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Abstract9

Active Demand Response (ADR) can contribute to a more cost-efficient operation of, and investment in, the
electric power system as it may provide the needed flexibility to cope with the intermittent character of some
forms of renewables, such as wind. One possibly promising group of demand side technologies in terms of
ADR are electric heating systems. These systems could allow to modify their electrical load pattern without
affecting the final, thermal energy service they deliver, thanks to the thermal inertia in the system. One of the
major remaining obstacles for a large scale roll-out of ADR schemes is the lack of a thorough understanding
of interactions between the demand and supply side of the electric power system and the related possible
benefits for consumers and producers. Therefore, in this paper, an integrated system model of the electric
power system, including electric heating systems (heat pumps and auxiliary resistance heaters) subjected
to an ADR scheme, is developed, taking into account the dynamics and constraints on both the supply and
demand side of the electric power system. This paper shows that only these integrated system models are
able to simultaneously consider all technical and comfort constraints present in the overall system. This
allows to accurately assess the benefits for, and interactions of, demand and supply under ADR schemes.
Furthermore, we illustrate the effects not captured by traditional, simplified approaches used to represent the
demand side (e.g., price elasticity models and virtual generator models) and the supply side (e.g., electricity
price profiles and merit order models). Based on these results, we formulate some conclusions which may
help modelers in selecting the approach most suited for the problem they would like to study, weighing the
complexity and detail of the model.
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1. Introduction12

Demand side management (DSM), in the broad sense, entails all those actions aimed at modifying the13

electricity demand to increase customer’s satisfaction and coincidentally produce the desired changes in the14

electric utilities load in magnitude and shape [1]. If applied correctly, DSM could come with a variety of15

benefits, such as, but not limited to, (1) a reduced electric power generation margin commonly used to deal16

with peak demands; (2) a higher operational efficiency in production, transmission and distribution of electric17

power; (3) more effective investments; (4) lower price volatility; (5) lower electricity costs and (6) a more cost-18

effective integration of highly intermittent renewables [2–4]. In the literature, three broad categories of DSM19

are identified: energy efficiency and conservation, on-site back up through local generation or storage and20

demand response [3]. Active Demand Response (ADR) is defined as ‘changes in electric usage implemented21

directly or indirectly by end-use customers/prosumers from their current/normal consumption/injection22

patterns in response to certain signals’ [5]. In contrast to ADR, passive demand response relates to changes23

in the normal consumption/injection patterns without interacting with the consumers (e.g. rolling black-24

outs). In this paper, the focus is on ADR, and particularly on short-term load shifting, by means of thermal25

energy storage in the building structure and the domestic hot water storage tank. Such thermal energy26

storage (TES) facilitates modifying the electric load profile of electric heating systems by decoupling the27

demand for electrical and thermal power in time, which may yield substantial operational benefits on power28

system level (cf. supra) [6].29

ADR can be facilitated by incentive-based programs (direct load control, curtailable load, demand bid-30

ding) and/or price-based programs (real-time pricing, time-of-use pricing, peak pricing), each with its own31

opportunities and drawbacks [7]. Gils has identified a large potential for ADR of flexible loads in Europe,32

mainly in countries with significant amounts of electric heating and air conditioning [8]. However, residential33

consumers are generally not willing to forfeit the foreseen end-use of the electrical energy as the benefits they34

perceive (e.g., a lower electricity bill) do not outweigh the drawbacks. Fortunately, some of these demand35

side technologies contain various forms of storage, which can be used to affect the electrical load pattern36

seen by the electric power system without compromising the quality of the energy services provided to37

the end-consumer. Typical residential examples are thermostatically controlled loads (such as boilers, heat38

pumps, refrigerators and air conditioners), plug-in electric vehicles and deferrable loads, namely laundry39

machines and dish washers [9]. Their inherent ‘energy storage’1 allows these loads to simultaneously be fully40

responsive and non-disruptive in terms of the perceived energy service. In this setting, TES as an ADR41

enabling technology is often investigated. As denoted by Arteconi et al. [6] a large range of TES technologies42

exists and is in use for ADR purposes. The built environment can even allow for thermal storage without43

installing specific TES [10]. Small scale electric heating systems can be installed in large numbers in the built44

environment and control access to these loads could be very inexpensive with the advent of communication45

platforms; so they are good candidates for ADR [9, 11].46

However, many challenges remain to be overcome before a large scale roll-out of flexible demand side47

technologies will emerge. One of these challenges is related to the technical obstacles preventing price48

signals from being properly transferred to the customers [12], while others are related to the quantification49

of the benefits for consumer and producers under ADR programs [2]. In order to quantify the effects50

of introducing such programs, the assessment of the interaction between supply and demand side is of51

paramount importance. Many models however still fail to incorporate the interactions between demand and52

supply in ADR programs. In Fig. 1 a conceptual schematic of the interdependence of the demand side and53

the supply side (models) is shown. The electricity price profile, typically the result of a supply side model,54

is a necessary input to the demand side model. Similarly, the demand for electric power, an output of the55

demand side model, is a necessary input of the supply side model. In short: the electricity prices change56

with the demand for electric power and vice-versa. In light of this challenge, we develop integrated system57

models that tackle this issue. As we will show later in this paper, this is the only way one can capture this58

interaction to its full extent.59

1In the strict sense, no energy is stored. One can only shift the load of these appliances in time, decoupling the energy
service (e.g. heating) and the load as seen by the electric power system in time.
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Nevertheless, even though many studies deal with, or even model, ADR, often the supply side or the60

demand side are represented simplistically. When the focus is on electric power generation, most researchers61

employ typical unit commitment (UC) models and economic dispatch (ED) models2, extended with an62

aggregated representation of the flexibility in demand. Two typical representations of the flexible demand63

side are considered in this paper: price-elasticity models [13–17] (Section 2.1) and so-called virtual generator64

models (VGM) [18–21] (Section 2.1). In contrast, in studies which are focused on the energy demand of65

buildings, researchers often take the supply side of electricity into account by considering a (fluctuating)66

electricity price [22–27]. This is discussed in Section 2.2. Although all of these modeling techniques have67

proven their merits, they are inadequate to study the true interaction between the demand side and the68

supply side under ADR, especially when storage-type customers are involved. Recently, some authors69

[11, 28–35] proposed integrated models of both the supply of, and demand for, electric power, as discussed70

in Section 2.3. The reference model presented in this paper falls in this last category.71

The purpose of this paper is to illustrate the relevance of using an integrated model to study ADR,72

involving the interaction between the supply side and the demand side, building further on the work presented73

in [36]. To this end, a modeling framework based on a system approach is introduced: a physical model of the74

demand side technology, considering flexible electric heating systems (heat pumps and auxiliary resistance75

heaters) coupled to thermal energy storage systems, is integrated in a traditional unit commitment model.76

