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Abstract 60 

61 

Objectives. Endometrial carcinoma (EC) is the most common gynecological cancer in the Western 62 

World. Treatment options are limited for advanced and recurrent disease. Therefore, new treatment 63 

options are necessary. Inhibition of the PI3K/AKT/mTOR and/or the Ras/Raf/MEK pathways are 64 

suggested to be clinically relevant. However, the knowledge about the effect of combination targeted 65 

therapy in EC is limited. The aim of this study was to investigate the effect of these therapies on 66 

primary endometrioid EC cell cultures in vitro and in vivo.  67 

Methods. Primary microsatellite instable endometrioid EC cell cultures were incubated with 68 

Temsirolimus (mTORC1 inhibitor), NVP-BKM120 (pan-PI3K inhibitor), NVP-BEZ235 (pan-PI3K/mTOR 69 

inhibitor), or AZD6244 (MEK1/2 inhibitor) as single treatment. In vitro, the effect of NVP-BEZ235 with 70 

or without AZD6244 was determined for cell viability, cell cycle arrest, apoptosis induction, and cell 71 

signaling. In vivo, the effect of NVP-BEZ35 was investigated for 2 subcutaneous xenograft models of 72 

the corresponding primary cultures.  73 

Results. NVP-BEZ235 was the most potent PI3K/AKT/mTOR pathway inhibitor. NVP-BEZ235 and 74 

AZD6244 reduced cell viability and induced cell cycle arrest and apoptosis, by reduction of p-AKT, p-75 

S6, and p-ERK levels. Combination treatment showed a synergistic effect. In vivo, NVP-BEZ235 76 

reduced tumor growth and inhibited p-S6 expression. The effects of the compounds were independent 77 

of the mutation profile of the cell cultures used. 78 

Conclusions. A synergistic antitumor effect was shown for NVP-BEZ235 and AZD6244 in primary 79 

endometrioid EC cells in vitro. In addition, NVP-BEZ235 induced reduction of tumor growth in vivo. 80 

Therefore, targeted therapies seems a promising treatment strategy for EC. 81 

82 

Highlights 83 

84 

- NVP-BEZ235 (dual pan-PI3K/mTOR inhibitor) is the most potent PI3K/AKT/mTOR pathway 85 

inhibitor for primary endometrioid endometrial carcinoma cell cultures 86 

- NVP-BEZ235 could reduce tumor growth in xenograft models based on primary endometrioid 87 

endometrial carcinoma cell cultures 88 
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- Combination treatment with NVP-BEZ235 (dual pan-PI3K/mTOR inhibitor) and AZD6244 89 

(MEK inhibitor) shows a synergistic antitumor effect in vitro 90 

 91 

Keywords 92 

 93 

Endometrioid endometrial cancer; primary cell culture; targeted therapy; NVP-BEZ235; AZD6244 94 

 95 

Introduction 96 

 97 

Endometrial cancer is the most common gynecologic malignancy in the Western World and the fourth 98 

most common cancer in women after breast, lung, and colorectal cancers. Since 2008, the incidence 99 

of endometrial cancer has increased by 21% and the mortality rate per 100.000 cases has increased 100 

by more than 100% during the past 20 years[1, 2]. Endometrial carcinoma (EC) is the most common 101 

endometrial cancer subtype. Endometrioid EC (type I) accounts for 85% of EC cases and is 102 

associated with good prognosis. Only 15-20% of the cases show recurrences. In contrast, non-103 

endometrioid EC (type II), like serous and clear cell carcinoma, are aggressive tumors and account for 104 

more than 50% of the recurrences[3]. Patients with advanced or recurrent disease have a poor median 105 

survival, since conventional cytotoxic and radiation therapy are not effective at this stage[4-6]. 106 

Therefore, new treatment options are necessary.   107 

Advances in the understanding of tumor biology have established the critical role of targeted therapy 108 

as treatment options for cancer. In addition, an increasing number of preclinical studies suggest that 109 

the combination of targeted agents is a more promising strategy compared to single agent treatment, 110 

due to feedback loops and cross-talk between signaling pathways. 111 

The phosphatidylinositol 3-kinase enzyme/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) 112 

and Ras/Raf/MEK pathways play a critical role in cell proliferation, survival, differentiation, metabolism 113 

and motility in response to extracellular cues. Within the PI3K/AKT/mTOR pathway there are feedback 114 

loops present. mTOR can increase p70S6K, which in turn phosphorylates and inhibits insulin receptor 115 

substrate 1, a protein upstream of PI3K/AKT. Therefore, mTOR inhibition can lead to activation of the 116 

PI3K/AKT pathway[7]. In addition, the Ras/Raf/MEK pathway cross-activates and cross-inhibits 117 

