
high-performance GPU code. Instead, both polyhedral unrolling and specialization for
full and partial tiles are highly important to obtain code of competitive performance.
The fact that we achieve large speedups compared to an almost unoptimized code may
not surprise the reader. However, we would like to note that such optimizations are cur-
rently not available in any other AST generator and even though some of them may be
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performed with the help of additional pre or post-processing, having all optimizations
carefully interact inside the AST generator is beneficial. It enables a close integration
of related optimizations, where for example the modulo detection has access to infor-
mation about the currently unrolled loop. Furthermore, being able to gradually add
optimizations without affecting the schedule of the program and, consequently, with-
out affecting the correctness of the program, has shown useful when developing new
AST generation based tools.

7.7. Generation Time

Although we have mostly focused on ease of use and quality of the generated AST,
for completeness we also report some AST generation times. For this experiment, we
take 64 of the test cases distributed with CLooG (those that can be handled by both
CLooG 0.14.1 and CodeGen+) and sum the total AST generation time. For CLooG 0.14.1
(before our enhancements, using PolyLib as a backend), we obtain 0.3s using fixed
size integer computations and 1.0s for arbitrary precision integers. For CLooG 0.18.1
(including some of our enhancements and using isl for set operations with arbitrary
precision integers), we obtain 0.9s. For CodeGen+, we find 3.1s and for isl, 1.5s. We
attribute the time difference with respect to CLooG to the fact that we have not yet
implemented some of the heuristics of [Vasilache et al. [2006] and that we are much
more aggressive in our optimizations, resulting in better output code.

7.8. Generated Code Performance

It is difficult to compare the performance of code generated by different AST genera-
tors. First of all, the types of schedules we accept as input are much more generic than
those supported by CodeGen+ and old versions of CLooG. To be able to perform a compar-
ison, we have therefore performed an experiment with relatively simple schedules. In
particular, we have taken each of the PolyBench benchmarks [[Pouchet 2012], applied
the isl scheduler (a variation of the Pluto scheduler [Bondhugula et al. 2008]), tiled
the outermost tilable loop and generated CPU code. For our AST generator, we set the
atomic option on the tile loop band and the separate option on the innermost band. For
CodeGen+, we use the default options, which is essentially to separate on the innermost
loop. We also modified the source code of CodeGen+ to produce nested calls to binary
min and max macros instead of single calls to n-ary macros.

Another issue in comparing the performance of code generated by different AST gen-
erators is that the generated AST or source code still needs to be compiled by a com-
piler and the use of different compilers can lead to significantly different performance
results. We therefore compiled the generated code using three different compilers, gcc
4.9.2 with options -03 -march=native, clang 3.5 with options -03 -march=native, and
icc 13.1.0 with options -fp-model strict -03 -xHost. The experiments were run on
an AMD Opteron(tm) 6164 HE processor. For each benchmark and for each compiler,
we used the standard PolyBench performance measurement, which is to run the exper-
iment 5 times, remove the fastest and the slowest execution time and take the average
of the remaining 3 execution times.

In an attempt to make the comparison as fair as possible, we applied the following
tweaks. The context of the AST generation problem, i.e., the known constraints on the
symbolic constants, is treated differently by is1 and CodeGen+. While in our AST gen-
erator, the context is only used to simplify the generated AST, in CodeGen+ the context
constraints may end up in the AST. The default context, extracted by pet [Verdoolaege
and Grosser 2012], contains bounds on the symbolic constants derived from their inte-
ger types. With this context, CodeGen+ would use the lower bound on the symbolic con-
stants in the lower bounds of the for loops, which moreover exposed a bug in CodeGen+
that would replace the negative constants by positive constants, resulting in the loop
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Fig. 14: Relative execution time — benchmarks with consistent performance

not being executed. Restricting to non-negative symbolic constants prevented this bug,
but the upper bounds on the symbolic constants would still get used as upper bounds
in the for loops resulting in execution times that were orders of magnitude longer. We
therefore decided to drop the context from the CodeGen+ input. On the other hand, we
found that some compilers, especially gcc, are very sensitive to the way the min and
max macros are implemented. In particular, on average gcc produces faster code when
these macros only evaluate their arguments once, with extremes up to a factor of two.
For some unknown reason, this effect is more noticeable on isl-generated code than on
CodeGen+-generated code. In our experiments, we use macros that only evaluate their
arguments once, using gcc extensions that are also supported by clang and icc.