Then, in a methodological case study, the results from the proposed integrated model are compared to those77

from models with focus on the supply side or on the demand side. In that way, we show the advantages78

and disadvantages of the integrated modeling approach. Results show that neither a price-elasticity, nor79

a virtual generator model can fully describe the effects of flexible electric heating systems on the electric80

power system. Furthermore, results based on a demand side model considering a fixed price profile cannot be81

extrapolated to calculate system-wide effects as they fail to describe the feedback of demand response on the82

supply side. These conclusions hold especially for storage-type customers where the storage losses are hard83

to model, such as thermal loads. These results indicate that the effect of the elastic demand on the electricity84

price must be take into account when scheduling e.g. thermal loads under ADR schemes. Integrated models85

take into account all the above mentioned effects, but are difficult to set up due to the needed detail and are86

computationally expensive to solve. Merit order (MO) models for the electric power system, combined with87

a detailed demand side model, are capable of approximating the results of the integrated system model, but88

are significantly faster to solve. Based on these results, we formulate some conclusions for modelers to select89

the modeling approach suited for their problem, weighing the detail enclosed in the model formulation and90

computational efforts.91

The remainder of the paper is organized as follows. Before moving to the integrated model developed for92

this paper and the corresponding results, we present a brief literature review on ADR modeling approaches.93

We focus on the literature in which thermostatically controlled loads are subjected to ADR measures. In94

Section 3 we present the integrated model developed for this paper and the methodological case study for95

which we obtain our results. Results are first presented for the integrated model (Section 4.1) in order to96

facilitate the interpretation of the shortcomings of other models. Subsequently, the challenges in modeling97

ADR via price-elasticity models and virtual generator models for the demand side or price profile and98

merit order models for the supply side are illustrated. Based on these results, we formulate some general99

conclusions for the use of these modeling approaches (Section 4.6). In each application, the integrated model100

remains the reference model, used to validate other approaches.101

2A UC model aims to schedule the most cost-effective combination of power plants to meet the demand for electric power.
The ED model determines the production levels of each unit on the basis of the least cost usage of the committed assets.
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Figure 1: Conceptual schematic of the interaction between the supply side (i.e., the electric power system, typically represented
via unit commitment and economic dispatch models) and the demand side (here electric heating systems, typically studied via
building simulation models with optimal control systems).
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2. Literature review102

A review of the state-of-the-art models is presented showing models with a focus on the supply side103

(Section 2.1), models with a focus on the demand side (Section 2.2) and models with an integrated approach,104

taking into account the physical behavior of demand side technologies together with the techno-economic105

characteristics of the electric power system (Section 2.3).106

2.1. Models with focus on the supply side107

To study electric power system-wide effects of flexible consumers, most researchers employ typical unit108

commitment and economic dispatch models, extended with an aggregated representation of the flexibility109

in demand. As indicated above, two main representations of the flexible demand side can be identified:110

price-elasticities and so-called virtual generator models (VGM).111

The price-elasticity is a measure of the change in demand in response to a change in the price of electricity.112

The assumed range of elasticities used in these models typically stem from analyses of historical data [14, 37],113

sometimes combined with a simulation model [38]. Among others, De Jonghe et al. [13, 14] developed an114

elasticity-based operational and investment model to determine the optimal generation mix. Sioshansi and115

Short [15] employed an elasticity-based model, comparable to that proposed in [14], to study the effect116

of real-time pricing on the usage of wind power. Kirschen and Strbac [16] proposed a general scheme to117

incorporate the short-term elasticity in generation scheduling and price setting. Bompard et al. [17] studied118

the effect of demand elasticity on congestion and market clearing prices via a linear price-elasticity model119

combined with an optimal power flow formulation.120

Virtual generator models are typically used when a modeler wants to include the technical limitations121

of the demand side technology. The demand is modeled as an electricity generating or storage unit with a122

negative output. Demand reductions and shifts can be constrained in e.g. amount, time and ramping rate.123

Energy storage and possible losses can be incorporated (e.g. via a demand recovery ratio; see Section 4.3).124

The constraints can be based on observations or detailed physical models. The VGM is dispatched similarly125

as a conventional power plant and therefore often used in the setting of direct load control [14]. These126

VGM have been used in various studies, e.g. to investigate the impact of ADR on the marginal benefit for127

consumers [18], the effect of ADR on reserve markets [19], the impact of ADR in electric power systems128

with large wind power penetrations [20] and the benefits of demand side participation in the provision of129

ancillary services [21].130

However, in both cases a modeler cannot assess the benefit of the studied ADR scheme for the consumer131

based on these aggregated representations. Moreover, the feasibility of the resulting demand can be ques-132

tioned, as one has no guarantee that the resulting electric power demand profile will be sufficient to ensure133

the required thermal comfort for the end-consumer.134

2.2. Models with focus on the demand side135

Kosek et al. [39] give an overview of the possibilities of implementing ADR. The approach taken in that136

paper is that of predictive and direct load control. Assuming perfect predictions and no model mismatch,137

this is the best case scenario for ADR, and hence ideal for impact studies. Thermal energy storage as an138

ADR technology is often investigated in the literature as a demand side technology. E.g., Hewitt [40] studied139

the use of the built environment - i.e., its thermal inertia - as a TES, in the case of a heat pump delivering140

space heating and domestic hot water (DHW). Hewitt found that both the building and the hot water tank141

are possible candidates for ADR and, in order to assess the benefits for the consumers and generators under142

ADR, he highlighted the necessity of taking into account the dynamics of both the demand and supply143

side. However, when assessing the potential of a thermal system for ADR, most authors start from a fixed144

electricity price profile [22–27] to determine the electrical load pattern modification. The authors typically145

conclude how much the electricity cost can be reduced for the owner of the system, but do not consider a146

feedback of the shifted electrical load pattern on the electricity price.147

Based on such models, one can only draw conclusions for a single, small consumer. As of a certain number148

of consumers participating in the studied ADR program, their modified behavior would start affecting the149

price. This feedback of user behavior on the price of electricity is not taken into account in these models.150
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Figure 2: Schematic representation of the various modeling options, in order of ascending complexity and detail, in demand
and supply side representations, and the combinations discussed in this paper.