PI3K/mTORC1 signaling by regulating PI3K, tuberous sclerosis complex 2, and mTORC1[8]. Both 118 
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pathways are commonly deregulated in EC. Therefore, inhibition of both pathways could be a potential 119 

new treatment strategy for EC.  120 

Many valuable inhibitors targeting one protein (single inhibitors) or two proteins at the same time (dual 121 

inhibitors) in these pathways have been recently developed. Temsirolimus (CCI-779) and Everolimus, 122 

both mTORC1 inhibitors, showed clinical activity in recurrent and metastatic EC patients[9, 10]. 123 

However, no correlation between the mutation profile of the primary tumor and response was 124 

determined[11]. NVP-BKM120 is a pan-PI3K inhibitor, which showed antitumor activity in a variety of 125 

tumor cell lines and xenograft models of cancers with and without aberrant PI3K pathway activation, 126 

including primary human EC xenograft models[12, 13]. In addition, phase I clinical studies showed that 127 

NVP-BKM120 is well tolerated in patients[14, 15]. NVP-BEZ235 is a pan-PI3K/mTOR inhibitor, which 128 

induces anticancer effects in several human cancer cell lines and xenograft models, such as models 129 

based on commercial endometrioid EC cell lines[16, 17]. In addition, this inhibitor was the first 130 

PI3K/mTOR dual inhibitor to enter clinical trials[18]. AZD6244 (ARRY-142886) is a potent and 131 

selective inhibitor of MEK1/2 kinases[19]. It is currently in phase II clinical development as a single 132 

agent, including recurrent and persistent EC, or as a combination treatment[20-22]. Preclinical and 133 

clinical studies showed that inhibition of both pathways induces a synergistic effect in several solid 134 

malignancies[23-25]. However, there is a lack of knowledge about the response to dual blockade of 135 

the PI3K/AKT/mTOR and Ras/Raf/MEK pathways in EC. 136 

For the moment, no appropriate preclinical model system exists for EC. Therefore, we established 137 

primary EC cell cultures, as described by Schrauwen et al.[26]. These cell cultures were established 138 

directly from patient tumors and closely resemble the heterogeneity and genomic features of the 139 

primary tumor. They better reflect treatment-response of patients compared to commercial cell 140 

lines[27, 28]. In addition, these cultures can be used for in vivo screening of new treatments, by using 141 

them to establish subcutaneous (s.c.) xenograft models. However, limitations of these models are that 142 

they are not metastatic and the tumors develop in an immunocompromised environment. 143 

There is a lack of knowledge about the effect of blockade of the PI3K/AKT/mTOR and the 144 

Ras/Raf/MEK pathways in EC. Therefore the aim of this study is to determine if targeted therapies 145 

related to these pathways could be a new treatment option for EC. To the best of our knowledge, we 146 

are the first one who used primary endometrioid EC cell cultures to determine the in vitro response to 147 

targeted therapies as single agent treatments and in combination. Three PI3K and/or mTOR inhibitors 148 
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(Temsirolimus, NVP-BKM120, and NVP-BEZ235), and a MEK1/2 inhibitor (AZD6244) were used, 149 

which already showed promising results in clinical trials. In addition, the in vivo response was analyzed 150 

for two s.c. xenograft mouse models treated with NVP-BEZ235. 151 

 152 

Materials and methods 153 

 154 

Establishment of primary endometrial carcinoma cell cultures 155 

Establishment of primary endometrial carcinoma cell cultures is described by Schrauwen et al.[26]. 156 

Briefly, biopsies were collected from chemotherapy-naïve patients undergoing surgery for EC at the 157 

Division of Gynecologic Oncology, University Hospitals Leuven. Tissues were fresh-frozen, formalin-158 

fixed, or used for cell culture. For cell culture, tissues were minced and digested with collagenase type 159 

IV (1 mg/ml; Roche, Mannheim, Germany) in RPMI 1640 medium with Pencillin/Streptomycin, 160 

Fungizone and DNAse I (0.1 mg/ml; Roche, Mannheim, Germany) for 3h at 37°C. Red blood cells 161 

were lysed using Ammonium Chloride (Stem Cell Technologies, Vancouver, Canada). Single cells 162 

were cultured in culture medium, comprising RPMI 1640 medium, 20% Fetal Bovine Serum (FBS), 2 163 

mM L-Glutamine, 100 U/ml Pencillin/Streptomycin, 1 µg/ml Fungizone, and 10 µg/ml gentamycin (all 164 

from Life Technologies, Paisley, UK). Mesenchymal cells were removed using mouse anti-human 165 

CD90 antibody (Clone AS02; Dianova, Hamburg, Germany) and Mouse Pan IgG Dynabeads (Life 166 

Technologies, Oslo, Norway). All cells were cultured in a humidified atmosphere containing 5% CO2. 167 

