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Abstract

Incorporation of the available prior knowledge into to learning framework can
play an important role in improving the generalization of a machine learning
algorithm. The type of available side information can vary depending on the
context. The scope of this thesis is the development of learning algorithms
that exploit the side information. In particular the focus has been on learning
the solution of a dynamical system, parameter estimation and semi-supervised
learning. To this end, the prior knowledge is incorporated into the kernel based
core model via adding a regularization term and/or set of constraints.

In the context of dynamical systems, the available differential equations
together with initial/boundary conditions are considered as side information.
Starting from a least squares support vector machines (LSSVM) core formu-
lation, the extension to learn the solution of dynamical system governed by
ordinary differential equations (ODEs), differential algebraic equations (DAEs)
and partial differential equations (PDEs) are considered. The primal-dual
optimization formulation typical of LSSVM allows the integration of side
information by modifying the primal problem.

A kernel based approach for estimating the unknown (constant/time-varying)
parameters of a dynamical system described by ordinary differential equations
(ODEs) is introduced. The LSSVM serves as a core model to estimate the state
trajectories and its derivatives based on the observational data. The approach
presents a number of advantages. In particular, it avoids repeated integration
of the system and also in case of parameter affine systems, one obtains a convex
optimization problem. Moreover for systems with delays (state delay), where
the objective function can be non-smooth, the approach shows promising results
by converting the problem into an algebraic optimization problem.

In many applications ranging from machine learning to data mining, obtaining
the labeled samples is costly and time consuming. On the other hand with
the recent development of information technologies one can easily encounter a
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vi ABSTRACT

huge amount of unlabeled data coming from the web, smartphones, satellites
etc. In these situations, one may consider to design an algorithm that can
learn from both labeled and unlabeled data. In this context, elements such
as dealing with data streams (real time data analysis), scalability to large-
scale data and model selection criteria become key aspects. Starting from the
Kernel Spectral Clustering (KSC) core formulation, which is an unsupervised
algorithm, extensions towards integration of available side information and
devising a semi-supervised algorithm are a scope of this thesis. A novel
multi-class semi-supervised learning algorithm (MSS-KSC) is developed that
addresses both semi-supervised classification and clustering. The labeled data
points are incorporated into the KSC formulation at the primal level via adding
a regularization term. This converts the solution of KSC from an eigenvalue
problem to a system of linear equations in the dual. The algorithm realizes a
low dimensional embedding for discovering micro clusters.

Though the portion of labeled data points is small, one can easily encounter
a huge amount of the unlabeled data points. In order to make the algorithm
scalable to large scale data two approaches are proposed, Fixed-size and reduced
kernel MSS-KSC (FS-MSS-KSC and RD-MSS-KSC). The former relies on the
Nyström method for approximating the feature map and solves the problem
in the primal whereas the latter uses a reduced kernel technique and solves
the problem in the dual. Both approaches possess the out-of-sample extension
property to unseen data points.

In today’s applications, evolving data streams are ubiquitous. Due to the
complex underlying dynamics and non-stationary behavior of real-life data,
the demand for adaptive learning mechanisms is increasing. An incremental
multi-class semi-supervised kernel spectral clustering (I-MSS-KSC) algorithm
is proposed for an on-line clustering/classification of time-evolving data. It
uses the available side information to continuously adapt the initial MSS-KSC
model and learn the underlying complex dynamics of the data stream. The
performance of the proposed method is demonstrated on synthetic data sets
and real-life videos. Furthermore, for the video segmentation tasks, Kalman
filtering is used to provide the labels for the objects in motion and thereby
regularizing the solution of I-MSS-KSC.



Abbreviations

ARI Adjusted Rand Index
BVP Boundary Value Problem
BLF Balanced Line Fit
DAE Differential Algebraic Equation
DDE Delay Differential Equations
FS-MSS-KSC Fixed Size Multiclass Semi-Supervised Kernel

Spectral Clustering
IKM Incremental K-means
I-MSS-KSC Incremental Multiclass Semi-Supervised Kernel

Spectral Clustering
IVP Initial Value problem
KKT Karush-Kuhn-Tucker
KSC Kernel Spectral Clustering
LapSVMp Laplacian Support Vector Machines in primal
LSSVM Least Squares Support Vector Machine
MSS-KSC Multiclass Semi-Supervised Kernel Spectral Clus-

tering
NLP Nonlinear Programming Problem
NMI Normalized Mutual Information
ODE Ordinary Differential Equation
PCA Principal Component Analysis
PDE Partial Differential Equation
PEM Prediction Error Method
RBF Radial Basis Function
RD-MSS-KSC Reduced Multiclass Semi-Supervised Kernel Spec-

tral Clustering
SC Spectral Clustering
SVM Support Vector Machine
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Notation

xT Transpose of a vector x
AT Transpose of a matrix A
Aij ij-th entry of the matrix A
IN N ×N Identity matrix
1N N × 1 Vector of ones
ϕ(·) Feature map
Φ Feature matrix
K(xi, xj) Kernel function evaluated on data points xi, xj

|S| Cardinality of a set S
A(:, i) Matlab notation for the i-th column of matrix A
A(i, :) Matlab notation for the i-th row of matrix A
A(k : l,m : n) submatrix of matrix A consisting of rows k to l and

columns m to n
∂2f
∂x2 Second order partial derivative of f w.r.t x
min

x
f(x) Minimization over x, minimal function value returned

argmin
x

f(x) Minimization over x, optimal value of x returned
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Chapter 1

Introduction

1.1 General Background

Machine Learning is an actively growing research field that aims at extracting
useful knowledge, unveiling hidden patterns and learning the underlying
complex structure from data. Machine Learning has several connections with
data mining, pattern recognition, statistics and optimization theory. Kernel
methods are one of the successful branches in the fields of machine learning
and data mining.

They can provide predictive models that often outperform competing ap-
proaches in terms of generalization performance. The main idea in kernel
based methods is to map the data into a high dimensional space by means of
a nonlinear feature map. A linear model in the feature space then corresponds
to a nonlinear model in the original domain. Support Vector Machines (SVMs)
proposed by Vapnik [170], is a well-known example of such a method, which has
been successfully applied to non-linear classification and regression problems
with high dimensional data.

In many practical applications, some forms of additional prior knowledge is
often available. For instance in the context of nonlinear system identification,
prior knowledge could be the applicability of a physical law for part of the
system or information on its stability. In the context of clustering, one may
know class labels for some items and letting them guide the clustering process.
Incorporating available prior knowledge into the data driven modeling task can
potentially improve the performance of the model. Therefore exploiting and
incorporating the available prior information into the learning framework is
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2 INTRODUCTION

the scope of this thesis. In particular in this thesis the kernel based models
cast in the Least Squares Support Vector Machines (LSSVM) framework [159],
are considered as core models and the additional information is embodied in
the models by adding regularization terms or sets of constraints to the primal
optimization problem.

1.2 Challenges

Challenges tackled in this thesis are addressing the complications arising in the
incorporation of prior knowledge into kernel based models for handling forward
problems, inverse problems, classification/clustering and online learning.

• Kernel based model towards learning the solution of a dynami-
cal system: Differential equations can be found in the mathematical
formulation of physical phenomena in a wide variety of applications
especially in science and engineering [46, 91]. Analytic solutions for these
problems are not generally available and hence numerical methods must
be applied. In the case of differential algebraic equations (DAEs), most
of the existing methods are only applicable to low-index problems and
often require the problem to have special structure. Furthermore, these
approaches approximate the solutions at discrete points only (discrete
solution) and some interpolation technique is needed in order to get
a continuous solution. The challenge is to design a kernel based
formulation for learning the solution of the given differential equations
via incorporating the initial/boundary conditions into the core model.
Addressing the model selection, performing simulation on long time
intervals and dealing with nonlinear differential equations are additional
challenges for using kernel based approaches in this context.

• Parameter estimation of dynamical systems using kernel based
model: Parameter estimation of dynamical systems described by a set
of differential equations is widely used in modelling of dynamic processes
in physics, engineering and biology. The aim is to estimate the unknown
parameters of the system based on the available observational data. In
this thesis we consider parameter affine systems. Due to the nonlinear
dynamics of the system, conventional approaches formulate the parameter
estimation problem as a non-convex optimization problem. The challenge
is to develop a kernel based method formulated as a convex optimization
problem for estimating the unknown constant/time-varying parameters
of the given dynamical system described by ordinary/delay differential
equations. The approximated parameter then can serve as an initial guess
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for the conventional approaches. Parameter estimation of a system with
delays is a very important aspect in many applications and at the same
time is a challenging problem as the objective function of the optimization
problem for DDE might be non-smooth because the state trajectory might
be non-smooth in the parameter and this will make the optimization
problem more complicated.

• Semi-supervised learning for realistic and large scale data size:
In many contexts, ranging from data mining to machine perception,
obtaining the labels of input data is often difficult and expensive.
Therefore in many cases one deals with a huge amount of unlabeled
data, while the fraction of labeled data points will typically be small.
In these cases one may consider to use a semi-supervised algorithm that
can learn from both labeled and unlabeled data. The challenge is to
devise a kernel-based model that is able to learn from few labeled data
points and generalizes well on the unseen data points. In addition,
in many applications ranging from text mining, information retrieval
and computer vision the amount of (unlabeled) data points has been
increasing at exponential rate. Therefore one also should take into
account the scalability of the semi-supervised algorithms in order to deal
with large scale data.

• Online semi-supervised learning: The behavior of a dynamic system
can meet different regimes in the course of time i.e. the data distribution
can change over time. In this case, in order to cope with non-stationary
data-streams one needs to continuously adjust the model in order to
better explain the whole dynamics of the underlying system. Considering
that some labeled data points are available, a semi-supervised algorithm
that can operate in an online fashion is desirable.

1.3 Methodology

This thesis explores the possibilities of incorporating the available side-
information in the learning process. One can start with a suitable core model
corresponding to the given task, and integrate the prior-knowledge of the task
into the model via adding a set of constraints or regularization term. The
general picture of the thesis is summarized in Fig. 1.1. The core model
considered in this thesis are Least Squares Support Vector Machines (LSSVM)
and Kernel Spectral Clustering (KSC). These are kernel based models and have
been shown to be successful in many applications. They are formulated in the
primal-dual setting and therefore one enjoys working with high-dimensional
data by solving the problem in the dual. It should be mentioned that
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among different ways to obtain a kernel based model such as following a
probabilistic Bayesian setting or by using function estimation in a reproducing
kernel Hilbert space, the primal-dual approach has the advantage that it is
usually straightforward to incorporate additional structure or knowledge into
the estimation problem. Thanks to the Nyström approximation method, one
can also deal with large scale data (the number of data is much larger than the
number of variables).

Core

Model

LSSVM

KSC

Side Info

Regularization

Constraints

Optimal

Model

Figure 1.1: General picture of this thesis.

In the subsequent Chapters, it will be shown how one can learn the solution
a dynamical system by adding a set of constraints to the LSSVM primal
optimization problem. In the context of semi-supervised learning where one
is interested to learn from a few labeled and a large amount of unlabeled
data points, KSC is used as a core model. The labels are incorporated to
the primal formulation of KSC by adding a regularization term. Adding this
term changes the dual formulation from an eigenvalue problem to a system of
linear equations but essential properties are maintained. Moreover, a different
mechanism based on a Kalman filter to further regularize the solution of a
developed semi-supervised learning algorithm is also discussed. This has some
applications for instance in video segmentation task.

1.4 Objectives

The primary objective of this thesis is to explore the possibilities of incorporat-
ing prior knowledge into the learning framework which can result in improving
the performance and achieving a richer model. In particular, the incorporation
of side information into kernel based approaches in a range of application
domains.
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• Kernel based framework for learning the solution of the
dynamical systems: From a kernel-based modeling point of view, one
can consider the given differential equations together with its initial or
boundary conditions as prior knowledge and seek the solution of the
differential equation by means of Least Squares Support Vector Machines
(LSSVMs) whose parameters are adjusted to minimize an appropriate
error function. The problem is formulated as an optimization problem
in the primal-dual setting. The approximate solution in the primal
is expressed in terms of the feature map and is forced to satisfy the
initial/boundary conditions using a constrained optimization problem.
The optimal representation of the solution is then obtained in the dual.
For the linear and nonlinear cases, these parameters are obtained by
solving a system of linear and nonlinear equations, respectively. The
method is well suited to solving mildly stiff, nonstiff, and singular ODEs
with initial and boundary conditions. The solution of IVPs and BVPs
in differential algebraic equations (DAES) with high index can also be
learned without requiring to use any index-reduction technique.

• Kernel based framework for parameter estimation of dynamical
systems: The parameter estimation is often formulated as a non-convex
optimization problem and moreover repeated numerical integration of a
given dynamical system is required. The objective here is to use LSSVM
as core model and design a kernel-based method to formulate a convex
optimization algorithm for parameter estimation of dynamical system in
continuous time. Furthermore the developed method should not need
repeated numerical integration. In addition we are interested to be able
to estimate both constant and time-varying parameters of the system.
In this thesis two types of differential equations i.e. ordinary and delay
differential equations (ODEs and DDEs) are considered to describe the
dynamics of the system.

• Semi-supervised learning based on KSC core model: Semi-
supervised learning (SSL) is a framework in Machine Learning which
aims at learning from both unlabeled and labeled data points. The aim
here is to develop a multi-class semi-supervised learning algorithm that
can address both semi-supervised classification and clustering. We aim
at using a completely unsupervised algorithm as a core model so that
the algorithm can learn from unlabeled data points. In addition, the
side-information (labeled data points) is incorporated to the core model
using a regularization term thus improving the model performance. The
algorithm will be able to use a few labeled data points and build a model
that can be used for both classification and clustering. The method uses
a low dimensional embedding to disclose the hidden micro clusters in the
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data. In addition, in order to make the proposed method scalable, two
approaches are developed and compared. Finally, the research performed
for solving the static semi-supervised algorithm lays the first stone for the
development of models for analyzing data streams in an online fashion.