2.3. Integrated operational models151

Recently, a number of authors have developed integrated models. Both the demand side and the supply152

side are represented by physical models and jointly optimized. A group of researchers at the university of153

Victoria (Canada) have recently published a number of papers [28–33], inspired by the model of Callaway154

[34],closely related to the objective of this work. They studied comfort-constrained distributed heat pump155

management and intelligent charging of electric vehicles (1) as balancing services, with a particular focus156

on balancing wind power, (2) as a spinning reserve resource and (3) as a voltage stabilizing measure. The157

physical models of the heat pumps and electric vehicles are integrated in a linear programming representation158

of the electric power system. Hedegaard et al. [11, 35] developed an integrated model, including different159

types of TES and emission systems, to assess the potential of ADR to balance wind power. However, some160

aspects of the thermal system were represented too simplistically in the model. E.g., the heat pump COP161

(coefficient of performance) is not temperature dependent and the solar transmission through the windows162

is not taken into account. Dallinger and Wietschel [41] assessed the electric vehicles potential for balancing163

the fluctuations of renewable energy sources (RES), while representing the generation side by a MO model.164

Those integrated models incorporate in some way both the dynamic behavior of the supply side of the165

electric power system and the flexible electricity demand (represented by electric heating systems for the166

purposes of this study)3. Such an approach offers a number of advantages when a sufficiently detailed167

representation of the overall energy system is used. First, the electricity demand from the thermal systems168

is closer to reality, since the occupants behavior is taken into account, as well as the weather conditions and169

the thermal behavior of the considered heating systems and dwellings. Second, all feedback effects of the170

redistribution of the electrical load - on demand and supply side - are represented correctly. For example,171

the losses (electrical and thermal) associated with load shifting can be precisely determined. Third, it allows172

identifying the technology that was used to perform the electric load shifting, thus comparing the impact173

of multiple flexible demand side technologies. Last, it ensures the end-use functionality of the demand side174

technology, while simultaneously guaranteeing the availability of the balancing services provided by ADR on175

the supply side. However, those models are not devoid of disadvantages. First, the representation of e.g. a176

3Note that the difference between a VGM-like model and an integrated model is not strictly defined, but depends on the
level of detail of the demand side representation required by the demand side technology at hand.
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realistic building stock and the stochastic behavior of the occupants requires a detailed demand side model,177

which is difficult to set up and calibrate. Second, these models are typically difficult to solve numerically,178

with a high computational cost as a consequence.179

The reference model presented in this paper belongs to that category of integrated optimization models.180

However, in terms of modeling, it improves the approach by Williams et al. [28] by incorporating a more181

detailed representation of the demand side (occupant behavior, demand side technologies and thermal be-182

havior of the dwellings) and by expanding the linear programming model of the electric power system to a183

more realistic mixed integer linear programming model. The latter allows including start-up and shut-down184

costs and certain techno-economical constraints with regard to on- and off-times of electric power plants.185

The inclusion of a physical model representing the demand side allows incorporating solar and internal gains,186

which form a non-negligible part of the thermal power supplied to the dwellings as shown later.187

3. Methodology188

In this section, we first present an integrated operational model of a typical electric power system and189

a variable electricity demand from buildings using electric heating systems, composed of heat pumps and190

auxiliary electric resistance heaters. These heating systems provide both domestic hot water (DHW) and191

space heating (SH) via radiators. Thermal energy storage – allowing the model to shift demand for electric192

power in time – is provided via the hot water storage tank and the thermal mass of the building. As will be193

shown later, the model minimizes the total operational cost for simultaneously (1) satisfying a certain fixed194

demand for electric power and (2) providing a certain degree of thermal comfort for the occupants of the195

modeled dwellings.196

Afterwards, with the aim of showing the importance of integrated tools for representing ADR, a com-197

parison among several models with a different level of complexity is presented. Fig. 2 shows schematically198

how the model detail and computational cost depend on the complexity of the supply side model and the199

demand side model. The analysis is performed starting from the integrated model, representing in detail200

both the supply side and the demand side, and then reducing step by step the complexity of the supply and201

the demand side representations respectively. The integrated model represents the supply side by means of202

a unit commitment and economic dispatch model and the demand side by means of a physical state space203

model of the building and its heating system. Moving along the reduced complexity of the demand side, the204

latter can be represented by a VGM or by a price elasticity based model, while the supply side is still repre-205

sented via the unit commitment and economic dispatch model. Vice versa going toward a simplification of206

the supply side model, a MO model or an electricity price profile can simulate the supply side of the electric207

power system, keeping the physical state space model for the flexible demand. In every case the resulting208

model is used in an optimization problem, with the purpose of minimizing the overall operational costs. The209

models mentioned above were selected because they are widely used in the literature. Note however that210

other models and combinations of models may exist.211

The proposed integrated model for the demand side and the supply side212

The integrated model is used in an optimization problem, in which the overall operational cost of the213

electricity generation is minimized, subject to techno-economic and comfort constraints of both the supply214

side and the demand side of the electric power system. This mixed integer linear programming (MILP) model215

combines a unit commitment and economic dispatch model on the supply side with a detailed representation216

of the physical (thermal and electrical) behavior of the dwellings and their electric heating systems. The217

model is implemented in GAMS 23.7 and MATLAB 2011b, using the MATLAB–GAMS coupling as described218

by Ferris [42]. CPLEX 12.5 is used as solver. A full description of this model and the data used is available219

online [43].220

Via the UC and ED model, the commitment status (binary variable z, the on/off status of the power221

plant) and the hourly output of each power plant (g) are determined so that the electricity demand is met222

at the lowest overall operational cost, taking into account the technical constraints of the power plants.223

These constraints include the minimum and maximum output, the ramping rates and minimum on and off224
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times of each power plant. The operational cost, c(g, z), consists of fuel costs (FC), emission costs (CO2T ),225

ramping costs (RC) and start-up (SC) costs:226

min c(g, z) =
∑

i

∑

j

SCi,j + FCi,j +RCi,j + CO2Ti,j (1)

where i represents the power plant and j the time step, equal to one hour in this study. The fuel costs and227

carbon emission costs depend on the output and the (part-load) efficiency of the power plant. Start-up costs228

are due whenever a power plant starts up, while ramping costs reflect the degradation of the plant due to229

changes in output.230

In the integrated model, the demand for electricity that needs to be met consists of two parts: a fixed231

electricity demand profile (dfixj ) and the electricity demand of the electric heating systems, characterized232

by a certain market penetration, mp. The demand from the electric heating systems can be adherent to233

an ADR-scheme (dH,var
j ) or can be fixed to a predefined profile (dH,fix

j ). The share of flexible and inflexible234

demand is controlled by the parameter pADR. The demand from electric heating systems adherent to an235

ADR-scheme is determined via the demand side model (Eq. (4)-(6)). The same demand side model is used236

to determine the electricity demand of the heating systems not participating in an ADR scheme (dH,fix
j )237

by minimizing the energy consumption needed to meet the required thermal comfort, not considering the238

interaction with the supply side model. Once this electricity demand profile is calculated, the market239

penetration of the electric heating systems mp (a scaling factor) is chosen as such that electricity demand240

of the electric heating systems represents a reasonable fraction (in the presented case study, 25%) of the241

total electricity demand over the simulated period if none of the electric heating systems participate in ADR242