Cells were routinely monitored for mycoplasma. The study was approved by the local ethical 168 

committees in accordance with the principles of the Declaration of Helsinki and all patients gave their 169 

written informed consent. 170 

 171 

DNA extraction and somatic mutation profiling 172 

As described by Schrauwen et al.[26], the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) 173 

was used to extract DNA from EC cell cultures, according to the manufacturer’s instructions. Hotspot 174 

mutation profiling was performed of the established EC cell cultures. Selected mutations in KRAS, 175 

PIK3CA, MSH6, TP53, NRAS, BRAF, PTEN and CTNNB1 were determined, based on the COSMIC 176 

database.  177 
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In addition, microsatellite instable (MSI) status of primary EC cell cultures was determined. Briefly, 178 

Sequenom Massarray profiling was used to analyze 59 mononucleotide homopolymers for single 179 

nucleotide insertions or deletions. Cell cultures were determined as MSI if positive for 8 or more 180 

insertions or deletions, and microsatellite stable (MSS) if positive for less than 8 markers. 181 

 182 

Cell viability assay 183 

Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) dye 184 

reduction method. Cells were seeded in culture medium containing 10% FBS at a concentration of 185 

5.000 cells/well (n=4) in 96-well plates. After 8h, the medium was replaced by 1% FBS culture 186 

medium. Twenty-four hours after seeding, cells were treated with NVP-BEZ235 (PI3K/mTOR inhibitor), 187 

Temsirolimus (mTOR inhibitor), NVP-BKM120 (PI3K inhibitor), or AZD6244 (MEK1/2 inhibitor) (all 188 

compounds: 0-100 μM, n=4) (all from Selleck Chemicals, Munich, Germany). Cell viability was 189 

determined at 24h, 48h, and 72h, by adding of 40 μl of MTT solution (2.5 mg/ml; Sigma-Aldrich, St. 190 

Louis, USA) to each well and further incubation for 2h. The medium was removed, and the blue 191 

crystals were dissolved in 120 μl 83% dimethyl sulfoxide/17% Sorenson’s glycine buffer. The 192 

absorbance was measured with a microplate reader at 540 nm wavelength. Cell growth was reported 193 

as the percentage of absorbance relative to untreated controls. Each experiment was performed 3 194 

times in triplicate. 195 

Based on these results, the IC50 values of the compounds were calculated for each cell culture at 72h 196 

using CompuSyn. software (Biosoft, Cambridge, UK). 197 

For the analysis of multiple drug treatments, combination index (CI) was calculated according to the 198 

Chou-Talalay method, using a fixed dose ratio[29]. Cells were treated with 0.25x, 0.5x, 1x, 2x, and 4x 199 

their respective IC50’s of the compounds for 72h. Cell viability was measured using the MTT assay and 200 

CI was calculated using CompuSyn. Software (Biosoft, Cambridge, UK). In this analysis, synergy was 201 

defined as CI values lower than 1.0, antagonism as CI values higher than 1.0 and additivity as CI 202 

values equal to 1.0. 203 

. 204 

Cell cycle and apoptosis assay  205 
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For cell cycle and apoptosis assays, cells were seeded in 6-well plates (1.5x10
5
 cells/well, n=1) and 206 

treated for 24h and 48h. Cells were treated with NVP-BEZ235, AZD6244, or the combination of both 207 

compounds. The range of concentrations used was based on calculated IC50 values. 208 

To analyze the cell cycle, cells were fixed with ice-cold 70% ethanol and stained with propidium iode 209 

(PI)/RNase A staining buffer, containing 10 μg PI/ml PBS (Sigma-Aldrich, St. Louis, USA) and 20 μg 210 

RNase A/ml PBS (Sigma-Aldrich, St. Louis, USA). 211 

Apoptosis was determined by double staining with FITC-conjugated Annexin V and PI according to the 212 

manufacturer’s instructions (BD Pharmingen
TM

, Erembodegem, Belgium). 213 

Cell cycle distribution and the percentage of apoptotic cells were analyzed using a flow cytometer 214 

(Becton Dickinson, San Jose, USA) and FlowJo 7.6.5 software (Tree Star Inc., Ashland, USA). 215 

Experiments were repeated twice. 216 

 217 

In vivo evaluation of the efficacy of targeted treatment 218 

Cell-derived xenograft models were established by subcutaneous (s.c.) injection of 5x10
6
 cells in 200 219 

μl PBS per mouse. Mice were treated with either vehicle (10% NMP/90% PEG) (both from Sigma-220 

Aldrich, St. Louis, USA), NVP-BEZ325 (40 mg/kg; daily, p.o.) or carboplatin (50 mg/kg, 1x/week, i.p.) 221 

(Hospira, Antwerp, Belgium) (n=7 per group) for 21 days. Control animals received the equivalent 222 

volume of vehicle. Mice were weighed every week and evaluated for adverse effects. Tumor size was 223 

measured 2x/week with a caliper and the tumor volume was calculated using the following formula: V 224 