The results are shown in|[Figure 14| and [Figure 15| [Figure 14|shows the performance
results of the 16 benchmarks where the difference in performance between isl and
CodeGen+ is less than a factor of 1.1, whereas [Figure 15| shows the results of the 14
benchmarks where this difference was larger for at least one compiler. The way the
data is presented requires some explanation. Since we are mainly interested in the
relative execution times, we have divided the execution times for each benchmark by
the geometric mean of the 6 execution times (2 AST generators and 3 compilers). For
each benchmark and each compiler, we plot a mark at the relative execution times
and connect the three marks. By construction, the center of each resulting triangle
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Fig. 15: Relative execution time — outliers

lies on the second diagonal (dotted magenta line). Points above the main diagonal (full
magenta line) are those where isl generated code is faster. Points below the main
diagonal are those where CodeGen+ generated code is faster. The distance from the
main diagonal is a measure for the performance improvement. Similarly, points that
lie below the second diagonal are those where the corresponding compiler produces
faster code than the average over the three compilers.

In general, we see that the performances of is1 and CodeGen+ generated code are
very similar and that the differences between compilers is greater than the difference
between AST generators. Only considering a single compiler could therefore lead to
misleading results. For example, there are five benchmarks where icc produces signifi-
cantly faster code on CodeGen+ generated source code, but the other compilers produce
much faster code for both sources. On the other hand, there is also one benchmark
where icc produces significantly faster code on isl generated source code. There are
also four benchmarks where the isl generated code performs better when compiled
with all three compilers. A quick investigation reveals that this difference is due to
CodeGen+ failing to detect strides in some cases, whereas the stride detection of
is able to detect all strides.

While these figures may appear to suggest that isl generated code is faster than
CodeGen+ generated code, we would like to stress once more that these results depend
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on many factors and that we therefore do not want to make any such claims. For
example, when using min and max macros that evaluate their arguments twice, the
gce compiled code is in general significantly slower. Moreover, this slow-down is more
pronounced for is1 generated source code, resulting in a couple of benchmarks showing
the best performance (but worse than those in our figures) on CodeGen+ generated
source code.

We have also briefly investigated the experiments where [Chen [2012] reports im-
proved performance of CodeGen+ generated code over CLooG (0.16.3) generated code.
Our AST generator generates nearly identical code to CodeGen+’s, with the same per-
formance. We did find that the code generation time was somewhat longer (8.7s vs
2.6s) on the 1u case using their input formulation, where transformations have been
applied on the iteration domains rather than in a schedule, including duplication of
iteration domains to obtain the effect of unrolling. Using a more natural formulation
in terms of a schedule tree, we can generate the same code in 1.4s.

8. RELATED WORK

There are two major approaches to generic AST generation, one that is based on a li-
brary for Presburger relations and that focuses on lifting control overhead up [Kelly
et al. 1995; |Chen 2012]] and one that is based on rational polyhedra and that mainly
tries to eliminate overhead top-down [Bastoul 2004;|Quilleré et al. 2000[]. Our approach
can be seen as a combination, using the same separation algorithm of [Bastoul 2004;
Quilleré et al. 2000], but built on top of a library for Presburger relations. Historically,
we started by porting CLooG to isl and improving CLooG. Later, we built a new AST
generator on top of isl. Both the original approaches only allow single disjunct con-
texts and schedules, with CLooG also not supporting existentially quantified variables.
CodeGen+ can handle such variables in certain cases, but as|Chen [2012] does not dis-
cuss how such such variables are handled in general, the extent of support is unclear.
In contrast, our AST generator supports the full generality of Presburger arithmetic,
including existentially quantified variables and piecewise schedules.

In respect to the quality of the generated AST, some extensions proposed in the lit-
erature have not been implemented in isl. The components of serve the
same purpose as the “unisolate” procedure of [Bastoul [2004] Section 4.2]. However,
where the unisolate procedure tries to undo some separation, the components allow us
to not even apply the separation. Moreover, no implementation of the unisolate pro-
cedure was ever made publicly available. Instead, recent versions of CLooG implement
our components detection. Vasilache et al. [2006]] propose several optimizations imple-
mented in CLooG to reduce the AST generation time. Some of these optimizations are
tailored to their encoding of schedule trees and are not needed when the schedule is
represented as an explicit schedule tree. The same authors also propose an algorithm
for removing modulo conditions, which on the one hand can be seen as a generaliza-
tion of the shifted stride detection of but on the other hand is based on a
more restrictive polyhedral formulation. Zuo et al. [2013] describe several fine-tunings
of CLooG tailored for high-level synthesis, only some of which are available in isl.