(pADR = 0). In this integrated model, it has been assumed that the ADR-adherent heat pump demand and243

supply are controlled centrally (direct load control). The demand for electricity at each time step j needs to244

be met by generation of electric power by conventional power plants i (gij) plus the electric power generated245

from RES (gRES
j ):246

∀j : dfix
j +mp ·

(
(1− pADR) · dH,fix

j + pADR · dH,var
j

)
=
∑

i gi,j + curj · gRES
j (2)

∀j : 0 ≤ curj ≤ 1 (3)

In this equation the decision variable curj stands for the relative curtailment of RES-based electricity247

generation and has a value that varies between 0 (full curtailment) and 1 (no curtailment). Curtailment248

costs are assumed to be internal transfers within the model and are thus not explicitly modeled. The only249

net cost perceived by the system is the opportunity cost of not using the zero-cost RES power available.250

Likewise, the redistribution of the operational costs and benefits of ADR among producers and consumers251

occurs internally and is thus not modeled explicitly. The fixed demand and RES-based electricity production252

profiles used are based on hourly demand data for Belgium for 2010 [44]. The variable electricity demand,253

instead, is a decision variable, determined by the comfort constraints of the occupants of the considered254

dwellings, calculated via the demand side model. This demand side model describes the physical behavior255

of the electric heating systems, which deliver heat for domestic hot water production and space heating by256

means of a heat pump and an auxiliary electric heater. The thermal behavior of the house, radiator and257

domestic hot water storage tank is modeled through a linear state space model, that allows converting the258

thermal comfort demand in a demand for thermal power for each dwelling, which needs to be satisfied by259

the electric heating systems. The state space model that describes the thermal behavior of the building and260

its heat emission system can be summarized as261

∀s, j : T SH
s,j+1 = A · T SH

s,j +B · USH
s,j (4)

The symbol T SH
s,j stands for five states considered in this model, consisting of the indoor operative tem-262

perature, along with temperatures representing the thermal behavior of the inner and outer walls, the roof263

and the floor slab. Likewise, we have retained five inputs USH
s,j : the ambient air and ground temperature,264

the solar and internal heat gains and the heating input of the radiators. The state space matrices A and265
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B make up a linear model describing the thermal conductances and capacities in the system, along with266

linear approximations of the convective and radiative heat transfer coefficients. As thermal comfort must267

be achieved, the temperatures in the heated zones are constrained to temperatures that are perceived as268

comfortable. If the occupants are present in residence s at time step j, the temperature in the heated zone269

(T z
s,j) should neither exceed Tmax, nor fall below Tmin

p (occupants present and awake, occs,j=1) or Tmin
np270

(occupants absent or sleeping, occs,j=0):271

∀s, j : Tmin
p · occs,j + Tmin

np · (1− occs,j) ≤ T z
s,j ≤ Tmax (5)

These constraints will impose limits on the thermal inputs of the building USH
s,j , and hence on the electric272

power consumed by the heating systems. As the electricity demand of each residence is the sum of the273

electricity demand of the heat pump (PHP
j ) and the auxiliary heaters (PAUX1

j , PAUX2
j ), the total variable274

electricity demand (P el
j,s) in residence s on time step j and the total variable demand on system level dH,var

j275

become:276

∀j : dH,var
j =

∑

s

P el
j,s =

∑

s

(
PHP

s,j + PAUX1
s,j + PAUX2

s,j

)
(6)

Both the supply side and demand side models were validated separately which proved the accuracy of277

their results [45–49] , thus it is reasonable to assume the same reliability for their coupling. In particular, the278

model structure of the demand side model is very similar to that proposed by Širokỳ et al. [46], Oldewurtel279

et al. [47] and Henze et al. [48]. The accuracy of the heating system model is tested against a detailed280

physical simulation model using the IDEAS library [50] in Modelica, as described in [49].281

The performance of this integrated model will be studied in a methodological case study. The supply282

side of the electric power system considered consists of 1 nuclear power plant (1200 MW), 5 coal-fired steam283

power plants (4000 MW), 10 gas-fired combined cycle power plants (CCGT, 4000 MW) and 10 peaking284

units (open cycle gas turbines and oil-fired power plants, 1000 MW). We assume that RES-based electrical285

energy accounts for 20% of the generated electrical energy over the simulated period. The assumed fuel286

prices (per MWh of primary energy, MWhpr) are the following: 12 EUR
MWhpr

for coal, 25 EUR
MWhpr

for natural287

gas and 35 EUR
MWhpr

for oil. Nuclear energy is valued at 7 EUR
MWh (per MWh electrical energy, MWh) (see [43]288

and references therein). A carbon price of 30 EUR
ton CO2

is assumed, in line with the projected carbon price289

by 2030 according to IEA [51].Note that this high carbon price increases the variable cost of coal-based290

generation above that of gas-based generation with CCGTs (see Fig. 8). Twenty five identical buildings,291

with a different user behavior and number of users based on the demographic structure of Belgium [52],292

are considered. The degree to which the heating systems participate in ADR (pADR) is varied throughout293

the paper, while the market penetration mp is constant (see above). The fixed demand profile dfix
j is scaled294

(1) to represent a certain fraction of the total demand for electrical energy on the considered optimization295

horizon and (2) to ensure that the peak demand does not exceed 90% of the installed conventional capacity.296

The parameters for the building model were derived by Reynders et al. [53] by performing model reduction297

on a detailed model of a typical Belgian building built between 2005 and 2010. The building considered has298

a floor surface of 270 m2 and a protected volume of 741 m3. Infiltration and ventilation combined cause299

1.5 air changes per hour. The exterior walls, roof and windows respectively have a U-value of 0.4 W
m2K ,300