= L x W
2
 x (π/6) (V, volume; L, length; W, width). Mice were scarified 1h after last dose. Harvested 225 

tumors were weighed, and fragments were fresh-frozen, or formal-fixed and paraffin-embedded for 226 

further analyses. 227 

 228 

Western blotting 229 

Total protein lysates were obtained from single cell suspensions and tumor tissues post-treatment. 230 

Cells were seeded in 10% FBS culture medium in 100 mm
2
 plates (500.000 cells/plate, n=2). After 8h, 231 

medium was replaced by 1% FBS culture medium. Twenty-four hours after seeding, cells were treated 232 

with either NVP-BEZ235 or AZD6244 or both. The range of concentrations used was based on the 233 

IC50 values. Total protein lysates were prepared from single cell suspensions at 6h and 24h after 234 

treatment-initiation and from tumor tissues using the mammalian cell lysis MCL1 kit (Sigma-Aldrich, St. 235 
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Louis, USA) according to the manufacturer’s instructions. The Pierce BCA protein assay kit (Thermo 236 

Scientific, Waltham, USA) was used to determine protein concentrations. Equal amounts of protein 237 

were run on any kD Mini Protein TGX gel (Bio-Rad, Hercules, USA) and transferred to a 238 

polyvinylidene difluoride membrane (Bio-Rad, Hercules, USA). Next, the membranes were probed with 239 

primary and secondary antibodies. The following primary antibodies were used: AKT, p-AKT
(Ser473)

, S6, 240 

p-S6
(Ser235/Ser236)

, ERK1/2, p-ERK1/2
(Thr202/Tyr204)

 (all at 1/1000), and β-actin (1/2500)(all from Cell 241 

Signaling Technologies, Danvers, USA). Anti-rabbit or -mouse horseradish peroxidase-conjugated 242 

antibodies (Jackson ImmunoResearch, West Grove, USA) were used as secondary antibody. The 243 

enhanced chemiluminescence system (Thermo Scientific, Waltham, USA) and FUJI mini-LAS 4000-244 

plus imaging system (GE Healthcare, Diegem, Belgium) were used to visualize protein expression. 245 

 246 

Statistics 247 

Results are shown as mean ± standard error of mean (SEM). Two-way ANOVA was performed 248 

followed by Bonferroni posttest to determine significant differences between treatment groups with 249 

regard to in vitro cell viability, cell cycle status, and apoptosis induction. One-way ANOVA was 250 

performed for repeated measurements followed by a Tukey’s multiple comparison test to analyze 251 

differences in therapy response over time between treatment groups in vivo. In addition, one-way 252 

ANOVA followed by Tukey’s multiple comparison test was performed to assess differences in tumor 253 

weight between treatment groups. Analyses were performed using GraphPad Prism 5 software 254 

(GraphPad Inc., La Jolla, USA). P-values of p<0.05 were considered to be statistically significant. 255 

 256 

Results 257 

 258 

Single treatment of NVP-BEZ235 and AZD6244 reduced cell viability 259 

We used three primary EC cell cultures as described by Schrauwen et al.[26]. The histologic and 260 

genetic characteristics are described in table 1.  261 

Since these cell cultures showed mutations in the PI3K/AKT/mTOR and Ras/Raf/MEK pathways, we 262 

selected compounds which have an inhibitory effect on proteins involved in these pathways and are 263 

already in clinical trials. For inhibition of the PI3K/AKT/mTOR pathway, we selected NVP-BEZ235 264 

(pan-PI3K/mTOR inhibitor), Temsirolimus (mTORC1 inhibitor), and NVP-BKM120 (PI3K inhibitor). For 265 
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inhibition of the Ras/Raf/MEK pathway we used AZD6244 (MEK1/2 inhibitor). First, we determined the 266 

most potent PI3K/AKT/mTOR pathway inhibitor by treating the three cell cultures with the different 267 

PI3K/AKT/mTOR pathway inhibitors for 72h (all compounds 0-100 μM). NVP-BEZ235 was the only 268 

inhibitor that decreased cell viability in a dose- and time-dependent manner for all 3 cell cultures 269 

(Figure 1). AZD6244 induced a significant reduction of cell viability for all 3 cell cultures at the highest 270 

concentration at 72h (Figure 1). The cell cultures were less sensitive for this compound compared to 271 

NVP-BEZ235 (Table 1). No correlation between mutation profile and response to targeted therapy was 272 

demonstrated. 273 

 274 

Combination treatment of NVP-BEZ235 and AZD6244 showed a synergistic inhibitory effect on cell 275 

viability 276 

We investigated potential synergistic effects of inhibiting both the PI3K/AKT/mTOR and the 277 

Ras/Raf/MEK pathways, by treating with NVP-BEZ235 and AZD6244. The anti-proliferative effect of 278 

this combination was measured in all 3 cell cultures by calculating the CI. The 3 cell cultures were 279 

treated with both NVP-BEZ235 and AZD6244 at 0.25x, 0.5x, 1x, 2x and 4x their respective IC50’s for 280 