• Online semi-supervised learning: The aim is to introduce an
online semi-supervised learning algorithm formulated as an optimization
problem in the primal and dual setting. We consider the case where
new data arrive sequentially but only a small fraction of it is labeled.
The available labeled data act as prototypes and help to improve the
performance of the algorithm to estimate the labels of the unlabeled data
points.

1.5 Overview of Chapters

This thesis is organized in seven chapters. An overview of the chapters is
depicted in Fig. 1.2.

Chapter 2: gives a general introduction to kernel functions, Mercer’s theorem,
and supervised and unsupervised learning using kernel-based methods. In
particular an overview of the Least Squares Support Vector Machines for
supervised task is provided. In addition the Kernel Spectral Clustering
(KSC), a spectral clustering algorithm formulated in the LSSVM optimization
framework, is reviewed.

Chapter 3: consists of three main sections. First of all the Least Squares
Support Vector machine, which will be used as core model, for regression
problems is reviewed. Then the formulation of a method with LSSVM core
model is introduced for learning the solution of the given differential equations.
In particular, the available initial/boundary conditions are integrated in the
learning framework by imposing a set of constraints on the model representing
the solution. One of the complications tackled in this chapter is the derivation
of the dual kernel based model for expressing the solution of the given
differential equations in the dual in terms of the kernel and its derivatives.
The presented approach is validated on initial and boundary value problems
(IVPs and BVPs) of ordinary differential equations (ODEs) and (DAEs).

Chapter 4: is devoted to parameter estimation of dynamical systems described
by ordinary and delay differential equations. A new convex LSSVM based
formulation for estimating the unknown parameters of the system within a
kernel based framework is presented. The approach consists of two steps. First
the trajectories of the differential equation are estimated using the available
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observational data. In the second step an optimization problem is formulated
for estimating the unknown parameters of the system. Moreover the estimation
obtained by the proposed approach is used as an initial guess for solving
the original non-convex formulation where the multiple shooting technique is
employed. Finally, the proposed method is validated on a number of examples
covering constant/time-varying parameter estimation of ordinary and delay
differential equations.

Chapter 5: introduces a general framework of non-parallel support vector
machines, which involves a regularization term, a scatter loss and a mis-
classification loss. For binary problems, the framework with proper losses
covers some existing non-parallel classifiers. The possibility of incorporating
different existing scatter and misclassification loss functions into the framework
is investigated. Moreover, a non-parallel semi-supervised algorithm is proposed
that can learn from few labeled data points and a large amount of unlabeled
data points.

Chapter 6: introduces a novel model called multi-class semi-supervised kernel
spectral clustering (MSS-KSC). The model has two modes of implementation:
semi-supervised classification and clustering. In this new formulation the
labeled data points are incorporated in the objective function of the primal
problem through adding a regularization term aiming at minimizing the
difference between the latent variables and the labels. Moreover the MSS-
KSC algorithm uses a low dimensional embedding to discover the hidden micro
clusters. This is highly desirable when the number of existing clusters is large
and only few labels from some of them are known a priori. There is also a
systematic model selection scheme which is presented as a convex combination
of cluster quality index and classification accuracy. The solution vectors are
obtained by solving a linear system of equations.

Chapter 7: presents a new algorithm to perform online semi-supervised
clustering in a non-stationary environment. The data arrives sequentially and
contains only a small number of labeled data points. The available labeled
data act as prototypes and help to improve the performance of the algorithm
to estimate the labels of the unlabeled data points. Given a few user-labeled
data points the initial model is learned and then the class membership of the
remaining data points in the current and subsequent time instants are estimated
and propagated in an on-line fashion. The update of the memberships is carried
out mainly using the out-of-sample extension property of the model. We show
how video segmentation can be cast into the online semi-supervised learning
framework. In addition we show how to integrates the Kalman filter algorithm
into the learning framework by providing an estimation of the labels for the
objects in motion in a video sequence.
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Chapter 8: Concludes the thesis and proposes future research directions.
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Figure 1.2: The structure of the thesis. Chapters 3, 4, 5, 6 and 7 constitute
the main contributions of this thesis.
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1.6 Contributions of the Thesis

The main contributions of this work are summarized in the following.

LSSVM based models and learning solutions of dynamical systems:

We propose a methodology based on Least Squares Support Vector machines
for simulation of dynamical systems. One starts with representing the solution
in the primal in terms of feature maps and then the optimal representation
of the solution is obtained in the dual. The solution in the dual is expressed
in terms of kernel functions and their derivatives. The initial and boundary
conditions are imposed on the primal representation using sets of constraints.
The approach is validated on dynamical systems described by ODEs and high
index DAEs.

• S. Mehrkanoon, T. Falck, J.A.K. Suykens, “Approximate Solutions to
Ordinary Differential Equations Using Least Squares Support Vector Ma-
chines”, IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 9, pp. 1356-1367, Sep. 2012.

• S. Mehrkanoon, J.A.K Suykens, “LSSVM approximate solution to linear
time varying descriptor systems”, Automatica, vol. 48, no. 10, pp. 2502-
2511, Oct. 2012.

• S. Mehrkanoon, J.A.K Suykens, “Learning Solutions to Partial Differen-
tial Equations using LSSVM”, Neurocomputing, vol 159, pp. 105-116,
July. 2015.

LSSVM based models for parameter estimation of dynamical sys-
tems:

We present a new algorithm to perform parameter estimation of a given
dynamical system. The approach avoids repeated numerical integration of
the systems and it uses the ability of the LSSVM for obtaining a closed
form solution. Estimation of both constant and time-varying parameters of
ordinary and delay differential equations (ODEs and DDEs) are addressed.
The approach consists of two steps. In the fist step the trajectory of the given
differential equation is approximated by means of LSSVM. The second step
includes solving an optimization problem which is constructed based on the
information obtained in the first step.

• S. Mehrkanoon, T. Falck, J.A.K. Suykens, “Parameter Estimation
for Time Varying Dynamical Systems using Least Squares Support
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Vector Machines”, in Proc. of the 16th IFAC Symposium on System
Identification (SYSID 2012), Brussels, Belgium, pp. 1300-1305, Jul.
2012.

• Siamak Mehrkanoon, Saied Mehrkanoon, J.A.K. Suykens, “Parameter
estimation of delay differential equations: an integration-free LSSVM ap-
proach”, Communication in Nonlinear Science and Numerical Simulation,
vol. 19, no. 4, pp. 830-841, Apr. 2014.

• S. Mehrkanoon, R. Quirynen, M. Diehl, J.A.K. Suykens, “LSSVM based
initialization approach for parameter estimation of dynamical systems”,
in Proc. of the International Conference on Mathematical Modelling in
Physical Sciences (IC-MSQUARE 2013), Prague, Czech Republic, Sep.
2013.

Nonparallel (semi-)supervised classifiers with different loss functions:

A general framework of non-parallel support vector machines with the
possibility of incorporating different combinations of scatter loss and a
misclassification loss is introduced. The proposed framework can potentially
cover some of the existing non-parallel classifiers. If a certain loss function
is used, the method can be viewed as a generalized version of LSSVM core
model that is able to produce non-parallel hyperplanes (in case of linear kernel).
Furthermore, the approach is extended for tacking problems where few labeled
data points and a large amount of unlabeled data points are available.

• S. Mehrkanoon, J.A.K. Suykens, “Non-parallel semi-supervised classifica-
tion based on kernel spectral clustering”, in Proc. of the International
Joint Conference on Neural Networks (IJCNN 2013), Dallas, U.S.A, pp.
2311-2318, Aug. 2013.

• S. Mehrkanoon, J.A.K. Suykens, “Non-parallel Classifiers with Different
Loss Functions”, Neurocomputing, vol, 143, pp. 294-301, 2014.

Semi-supervised classification and clustering:

A novel multi-class semi-supervised KSC based algorithm called MSS-KSC
is introduced to learn from both labeled and unlabeled data points. The
problem is formulated as a regularized kernel spectral clustering formulation
where the side-information is incorporated to the learning algorithm via a
regularization term. The model is obtained by solving a linear system in the
dual. Furthermore, the optimal embedding dimension is designed for semi-
supervised clustering. This plays a key role when one deals with a large
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number of clusters. The proposed method can handle both semi-supervised
classification and clustering.

• S. Mehrkanoon, C. Alzate, R. Mall, R. Langone, J.A.K. Suykens, “Multi-
class semi-supervised learning based upon kernel spectral clustering”,
IEEE Transactions on Neural Networks and Learning Systems, vol. 26,
no. 4, pp. 720-733, April 2015.

• S. Mehrkanoon, J.A.K. Suykens, “Large scale semi-supervised learning
using KSC based model”, in Proc. of the International Joint Conference
on Neural Networks (IJCNN 2014) (IJCNN 2014), Beijing, China, pp.
4152-4159, Jul. 2014.

Online semi-supervised learning for time evolving data:

A new incremental semi-supervised algorithm called I-MSS-KSC is proposed
to analyze data streams that contain few labeled an a lot of unlabeled data
points. The approach is the extension of the MSS-KSC towards on-line data
clustering, classification. The initially trained model is updated using the
out-of-sample extension property of the MSS-KSC model. Moreover for the
video segmentation task, the tracking capabilities of the Kalman filter is used
to provide the labels of objects in motion and thus regularizing the solution
obtained by the MSS-KSC algorithm.

• S. Mehrkanoon, M. Agudelo, J.A.K. Suykens, “Incremental multi-class
semi-supervised clustering regularized by Kalman filtering”, Internal
Report 14-154, ESAT-SISTA, KU Leuven (Leuven, Belgium), 2014,
submitted.

Other contributions:

In several occasions the technical expertises acquired in this thesis also
contributed to other problems:

• Z. Karevan, S. Mehrkanoon and J.A.K. Suykens, “Black-box modeling for
temperature prediction in weather forecasting”, Internal Report 14-154,
ESAT-SISTA, KU Leuven (Leuven, Belgium), 2015.

• R. Castro, S. Mehrkanoon, A. Marconato, J. Schoukens and J.A.K.
Suykens, “SVD truncation schemes for fixed-size kernel models”, in
Proc. of the International Joint Conference on Neural Networks (IJCNN),
Beijing, China, pp. 3922-3929, Jun. 2014.
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• R. Mall, S. Mehrkanoon, R. Langone, J.A.K. Suykens, “Optimal Reduced
Sets for Sparse Kernel Spectral Clustering”, in Proc. of the International
Joint Conference on Neural Networks (IJCNN), Beijing, China, pp. 2436-
2443, Jun. 2014. .

X. Huang, S. Mehrkanoon, J.A.K. Suykens, "Support Vector Machines
with Piecewise Linear Feature Mapping", Neurocomputing, vol. 117, pp.
118-127, Oct. 2013.

• R. Mall, S. Mehrkanoon, J.A.K. Suykens, “Identifying Intervals for
Hierarchical Clustering using the Gershgorin Circle Theorem”, Pattern
recognition letter, col 55, pp.1-7, 2015.

Here is also the word cloud of my research projects in the past years:

Figure 1.3





Chapter 2

Learning and Kernel Based
Models

This chapter reviews the main concepts in kernel-based learning methods
for supervised and unsupervised problems. In particular, the primal-dual
formulation of the Least Squares Support Vector Machines (LSSVM) for
supervised tasks such as classification and regression is discussed. Throughout
most of this thesis, the primal-dual formulation of LSSVM based methods
plays a central role in the construction of new predictive models used in
different domains. Next kernel spectral clustering (KSC), one of the successful
unsupervised methods, is reviewed. It enjoys the primal-dual optimization
formulation typical of LSSVM based models. The main advantages of kernel
spectral clustering over the classical spectral clustering is the existence of a
model selection scheme and the out-of-sample extension property to unseen
data. In Chapters 6 and 7, the KSC method will be used as core model for
the construction of the semi-supervised clustering/classification algorithms.

2.1 Kernel Methods

The work in this thesis is developed using the Least Squares Support Vector
Machines (LSSVM) [159] formulation as a core model. Support Vector
Machines (SVMs) [170] and Least Squares SVM follow the approach of a primal-
dual optimization formulation, where both techniques make use of a so-called
feature space where the inputs have been transformed by means of a nonlinear

15
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mapping. This is converted to the dual space by means of Mercer’s theorem and
the use of a positive definite kernel, without computing explicitly the mapping.

Other directions in kernel methods follow different approaches. For instance
in Reproducing Kernel Hilbert Spaces (RKHS) [51] the problem of function
estimation is treated as a variational problem and Gaussian Processes (GP)
[142] follow a probabilistic Bayesian setting. Although these different
approaches have links with each other, in general the methodologies are
different. In particular, the primal-dual formulation of LSSVM makes it easy to
add additional constraints, and therefore makes it straightforward to integrate
more prior knowledge into the models.

2.2 Least Squares Support Vector Machines

The Support Vector Machine (SVM) is a powerful methodology for solving
pattern recognition and function estimation problems. In this method one maps
the data into a high dimensional feature space and performs linear classification,
which corresponds to a non-linear decision boundary in the original input space.
The dual solution of SVM formulation is a quadratic programming problem.
On the other hand, LSSVMs for function estimation, classification, problems
in unsupervised learning and others has been investigated in [159]. In this
case, the problem formulation involves equality instead of inequality constraints.
This leads to a system of linear equations at the dual level, in the context of
regression and classification.

2.2.1 Regression Problem

Consider a given training set {xi, yi}n
i=1 with input data xi ∈ Rd and output

data yi ∈ R. The goal is to estimate a model of the form

ŷ(x) = wTϕ(x) + b.

The primal LSSVM model for regression can be written as follows [159]

minimize
w,b,e

1

2
wTw +

γ

2
eT e

subject to yi = wTϕ(xi) + b+ ei, i = 1, ..., n,

(2.1)
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where γ ∈ R+, b ∈ R, w ∈ Rh. ϕ(·) : Rd → Rh is the feature map and h is the
dimension of the feature space. The dual solution is then given by


 Ω + In/γ 1n

1T
n 0




[
α
b

]
=

[
y
0

]

where Ωij = K(xi, xj) = ϕ(xi)
Tϕ(xj) is the ij-th entry of the positive definite

kernel matrix. 1n = [1, . . . , 1]T ∈ Rn, α = [α1, . . . , αn]T , y = [y1, . . . , yn]T and
In is the identity matrix. The model in the dual form becomes:

ŷ(x) =

n∑

i=1

αiK(x, xi) + b.