0.5 W
m2K and 1.4 W

m2K . The building has an average of about 10 m2 of window surface in each cardinal301

direction. Flexibility is available via thermal energy storage in the light-weight building shell [53] and the302

hot water storage tank (120 to 300 liters, depending on the number of occupants). The constraints on the303

thermal comfort required by the occupants (e.g. temperature constraints [54] and the availability of hot304

water [55]) result in constraints on the electrical power demand and on the flexibility offered to the supply305

side. For the comparative purposes in this paper, only 48 hours of a typical winter period are retained in the306

evaluation. Thorough testing revealed that this period is sufficient to capture the thermal behavior of the307

chosen thermal systems and to illustrate the advantages and disadvantages of the various models. Cyclic308

boundary conditions are enforced on the optimization.309

All alternative models, as discussed in Section 2.1 and 2.2, are simplifications of the presented integrated310

model. For example, the use of a virtual generator model to represent the demand side flexibility would311
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abolish the need for the linear state-space model, while leaving the supply side model unaffected. The linear312

state-space model could be replaced by a (simpler) generic model of a storage unit, with some constraints313

that ensure that sufficient electric power is ‘consumed’ to guarantee thermal comfort. Likewise, reducing314

the supply side model to a merit order model would strongly simplify the unit commitment model, while315

leaving the linear state-space model at the demand side unchanged.316

4. Results and discussion317

In this section, we will show that (1) the price-elasticity of storage-type customers is difficult to estimate318

ex-ante, limiting the usability of price-elasticity-based models (Section 4.2); (2) thermal energy storage losses,319

which are typically non-linearly dependent on e.g. the state of charge, are difficult to capture in VGM-like320

models (Section 4.3) (3) price profile-representations of the electric power supply neglect the possible effect321

a changed demand profile may have on the electricity price (Section 4.4) and (4) merit order models, in322

combination with a physical model of the demand side, allow to approximate the operational performance323

of the integrated model at a reasonable computational cost (Section 4.5). To facilitate the interpretation of324

these results, the starting point of the presented analysis will be the results obtained with the integrated325

model (Section 4.1), which will act as a reference. To conclude this section, we discuss the most important326

results and differences between the various models in Section 4.6.327

4.1. Integrated model results328

As pointed out previously, the interaction between the supply side and demand side (models) can be329

observed in the mutual changes in the residual electricity demand and the electricity price profile (as will330

be recalled from Fig. 1). Fig. 3a shows the residual electricity demand obtained from the integrated model,331

calculated as the total electricity demand minus the RES-based generation. The controllable demand from332

the electric heating systems was assumed to participate to the ADR program fully (pADR = 100% ADR),333

partly (pADR = 50% ADR) or not at all (pADR = 0% ADR). In the last two cases, (part of) the consumers334

(is) are not exposed to the hour-to-hour variations of the electricity price. The demand of these consumers335

is given by the predefined electric heating demand profile dH,fix
j . When the customers adhere to the ADR336

program, the demand is shifted to the hours of lower consumption, hence lower electricity costs, and so-called337

‘valley filling’ occurs. Load shifting however leads to additional thermal losses, hence an increased overall338

energy use. From a system perspective, the total operational cost however decreases as a result of ADR.339

Fig. 3b shows the electricity price profile obtained from the IM. For the minimum energy demand scenario340

(pADR = 0% ADR), the price shows some peaks, corresponding to the peaks in demand, which leads to the341

activation of expensive peaking units (Fig. 4). Increasing the participation of the electric heating systems342

to the ADR program flattens the price profile. The difference between the case with no participation to the343

ADR (pADR = 0% ADR) and the case with a partial participation to the program (pADR = 50% ADR) is344

very evident, while the difference is less pronounced between the latter and the case with total participation345

to ADR (pADR = 100% ADR). This illustrates that after a certain threshold the marginal effect of ADR on346

the production side is reduced. These observations are confirmed by the corresponding dispatch, shown in347

Fig. 4, and the residual electricity demand profile, Fig. 3. Moving from a 0% ADR participation to a 50%348

ADR participation, the need for expensive peaking units disappears completely due to the flattened demand.349

The same units, being the combined cycle gas turbines, set the price throughout the optimization period.350

As such, large price differences between hours – the driving force behind the demand redistribution under351

ADR programs – disappear. Therefore, additional controllable heating systems will not result in significant352

changes in demand, nor electricity prices, on the level of the power system. Note however that, to obtain the353

same flexibility on a system level, each individual consumer needs to shift his demand less and the resulting354

thermal losses, thus additional consumption, per consumer will be lower (see further).355
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Figure 3: The residual electricity demand (left) and electricity price (right) in three cases of ADR participation (pADR = 0%,
50%, 100%).
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Figure 4: Output of the committed power plants in case of 0% (left) and 50% (right) ADR participation.
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Figure 5: The thermal and electrical power supplied to one of the dwellings on the two simulated days under different ADR
participation scenarios (pADR = 0%, 50%, 100%).
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Figure 6: Building indoor temperature (Fig. 6a) and DHW temperature (Fig. 6b) over the two simulated days under different
ADR participation scenarios (pADR = 0%, 50%, 100%).

As to the demand side, Fig. 5a shows the trend of the demand for space heating and domestic hot water356

of a building and its breakdown in the principal contributions, being the thermal power provided by the357

electric heating system (‘heating’ in Fig. 5a) and the internal and solar gains due to the interaction of the358

building with users and surrounding (‘gains’ in Fig.5a). Fig. 5a shows that the contribution of the internal359

and solar gains, especially in the afternoon hours of the day, represents an important share of the thermal360

energy demand, reducing the thermal energy to be provided by the heating system. It is therefore relevant361
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to take these gains into account and neglecting them would lead to a considerable error in assessing the362

thermal load of the heating system. Moreover, these gains are dependent on the outside temperature and363

solar irradiation, as well as on the user behavior.364

Fig. 5b instead shows the electricity consumption pattern of the heating system of a single building365

in different ADR cases. With ADR, the overall operational system costs are minimized by exploiting the366

flexibility of the electric power demand of the heating systems, due to the storage capability of the thermal367

loads, both in the building envelope and in the DHW storage tank. Due to the availability of cheap generation368

capacity during the night, the building is preheated compared to the case of no ADR participation (0% ADR)369

(Fig. 5b). In fact, the electricity consumption is shifted to low price periods and the energy is stored in the370

thermal mass of the building (Fig. 6a) or in the storage tank (Fig. 6b). This causes more thermal losses371

and hence a higher energy use, though the overall operational system cost is lower. As a consequence, the372

inside temperature of whatever ADR case, even if the thermal comfort is maintained, can be higher than373

the minimum energy case, in which the temperature is as low as possible while maintaining thermal comfort374

(Fig. 6).375

The importance of a correct representation of the thermal losses at the demand side technology is376

illustrated by the demand recovery ratio (DRR). The DRR is defined as the ratio between the observed377

electrical energy used by the flexible electric heating systems and the minimum electrical energy use of those378

heating systems [14, 36]. DRR is therefore always greater than or equal to 100%. Results obtained with379

the integrated model indicate that the DRR behaves erratic with respect to the share of variable demand380

and renewable energy in the system. At a 50% ADR participation, it varies between 105% and 109%, while381

this range reduces to 102 to 105% at a 100% ADR participation rate. The DRR is lower for a 100% ADR382

participation, since less load shifting per house is necessary when more customers are involved. Thus, the383

behavior of the flexible electric heating systems is not only dependent on the consumers themselves, but384

also on the boundary conditions under which they operate: the amount of renewable energy in the system385

and the behavior of the other consumers.386

Although the presented results highlight many advantages of the integrated modeling approach, it is not387

devoid of disadvantages. The most serious concern is the computational cost of solving such an integrated388

model. In this particular setting, solving the integrated model for 48 hours takes about 30 minutes on a 2.8389