72h. For all cell cultures, a synergistic effect was determined by combination of 1x of their respective 281 

IC50’s of each compound, NPV-BEZ235 and AZD6244 (Supplementary file 1). 282 

 283 

NVP-BEZ235 and AZD6244 induced cell cycle arrest 284 

We investigated the effect of NVP-BEZ325 and AZD6244 as single treatments and in combination on 285 

cell cycle arrest for 48h. Since combination treatment with 1x IC50 values of NVP-BEZ235 and 286 

AZD6244 showed a synergistic effect on the cell viability of all cell cultures, the cell cultures were 287 

treated with the respective IC50 values of each compound (Table 1). As shown in figure 2A, at 24h no 288 

cell cycle arrest was induced for all cell cultures. However, only for 2 out of 3 cell cultures, PC-EM001 289 

and PC-EM002, a significant effect on the cell population was determined at 48h. For PC-EM001, 290 

NVP-BEZ235 reduced the number of cells of the S phase compared to control (p<0.05). PC-EM002 291 

showed an increased percentage of the population in the G1 phase of cells treated with NVP-BEZ235 292 

or AZD6244 compared to control (p<0.05 vs p<0.01). In addition, AZD6244 reduced significantly the 293 

number of cells in the S phase compared to control (p<0.05).Combination treatment showed no 294 

enhanced effect compared to single treatment or control (Figure 2B).  295 
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 296 

NVP-BEZ235 and AZD6244 induced apoptosis 297 

We analyzed apoptosis induction by NVP-BEZ235 and AZD6244 as single treatments and in 298 

combination. Early apoptosis was induced in only 2 cell cultures, PC-EM002 and PC-EM004, by single 299 

and combination treatment after 24h (Figure 3A). Also here, cells were treated with the respective 1x 300 

IC50 values of NVP-BEZ235 and AZD6244 as single treatment or combined (Table 1). 301 

PC-EM004 showed an increase in apoptosis, only for the combination treatment, compared to control 302 

(p<0.01) and compared to single treatment of AZD6244 (p<0.05). After 48h of treatment, AZD6244 303 

also induced apoptosis (p<0.05). In contrast, PC-EM002 showed a significant increase in early 304 

apoptosis for both NVP-BEZ235 and AZD6244, as single treatments compared to control (p<0.05 vs 305 

p<0.01) after 24h. Moreover, combination treatment showed a significant increase in apoptosis 306 

compared to control (p<0.001), NVP-BEZ235 (p<0.001), and AZD6244 (p<0.001) as single 307 

treatments. Late apoptosis was induced by combination treatment. After 48h, the same effects were 308 

observed. Interestingly, for PC-EM002 a higher percentage of cells was present in the apoptosis 309 

phase, compared to 24h. In contrast, NVP-BEZ235 induced no apoptosis in PC-EM004 at 48h. We 310 

therefore conclude that both NVP-BEZ235 and AZD6244 induce apoptosis. Moreover, for PC-EM002 311 

and PC-EM004 a synergistic effect was found for combination treatment (Figure 3B).  312 

 313 

NVP-BEZ235 and AZD6244 reduced phosphorylation of proteins related to the PI3K/AKT/mTOR and 314 

Ras/Raf/MEK pathway 315 

To evaluate the short and long term effects of NVP-BEZ235 and AZD6244 on PI3K/AKT/mTOR 316 

signaling and Ras/Raf/MEK signaling, the phosphorylation status of AKT, S6, and ERK were analyzed. 317 

As shown in figure 4, the total protein expression of AKT, S6, and ERK remained unchanged after 318 

treatment with NVP-BEZ235 and AZD6244 for all cell cultures. The primary cell cultures were treated 319 

with the respective IC50 values of related compound (Table 1). PC-EM001 cells were treated with a low 320 

concentration of NVP-BEZ235 (1.8E
-4

µM). This compound showed no difference in phosphorylation of 321 

AKT and S6. In contrast, cells treated with AZD6244 alone or in combination with NVP-BEZ235 had 322 

decreased levels of p-S6 and p-ERK1/2. In PC-EM002 and PC-EM004 cultures, cells were treated 323 

with 0.20µM and 2.09µM NVP-BEZ235, respectively. NVP-BEZ235 decreased p-AKT and p-S6 levels, 324 

whereas AZD6244 induced dephosphorylation of p-S6 and p-ERK1/2. Combination treatment with 325 
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NVP-BEZ235 and AZD6244 inhibited the phoshorylation of p-AKT, p-S6 and p-ERK1/2 for both cell 326 

cultures. Therefore, the effect of NVP-BEZ235 and AZD6244 on the PI3K/AKT/mTOR and 327 