It should be noted that if b = 0, for an explicitly known and finite dimensional
feature map ϕ the problem could be solved in the primal (ridge regression if
b=0) by eliminating e and then w would be the only unknown. But in the
LSSVM approach the feature map ϕ is not explicitly known in general and can
be infinite dimensional. Therefore the kernel trick is used and the problem is
solved in the dual.

In the subsequent chapters, the constrained optimization framework with the
LSSVM as a code model, will be used in the context of learning the solution of
dynamical system and unknown constant/time-varying parameter estimation
of parameter affine dynamical systems.

2.2.2 Classification Problem

Given a training data set {xi, yi}n
i=1, where xi ∈ Rd are the training points

and yi ∈ {−1, 1} are the class labels, the convex primal problem of the LSSVM
classifier can be formulated as [160, 159]:

min
w,ei,b

1

2
wTw +

γ

2

n∑

i=1

e2
i

subject to yi(w
Tϕ(xi) + b) = 1− ei, i = 1, . . . , n.

(2.2)

The model in the primal space is expressed in terms of the feature map i.e.
ŷ = wTϕ(x) + b. The ei are slack variables allowing deviations from the target
value 1. The regularization parameter γ controls the trade-off between the
regularization term and the minimization of the training error. The Lagrangian
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of (2.2) takes the following form:

L(w, ei, b, αi) =
1

2
wTw +

γ

2

n∑

i=1

e2
i −

n∑

i=1

αi(yi(w
Tϕ(xi) + b)− 1 + ei) (2.3)

where αi are the Lagrange multipliers. The KKT optimality conditions are:

∂L
∂w

= 0→ w =

n∑

i=1

αiyiϕ(xi),

∂L
∂ei

= 0→ αi = γei,

∂L
∂b

= 0→
n∑

i=1

αiyi = 0,

∂L
∂αi

= 0→ yi(w
Tϕ(xi) + b)− 1 + ei = 0.

Eliminating the primal variables ei and w leads to the following linear system
in the dual problem:

[
Ω̃ + In/γ y

yT 0

] [
α
b

]
=

[
1n

0

]
(2.4)

where y = [y1, . . . , yn]T , 1n = [1, . . . , 1]T , α = [α1, . . . , αn]T . The kernel matrix
is denoted by Ω̃ with entries Ω̃ij = yiyjϕ(xi)

Tϕ(xj) = yiyjK(xi, xj), where
K : Rd × Rd → R is the kernel function which maps the input data points into
the high dimensional feature space ϕ(·). The LSSVM classification model in
the dual becomes:

ŷ(x) = sign(
n∑

i=1

αiyiK(x, xi) + b). (2.5)

2.3 Kernel Spectral Clustering

Unsupervised learning techniques like principal component analysis (PCA) and
clustering aim at finding the underlying complex structure of a given unlabeled
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data points. In clustering one seeks to find partitions (clusters) that consist
of objects that are similar to each other and dissimilar to objects in other
clusters. Some of the well-known clustering algorithms are for instance k-means
and spectral clustering. In this section a more recent and advanced clustering
algorithm, kernel spectral clustering (KSC), which was originally proposed in
[4] and will be described.

Kernel Spectral Clustering (KSC) corresponds to a weighted kernel PCA
formulation and represents a spectral clustering formulation in the LSSVM
optimization framework with primal and dual representations. The solution
in the dual is obtained by solving an eigenvalue problem, related to spectral
clustering [4]. However, as opposed to classical spectral clustering, the KSC
method possesses a natural extension to out-of-sample data i.e. the possibility
to apply the trained clustering model to unseen data points. In addition it
can enjoy a good generalization performance due the existence of the model
selection scheme. The model can be trained using the training data points (a
subset of the full data) and then be used to predict the membership of the
unseen test data points in a learning framework.

Given training data D = {xi}n
i=1, xi ∈ Rd, the primal problem of kernel spectral

clustering is formulated as follows [4]:

min
w(ℓ),b(ℓ),e(ℓ)

1

2

Nc−1∑

ℓ=1

w(ℓ)T
w(ℓ) − 1

2n

Nc−1∑

ℓ=1

γℓe
(ℓ)T

V e(ℓ)

subject to e(ℓ) = Φw(ℓ) + b(ℓ)1n, ℓ = 1, . . . , Nc − 1

(2.6)

where Nc is the number of desired clusters, e(ℓ) = [e
(ℓ)
1 , . . . , e

(ℓ)
n ]T are the

projected variables (score variables) and ℓ = 1, . . . , Nc−1 indicates the number
of score variables required to encode the Nc clusters. γℓ ∈ R+ are the
regularization constants. Here

Φ = [ϕ(x1), . . . , ϕ(xn)]T ∈ Rn×h

where ϕ(·) : Rd → Rh is the feature map and h is the dimension of the feature
space which can be infinite dimensional. A vector of all ones with size n is
denoted by 1n. w(ℓ) is the model parameters vector in the primal. V =
diag(v1, ..., vn) with vi ∈ R+ is a user defined weighting matrix.

Applying the Karush-Kuhn-Tucker (KKT) optimality conditions one can show
that the solution in the dual can be obtained by solving an eigenvalue problem
of the following form:

V PvΩα(ℓ) = λα(ℓ), (2.7)
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where λ = n/γℓ, α
(ℓ) are the Lagrange multipliers and Pv is the weighted

centering matrix:

Pv = In −
1

1T
nV 1n

1n1T
nV,

where In is the n × n identity matrix and Ω is the kernel matrix with ij-th
entry Ωij = K(xi, xj) = ϕ(xi)

Tϕ(xj). The effect of Pv is to center the kernel
matrix Ω by removing the weighted mean from each column. As a result, the
eigenvectors are zero-mean. Given this and due to the fact that the eigenvectors
are piecewise constant, it is possible to use the eigenvectors corresponding to
the first Nc − 1 eigenvalues to partition the dataset into Nc clusters. In the
ideal case of Nc well separated clusters, for a properly chosen kernel parameter,
the matrix V PvΩ has Nc − 1 piecewise constant eigenvectors with eigenvalue
1.

The eigenvalue problem (2.7) is related to spectral clustering with random walk
Laplacian. In this case, the clustering problem can be interpreted as finding a
partition of the graph in such a way that the random walker remains most of
the time in the same cluster with few jumps to other clusters, minimizing the
probability of transitions between clusters. It is shown that if

V = D−1 = diag(
1

d1
, · · · , 1

dn
),

where di =
∑n

j=1 K(xi, xj) is the degree of the i-th data point, the dual problem
is related to the random walk algorithm for spectral clustering.

From the KKT optimality conditions one can show that the score variables e(ℓ)

can be written as follows:

e(ℓ) = Φw(ℓ) + b(ℓ)1n = ΦΦTα(ℓ) + b(ℓ)1n

= Ωα(ℓ) + b(ℓ)1n, ℓ = 1, . . . , Nc − 1.

The out-of-sample extensions to test points {xi}ntest
i=1 is done by an Error-

Correcting Output Coding (ECOC) decoding scheme. First the cluster
indicators are obtained by binarizing the score variables for test data points as
follows:

q
(ℓ)
test = sign(e

(ℓ)
test) = sign(Φtestw

(ℓ) + b(ℓ)1ntest
)

= sign(Ωtestα
(ℓ) + b(ℓ)1ntest

),

where Φtest = [ϕ(x1), . . . , ϕ(xntest
)]T and Ωtest = ΦtestΦ

T . The decoding
scheme consists of comparing the cluster indicators obtained in the test stage
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Algorithm 1: KSC algorithm [4]

Data: Training set D = {xi}
n
i=1, test set Dtest = {xtest

i }Ntest
i=1 , kernel parameters (if

any), number of clusters Nc.
Result: Clusters {A1, . . . , Ak}, codebook CB = {cq}Nc

q=1 with {cq} ∈ {−1, 1}Nc−1.

1 compute the training eigenvectors α(l), l = 1, . . . , Nc − 1, corresponding to the
Nc − 1 largest eigenvalues of problem (2.7)

2 Binarize the eigenvectors matrix A = [α(1), . . . , α(Nc−1)] and form the code-book

CB = {cq}k
q=1 using the Nc most occurrences encodings of sign(A).

3 ∀i, i = 1, . . . , n, assign xi to Aq∗ where q∗ = argmin
q

dH(sign(αi), cq), where dH(., .)

is the Hamming distance
4 Compute the cluster indicators for test data sign(e

(l)
m ), m = 1, . . . , Ntest, and let

sign(em) ∈ {−1, 1}Nc−1 be the encoding vector of xtest
m

5 ∀m, assign xtest
m to Aq∗ , where q∗ = argmin

q

dH(sign(em), cq).

with the codebook (which is obtained in the training stage) and selecting the
nearest codeword in terms of Hamming distance.

The KSC method is summarized in Algorithm. 1. KSC is provided with a
model selection scheme based on the Balanced Line Fit (BLF) criterion [4]. It
can be shown that in the ideal situation of well separated clusters, the data
projections (score variables ei) associated with the KSC formulation, form lines
one per each cluster. The shape of the data points in the projections space, is
exploited by the BLF criterion to select the optimal clustering parameters e.g.
the number of clusters (k) and the kernel bandwidth σ. The BLF criterion is
defined as follows [4]:

BLF(DVal, Nc) = ηlinefit(DVal, Nc) + (1− η)balance(DVal, Nc) (2.8)

where DVal represents the validation set andNc indicates the number of clusters.
The linefit index equals 0 when the score variables are distributed spherically
and equals 1 when the score variables are collinear, representing points in
the same cluster. The balance index equals 1 when the clusters have the
same number of elements and tends to 0 in extremely unbalanced cases. The
parameter η controls the importance given to the linefit with respect to the
balance index and takes values in the range [0, 1].

Later, In Chapter 6 and 7, the KSC model will serve as a core model in the
development of multi-class semi-supervised learning algorithm.





Chapter 3

Learning Solutions of
Dynamical Systems

In this chapter, kernel based approaches are formulated to learn the solution
of different types of differential equations including Ordinary Differential
Equations (ODEs), Differential Algebraic Equations (DAEs) and Partial
Differential Equations (PDEs). The optimal representation of the solution is
obtained in the primal-dual setting. The model is built by incorporating the
initial/boundary conditions as constraints of an optimization problem. The
approximate solution is presented in closed form by means of LSSVMs, whose
parameters are adjusted to minimize an appropriate error function. For the
linear and nonlinear cases, these parameters are obtained by solving a system
of linear and nonlinear equations respectively.

3.1 Related Work

Differential equations can be found in the mathematical formulation of
physical phenomena in a wide variety of applications especially in science
and engineering [46, 91]. This chapter focuses on three types of differential
equations such as ordinary/partial differential equations as well as differential
algebraic equations. In contrast to ordinary differential equations (ODEs),
which deal with functions of a single independent variable i.e. time and
their derivatives, partial differential equations (PDEs) are used to formulate
problems involving functions of several independent variables. In other

23
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words, ODEs model one-dimensional dynamical systems and PDEs model
multidimensional systems.

• ODEs: Depending upon the form of the boundary conditions to be
satisfied by the solution, problems involving ODEs can be divided into
two main categories, namely initial value problems (IVPs) and boundary
value problems (BVPs). Analytic solutions for these problems are not
generally available and hence numerical methods must be applied.

Many methods have been developed for solving initial value problems of
ODEs, such as Runge-Kutta, finite difference, predictor-corrector and
collocation methods [35, 93, 44, 143]. Generally speaking numerical
methods for approximating the solution of the boundary value problems
fall into two classes: the difference methods and shooting methods. In the
shooting method, one tries to reduce the problem to initial value problems
by providing a sufficiently good approximation of the derivative values at
the initial point.

• DAEs: Differential algebraic equations (DAEs) arise frequently in
numerous applications including mathematical modelling, circuit and
control theory [33], chemistry [62, 141], fluid dynamic [103] and computer-
aided design. DAEs have been known under a variety of names,
depending on the area of application for instance they are also called
descriptor, implicit or singular systems. The most general form of DAE
is given by

F (ẋ, x, t) = 0 (3.1)

where ∂F
∂ẋ is singular. The rank and structure of this Jacobian matrix

depends, in general, on the solution x(t). DAEs are characterized by
their index. In [34] the index of (3.1) is defined as the minimum number
of differentiations of the system which would be required to solve for ẋ
uniquely in terms of x and t. The index of DAEs is a measure of the degree
of singularity of the system and it is widely considered as an indication
of certain difficulties for numerical methods. We note that DAEs with
an index greater than 1 are often referred to as higher-index DAEs and
that the index of an ODE is zero. See [11, 36] for a detailed discussion of
the index of a DAE. The important special case of (3.1) is semi-explicit
DAE or an ODE with constraints i.e.

ẋ =f(x, y, t)

0 =g(x, y, t).
(3.2)

The index is 1 if ∂g
∂y is nonsingular. x and y are considered as differential

and algebraic variables respectively. Analytic solutions for these problems
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are not generally available and hence numerical methods must be applied.
Some numerical methods have been developed for solving DAEs using
backward differentiation formulas (BDF) [9, 34, 65, 11, 12] or implicit
Runge-Kutta (IRK) methods [34, 12, 10, 127]. These methods are
only applicable to low-index problems and often require the problem to
have special structure. Furthermore, these approaches approximate the
solutions at discrete points only (discrete solution) and some interpolation
technique is needed in order to get a continuous solution. Thereby,
recently attempts have been made to develop methods that produce a
closed form approximate solution. Awawdeh et al. [14] applied Homotopy
analysis method to systems of DAEs. The authors in [70] used Padé
approximation methods to estimate the solution of singular systems with
index-2.

In general, the higher the index, the greater numerical difficulty one
is going to encounter when solving differential algebraic equations
numerically and an alternative treatment is the use of index reduction
techniques which are based on repeated differentiation of the constraints
until a low-index problem (an index 1 DAE or ODE) is obtained.
There are several reasons to consider differential algebraic equations (3.2)
directly, rather than convert them to system of ODEs [34, 175]. Therefore
designing direct methods that do not require a reformulation (e.g. index
reduction) of DAEs will not only speed up the solution, also the system
structure (e.g. the modelling changes and parameter variations) can be
more readily explored.