GHz quad-core machine with 4 GB of RAM. Therefore, modelers often resort to simplified models on the390

supply or demand side. This will be discussed below.391

4.2. Unit commitment models with a price elasticity model on the demand side392

As outlined in Section 2.1, many studies on demand side flexibility use a price elasticity model to describe393

the price responsiveness of flexible customers. This elasticity is defined as394

εu,k =
∂du

∂pk
· p0,k

d0,u
(7)

with pk the price of electrical energy in hour k, and du the demand for electrical energy in hour u. The index395

0 indicates the initial or anchor electricity demand and price levels, i.e. the reference demand and price396

levels to which the elasticity will be related. If k equals u, the elasticity is referred to as the own-elasticity397

of the demand. Cross-elasticities (k 6= u) indicate the change in demand for electricity in hour u in response398

to a change in the price of electricity in hour k. Cross-elasticities are needed as consumers are generally not399

willing to solely reduce their demand, but are more likely to redistribute some of their demand, shifting it400

away from peak price to low price periods. For example, as shown above, the redistribution of demand may401

yield a higher overall electricity consumption, which cannot be captured by own-elasticities alone. Price402

elasticities are a powerful tool to capture the price responsiveness of many customers. However, as shown403

below, these elasticities may not be suited to describe the responsiveness of storage type customers when404

storage is accompanied by losses not linearly dependent on the energy stored or on the power supplied, such405

as thermal systems.406

When a modeler seeks to use price-elasticities to model the behavior of price-responsive consumers, he407

needs to estimate these elasticities ex-ante. I.e., the modeler needs to assume a certain (range of) price-408

elasticity values before observing the reaction of the price-responsive customers. However, this is not a409
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Figure 7: Schematic representation of the partly elastic, partly inelastic demand, simulated in this paper. The intersection of
the demand and supply curves yields the anchor points (p0, d0) for the elasticity calculation [18].

trivial task for new types of consumers, such as electric heating systems. Moreover, one might observe410

behavior that cannot be captured via a linear relationship between price and demand. To illustrate this, we411

used the integrated model to assess the mutual change of price and demand induced by the modification412

of the RES profile. This is equivalent to shifting the supply curve along the demand axis (Fig. 7 and 8).413

180 RES profiles were considered (wind power profiles, obtained from the Belgian TSO, Elia, for the year414

2013). Each of these profiles covers 20% of the demand. Due to a change in the RES profile, the consumers415

will see different electricity price levels as the supply curve changes. The thermal heating demand (i.e. the416

thermal comfort) remains unchanged in these simulations. The electricity reference price as seen by the417

electric heating systems is here calculated as the marginal value of the market clearing condition (Eq. (2))418

in the integrated model (Fig. 7).419

From these simulations, one can obtain the price-demand couples for each of the respective hours. Fig. 8420

shows the resulting price-demand couples for hour 30, in which the demand for thermal services is significant421

(Fig. 5b). Similar effects are observed at other time steps. If a price-elasticity could describe the change422

in demand in response to changes in the cost or price of electricity, the price-demand couples would form423

a straight, downward sloping line, as schematically illustrated in Fig. 7. However, as shown in Fig. 8,424

this is not the case. First, one can observe some atypical increases in demand in response to an increase425

in the marginal cost of electricity generation. This would correspond to a positive own-elasticity, which is426

uncommon in the electricity sector [14]. Second, different demand levels appear optimal for the same price427

level. A(n) (own) price-elasticity does not allow capturing these effects. These results show the difficulty428

of correctly predicting the elasticity ex-ante, needed to study ADR via an elasticity-based model, when429

storage-type customers are involved.430

4.3. Unit commitment models with virtual generator models on the demand side431

A flexible demand can be modeled through a virtual generator model (see Section 2.1). In essence, the432

demand is described as a generating or storage unit with a negative output and a set of constraints on this433

output. A generic description of any storage unit can be formulated as follows:434

Et = Et−1 − L̇t ·∆t− Ḋt ·∆t+ İt ·∆t+ Ġt ·∆t (8)

The state of charge of any storage system at a certain time step t (Et), is typically modeled based on the435

energy content at the previous time step t−1 (Et−1), and the withdrawal and the addition of energy during436

that time step t. In this equation, Et stands for the energy content of the virtual storage unit, ∆t for the437

considered time step, L̇t for the (thermal) losses of this unit, Ḋt ·∆t for the energy demand (i.e. the amount438

of energy one extracts from the storage, the output), İt for the power supplied to the storage and Ġt for any439
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Figure 8: The resulting price-demand couples in hour 30, indicated by the black dots in the figure above, indicate that the price-
responsiveness of thermal systems cannot be captured via an own-price elasticity. The solid line shows the supply curve, the
dashed line indicates the inelastic part of the demand. The supply curve shown above is a simplified merit order-representation
of the supply side of the electric power system. For illustrative purposes, the dotted line shows a demand curve characterized
by an own elasticity of −1. The RES-based generation in hour 30 varies between 346 and 4,099 MW.

other gains. Constraints on each term in Eq. (8) can be imposed to ensure that the technical constraints440

of the demand side technology and the comfort constraints of the consumers are respected. Again, the441

constraints and interaction terms, such as the loss term L, must be quantified by the modeler ex-ante.442

When this modeling approach is used to simulate a flexible storage type customer with electric heating443

system as demand side technology, the limits on the output of the virtual generating unit (electrical power444

demand) can easily be deducted from the nameplate capacity of all electric heating systems involved on the445

demand side. Ramping limits are not required in this case as the demand side technologies (heat pumps)446

can ramp up and down well within the time step (1 hour). A similar reasoning applies to the limits of447

on and off-times. Constraints are also required on the size of the ‘storage’ unit, which typically consist of448

minimum and maximum energy limits for the storage capacity combined with a loss term (or efficiency, L).449