Kelly et al. [1995] and (Chen [2012] as well as (Quilleré et al. [2000] and Bastoul
[2004] generate AST expressions as necessary to generate control flow for scanning the
iteration space, but they do not expose any functionality to generate AST expressions
for arbitrary user-provided piecewise quasi-affine expressions. We also are not aware
of any work that uses the AST generation context to specialize AST expressions, in
particular to optimize modulo operations and divisions as they appear in quasi-affine
expressions. CodeGen+ always generates expensive intMod calls and CLooG only intro-
duces a % operator in cases where the result of the operator is compared to zero.
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Polyhedral unrolling in an AST generator has been proposed (without software being
made available) by |Vasilache et al. [2006] for the special case of a unimodular schedule
where a dimension that has a single lower and single upper bound offset by a constant
non-parametric distance can be fully unrolled. In our work we presented polyhedral
unrolling for schedules defined by arbitrary Presburger maps, with support for un-
rolling in the presence of multiple lower bounds, unrolling in the presence of strides
and unrolling for loops with a bounded, non-constant number of iterations using con-
ditional statements. User-directed isolation of arbitrary subsets of the iteration space
as such has not been implemented in polyhedral AST generators. The automatic sep-
aration used by |[Bastoul [2004] regularly introduces specialized code versions, but the
user can only control the amount of separation and not the subsets that are separated
from each other. Full/partial tiling has been discussed as an independent transforma-
tion by | Ancourt and Irigoin [1991]] as well as|Goumas et al. [2003]] and, combined with
unrolling, by|Jiménez et al. [2002]. In the context of parametric tiling [Kim et al. 2007;
Renganarayanan et al. 2007; Hartono et al. 2010], full/partial tile separation has been
researched in AST generators specialized for this use case. We are not aware of any
work that uses a generic isolation feature provided by a polyhedral AST generator to
perform full/partial tile separation. As parametric tiling techniques commonly rely on
polyhedral AST generators, the same isolation techniques may be useful in the context
of parametric tiling.

We are not aware of any work that provides configurability on such a fine grained
level. CLooG [Bastoul 2004] originally allowed per-dimension level control over sepa-
ration and recently gained per-statement control. |(Chen [2012] allows per loop level
control over the amount of control flow. Different AST generation strategies for dif-
ferent subtrees of the generated AST are to our knowledge unique to our work. Also,
giving the user the ability to enforce an “atomic” AST generation strategy to minimize
code size or to enforce unrolling is new.

9. CONCLUSION

This work significantly widens the scope of polyhedral AST generation. It does so by
extending traditional control flow generation to the full generality of Presburger arith-
metic. In particular, we provide support for piecewise affine schedules as well as sched-
ules with complex uses of existentially quantified variables, opening AST generation
to new application areas and more sophisticated program optimizations, and enhanc-
ing its reliability—the ability to predictably generate highly efficient control flow. Our
work also improves the quality of the generated imperative code by presenting opti-
mizations for shifted strides and components. We also acknowledge that optimization
problems are not limited to control flow restructuring, but also require changes to data
access functions: to support such optimizations, we propose facilities to generate effi-
cient AST expressions from piecewise quasi-affine forms. Finally, we improve on the
state-of-the-art techniques for recovering divisions and modulo expressions in the gen-
erated code, and apply these to the optimization of index expression that commonly
appear in the context of explicitly managed caches. Overall, we widened the scope of
generic AST generators.

However, to implement domain or target specific optimizations that reach peak per-
formance, it is often necessary to heavily specialize the generated code. For this we
allowed the AST generator to be parametrized to perform loop unrolling and partial
evaluation of loop iterators in a very general, polyhedral setting. Furthermore, we
presented how to separate certain parts of the code and showed how to use this sep-
aration to generate specialized code for full and partial tiles. By allowing the special-
ization of user-provided AST expressions according to the context they are generated
in, the same feature can also be used to generate specialized code for boundary con-
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ditions. As maximal specialization may not always be best, we make AST generation
choices such as separation, unrolling and also atomic execution configurable on a fine-
grain level. Each individual contribution is by itself useful, but only the integration
in a single AST generator ensures their seamless interaction. As demonstrated on hy-
brid hexagonal/classical tiling, the resulting AST generator can implement complex
domain-specific optimizations, and is a powerful alternative to the development of a
problem-specific code generator.
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