Ras/Raf/MEK pathways seems to be related to the concentration used rather than the mutation profile 328 

of the cell cultures. 329 

 330 

Effect of NVP-BEZ235 on tumor growth in nude mice xenografts 331 

Lastly, we evaluated the effect of NVP-BEZ235 on tumor growth in vivo. This compound was used 332 

since it was the most potent compound in vitro. We established 2 primary s.c. xenograft mouse 333 

models generated from PC-EM002 and PC-EM004 cell cultures, since PC-EM002 cells harbored a 334 

PI3KCA mutation and the PC-EM004 cells the wild-type genes. We treated the mice with NVP-335 

BEZ235, carboplatin (a chemotherapeutic), or vehicle. For both models, NVP-BEZ235 and carboplatin 336 

significantly reduced tumor growth compared to the placebo-treated group. Interestingly, PC-EM004 337 

mice treated with NVP-BEZ235 showed a greater reduction of tumor growth compared to PC-EM002 338 

mice. No difference was determined between the growth-inhibitory effect of NVP-BEZ235 and 339 

carboplatin (Figure 5A). This was confirmed by the wet tumor weight at sacrifice (Figure 5B).  340 

Protein expression in the tumor tissue was investigated by Western Blot. For both models, no effect on 341 

phosphorylation of AKT was determined. In contrast, dephosphorylation of S6 was shown for NVP- 342 

BEZ235 treated mice of both xenograft models and for PC-EM004 mice treated with carboplatin. No 343 

difference in protein expression of AKT, S6, and β-actin was determined all mice (Figure 5C). 344 

 345 

Discussion 346 

 347 

To our knowledge, this is the first study using primary in vitro and in vivo EC models to test the 348 

following targeted therapies: Temsirolimus, NVP-BKM120, NVP-BEZ235 and AZD6244. Our results 349 

suggest a synergistic antitumor effect of NVP-BEZ235 and AZD6244 in primary endometrioid EC cell 350 

cultures, with regard to cell viability and apoptosis, possibly. Interestingly, our results also suggest that 351 

the sensitivity of primary endometrioid EC cell cultures towards either PI3K/mTOR or MEK inhibitors is 352 

independent of mutated genes involved in related pathways. In addition, NVP-BEZ235 was the most 353 

potent inhibitor of the PI3K/AKT/mTOR pathway. In vivo, NVP-BEZ235 reduced tumor growth in mice 354 

harboring tumors with different mutation profiles.  355 
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Treatment options for advanced and recurrent EC are limited. Therefore, new therapies are 356 

necessary. Targeted therapy shows promising response in clinical trials. Therefore, targeted therapies 357 

against the PI3K/AKT/mTOR and Ras/Raf/MEK pathways are an interested new treatment strategy for 358 

EC, especially by blockade of both pathways to prevent compensatory feedback loops. 359 

In this study we used primary preclinical models. Primary cell cultures better represent the histological 360 

and genetic heterogeneity of the primary tumor more compared to commercial cell lines[27, 28]. 361 

Therefore, our results better reflect the response of patients on these treatments compared to models 362 

based on immortalized cell lines. 363 

We showed that dual inhibition of the PI3K/AKT/mTOR pathway, by blocking PI3K and mTOR with 364 

NVP-BEZ235 is more effective compared to inhibition of only PI3K or mTORC1. These results are in 365 

accordance with the results of Shoji et al. and Oishi et al., who used commercial EC cell lines and 366 

ovarian clear cell carcinoma cell lines, respectively[17, 30]. In hepatocellular carcinoma, however, 367 

Kirstein et al. indicated that NVP-BKM120 has a higher antitumor activity compared to RAD001 368 

(mTORC1 inhibitor) and NVP-BEZ235[31].  369 

MSI tumors show high frequent differentiating mutation profiles and therefore it is difficult to determine 370 

driver and passenger mutations. Our results are interesting since all primary cell cultures were 371 

sensitive to NVP-BEZ235 and AZD6244 and these compounds induced a synergistic effect with 372 

regard to cell viability and apoptosis, despite the MSI status. Low concentrations of NVP-BEZ235 373 

(1.8E
-4

µM) did not affect phosphorylation of AKT and S6. In contrast, high concentrations (0.20µM and 374 

2.09µM) reduced p-AKT and p-S6 levels. Therefore, induced effects seem related to the concentration 375 

ranges used rather than the IC50 values. Moreover, also in vivo no correlation was determined 376 

between the mutation profile of tumors and response to NVP-BEZ235. This is in accordance with 377 

previous results for other type of cancers, in which the presence of KRAS gene mutation was not 378 

predictive of sensitivity to MEK or PI3K inhibitors[32-34]. In addition, the response of EC xenografts to 379 

NVP-BKM120 was independent of the presence of a PIK3CA gene mutation[12]. However, we have to 380 

take into account that we used a limited number of primary endometrioid EC cell cultures. To 381 

investigate the in vitro and in vivo responses on combination of targeted therapies, further studies 382 

should include a larger panel of type I and type II EC, including MSS tumors. In addition, the use of 383 