It is known that the singular system can have instantaneous jumps
due to inconsistent initial conditions. Several approaches for consistent
initialization of DAEs have been studied in the literature and in general
they fall into two categories: rigorous initialization and the direct
initialization method (we refer the reader to [99] and references therein for
more details). Within the scope of this thesis we assume that consistent
initial conditions are available.

• PDEs: In most applications the analytic solutions of the underlying PDEs
are not available and therefore numerical methods must be applied. For
that reason, a number of numerical methods such as Finite Difference
methods (FDM) [92, 54, 82, 154, 77, 123], Finite Element methods (FEM)
[164, 172, 98], Finite Volume methods [80, 37, 55], Splines [1, 8], Multigrid
methods [76, 169, 71] and methods based on neural networks [48, 140, 109,
166, 89, 149] and genetic programming approaches [152, 167, 132] have
been developed.

The finite difference methods provide the solution at specific preassigned
mesh points only (discrete solution) and they need an additional



26 LEARNING SOLUTIONS OF DYNAMICAL SYSTEMS

interpolation procedure to yield the solution for the whole domain. The
finite-element method (FEM) is the most popular discretization method
in engineering applications. An important feature of the FEM is that it
requires a discretization of the domain via meshing, and therefore belongs
to the class of mesh-based methods.

Another class of methods that can generate a closed form solution and do not
require meshing are based on neural network models see [110, 96, 168, 166].
Lee and Kang [96] used neural networks models to solve first order differential
equations. They do not require a mesh topology and the domain of interest is
presented by scattered discrete points. The authors in [89] introduced a method
based on feedforward neural networks to solve ordinary and partial differential
equations. In that model, the approximate solution was chosen such that it,
by construction, satisfied the supplementary conditions. Therefore the model
function was expressed as a sum of two terms. The first term, which contains no
adjustable parameters, satisfied the initial/boundary conditions and the second
term involved a feedforward neural network to be trained.

Despite the fact that the classical neural networks have nice properties such as
universal approximation, they still suffer from having two persistent drawbacks.
The first problem is the existence of many local minima solutions. The second
problem is how to choose the number of hidden units.

Support Vector Machines (SVMs) are a powerful methodology for solving
pattern recognition and function estimation problems [145, 170]. In this
method one maps data into a high dimensional feature space and there solves a
linear regression problem. It leads to solving quadratic programming problems.
LSSVMs for function estimation, classification, problems in unsupervised
learning and others has been investigated in [160, 161, 53, 133]. In this case,
the problem formulation involves equality instead of inequality constraints. The
training for regression and classification problems is then done by solving a set
of linear equations.

We propose a kernel based method in the LSSVM framework for learning the
solution of a dynamical system. It should be noted that one can derive a
kernel based model in two ways: one is using a primal-dual setting and the
other one is by using function estimation in a reproducing kernel Hilbert space
and the corresponding representer theorem. The primal-dual approach has the
advantage that it is usually straightforward to incorporate additional structure
or primal knowledge into the estimation problem. For instance in the context of
learning the solution of PDEs, one may know in advance that the underlying
solution has to satisfy an additional constraint (like non-local conservation
condition [6]). Then one can incorporate it to the estimation problem by adding
a suitable set of constraints. Furthermore, the primal and dual formulation of
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Given a
differential

equation (DE)
subject to its

initial/boundary
conditions on
the domain Σ

Assume the
solution has
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wTφ(z) + d

Generate the
collocation

(training) points
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Figure 3.1: The general steps of the process from the representation of the
solution in the primal to dual.

the method allows to obtain the optimal representation of the solution. That
means in the primal one starts with a simple representation of the solution
and by incorporating the initial/boundary conditions together with the system
dynamics, one may obtain the optimal representation of the solution in the dual.
That is in contrast with most existing approaches that produce a closed form
solution. More precisely, unlike the approach described in [90] that the user has
to define a form of a trial solution, which in some cases is not straightforward,
in the proposed approach the optimal model is derived by incorporating the
initial/boundary conditions as constraints of an optimization problem. The
interaction between three main counterparts playing in this chapter is shown
in Fig. 3.2. The general stages (methodology) of the procedure are described
by the flow-chart 3.1.

3.2 Learning the Solution of ODEs

This section describes the problem statement. After that the operators that
will be used in the subsequent sections are defined.
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LSSVM
based model

Dynamical
Systems
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Figure 3.2: Interaction between three main counterparts

3.2.1 Problem statement and overview of existing methods

Consider the general m-th order linear ordinary differential equation with time
varying coefficients of the form

L[y] ≡
m∑

ℓ=0

fℓ(t)y
(ℓ)(t) = r(t), t ∈ [a, c] (3.3)

where L represents an m-th order linear differential operator, [a, c] ⊂ R is the
problem domain and r(t) is the input signal. fℓ(t) are known functions and
y(ℓ)(t) denotes the ℓ-th derivative of y with respect to t. The m− 1 necessary
initial or boundary conditions for solving the above differential equations are:
IVP:

ICµ[y(t)] = pµ, µ = 0, ...,m− 1;

BVP:
BCµ[y(t)] = qµ, µ = 0, ...,m− 1,

where ICµ are the initial conditions (all constraints are applied at the same value
of the independent variable i.e. t = a) and BCµ are the boundary conditions
(the constraints are applied at multiple values of the independent variable t,
typically at the ends of the interval [a, c] in which the solution is sought). pµ

and qµ are given scalars.

A differential equation (3.3) is said to be stiff when its exact solution consists
of a steady state term that does not grow significantly with time, together with
a transient term that decays exponentially to zero. Problems involving rapidly
decaying transient solutions occur naturally in a wide variety of applications,
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including the study of damped mass spring systems and the analysis of control
systems (see [93] for more details).

The approaches given in [89], define a trial solution to be a sum of two
terms i.e. y(t) = H(t) + F (t,N(t, P )). The first term H(t), which has
to be defined by the user and in some cases is not straightforward, satisfies
the initial/boundary conditions and the second term F (t,N(t, P )) is a single-
output feed forward neural network with input t and parameters P . In
contrast with the approaches given in [89], we build the model by incorporating
the initial/boundary conditions as constraints of an optimization problem.
Therefore the task of defining a trial solution which can potentially be a difficult
problem is avoided and instead the optimal representation of the solution is
learned using an optimization framework.

3.2.2 Definitions of some operators

Let us assume an explicit model ŷ(t) = wTϕ(t) + b as an approximation for
the solution of the differential equation. Since there are no data available in
order to learn from the differential equation, we have to substitute our model
into the given differential equation. Therefore we need to define the derivative
of the kernel function. Making use of Mercer’s Theorem [170], derivatives of
the feature map can be written in terms of derivatives of the kernel function
[94]. Let us define the following differential operator which will be used in
subsequent sections

∇m
n ≡

∂n+m

∂un∂vm
.

If ϕ(u)Tϕ(v) = K(u, v), then one can show that

[ϕ(n)(u)]Tϕ(m)(v) =∇m
n [ϕ(u)Tϕ(v)] = ∇m

n [K(u, v)] =
∂n+mK(u, v)

∂un∂vm
. (3.4)

Using formula (3.4), it is possible to express all derivatives of the feature map
in terms of the kernel function itself (provided that the kernel function is
sufficiently differentiable). For instance the following relations hold,

∇0
1[K(u, v)] =

∂(ϕ(u)Tϕ(v))

∂u
= ϕ(1)(u)Tϕ(v),

∇1
0[K(u, v)] =

∂(ϕ(u)Tϕ(v))

∂v
= ϕ(u)Tϕ(1)(v),

∇0
2[K(u, v)] =

∂2(ϕ(u)Tϕ(v))

∂u2
= ϕ(2)(u)Tϕ(v).
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One starts with a general approximate solution to (3.3) of the form of
ŷ(t) = wTϕ(t) + b, where w and b are unknowns of the model that have to
be determined. To obtain the optimal value of these parameters, collocation
methods can be used which assume a discretization of the interval [a, c] into a
set of collocation points Υ =

{
a = t1 < t2 < · · · < tN = c

}
. Therefore the w

and b are to be found by solving the following optimization problem:

For the IVP Case:

minimize
ŷ

1

2

N∑

i=1

[
(L[ŷ]− r)(ti)

]2

subject to ICµ[ŷ(t)] = pµ, µ = 0, ...,m− 1.

(3.5)

For the BVP case:

minimize
ŷ

1

2

N∑

i=1

[
(L[ŷ]− r)(ti)

]2

subject to BCµ[ŷ(t)] = qµ, µ = 0, ...,m− 1,

(3.6)

where N is the number of collocation points (which is equal to the number
of training points) used to undertake the learning process. In what follows
we formulate the optimization problem in the LSSVM framework for solving
linear ordinary differential equations. For notational convenience let us list the
following notations which are used in the following sections,

[∇m
n K](t, s) = [∇m

n K(u, v)]


u=t,v=s

,

Ωm
n (i, j) = ∇m

n [K(u, v)]


u=ti,v=tj

=
∂n+mK(u, v)

∂un∂vm


u=ti,v=tj

,

Ω0
0(i, j) = ∇0

0[K(u, v)]


u=ti,v=tj

= K(ti, tj).

Here Ωm
n (i, j) denotes the (i, j)-th entry of matrix Ωm

n . The notation M(k :
l,m : n) is used for selecting a submatrix of matrix M consisting of rows k
to l and columns m to n. M(i, :) denotes the i-th row of matrix M . M(:, j)
denotes the j-th column of matrix M .
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3.2.3 Formulation of the method for first order IVP

As a first example consider the following first order initial value problem,

y′(t)− f1(t)y(t) = r(t), y(a) = p1, a ≤ t ≤ c. (3.7)

In the LSSVM framework the approximate solution can be obtained by solving
the following optimization problem,

minimize
w,b,e

1

2
wTw +

γ

2
eT e

subject to wTϕ′(ti) = f1(ti)

[
wTϕ(ti) + b

]
+

r(ti) + ei, i = 2, ..., N,

wTϕ(t1) + b = p1.

(3.8)

This problem is obtained by combining the LSSVM cost function with
constraints constructed by imposing the approximate solution ŷ(t) = wTϕ(t) +
b, given by the LSSVM model, to satisfy the given differential equation with
corresponding initial condition at collocation points {ti}N

i=1. Problem (3.8) is
a quadratic minimization under linear equality constraints, which enables an
efficient solution.

Lemma 3.2.1. Given a positive definite kernel function K : R × R → R with
K(t, s) = ϕ(t)Tϕ(s) and a regularization constant γ ∈ R+, the solution to (3.8)
is obtained by solving the following dual problem [113]:




K + IN−1/γ hp1
−f1

hT
p1

1 1

−fT
1 1 0






α
β
b


 =




r
p1

0


 (3.9)

with

α = [α2, . . . , αN ]T , f1 = [f1(t2), . . . , f1(tN )]T ∈ RN−1,

r = [r(t2), . . . , r(tN )]T ∈ RN−1,

K = Ω̃1
1 −D1Ω̃0

1 − Ω̃1
0D1 +D1Ω̃0

0D1,

hp1
= [Ω1

0(1, 2 : N)]T −D1[Ω0
0(1, 2 : N)]T .
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D1 is a diagonal matrix with the elements of f1 on the main diagonal. Ω̃m
n =

[Ωm
n ]2:N,2:N for n,m = 0, 1. Also note that K ∈ R(N−1)×(N−1) and hp1

∈ RN−1.

Proof. The Lagrangian of the constrained optimization problem (3.8) becomes

L(w, b, ei, αi, β) =

1

2
wTw +

γ

2
eT e−

N∑

i=2

αi

[
wT

(
ϕ′(ti)− f1(ti)ϕ(ti)

)

− f1(ti)b− ri − ei

]
− β

(
wTϕ(t1) + b− p1

)

where
{
αi

}N

i=2
and β are Lagrange multipliers and ri = r(ti) for i = 2, ..., N .

Then the Karush-Kuhn-Tucker (KKT) optimality conditions are as follows,

∂L
∂w

= 0→ w =

N∑

i=2

αi

(
ϕ′(ti)− f1(ti)ϕ(ti)

)
+ βϕ(t1),

∂L
∂b

= 0→
N∑

i=2

αif1(ti)− β = 0,

∂L
∂ei

= 0→ ei = −αi

γ
, i = 2, ..., N,

∂L
∂αi

= 0→ wT

(
ϕ′(ti)− f1(ti)ϕ(ti)

)
− f1(ti)b− ei = ri, i = 2, ..., N,

∂L
∂β

= 0→ wTϕ(t1) + b = p1.



LEARNING THE SOLUTION OF ODES 33

After elimination of the primal variables w and {ei}N
i=2 and making use of

Mercer’s Theorem, the solution is given in the dual by





ri =

N∑

j=2

αj

[
Ω1

1(j, i)− f1(ti)

(
Ω0

1(j, i)− f1(tj)Ω0
0(j, i)

)

−f1(tj)Ω1
0(j, i)

]
+ β

(
Ω1

0(1, i)− f1(ti)Ω
0
0(1, i)

)

+ αi

γ − f1(ti)b, i = 2, ..., N,

p1 =
N∑

j=2

αj

(
Ω0

1(j, 1)− f1(tj)Ω0
0(j, 1)

)
+ β Ω0

0(1, 1) + b,

0 =

N∑

j=2

αjf1(tj)− β

and writing these equations in matrix form gives the linear system in (5.11).

The model in the dual form becomes

ŷ(t) =

N∑

i=2

αi

(
[∇0

1K](ti, t)− f1(ti)[∇0
0K](ti, t)

)
+ β [∇0

0K](t1, t) + b

where K is the kernel function.