The thermal losses, L, and the gains, G, in Eq. (8) capture the interaction of such a thermal system with450

its surroundings. These parameters, which can usually be easily quantified for some flexible loads such as451

electric vehicles, become rapidly more complex to estimate for thermal energy storage systems. Indeed, the452

thermal losses and gains are not only temperature and time dependent, but they are also dependent on453

user behavior (consumption of hot water, occupancy profiles), weather conditions (ambient air temperature,454

solar heat gains) and the building structure (wall thickness, ventilation rate [10]) . The importance of455

solar and internal heat gains has been highlighted previously in Section 4.1 (Fig. 5a), where it has been456

shown that they represent a considerable share of the building thermal demand. Neglecting to model these457

gains would yield a significantly lower state of charge, which in turn may result in an overestimation of the458

electricity demand via a VGM. Thus, in reality, this may lead to a violation of the comfort constraints on459

the consumers side. In addition, the DRR, which by its definition can be interpreted as a measure for the460

loss term L, shows an erratic behavior with varying the RES and ADR share, that is clearly difficult to461

be estimated ex-ante. Likewise, time-dependent limits on the state of charge of the storage system could462

be used to represent the thermal comfort requirements of the occupants. Similar to the thermal losses and463

gains, these limits are highly dependent on the user behavior and weather conditions. In conclusion, the464

representation of a demand side thermal energy storage system and its interaction with the supply side of465

the electric power system requires detailed knowledge of the temperatures and disturbances imposed on466

that storage system. In a VGM it is necessary to estimate these interactions ex-ante, which can affect the467
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reliability of the results.468

4.4. State-space models with a price profile-model on the supply side469

A price profile is often considered as a possible way of representing the electricity wholesale market470

in an ADR model focused on demand responsive consumers. Typically a fixed electricity price profile is471

assumed to represent the supply side, while a detailed physically based model is used for the demand side472

in order to determine the electricity demand profile that yields the minimum energy cost for the customer.473

This approach however fails to identify the feedback or reaction of the supply side of the electric power474

system to a change in the demand side behavior. In fact, if one consumer shifts his electricity demand to a475

moment with lower electricity price, this will not affect the electricity price at that moment. If thousands476

of consumers shift their electricity demand to that moment, this can increase the electricity price at that477

moment, making load shifting less interesting.478

Since in the reference case presented above, the flexible electricity demand has been assumed to be479

25% of the total electricity demand, it is likely that changes in the demand profile of these electric heating480

systems have an impact on the electricity price. Neglecting this interaction between demand and supply481

side may have a severe effect on the validity of the obtained results, as we will show below using the context482

of the methodological case study. Towards that end, we use the state-space demand side model and the483

unit commitment supply side model separately, as illustrated in Fig. 1. In a first iteration, the demand side484

model starts from a flat electricity price profile and determines the electricity demand resulting in minimal485

total energy cost for the owners. This corresponds to minimizing the energy use on the demand side. The486

supply side model starts from the fixed electricity demand profile, augmented with the demand profile of the487

electric heating systems determined by the demand side model in the previous iteration. With this model,488

we determine unit commitment and dispatch that minimizes the total operational cost for the system. The489

resulting price profile is then passed on to the demand side model. Iteratively, the demand side model is490

used to calculate a new electricity demand in response to this new electricity price profile, which then is491

used as an input for the supply side model.492

When this iterative process was performed, it soon diverged. The demand side model tends to overreact493

to differences in electricity price. This results in large peak demands, which can be higher than the generation494

capacity, when the price is low. A possible way of fixing this issue is by putting an extra constraint on the495

possible changes in the resulting electricity demand profile between iterations, e.g. by limiting the changes in496

the electricity demand in each hour to a certain percentage of the electricity demand profile in the previous497

iteration. Fig. 9 shows the trajectory of the total operational cost of the electric power system in case of498

a maximum 10% deviation of the demand profile from the previous iteration. The operational costs shown499

in Fig. 9 are the total operational costs obtained with the unit commitment model, considering the fixed500

demand and the demand profile from the electric heating systems as obtained from the demand side model.501

In the first iteration, the model yields the same result as if the electric heating systems would not adhere502

to any ADR program. The following iterations show the reaction of the demand side model to a changing503

electricity price profile. The resulting decrease in operational costs is about one third of the total possible504

operational cost reduction due to ADR as calculated with the IM (about 1.8% 4, to be compared with the505

0.1% optimality gap imposed on the optimization).506

However, 25 iterations result in a total calculation time in the same order of magnitude as the integrated507

model. Similarly, when looking at the costs for the building owners, we note an erratic oscillation of the508

solution compared to the corresponding solution of the IM. The energy costs for the building owner are509

calculated as the demand profile of the electric heating systems times the electricity price profile used in the510

demand side optimization.511

In conclusion, these results show that conclusions based on models in which the supply side is represented512

via a (fixed) price profile are biased if changes in demand affect those electricity price profiles. This inter-513

action can be integrated in such a modeling approach to some extent. However, such an iterative approach514

4Note that these figures account only for operational costs and were obtained for this particular setting. E.g., investment
costs are not taken into account. These numbers should not be interpreted as a comprehensive evaluation of the full possible
benefits of ADR.
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Figure 9: Evaluation of the total electricity production cost with the price profile demand model using the iterative procedure.
The integrated model (IM) results for pADR equal to 0% and 100% are indicated as reference (dashed lines).

may not yield results of the same quality as an integrated model, but will require the same computational515

effort. Moreover, the same level of detail is needed in both models.516

4.5. State-space models with a merit order model on the supply side517

As an alternative to the iterative approach suggested above, a modeler focusing on demand side results518

could consider a merit order representation of the supply side of the electric power system, in combination519

with a physical model of the demand side. As explained below, this model allows to take into account520

the effect of a change in the demand profile on the electricity price profile directly, abolishing the need521

for iterative procedures. This MO model is computationally less intensive than a unit commitment model.522

Moreover, it requires far less detail on the supply side and is thus easier to set up.523

This simplified model consists of a mere ranking of the different power plants in an ascending order524

of (average) operational production costs (Fig. 8). These costs consist of fuel and carbon costs. The525

intersection of the demand and the merit order curve yields the electricity price in each hour. The objective526

function of this model is similar as in the IM, namely minimize the total operational costs. Furthermore, it527

couples the demand side model and the merit order model via a (simplified) market clearing condition (Eq.528

(2)). As such, it is possible to consider the effect of the energy demand variation on the electricity price,529

even if in a simplified manner. This MO model however only considers the maximum output of each power530

plant and hence neglects ramping constraints, minimum operating points, minimum on- and off-times and531

start-up costs, which are considered in a unit commitment model. As a consequence, power plants may532

be switched on/off in an unrealistic way in the merit order model. E.g., coal power plants are switched533

on and off within one hour, while in reality it takes multiple hours for such a power plant to start up.534

Results obtained with such a merit order model should thus always be interpreted with caution, e.g. via a535

re-evaluation of the resulting demand profile with a UC & ED model as discussed below. Fig. 8 shows the536

ranking of the different power plants. Fuel costs and CO2 costs are the same as those assumed for the unit537

commitment model in Section 3.538

The costs from the MO model have been compared to those from the IM for 18 scenarios for the RES-539

based generation, namely three different RES profiles that cover 5%, 10%, 15%, 20%, 25%, 30% of the total540

electricity demand (energy basis) in the considered optimization period. Fig. 10a shows (1) the ratio of the541

total operational system costs as obtained with the MO model and the IM and (2) the ratio of the energy542

costs for the building owners as obtained with the MO model compared to the IM. In the upper part of543

the figure, the costs of the MO model are directly compared to the results of the IM. In the bottom part544
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UC & ED, considering the demand from the electric heat-
ing systems as obtained from the MO (ECMOR), com-
pared to the corresponding operational cost obtained di-
rectly with the IM (ECIMR).