MSS tumors could be useful to determine biomarkers able to predict the response to targeted 384 

therapies. 385 
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In vitro, NVP-BEZ235 was a more potent compound on PC-EM002 cells than on PC-EM004 cells. In 386 

contrast, in vivo results showed a higher tumor growth reduction for mice bearing PC-EM004 tumors 387 

compared to PC-EM002 mice. Other studies demonstrated also this phenomenon that in vitro 388 

sensitivity to mTORC1 inhibitors does not correlate with in vivo sensitivity[35, 36]. Fuereder et al. 389 

showed that in vivo efficacy of NVP-BEZ235 is not correlated with PI3K/mTOR target regulation, 390 

hotspot mutations in PIK3CA, Ras or BRAF in gastric tumor xenograf models, based on commercial 391 

cell lines[35].  392 

In vivo, NVP-BEZ235 showed the same effect on tumor growth inhibition as carboplatin. It is shown 393 

that NVP-BEZ235 synergizes with chemotherapy in vitro and in vivo for several cancers[37, 38]. In 394 

addition, combination of dual PI3K/mTOR inhibitors with radiotherapy can improve radiosensitivity in 395 

radioresistant prostate cancer cells[39]. Therefore, combination treatment of (neo)adjuvant therapy 396 

and targeted therapy for advanced and recurrent EC could be an interesting strategy, especially for 397 

patients harboring a chemo- or radioresistant tumor. Further comprehensive studies should be 398 

performed to test the safety and efficacy in vitro and in vivo of these treatments before clinical 399 

application. 400 

Although the present study has several limitations such as the small number of cell cultures tested in 401 

vitro and in vivo, it demonstrated a synergistic interaction between NVP-BEZ235 and AZD6244 in 402 

primary endometrioid EC cells in vitro. In addition, NVP-BEZ235 showed the same anti-proliferative 403 

effects as carboplatin in vivo. Therefore, it will be interesting to determine the synergistic effect of 404 

targeted therapies and currently used therapies. Remarkably, the antitumor effects of single and 405 

combination treatment of targeted therapies in vitro and in vivo were independent of mutations related 406 

to the PI3K/AKT/mTOR and Ras/Raf/MEK pathway. Moreover, they showed anticancer effects in MSI 407 

defined tumors.  Altogether, targeted therapies against PI3K and/or mTOR seem a promising 408 

treatment strategy for EC. 409 
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 535 

Figures and legends 536 

 537 

Table 1. IC50 values of three primary endometrioid EC cell cultures for PI3K and/or mTOR 538 

inhibitors and a MEK inhibitor (AZD6244) at 72h. 539 

 540 

Figure 1. The effect of NVP-BEZ235, Temsirolimus, NVP-BKM120 and AZD6244 on cell viability 541 

in primary endometrial carcinoma cell cultures. Dose response curves of NVP-BEZ235, 542 

Temsirolimus, NVP-BKM120, and AZD6244 for all primary cell cultures are shown. All cell cultures 543 
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were treated with increasing doses of the 4 compounds (0-100 μM) (n=4 wells per concentration) for 544 

72h. Changes in cell proliferation were examined by MTT assay. Each data point represents the mean 545 

± SEM of triplicate experiments. * p<0.05, ** p<0.01, *** p<0.001 compared to control, two-way 546 

ANOVA with Bonferroni post hoc test. 547 

 548 

Figure 2. The induction of cell cycle arrest by NVP-BEZ235 and AZD6244 on in primary 549 

endometrial carcinoma cell cultures. Three primary EC cell cultures were treated with NVP-550 

BEZ235, AZD6244 as single or combination treatment. Cell cultures were treated with the respective 551 

IC50 values of NVP-BEZ235 and AZD6244. Cell cycle distribution was determined at 24h, and 48h. A) 552 

At 24h no cell cycle arrest was induced for all cell cultures. B) After 48h, NVP-BEZ235 and AZD6244 553 

increased the population of cells in the S phase for PC-EM001 and PC-EM002. In addition, an 554 

increased percentage of cell in G1 phase of PC-EM002 was determined for NVP-BEZ235 and 555 

AZD6244 treatment. Data represent the mean ± SEM of duplicate experiments after 48h of treatment. 556 

* p<0.05, ** p<0.01, *** p<0.001 compared to each treatment group, two-way ANOVA with Bonferroni 557 

post hoc test. 558 

 559 

Figure 3. The effect of NVP-BEZ235 and AZD6244 on early and late apoptosis in primary 560 

endometrial carcinoma cell cultures. Three primary EC cell cultures were treated with NVP-BEZ235 561 

combined with AZD6244 or as single treatments. Cell cultures were treated with the respective IC50 562 

values of NVP-BEZ235 and AZD6244. Induction of apoptosis was determined at 24h, and 48h. A) For 563 

two cell cultures, PC-EM002 and PC-EM004, early apoptosis was induced at 24h. PC-EM002 also 564 

showed late apoptosis in response to combination treatment at 24h. B) After 48h, an increased 565 

apoptosis was induced in PC-EM002 cells. Data represent the mean ± SEM of duplicate experiments 566 

after 24h and 48h of treatment. * p<0.05, ** p<0.01, *** p<0.001 compared to each treatment group, 567 

two-way ANOVA with Bonferroni post hoc test. 568 

 569 

Figure 4. The influence of NVP-BEZ235 and AZD6244 on activation of cell signaling pathways. 570 