3.2.4 Formulation of the method for second order IVP and
BVP

IVP case:
Let us consider a second order IVP of the form,

y′′(t) = f1(t)y′(t) + f2(t)y(t) + r(t), t ∈ [a, c]

y(a) = p1, y′(a) = p2.
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The approximate solution, ŷ(t) = wTϕ(t) + b, is then obtained by solving the
following optimization problem,

minimize
w,b,e

1

2
wTw +

γ

2
eT e (3.10)

subject to wTϕ′′(ti) = f1(ti)w
Tϕ′(ti)+

f2(ti)[w
Tϕ(ti) + b] + r(ti) + ei, i = 2, ..., N,

wTϕ(t1) + b = p1,

wTϕ′(t1) = p2.

Lemma 3.2.2. Given a positive definite kernel function K : R × R → R with
K(t, s) = ϕ(t)Tϕ(s) and a regularization constant γ ∈ R+, the solution to
(3.10) is obtained by solving the following dual problem [113]:




K + IN−1/γ hp1
hp2

−f2

hT
p1

1 0 1

hT
p2

0 Ω1
1(1, 1) 0

−fT
2 1 0 0







α

β1

β2

b




=




r

p1

p2

0




(3.11)

where

α = [α2, . . . , αN ]T , f1 = [f1(t2), . . . , f1(tN )]T ∈ RN−1,

f2 = [f2(t2), . . . , f2(tN )]T ∈ RN−1,

r = [r(t2), . . . , r(tN )]T ∈ RN−1,

K = Ω̃2
2 −D1Ω̃1

2 −D2Ω̃0
2 − Ω̃2

1D1 − Ω̃2
0D2

+D1Ω̃1
1D1 +D1Ω̃1

0D2 +D2Ω̃0
1D1 +D2Ω̃0

0D2,

hp1
= [Ω2

0(1, 2 : N)]T −D1[Ω1
0(1, 2 : N)]T −D2[Ω0

0(1, 2 : N)]T ,

hp2
= [Ω2

1(1, 2 : N)]T −D1[Ω1
1(1, 2 : N)]T −D2[Ω0

1(1, 2 : N)]T .
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D1 and D2 are diagonal matrices with the elements of f1 and f2 on the main
diagonal respectively. Note that K ∈ R(N−1)×(N−1) and hp1

, hp2
∈ RN−1. Ω̃m

n =
Ωm

n (2 : N, 2 : N) for m,n = 0, 1, 2.

Proof. By deriving the KKT optimality conditions and eliminating the primal
variables w and e.

The LSSVM model for the solution and its derivative in the dual form become:

ŷ(t) =

N∑

i=2

αi

(
[∇0

2K](ti, t)− f1(ti)[∇0
1K](ti, t)− f2(ti)[∇0

0K](ti, t)

)

+ β1[∇0
0K](t1, t) + β2[∇0

1K](t1, t) + b,

dŷ(t)

dt
=

N∑

i=2

αi

(
[∇1

2K](ti, t)− f1(ti)[∇1
1K](ti, t)− f2(ti)[∇1

0K](ti, t)

)

+ β1[∇1
0K](t1, t) + β2[∇1

1K](t1, t).

BVP case:
Consider the second order boundary value problem of ODEs of the form

y′′(t) = f1(t)y′(t) + f2(t)y(t) + r(t), t ∈ [a, c]

y(a) = p1, y(c) = q1.

Then the parameters of the closed form approximation of the solution can be
obtained by solving the following optimization problem

minimize
w,b,e

1

2
wTw +

γ

2
eT e

subject to wTϕ′′(ti) = f1(ti)w
Tϕ′(ti)+

f2(ti)[w
Tϕ(ti) + b] + r(ti) + ei, i = 2, ..., N − 1,

wTϕ(t1) + b = p1,

wTϕ(tN ) + b = q1.

(3.12)

The same procedure can be applied to derive the Lagrangian and afterwards
the KKT optimality conditions. Then one can show that the solution to the
problem (3.12) is obtained by solving the following linear system
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K + IN−2/γ hp1
hq1

−f2

hT
p1

1 Ω0
0(N, 1) 1

hT
q1

Ω0
0(1, N) 1 1

−fT
2 1 1 0







α

β1

β2

b




=




r

p1

q1

0




where

α = [α2, . . . , αN−1]T , f1 = [f1(t2), . . . , f1(tN−1)]T ∈ RN−2,

f2 = [f2(t2), . . . , f2(tN−1)]T ∈ RN−2,

r = [r(t2), . . . , r(tN−1)]T ∈ RN−2,

K = Ω̃2
2 −D1Ω̃1

2 −D2Ω̃0
2 − Ω̃2

1D1 − Ω̃2
0D2

+D1Ω̃1
1D1 +D1Ω̃1

0D2 +D2Ω̃0
1D1 +D2Ω̃0

0D2,

hp1
= [Ω2

0(1, 2 : N − 1)]T −D1[Ω1
0(1, 2 : N − 1)]T −D2[Ω0

0(1, 2 : N − 1)]T ,

hq1
= [Ω2

0(N, 2 : N − 1)]T −D1[Ω1
0(N, 2 : N − 1)]T −D2[Ω0

0(N, 2 : N − 1)]T .

D1 and D2 are diagonal matrices with the elements of f1 and f2 on the main
diagonal respectively. Note that K ∈ R(N−2)×(N−2) and hp1

, hq1
∈ RN−2.

Ω̃m
n = Ωm

n (2 : N − 1, 2 : N − 1) for m,n = 0, 1, 2.

The LSSVM model for the solution and its derivative are expressed in dual
form as

ŷ(t) =

N−1∑

i=2

αi

(
[∇0

2K](ti, t)− f1(ti)[∇0
1K](ti, t)− f2(ti)[∇0

0K](ti, t)

)

+ β1 [∇0
0K](t1, t) + β2[∇0

0K](tN , t) + b,

dŷ(t)

dt
=

N−1∑

i=2

αi

(
[∇1

2K](ti, t)− f1(ti)[∇1
1K](ti, t)− f2(ti)[∇1

0K](ti, t)

)

+ β1[∇1
0K](t1, t) + β2[∇1

0K](tN , t).
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3.2.5 Formulation of the method for the nonlinear ODE case

In this section we formulate an optimization problem based on least squares
support vector machines for solving nonlinear first order ordinary differential
equations of the following form

y′ = f(t, y), y(a) = p1, a ≤ t ≤ c. (3.13)

One starts with assuming the approximate solution to be of the form ŷ(t) =
wTϕ(t) + b. Additional unknowns yi are introduced to keep the constraints
linear in w. This yields the following nonlinear optimization problem [113]:

minimize
w,b,e,ξ,yi

1

2
wTw +

γ

2
eT e+

γ

2
ξT ξ

subject to wTϕ′(ti) = f(ti, yi) + ei, i = 2, ..., N,

wTϕ(t1) + b = p1,

yi = wTϕ(ti) + b+ ξi, i = 2, ..., N.

(3.14)

The Lagrangian of the constrained optimization problem (3.14) becomes

L(w, b, ei, ξi, yi, αi, ηi, β) =

1

2
wTw +

γ

2
eT e+

γ

2
ξT ξ −

N∑

i=2

αi

(
wTϕ′(ti)−

f(ti, yi)− ei

)
− β

(
wTϕ(t1) + b− p1

)
−

N∑

i=2

ηi

(
yi − wTϕ(ti)− b− ξi

)
.

After obtaining KKT optimality conditions, and elimination of the primal
variables w, {ei}N

i=2 and {ξi}N
i=2 and making use of Mercer’s Theorem, the

solution is obtained in the dual by solving the following nonlinear system of
equations
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Ω̂1
1 Ω̃1

0 hT
1 0N−1 0(N−1)×(N−1)

(Ω̃1
0)T Ω̂0

0 hT
0 1N−1 −IN−1

h1 h0 Ω0
0(1, 1) 1 0T

N−1

0T
N−1 1T

N−1 1 0 0T
N−1

D(y) IN−1 0N−1 0N−1 0(N−1)×(N−1)







α

η

β

b

y




=




f(y)

0N−1

p1

0

0N−1




(3.15)
where

Ω̂1
1 = Ω̃1

1 + IN−1/γ, Ω̂0
0 = Ω̃0

0 + IN−1/γ,

D(y) = diag(f ′(y))

f(y) = [f(t2, y2), . . . , f(tN , yN )]T ,

f ′(y) = [
∂f(t, y)

∂y


t=t2,y=y2

, . . . ,
∂f(t, y)

∂y


t=tN ,y=yN

],

α = [α2, . . . , αN ]T , η = [η2, . . . , ηN ]T ,

y = [y2, . . . , yN ]T , Ω̃0
0 = Ω0

0(2 : N, 2 : N),

Ω̃1
1 = Ω1

1(2 : N, 2 : N), Ω̃1
0 = Ω1

0(2 : N, 2 : N),

h0 =
[
Ω0

0(1, 2), . . . ,Ω0
0(1, N)

]
,

h1 =
[
Ω1

0(1, 2), . . . ,Ω1
0(1, N)

]
, 0N−1 = [0, . . . , 0]T ∈ RN−1.

The nonlinear system (3.15), which consists of 3N − 1 equations with 3N − 1
unknowns (α, η, β, b, y), is solved by Newton’s method. The model in the dual
form becomes

ŷ(t) =

N∑

i=2

αi[∇0
1K](ti, t) +

N∑

i=2

ηi[∇0
0K](ti, t) + β [∇0

0K](t1, t) + b,

where ∇0
0K(t, s) = K(t, s) is the kernel function.

3.2.6 Solution on a long time interval

Consider now the situation where a given differential equation has to be solved
for a large time interval [a, c]. It should be noted that in order to improve the
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accuracy (or maintain the same order of accuracy on the whole domain) we
then need to increase the number of collocation points. This approach however
leads to a larger system of equations.

In order to implement the proposed method for solving problems involving large
time intervals efficiently, the time windowing technique is applied [165]. At first

the interval Ξ = [a, c] is decomposed into S sub-intervals as Ξ =
⋃S

k=1 Ξk. We
assume that the approximate solution on the k-th sub-interval has the form
ŷk(t) = wT

k ϕ(t) + bk. Then the problem is solved in each sub-interval Ξk using
the described method in previous sections. The computed approximate solution
at the final point in the sub-interval Ξk is used as starting point (initial value)
for the consecutive sub-interval Ξk+1.

Utilizing this approach will result in solving S smaller systems of equations,
which is computationally more efficient than solving a very large system of
equations obtained by considering the whole domain Ξ (with the same total
number of collocation points). The procedure is outlined in Algorithm 2.

Algorithm 2: Approximating the solution on a large interval

1: Decompose the domain Ξ = [a, c] into S sub-intervals.
2: set Γ = (c− a)/S, tin := a, yin := p1, tf := tin + Γ.
3: for k = 1 to S do
4: Obtain a LSSVM model for the k-th sub-interval [tin, tf ] i.e.

ŷk(t) = wT
k ϕk(t) + bk.

5: set tin := tf , yin := ŷ(tf ), tf := tin + Γ
6: end for
7: For a given test point t:

• Check to which sub-interval it belongs,

• Use the corresponding model to compute the approximate solution
at the given point.

3.3 Learning the Solution of DAEs

This section presents the formulation of the method for initial and boundary
value problems in differential algebraic equations.
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3.3.1 Formulation of the method for IVPs in DAEs

Consider linear time varying initial value problem in DAEs of the following
from

Z(t)Ẋ(t) = A(t)X(t) +B(t)u(t), t ∈ [tin, tf ],

X(tin) = X0,
(3.16)

where Z(t) = [zij(t)], A(t) = [aij(t)] ∈ Rm×m and B(t) ∈ Rm×r. The state
vector X = [x1, ..., xm]T ∈ Rm, the input vector u ∈ Rr and Ẋ(t) = dX

dt .
Z(t) may be singular on [tin, tf ] with variable rank and the DAE may have an
index that is larger than one. When Z is nonsingular, equation (3.16) can be
converted to an equivalent explicit ODE system. In addition we assume that
Z(t), A(t) and B(t)u(t) are sufficiently smooth and the DAE (3.16) is solvable.
(see Definition 2.1 in [50] and references therein for a more detailed discussion
about solvability).

Let us assume that a general approximate solution to i-th equation of (3.16) is
of the form of x̂i(t) = wT

i ϕ(t)+bi, where wi and bi are parameters of the model
that have to be determined. To obtain the optimal value of these parameters,
collocation methods can be used which assume a discretization of the interval
[tin, tf ] into a set of collocation points Υ =

{
tin = t1 < t2 < ... < tN = tf

}
.

Therefore the adjustable parameters wi and bi, for i = 1, ...,m, are to be found
by solving the following optimization problem:

minimize
X̂

1

2

N∑

i=1

[
(ZX̂ ′ −AX̂ −Bu)(ti)

]2

subject to X̂(tin) = X0,

(3.17)

where N is the number of collocation points (which is equal to the number
of training points) used to undertake the learning process. For simplicity let
us assume that X0 = [p1; ...; pm] and g(t) = B(t)u(t). In what follows we
formulate the optimization problem in the LSSVM framework for solving linear
time varying differential algebraic equations.

Remark 3.3.1. In order to keep the notations as simple as possible, we
utilized the same feature map ϕ(t) for all the states, i.e. x̂i(t) = wT

i ϕ(t) + bi.
Nevertheless it is possible to use different mapping functions, as long as the
corresponding kernel functions satisfy the Mercer’s Theorem [170], and then
one has more hyper-parameters to tune.
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3.3.1.1 Singular ODE System

Let us consider DAEs (3.16). The approximate solution, x̂i(t) = wT
i ϕ(t) + bi,

for i = 1, ...,m is then obtained by solving the following optimization problem

minimize
wi,bi,ei

ℓ

1

2

m∑

ℓ=1

wT
ℓ wℓ +

γ

2

m∑

ℓ=1

eT
ℓ eℓ

subject to




z11(ti) · · · z1m(ti)
...

. . .
...

zm1(ti) · · · zmm(ti)






wT

1 ϕ
′(ti)
...

wT
mϕ

′(ti)


 =




a11(ti) · · · a1m(ti)
...