Figure 10: Relative difference in total system costs (TC) and building owners energy costs (EC) between the merit order
model and the integrated model. The upper figures show the relative difference when considering the costs as obtained directly
from the MO. The lower part of the figure contains the same results, but shows the costs after re-evaluation with the unit
commitment model. The box plot shows four quartiles in the data, with the middle line being the median of the values.

of the figure, the demand profiles of the electric heating systems, as obtained from the MO, are used as an545

input of the unit commitment model, in order to recalculate the costs, taking into account all operational546

constraints and costs of the power plants. With regard to the total operational cost, the merit order model547

yields a cost between 1 to 3.5% lower than in the case of the integrated model (Fig. 10a). In this case, a548

modeler thus takes 96.5% to 99% of all operational costs into account when he employs a merit order model.549

Furthermore, this percentage increases with the share of ADR. ADR has the effect of flattening the residual550

demand, which makes it less likely that the solution of the MO model violates any dynamic constraint of551

the power plants. In addition, start-up costs become relatively less important in the IM solution as less552

start-ups are required. Looking at Fig. 10c, showing the re-evaluated operational cost for the system, one is553
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able to judge the quality of the solution obtained from the MO model. This re-evaluated total operational554

cost is obtained by solving the UC & ED considering the electricity demand profile as obtained from the555

merit order-state space model. Total operational costs deviate as little as 0.4% to 2% from the solution556

obtained with the IM.557

Fig 10b and 10d show the energy cost for building owners. The results from the MO model yield cost558

differences within a range of -12% to +3% compared to the IM solution. After re-evaluation this range559

changes to -7% to +10%. However, one should be careful in the interpretation of these results. Indeed,560

the objective of the optimization is to minimize total operational system cost, not the owners cost. The561

demand profile that yields the minimal operational system cost might not be unique. E.g., a change in the562

demand profile may lead to a significant difference in the cost for the building owner, but the effect of this563

change on the total operational cost might fall within the optimality gap of the optimization. From a system564

perspective, large variations may exist in the owners cost, while system costs remain unaffected.565

To conclude, the merit order model successfully takes into account the interaction of electricity prices566

and the demand profile, especially if one is looking at ADR from a system perspective. Results that are567

close to those of the integrated model can be obtained, especially after re-evaluation of the solution with568

the unit commitment model. Solving the MO model takes about 30 seconds, compared to 30 minutes for569

the IM. Re-evaluating the MO model with the UC & ED model additionally requires 30 seconds.570

4.6. Model comparison571

The analysis performed above allows us to state the following conclusions from using the different ap-572

proaches for modeling active demand response when storage-type customers, such as electric heating systems573

coupled to any form of thermal storage, are involved. We presented an integrated model, which employs574

a unit commitment and economic dispatch model for the supply side of the electric power system and a575

physical state space model to represent the demand side, as a benchmark. This model allows a modeler to576

correctly asses the effect of ADR on the supply and demand side of an electric power system, but requires577

a significant computational effort and detailed information to set up the model. It can for example be578

employed to assess the quality of other modeling techniques.579

If a modeler seeks to simplify the demand side model, price-elasticity and virtual generator models580

are often encountered in the literature due to their simplicity and low computational cost. However, in the581

setting of storage-type customers, in both cases it will be very difficult to estimate the models’ parameters582

ex-ante. We have shown that e.g. price-elasticities and demand recovery ratios, as a measure for the losses583

in a system, fluctuate erratically with the share of ADR and RES in the system. However, the assumptions584

on the various parameters will drastically affect the obtained results.585

Likewise, if the modeler employs simpler models on the supply side, he should proceed cautiously. If586

one neglects the effect of a change in demand on the electricity price profile, results will only hold for a587

small group of consumers. Iterative price profile approaches will to some extent allow to take into account588

this feedback and are simple to implement, but results remain sub-optimal and become computationally589

intensive to solve.590

In addition, not taking into account the limitations of the considered power plant portfolio might lead to591

demand profiles that cannot be met. Merit order models consist of a ranking of the power plants according592

to their operational costs. Although they do not take into account any operational constraints, nor all costs,593

they allow to approximate the solution of the integrated model in about 1/60th of the calculation time.594

However, one should take caution in interpreting the results, as the resulting dispatch might violate the595

constraints of the power plants and not all costs, such as start-up costs are taken into account.596

5. Conclusion597

Active demand response or ADR, a particular form of demand side management, refers to all changes598

in electricity usage implemented directly by end-use consumers, thereby deviating from their normal con-599

sumption patterns, in response to certain signals, such as electricity prices. If these signals are timely and600

sufficiently strong, this could lead to, among other effects, a higher operational efficiency in production,601
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transmission and distribution of electric power. Although there is a large potential for ADR identified in602

the literature, especially for ADR considering electric heating systems and thermal loads, there are still a603

number of obstacles to be overcome before a large scale roll-out of ADR technologies can take place. Not604

in the least, researchers are not able to accurately quantify the benefits of ADR and to fully describe the605

interactions between the supply and demand side of the electric power system under ADR.606

In order to quantify the operational effects of introducing such programs, we developed an integrated607

modeling approach in this paper. This model allows to capture the full integrated effect of ADR on the supply608

and demand side, as well as to quantify the benefits for the system. However, this comes at a significant609

computational cost. In order to reduce the computational effort, several simplified approaches have been610

investigated, such as price-elasticity-based models, virtual generator models, price-profile models and merit611

order models. In particular, the difficulty of representing storage type customers’ behavior by means of price612

elasticity based models was demonstrated, together with the complexity of a proper estimation of all terms613

contained in a virtual generator model. Furthermore, fixed electricity price profile demand side models,614

that neglect the interaction between supply side and demand side, can be misleading for the determination615

of the flexible demand behavior. Merit order models, instead, provide good results in terms of operational616

cost estimates, even if the supply side is represented in a simplified manner with respect to the integrated617

approach. Solving such a merit model takes about 30 seconds, compared to 30 minutes for the integrated618

model. A merit order model may thus be a good candidate for full year simulations.619

The presented models may be used by other researchers who investigate the effect of ADR on the electric620

power system and the presented results may guide others in the development of their own models. Especially621

if one is interested in the effect of the market penetration of an ADR technology, the presented model could622

be useful. In addition, demand aggregators may use this work to develop operational models to schedule623

and optimize their use of thermostatically controlled loads in ADR programs.624
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