Cells were incubated with NVP-BEZ235 and/or AZD6244 for 6h and 24h. Cell cultures were treated 571 

with the respective IC50 values of NVP-BEZ235 and AZD6244. Phosphorylation of AKT, S6, and 572 

ERK1/2 was analyzed by Western Blotting. In the PC-EM001 cell culture, only AZD6244 showed an 573 
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effect on phosphorylation of investigated proteins, by dephosphorylation of p-S6
(Ser235/236)

 and p-574 

ERK1/2
(Thr202/Tyr204)

. In PC-EM002 and PC-EM004 cultures, NVP-BEZ235 reduced p-AKT
(Ser473)

 and p-575 

S6
(Ser235/236)

 levels and AZD6244 decreased p-S6
(Ser235/236)

 and p-ERK
(Thr202/Tyr204)

 levels. Combination 576 

treatment showed dephosphorylation of all 3 proteins for both cell cultures. Effects were determined 577 

for at least 24h. 578 

 579 

Figure 5. The effect of NVP-BEZ235 on tumor growth in vivo. PC-EM002 and PC-EM004 bearing 580 

mice were treated with vehicle (10% NMP/90% PEG), NVP-BEZ235 (40 mg/kg; daily, p.o,), or 581 

carboplatin (50 mg/kg, 1x/week, i.p.) (n=7). A) NVP-BEZ235 reduced tumor growth for PC-EM002 and 582 

even stabilized tumor growth for PC-EM004. The effect of targeted therapy was comparable to 583 

chemotherapy. One-way ANOVA for repeated measurements followed by Tukey’s multiple 584 

comparison test was performed. B) Wet tumor weights were significantly different between mice 585 

treated with a compound and mice treated with placebo. One-way ANOVA followed by Tukey’s 586 

multiple comparison test was performed. C) For both xenograft models a reduction of p-S6 was 587 

demonstrated for tumors of mice treated with NVP-BEZ235.  588 

Results are presented as mean ± SEM. ** p<0.01, *** p<0.001 compared to placebo group. 589 

 590 

S1. Overview combination index of primary endometrioid endometrial carcinoma cell cultures 591 

treated with a combination of NPV-BEZ235 and AZD6244 for 72h. Combination index: Synergistic 592 

effect is indicated in blue and antagonistic effect is indicated in orange. 593 



 

ID cell culture Histopathology Grade 
FIGO Stage 

(2009) 
Mutation profile 

NVP-BEZ235 
(μM) 

AZD6244 
(μM) 

PC-EM001 Endometrioid 2 II KRAS_G35 ACT (GT) 1.80E-4 27.00 

PC-EM002 
Dedifferentiated 
endometrioid 

3 II 
PIK3CA_277T (TC) 

0.20 79.70 
PTEN_697 (CT) 

PC-EM004 
Mixed 
endometrioid/serous 

3 IA / 2.09 41.55 
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PC-EM001 

NVP-BEZ235 (μM) 

7.20E-4 1.33 1.26 1.22 1.11 1.00 

3.60E-4 0.77 0.77 0.69 0.64 0.52 

1.80E-4 1.21 0.56 0.45 0.43 0.32 

0.90E-4 2.18 1.09 0.41 0.47 0.23 

0.45E-4 5.70 2.17 1.32 0.80 0.22 

6.80 13.50 27.00 54.00 108.00 AZD6244 (μM) 

PC-EM002 

NVP-BEZ235 (μM) 

0.80 0.10 0.19 0.36 0.67 1.34 

0.40 0.11 0.19 0.35 0.66 1.35 

0.20 0.10 0.19 0.35 0.67 1.37 

0.10 0.11 0.19 0.36 0.67 1.36 

0.05 0.11 0.19 0.36 0.68 1.36 

19.93 39.85 79.70 159.40 318.80 AZD6244 (μM) 

PC-EM004 

NVP-BEZ235 (μM) 

8.40 0.06 0.10 0.17 0.26 0.46 

4.20 0.07 0.11 0.17 0.25 0.47 

2.10 0.08 0.12 0.19 0.29 0.47 

1.05 0.07 0.13 0.22 0.29 0.48 

0.53 0.07 0.12 0.22 0.31 0.47 

10.39 20.78 41.55 83.10 166.20 AZD6244 (μM) 
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