. . .
...

am1(ti) · · · amm(ti)







wT
1 ϕ(ti) + b1

...
wT

mϕ(ti) + bm


 +




g1(ti)
...

gm(ti)


 +




e1(ti)
...

em(ti)


 , for i = 2, ..., N,




wT
1 ϕ(t1) + b1

...
wT

mϕ(t1) + bm


 =




p1

...
pm


 . (3.18)

Lemma 3.3.1. Given a positive definite kernel function K : R × R → R with
K(t, s) = ϕ(t)Tϕ(s) and a regularization constant γ ∈ R+, the solution to
(3.18) is given by the following dual problem [119]:




K S −FA

ST Ω0
0(1, 1)× Im×m Im×m

−FT
A Im×m 0m×m







α

β

b


 =




G

P

0


 (3.19)



42 LEARNING SOLUTIONS OF DYNAMICAL SYSTEMS

with

α =




α1

...

αm


 = [α1

2; ...;α1
N ; · · · ;αm

2 ; ...;αm
N ] ∈ Rm(N−1),

β = [β1; · · · ;βm], b = [b1; ...; bm], P = [p1; ...; pm],

G = [g1(t2); · · · ; g1(tN ); · · · ; gm(t2); · · · ; gm(tN )] ∈ Rm(N−1),

FA =




FA11
. . . FA1m

...
...

FAm1
. . . FAmm


 ∈ Rm(N−1)×m,

FAkl
= [akl(t2); · · · ; akl(tN )] ∈ RN−1, for k, l = 1, ...,m

FZkl
= [zkl(t2); · · · ; zkl(tN )] ∈ RN−1, for k, l = 1, ...,m

K =




K11 . . . K1m

...
...

Km1 . . . Kmm


 ∈ Rm(N−1)×m(N−1),

Kii = DZi
Ω̄1

1DZi

T −DAi
Ω̄0

1DZi

T −DZi
Ω̄1

0DAi

T
+

DAi
Ω̄0

0DAi

T
+ IN−1/γ, i = 1, ...,m,

Kij = DZi
Ω̄1

1DZj

T −DAi
Ω̄0

1DZj

T −DZi
Ω̄1

0DAj

T
+

DAi
Ω̄0

0DAj

T
, i, j = 1, ...,m and i 6= j,

S =




S11 . . . S1m

...
...

Sm1 . . . Smm


 ∈ Rm(N−1)×m,

Sij = DZij
Ω1

0(1, :)T −DAij
Ω0

0(1, :)T , i, j = 1, ...,m,

DZi
= [DZi1

, ...,DZim
],DAi

= [DAi1
, ...,DAim

],

Ω̄k
l =




Ω̃l
k

. . .

Ω̃l
k


 ∈ Rm(N−1)×m(N−1), k, l = 0, 1.
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DAij
and DZij

are diagonal matrices with the elements of FAij
and FZij

on the

main diagonal respectively. Ωl
k(1, :) = [Ωl

k(1, 2); ...; Ωl
k(1, N)]T and Ω̃l

k = Ωl
k(2 :

N, 2 : N) for k, l = 0, 1. Also note that K = KT .

Proof. Consider the Lagrangian of problem (3.18):

L(wℓ, bℓ, e
i
ℓ, α

ℓ
i , βℓ) =

1

2

m∑

ℓ=1

wT
ℓ wℓ +

γ

2

m∑

ℓ=1

eT
ℓ eℓ −

m∑

ℓ=1

[
N∑

i=2

αℓ
i

[
wT

ℓ

(
zℓℓ(ti)ϕ

′(ti)−

aℓℓ(ti)ϕ(ti)

)
−

m∑

k=1
k 6=ℓ

wT
k

(
zℓk(ti)ϕ

′(ti)− aℓk(ti)ϕ(ti)

)
−

m∑

k=1

aℓk(ti)bk − ei
ℓ − gi

ℓ

]]
−

m∑

ℓ=1

βℓ

(
wT

ℓ ϕ(t1) + bℓ − pℓ

)

where
{
αℓ

i

}N

i=2
, for ℓ = 1, ...,m and {βℓ}m

ℓ=1 are Lagrange multipliers. gi
ℓ =

gℓ(ti), e
i
ℓ = eℓ(ti) for i = 2, ..., N and ℓ = 1, ...,m. Then the Karush-Kuhn-

Tucker (KKT) optimality conditions are as follows,

∂L

∂wℓ
= 0→ wℓ =

m∑

v=1

N∑

i=2

αv
i

(
zvℓ(ti)ϕ

′(ti)− avℓ(ti)ϕ(ti)

)
+

βℓϕ(t1), ℓ = 1, ...,m,

∂L

∂bℓ
= 0→

m∑

k=1

N∑

i=2

αk
i akℓ(ti)− βℓ = 0, ℓ = 1, ...,m,

∂L

∂ei
ℓ

= 0→ ei
ℓ = −α

ℓ
i

γ
, i = 2, ..., N, ℓ = 1, ...,m,

∂L

∂αℓ
i

= 0→
m∑

k=1

wT
k

(
zℓk(ti)ϕ

′(ti)− aℓk(ti)ϕ(ti)

)

−
m∑

k=1

aℓk(ti)bk − ei
ℓ = gi

ℓ, i = 2, ..., N, ℓ = 1, ...,m

∂L

∂βℓ
= 0→ wT

ℓ ϕ(t1) + bℓ = pℓ, ℓ = 1, ...,m.



44 LEARNING SOLUTIONS OF DYNAMICAL SYSTEMS

Eliminating {wℓ}m
ℓ=1 and

{
ei

ℓ

}N

i=2
for ℓ = 1, ...,m from the corresponding KKT

optimality conditions yields the following set of equations





gi
ℓ =

m∑

v=1

[
N∑

j=2

αv
j

[ m∑

k=1

zℓk(ti)Ω
1
1(j, i)zvk(tj)−

m∑

k=1

aℓk(ti)Ω
0
1(j, i)zvk(tj)−

m∑

k=1

zℓk(ti)Ω
1
0(j, i)avk(tj)+

m∑

k=1

aℓk(ti)Ω
0
0(j, i)avk(tj)

]]
+

m∑

v=1

βv

(
zℓv(ti)Ω

1
0(1, i)− aℓv(ti)Ω

0
0(1, i)

)

+
αℓ

i

γ −
m∑

k=1

aℓk(ti)bk, i = 2, ..., N, and ℓ = 1, ...,m,

pℓ =
m∑

v=1

[
N∑

j=2

αv
j

(
zvℓ(tj)Ω0

1(j, 1)− avℓ(tj)Ω0
0(j, 1)

)]

+βℓ Ω0
0(1, 1) + bℓ, ℓ = 1, ...,m,

0 =

m∑

v=1

N∑

j=2

αv
j avℓ(tj)− βℓ, ℓ = 1, ...,m.

Finally writing these equations in matrix form will result in the linear system
(3.19).

The model in the dual form becomes

x̂ℓ(t) =
m∑

v=1

N∑

i=2

αv
i

(
zvℓ(ti)[∇0

1K](ti, t)− avℓ(ti)[∇0
0K](ti, t)

)
+

βℓ [∇0
0K](t1, t) + bℓ, ℓ = 1, ...,m,

where K is the kernel function.

3.3.1.2 Explicit ODE System

Let us consider the system of IVPs (3.16) with Z as identity matrix as a special
case. This results in an ODE system.
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Corollary 3.3.1. Given a positive definite kernel function K : R × R → R

with K(t, s) = ϕ(t)Tϕ(s) and a regularization constant γ ∈ R+, the solution to
(3.18) with the matrix Z = I, is then given by the following dual problem [119]:




K S −FA

ST Ω0
0(1, 1)× Im×m Im×m

−FT
A Im×m 0m×m







α

β

b


 =




G

P

0


 (3.20)

where α, β, b, R, P and FA are defined as in Eq. (3.19). Also with

FAkl
= [akl(t2); · · · ; akl(tN )] ∈ RN−1, for k, l = 1, ...,m

K =




K11 . . . K1m

...
...

Km1 . . . Kmm


 ∈ Rm(N−1)×m(N−1),

Kii = Ω̃1
1 −DiiΩ̃

0
1 − Ω̃1

0Dii + Tii + IN−1/γ, i = 1, ...,m,

Kij = −Ω̃1
0Dji −DijΩ̃0

1 + Tij , i, j = 1, ...,m and i 6= j,

S =




S11 . . . S1m

...
...

Sm1 . . . Smm


 ∈ Rm(N−1)×m,

Sii = Ω1
0(1, :)T −DiiΩ

0
0(1, :)T , i = 1, ...,m,

Sij = −DijΩ0
0(1, :)T , i, j = 1, ...,m and i 6= j,

Tij = D̄iΩ̄D̄j
T ∈ R(N−1)×(N−1) i, j = 1, ...,m,

D̄i = [Di1, ...,Dim], D̄j = [Dj1, ...,Djm],

Ω̄ =




Ω̃0
0

. . .

Ω̃0
0


 ∈ Rm(N−1)×m(N−1)

Dij is a diagonal matrix with the elements of Fij on the main diagonal. Ωm
n (1, :

) = [Ωm
n (1, 2); ...; Ωm

n (1, N)]T and Ω̃m
n = Ωm

n (2 : N, 2 : N) for n,m = 0, 1. Also
note that K = KT .
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The model in the dual form becomes

x̂ℓ(t) =

N∑

i=2

αℓ
i

(
[∇0

1K](ti, t)− aℓℓ(ti)[∇0
0K](ti, t)

)
−

m∑

v=1
v 6=ℓ

N∑

i=2

αv
i

(
avℓ(ti)[∇0

0K](ti, t)

)

+ βℓ [∇0
0K](t1, t) + bℓ, ℓ = 1, ...,m,

where K is the kernel function.

3.3.2 Formulation of the method for BVPs in DAEs

Consider linear time varying boundary value problem in DAEs of the following
from

Z(t)Ẋ(t) = A(t)X(t) + g(t), t ∈ [tin, tf ],

FX(tin) +HX(tf ) = X0,
(3.21)

where matrices Z(t), A(t) and the state vector X(t) are defined as in Eq. (3.16).
F = [fij ] and H = [hij ] ∈ Rm×m. The input is g(t) and Ẋ(t) = dX

dt . Z(t) may
be singular on [tin, tf ] with variable rank and the DAE may have an index that
is larger than one. As before we assume that Z(t), A(t) and g(t) are sufficiently
smooth and the DAE (3.21) is solvable. When Z is nonsingular, equation (3.21)
can be converted to equivalent explicit ODE system.

The approximate solution, x̂i(t) = wT
i ϕ(t)+bi, for i = 1, ...,m is then obtained

by solving the following optimization problem,
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minimize
wi,bi,ei

ℓ

1

2

m∑

ℓ=1

wT
ℓ wℓ +

γ

2

m∑

ℓ=1

eT
ℓ eℓ +

ζ

2

m∑

ℓ=1

ξ2
ℓ

subject to




z11(ti) · · · z1m(ti)
...

. . .
...

zm1(ti) · · · zmm(ti)






wT

1 ϕ
′(ti)
...

wT
mϕ

′(ti)


 =




a11(ti) · · · a1m(ti)
...

. . .
...

am1(ti) · · · amm(ti)







wT
1 ϕ(ti) + b1

...
wT

mϕ(ti) + bm


 +




g1(ti)
...

gm(ti)


 +




e1(ti)
...

em(ti)


 , for i = 2, ..., N − 1,




f11 · · · f1m

...
. . .

...
fm1 · · · fmm







wT
1 ϕ(t1) + b1

...
wT

mϕ(t1) + bm


 +




h11 · · · h1m

...
. . .

...
hm1 · · · hmm







wT
1 ϕ(tN ) + b1

...
wT

mϕ(tN ) + bm


 =




p1

...
pm


 +




ξ1

...
ξm


 .

(3.22)

Lemma 3.3.2. Given a positive definite kernel function K : R × R → R with
K(t, s) = ϕ(t)Tϕ(s) and a regularization constant γ, ξ ∈ R+, the solution to
(3.22) is given by the following dual problem [119]:




K U −FA

UT ∆ Π

−FT
A ΠT 0m×m







α

β

b


 =




G

P

0


 (3.23)
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with

α =




α1

...

αm


 = [α1

2; ...;α1
N−1; · · · ;αm

2 ; ...;αm
N−1] ∈ Rm(N−2),

β = [β1; · · · ;βm], b = [b1; ...; bm], P = [p1; ...; pm],

G = [g1(t2); · · · ; g1(tN−1); · · · ; gm(t2); · · · ; gm(tN−1)] ∈ Rm(N−2),

FA =




FA11
. . . FA1m

...
...

FAm1
. . . FAmm


 ∈ Rm(N−2)×m,

FAkl
= [akl(t2); · · · ; akl(tN−1)] ∈ RN−2, for k, l = 1, ...,m,

FZkl
= [zkl(t2); · · · ; zkl(tN−1)] ∈ RN−2, for k, l = 1, ...,m,

Π = F +H,

∆ =

(
FFT

)
Ω0

0(1, 1) +

(
FHT +HFT

)
Ω0

0(1, N) +

(
HHT

)
Ω0

0(N,N)

+ Im/ζ,

K =




K11 . . . K1m

...
...

Km1 . . . Kmm


 ∈ Rm(N−2)×m(N−2),

Kii = DZi
Ω̄1

1DZi

T −DAi
Ω̄0

1DZi

T −DZi
Ω̄1

0DAi

T
+

DAi
Ω̄0

0DAi

T
+ IN−1/γ, i = 1, ...,m,

Kij = DZi
Ω̄1

1DZj

T −DAi
Ω̄0

1DZj

T −DZi
Ω̄1

0DAj

T
+

DAi
Ω̄0

0DAj

T
, i, j = 1, ...,m and i 6= j,

U =




U11 . . . U1m

...
...

Um1 . . . Umm


 ∈ Rm(N−2)×m,
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Uij =

( m∑

k=1

DZik
fjk

)
Ω1

0(1, :)T +

( m∑

k=1

DZik
hjk

)
Ω1

0(N, :)T

−
( m∑

k=1

DAik
fjk

)
Ω0

0(1, :)T −
( m∑

k=1

DAik
hjk

)
Ω0

0(N, :)T , i, j = 1, ...,m,

DZi
= [DZi1

, ...,DZim
],DAi

= [DAi1
, ...,DAim

],

Ω̄k
l =




Ω̃l
k

. . .

Ω̃l
k


 ∈ Rm(N−2)×m(N−2), k, l = 0, 1.

DAij
and DZij

are diagonal matrices with the elements of FAij
and FZij

on the
main diagonal respectively. Ωl

k(1, :) = [Ωl
k(1, 2); ...; Ωl

k(1, N − 1)]T , Ωl
k(N, :) =

[Ωl
k(N, 2); ...; Ωl

k(N,N − 1)]T and Ω̃l
k = Ωl

k(2 : N − 1, 2 : N − 1) for k, l = 0, 1.
Also note that K = KT .

Proof. By deriving the KKT optimality conditions and eliminating the primal
variables w and e.

The model in the dual form becomes

x̂ℓ(t) =

m∑

v=1

N−1∑

i=2

αv
i

(
zvℓ(ti)[∇0

1K](ti, t)− avℓ(ti)[∇0
0K](ti, t)

)
+

m∑

v=1

βv

(
[∇0

0K](t1, t)fvℓ + [∇0
0K](tN , t)hvℓ

)
+ bℓ, ℓ = 1, ...,m,

where K is the kernel function.

Remark 3.3.2. A singular system with a discontinuous input will exhibit
a jump. The LSSVM approximation with Gaussian kernel (which provides
a smooth approximation) shows a spurious oscillation near the discontinuity.
This oscillation behavior is a common phenomenon known as the Gibbs
phenomenon that appears when the underlying function being approximated has
jump discontinuities. Some methods have been suggested in the literature to
reduce the effect of Gibbs phenomenon (see [81]). Another approach is to use a
continuous approximation of the non smooth input signal as the new input for
the system [139].

Remark 3.3.3. Concerning practical application of the proposed method for
finding the approximate solution to the given DAEs on a very long time interval,
the approach described in Section 3.2.6 can be utilized here as well.
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Remark 3.3.4. In general, but not necessarily, one starts with equidistant
mesh points. The residual on the validation set is then monitored and for the
subintervals which the error is not sufficiently small one may refine the mesh
in order to achieve adequate accuracy. The residual at a given point ti can be
computed as

e(ti) = Z(ti)Ẋ(ti)−A(ti)X(ti)− g(ti). (3.24)

3.4 Learning the Solution of PDEs

First some of the operators that are going to be used in the subsequent
subsections are defined. Basically what we need is the generalization of the
operators defined in subsection 3.2.2 for d-dimensional (d > 1) input space.
Without loss of generality let us assume that d = 2 i.e. the training points
zi ∈ R2. Suppose that z1 = (x1, t1)T and z2 = (x2, t2)T are two arbitrary
points in R2 (x, t-coordinates). Then let us define the following differential
operator which will be used in subsequent sections

∇s(n), p(m) ≡ ∂n+m

∂sn∂pm
. (3.25)

If ϕ(z1)Tϕ(z2) = K(z1, z2), then one can show that

[
ϕx(n)(z1)

]T

ϕx(m)(z2) = ∇
x

(n)
1 , x

(m)
2

[
K(z1, z2)

]
=
∂ n+mK(z1, z2)

∂x n
1 ∂x

m
2

,

[
ϕx(n)(z1)

]T

ϕt(m)(z2) = ∇
x

(n)
1 , t

(m)
2

[
K(z1, z2)

]
=
∂ n+mK(z1, z2)

∂x n
1 ∂t

m
2

,

[
ϕt(n)(z1)

]T

ϕt(m)(z2) = ∇
t

(n)
1 , t

(m)
2

[
K(z1, z2)

]
=
∂ n+mK(z1, z2)

∂t n
1 ∂t

m
2

,

[
ϕt(n)(z1)

]T

ϕx(m)(z2) = ∇
t

(n)
1 , x

(m)
2

[
K(z1, z2)

]
=
∂ n+mK(z1, z2)

∂t n
1 ∂x

m
2

.

(3.26)

Here ϕx(n) and ϕt(n) are the n-th derivative of the feature map ϕ with respect
to variable x and t respectively. Note that if either m or n is zero, we do
not take the derivative of the term w.r.t to the corresponding variable. More
precisely suppose m = 0 then we use the following notations:
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[
ϕx(n)(z1)

]T

ϕx(0)(z2) =∇
x

(n)
1 , x

(0)
2

[
K(z1, z2)

]
= ∇

x
(n)
1 ,0

[
K(z1, z2)

]
=
∂ nK(z1, z2)

∂x n
1

.

For instance if K is chosen to be the RBF kernel

K(z1, z2) = exp(−‖z1 − z2‖2

σ2
)

then the following relations hold

[
ϕ(z1)

]T

ϕx(z2) = ∇0, x2

[
K(z1, z2)

]
=

2(x1 − x2)

σ2
K(z1, z2),

[
ϕ(z1)

]T

ϕt(z2) = ∇0, t2

[
K(z1, z2)

]
=

2(t1 − t2)

σ2
K(z1, z2).

3.5 Formulation of the Method

The general form of a linear second-order PDE with two independent variables
x and t is

a
∂2u

∂x2
+ b

∂2u

∂x∂t
+ c

∂2u

∂t2
+ d

∂u

∂x
+ e

∂u

∂t
+ l1u = l2. (3.27)

The first three terms containing the second derivatives are called the principal
part of the PDE. The coefficients of the principal part can be used to classify
the PDE into elliptic, parabolic and hyperbolic. In the case that the coefficients
a, b and c are variable (i.e. functions of x or y, or both), then the categorization
of the equation could vary throughout the solution region. Consider the one
space dimensional linear second order equation with variable coefficients of the
following form

Lu(z) = f(z), z ∈ Σ ∈ R2 (3.28)

subject to the boundary conditions of the form

Bu(z) = g(z), z ∈ ∂Σ

where u(z) = u(x, t), t and x are time and space variables respectively and z =
(x, t)T . Σ is a bounded domain, which can be either rectangular or irregular,
and ∂Σ represents its boundary. B and L are differential operators. In this
study we consider the case where L is defined as follows

L ≡ ∂2u

∂t2
+ a(x, t)

∂u

∂t
+ b(x, t)u− c(x, t)∂

2u

∂x2
. (3.29)
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Remark 3.5.1. It should be noted that the presented approach can be applied
for the general linear second order PDE (3.27) but for the sake of notational
simplicity, the method is given for the differential operator L in (3.29).

Let us assume that a general approximate solution to (3.28) is of the form of
û(z) = wTϕ(z) + d, where w and d are parameters of the model that have to
be determined. To obtain the optimal value of these parameters, collocation
methods can be used which assume a discretization of the domain Σ into a set
of collocation points defined as follows

Z =

{
zk

∣∣ zk = (xk, tk), k = 1, . . . ,M

}
,

where M is a user defined number. Let us decompose Z into two disjoint

non-empty sets ZD and ZB, i.e. Z = ZD ∪ XB, where ZD = {zi
D
}|ZD|

i=1 and

ZB = {zi
B
}|ZB|

i=1 . Here |ZD| and |ZB| are the cardinality of sets ZD and ZB

respectively. ZD denotes the set of collocation points located inside the domain
and ZB represents the collocation points situated on the boundary. Therefore
the adjustable parameters w and d are to be found by solving the following
optimization problem:

minimize
û

1

2

|ZD|∑

i=1

[
(L[û]− f)(z i

D)

]2

subject to B[û(z j
B

)] = g(z j
B

), j = 1, . . . , |ZB|.

(3.30)

Here |ZD|+|ZB| is equal to the number of training points used in the learning
process (see Fig. 3.3).

In what follows we formulate the optimization problem in the LSSVM
framework for solving the linear second order time varying partial differential
equation given in (3.28), (3.29). Suppose that zi ∈ S and zj ∈ T are two
arbitrary points and S, T ⊆ R2. Now for notational convenience let us list the
following notations which are used in the following sections:

[
Ω s(n), p(m)

]S,T

i,j

=

[
∇ s(n), p(m)K

]
(zi, zj),

[
Ω

]S,T

i,j

=

[
∇s(0), p(0)K

]
(zi, zj) =

[
∇0,0K

]
(zi, zj) = K(zi, zj),
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0
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Figure 3.3: ZD and ZB are the sets of grid points which are located inside
and on the boundary of the domain respectively. (a) Grid points used in the
learning process for the rectangular domain, (b) Grid points used in the learning
process for the circular domain, (c) Grid points used in the learning process for
the irregular domain.

where

[
Ω s(n), p(m)

]S,T

i,j

denotes the (i, j)-th entry of matrix

[
Ω s(n), p(m)

]S,T

. In

the case that S = T , we denote the matrix by

[
Ω s(n), p(m)

]S

. Here s and z can

take values for any t1, t2, x1 and x2 combinations see (3.4).

3.5.1 PDEs on rectangular domains

Consider the PDE (3.28), with the operator L in (3.29), defined on a rectangular
domain subject to the initial conditions of the form

u(x, 0) = h0(x),
∂u(x, 0)

∂t
= h1(x), 0 ≤ x ≤ 1 (3.31)
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and boundary conditions at x = 0 and x = 1 of the form

u(0, t) = g0(t), u(1, t) = g1(x), 0 ≤ t ≤ T. (3.32)

Therefore now the set ZB, defined previously, can be written as ZB = ZC ∪
ZB1

∪ ZB2
, (see Fig 1), where

ZC =

{
(x, 0)

∣∣ ∀x ∈ [0, 1]

}
,

ZB1
=

{
(0, t)

∣∣ ∀t ∈ [0, T ]

}
,

ZB2
=

{
(1, t)

∣∣ ∀t ∈ [0, T ]

}
.

Furthermore let us assume that N = |zD|, M1 = |ZC|, M2 = |ZB1
| and

M3 = |ZB2
|.

In the LSSVM framework the approximate solution, û(z) = wTϕ(z) + d, can
be obtained by solving the following optimization problem:

minimize
w,d,e

1

2
wTw +

γ

2
eT e

subject to wT

[
ϕtt(z

i
D) + a(z i

D)ϕt(z
i
D) + b(z i

D)ϕ(z i
D)−

c(z i
D)ϕxx(z i

D)

]
+ b(z i

D)d = f(z i
D) + ei, i = 1, . . . , |ZD|,

wTϕ(z i
C) + d = h0(xi), i = 1, . . . , |ZC|,

wTϕt(z
i
C) = h1(xi), i = 1, . . . , |ZC|,

wTϕ(z i
B1

) + d = g0(ti), i = 1, . . . , |ZB1
|,

wTϕ(z i
B2

) + d = g1(ti), i = 1, . . . , |ZB2
|,

(3.33)
where

ϕt =
∂ϕ

∂t
, ϕtt =

∂2ϕ

∂t2
, ϕxx =

∂2ϕ

∂x2
, ϕx =

∂ϕ

∂x
.

Problem (3.33) is obtained by combining the LSSVM cost function with
constraints constructed by imposing the approximate solution û(z) = wTϕ(z)+
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d, given by the LSSVM model, to satisfy the given differential equation as well
as the initial and boundary conditions at the collocation points. We note
here that problem (3.33) is a quadratic minimization under linear equality
constraints, which enables an efficient solution.

Lemma 3.5.1. Given a positive definite kernel function K : R2×R2 → R with
K(z1, z2) = ϕ(z1)Tϕ(z2) and a regularization constant γ ∈ R+, the solution to
(3.33) is given by the following dual problem [121]:




K + γ−1IN S b

ST ∆ P

bT PT 0







α

β

d


 =




f

v

0


 . (3.34)

The elements of (3.34) are given by:

α = [α1, . . . , αN ]T , β = [β1, β2, β3, β4]T , β1 = [β1
1 , . . . , β

1
M1

],

β2 = [β2
1 , . . . , β

2
M1

], β3 = [β3
1 , . . . , β

3
M2

], β4 = [β4
1 , . . . , β

4
M3

],

v = vec[H0,H1, G0, G1] ∈ R2M1+M2+M3 , H0 = [h0(z1
C), . . . , h0(zM1

C
)]T ∈ RM1 ,

H1 = [h1(z1
C), . . . , h1(zM1

C
)]T ∈ RM1 , G0 = [g0(z1

B1
), . . . , g0(zM2

B1
)]T ∈ RM2 ,

G1 = [g1(z1
B2

), . . . , g1(zM3

B2
)]T ∈ RM3 , ∆ =




∆11 ∆12 ∆13 ∆14

∆T
12 ∆22 ∆23 ∆24

∆T
13 ∆T

23 ∆33 ∆34

∆T
14 ∆T

24 ∆T
34 ∆44


 ,

∆11 =
[
Ω

]XC

,∆12 =
[
Ωt1,0

]ZC

,∆13 =
[
Ω

]ZB1
,ZC

, ∆14 =
[
Ω

]ZB2
,ZC

∆21 =
[
Ω0,t2

]ZB2
,ZC

,∆22 =
[
Ωt1,t2

]ZC

,∆23 =
[
Ω0,t2

]ZB1
,ZC

,

∆33 =
[
Ω

]ZB1

, ∆34 =
[
Ω

]ZB2
,ZB1

,∆44 =
[
Ω

]ZB2

,

S = [SC, ŜC, SB1
, SB2

], P = [1M1
, 0M1

, 1M2
, 1M2

],

SC =
[
Ω

0,t
(2)
2

]ZC,ZD

+Da

[
Ω0,t2

]ZC,ZD

+Db

[
Ω

]ZC,ZD

−Dc

[
Ω

0,x
(2)
2

]ZC,ZD
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ŜC =
[
Ω

t1,t
(2)
2

]ZC,ZD

+Da

[
Ωt1,t2

]ZC,ZD

+Db

[
Ωt1,0

]ZC,ZD

−Dc

[
Ω

t1,x
(2)
2

]ZC,ZD

,

SB1
=

[
Ω

0,t
(2)
2

]ZB1
,ZD

+Da

[
Ω0,t2

]ZB1
,ZD

+

Db

[
Ω

]ZB1
,ZD

−Dc

[
Ω

0,x
(2)
2

]ZB1
,ZD

,

SB2
=

[
Ω

0,t
(2)
2

]ZB2
,ZD

+Da

[
Ω0,t2

]ZB2
,ZD

+

Db

[
Ω

]ZB2
,ZD

−Dc

[
Ω

0,x
(2)
2

]ZB2
,ZD

,

K =
[
Ω

t
(2)
1 ,t

(2)
2

]ZD

+Da

[
Ωt1,t2

]ZD

Da +Db

[
Ω

]ZD

Db+

Dc

[
Ω

x
(2)
1 ,x

(2)
2

]ZD

Dc +

(
Da

[
Ω

t
(2)
1 ,t2

]ZD

+
[
Ω

t1,t
(2)
2

]ZD

Da

)

+

(
Db

[
Ω

t
(2)
1 ,0

]ZD

+
[
Ω

0,t
(2)
2

]ZD

Db

)
−

(
Dc

[
Ω

t
(2)
1 ,x

(2)
2

]ZD

+
[
Ω

x
(2)
1 ,t

(2)
2

]ZD

Dc

)
+

(
Db

[
Ωt1,0

]ZD

Da +Da

[
Ω0,t2

]ZD

Db

)

−
(
Dc

[
Ω

t1,x
(2)
2

]ZD

Da +Da

[
Ω

x
(2)
1 ,t2

]ZD

Dc

)
−

(
Dc

[
Ω

0,x
(2)
2

]ZD

Db +Db

[
Ω

x
(2)
1 ,0

]ZD

Dc

)
∈ RN×N ,

Da = diag
(
a(z1

D), . . . , a(zN
D)

)
,

Db = diag
(
b(z1

D), . . . , b(zN
D)

)
, f = [f(z1

D), . . . , f(zN
D)]T

Dc = diag
(
c(z1

D), . . . , c(zN
D)

)
, b = [b(z1

D), . . . , b(zN
D)]T ,

where vec(·) denotes the vectorization of a matrix. Also note that K = KT .



FORMULATION OF THE METHOD 57

The dual model representation of the solution is as follows:

û(z) =d+

|ZD|∑

i=1

αi

([
∇

t
(2)
1 ,0

K
]
(z i

D, z) + a(z i
D)

[
∇t1,0 K

]
(z i

D, z)+

b(z i
D)

[
∇0,0 K

]
(z i

D, z)− c(z i
D)

[
∇

x
(2)
1 ,0

K
]
(z i

D, z)

)
+

|ZC|∑

i=1

β 1
i

[
∇0,0 K

]
(z i

C, z) +

|ZC|∑

i=1

β 2
i

[
∇t1,0 K

]
(z i

C, z)+

|ZB1
|∑

i=1

β 3
i

[
∇0,0 K

]
(z i

B1
, z) +

|ZB2
|∑

i=1

β 4
i

[
∇0,0 K

]
(z i

B2
, z).

3.5.2 PDEs on irregular domains

Consider the PDE (3.28), with operator L in (3.29), defined on a irregular
domain subject to a Dirichlet boundary condition, i.e.

u(z) = g(z) for all z ∈ ∂Σ.

The approximate solution, û(z) = wTϕ(z)+d, can then be obtained by solving
the following optimization problem,

minimize
w,d,e

1

2
wTw +

γ

2
eT e

subject to wT

[
ϕtt(z

i
D) + a(z i

D)ϕt(z
i
D) + b(z i

D)ϕ(z i
D)−

c(z i
D)ϕxx(z i

D)

]
+ b(z i

D)d =

f(z i
D) + ei, i = 1, . . . , |ZD|,

wTϕ(z i
B) + d = g(ti), i = 1, . . . , |ZB|.

(3.35)

Here ZD and ZB are defined as previously.

Lemma 3.5.2. Given a positive definite kernel function K : R2×R2 → R with
K(z1, z2) = ϕ(z1)Tϕ(z2) and a regularization constant γ ∈ R+, the solution to
(3.35) is given by the following dual problem [121]:
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K + γ−1IN SB b

ST
B

∆B 1M

bT 1T
M 0







α

β

d


 =




f

g

0


 (3.36)

with

N = |ZD|, M = |ZB|, β = [β1, . . . , βM ]T ∈ RM ,

g = [g(z1
B), . . . , g(zM

B )]T ∈ RM ,∆B =
[
Ω

]ZB

∈ RM×M ,

SB =
[
Ω

0,t
(2)
2

]ZB,ZD

+Da

[
Ω0,t2

]ZB,ZD

+

Db

[
Ω

]ZB,ZD

−Dc

[
Ω

0,x
(2)
2

]ZB,ZD

where K, b, f,Da,Db, α and Dc are defined as previously.

The dual model representation of the solution is as follows:

û(z) =

|ZD|∑

i=1

αi

([
∇

t
(2)
1 ,0

K
]
(z i

D, z) + a(z i
D)

[
∇t1,0 K

]
(z i

D, z) + b(z i
D)

[
∇0,0 K

]
(z i

D, z)

− c(z i
D)

[
∇

x
(2)
1 ,0

K
]
(z i

D, z)

)
+

|ZB|∑

i=1

β i

[
∇0,0 K

]
(z i

B, z) + d.

Proof. It follows from constructing the Lagrangian of the constrained opti-
mization (3.35) as in Lemma 2.1, then obtaining the Karush-Kuhn-Tucker
optimality condition and eliminating the primal variables w and e.

The LSSVM model for the solution derivative, with respect to space (x) and
time (t), in the dual form become:
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∂û(z)

∂x
=

|ZD|∑

i=1

αi

([
∇

t
(2)
1 ,x2

K
]
(z i

D, z) + a(z i
D)

[
∇t1,x2

K
]
(z i

D, z)+

b(z i
D)

[
∇0,x2

K
]
(z i

D, z)− c(z i
D)

[
∇

x
(2)
1 ,x2

K
]
(z i

D, z)

)
+

|ZB|∑

i=1

β i

[
∇0,x2

K
]
(z i

B, z),

∂û(z)

∂t
=

|ZD|∑

i=1

αi

([
∇

t
(2)
1 ,t2

K
]
(z i

D, z) + a(z i
D)

[
∇t1,t2

K
]
(z i

D, z) + b(z i
D)

[
∇0,t2

K
]
(z i

D, z)

− c(z i
D)

[
∇

x
(2)
1 ,t2

K
]
(z i

D, z)

)
+

|ZB|∑

i=1

β i

[
∇0,t2

K
]
(z i

B, z),

where K is the kernel function.

Remark 3.5.2. Although in section 3.5.2, the formulation of the method is
presented for a Dirichlet boundary condition, it can be adapted, by adopting
suitable constraints, for the Neumann or Robin (a linear combination of
the Dirichlet and Neumann) type boundary conditions. Furthermore, the
formulation can also be applied for a rectangular domain by incorporating
suitable set of constraints satisfying the initial/boundary conditions.

3.5.3 Formulation of the method for nonlinear PDE

Inspired by the approach described in 3.2.5 for nonlinear ODEs, we formulate
an optimization problem based on least squares support vector machines for
solving nonlinear partial differential equations. For the sake of notational
simplicity let us assume the the nonlinear PDE has the following form:

∂2u

∂t2
+
∂2u

∂x2
+ f(u) = g(z), z ∈ Σ ∈ R2 (3.37)

subject to the boundary conditions of the form

u(z) = h(z), z ∈ ∂Σ (3.38)

where f is a nonlinear function. The approximate solution û(z) = wTϕ(z) +
d for the given nonlinear PDE can be obtained by solving the following
optimization problem [121]:
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minimize
w,d,e,ξ,u

1

2
wTw +

γ

2
(eT e+ ξT ξ)

subject to wT

[
ϕtt(z

i
D) + ϕxx(z i

D)

]
+ f(u(z i

D))

= g(z i
D) + ei, i = 1, . . . , |ZD|,

wTϕ(z i
D) + d = u(z i

D) + ξi, i = 1, . . . , |ZD|,

wTϕ(z i
B) + d = h(z i

B), i = 1, . . . , |ZB|.

(3.39)

Note that the second set of additional constraints is introduced to keep
the optimization problem linear in w. As before, we assume that N =
|ZD|, M = |ZB|. After deriving the Lagrangian, taking the KKT conditions
and eliminating the primal variables w, e, ξ one obtains the following nonlinear
system of equations:





Kα+ S1η
1 + S2η

2 − f(u) = 0

ST
1 α+ ∆11η

1 + ∆12η
2 + 1Nd− INu = 0

ST
2 α+ ∆T

12η
1 + ∆22η

2 + 1Md = 0

1T
Nη

1 + 1T
Mη2 = 0

diag(fu)α− η1 = 0

(3.40)

where η1, η2 and α are Lagrange multipliers. and u = [u(z 1
D

), . . . , u(z N
D

)]T .
fu = [ d

duf(u(z 1
D

)), . . . , d
duf(u(z N

D
))] and diag(fu) is a diagonal matrix with

elements of fu on the diagonal.

K =
[
Ω

t
(2)
1 ,t

(2)
2

]ZD

+
[
Ω

x
(2)
1 ,x

(2)
2

]ZD

+

[
Ω

t
(2)
1 ,x

(2)
2

]ZD

+
[
Ω

x
(2)
1 ,t

(2)
2

]ZD

+ γ−1IN ∈ RN×N

S1 =
[
Ω

0,t
(2)
2

]ZD

+
[
Ω

0,x
(2)
2

]ZD

S2 =
[
Ω

0,t
(2)
2

]ZB,ZD

+
[
Ω

0,x
(2)
2

]ZB,ZD

∆11 =
[
Ω

]ZD

+ γ−1IN , ∆12 =
[
Ω

]ZB,ZD

, ∆22 =
[
Ω

]ZB

.
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The nonlinear system (3.40) is solved for (α, η1, η2, d, u) using Newton’s method.
The Jacobian of (3.40) can be explicitly represented as follows:

J =




K S1 S2 0N −diag(fu)

ST
1 ∆11 ∆12 1N −IN

ST
2 ∆T

12 ∆22 1M 0M×N

0T
N 1T

N 1T
M 0 0T

N

diag(fu) −IN 0N×M 0N diag(fuu ⊙ α)




where fuu = [ d2

du2 f(u(z 1
D

)), . . . , d2

du2 f(u(z N
D

))] and ⊙ denotes the element-wise
multiplication. The dual model representation of the solution is as follows:

û(z) =

|ZD|∑

i=1

αi

([
∇

t
(2)
1 ,0

K
]
(z i

D, z) +
[
∇

x
(2)
1 ,0

K
]
(z i

D, z)

)
+

|ZD|∑

i=1

η 1
i

[
∇0,0 K

]
(z i

D, z) +

|ZB|∑

i=1

η 2
i

[
∇0,0 K

]
(z i

B, z) + d.

3.6 Model Selection

The performance of the LSSVM model depends on the choice of the tuning
parameters. For all experiments the Gaussian RBF kernel is used. Therefore
a model is determined by the regularization parameter γ and the kernel
bandwidth σ. It should be noted that unlike the regression case, we do not
have target values and consequently we do not have noise. Therefore a quite
large value should be taken for the regularization constant γ so that the error
e is sharply minimized or equivalently the constraints are well satisfied. This is
also verified when a grid search over different γ values is performed. In all the
experiments the chosen value for γ is approximately 107. Therefore the only
parameter left that has to be tuned is the kernel bandwidth. In this work, the
optimal values of σ are obtained by evaluating the performance of the model on
a validation set using a meaningful range of possible (σ) i.e. {10−2, . . . , 103}.
In the case of ODE and DAE problems, the validation set is defined to be

the set of midpoints V ≡ {vi = (ti+ti+1)
2 , i = 1, ..., N − 1} where {ti}N

i=1 are
training points. The value of σ for which the mean squared error (MSE) on
this validation set is minimum has been selected. Similar strategy has been
applied for tuning the model parameters when the solution of PDEs is learned.
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3.7 Experiments

In this section, we have tested the performance of the proposed method on
several ODE, DAE and PDE problems. In the ODE test problems, in order
to show the approximation and generalization capabilities of the proposed
method, we compare the exact solution with the computed solution inside and
outside of the domain of consideration. Furthermore the proposed method
is successfully applied to solve problem 1 for a very large time interval.

For all the experiments, the RBF kernel is used, K(u, v) = exp(−‖u−v‖2

σ2 ).
Matlab 2010b is used to implement the code and all computations were
carried out on a windows 7 system with Intel(R)-core(TM) i7 CPU and 4.00GB
RAM. The Matlab implementation of the proposed approach can be found in
https://sites.google.com/site/smkmhr/Projects.

3.7.1 ODE test problems

Problem 1: Consider the following first order ODE

d

dt
y(t) + 2y(t) = sin(t), y(0) = 1, t ∈ [0, 10].

The approximate solution obtained by the proposed method is compared with
the true solution and results are depicted in Fig 3.4. In addition we also
considered points outside the training interval, and Fig 3.4 (d) and (e) show that
the extrapolation error remains low for the points near the domain of equation.
As it was expected by increasing the number of mesh points (training points),
the error decreases both inside and outside of the training interval. Fig 3.4 (c)
and (f) indicate the performance of the method when non-uniform partitioning
is used for creating training points. The kernel bandwidth parameter used in
the simulation is σ = 21.54.

Problem 2: First order differential equation with nonlinear sinusoidal
excitation

d

dt
y(t) + 2y(t) = t3 sin(t/2), y(0) = 1, t ∈ [0, 10].

The interval [0,10] is discretized into N = 20 points t1 = 0, ..., t20 = 10 using
the grid ti = (i− 1)h, i = 1, ..., N , where h = 10

N−1 . In Fig 3.5(a), we compare
the exact solution with the computed solution at grid points (circles) as well
as for other points inside and outside the domain of equation. The obtained
absolute errors for points inside and outside the domain [0,10] are tabulated in
Table 3.1. The kernel bandwidth parameter used in the simulation is σ = 21.40.

https://sites.google.com/site/smkmhr/Projects
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Figure 3.4: Numerical results for Problem 1. (a) 10 equidistant points in [0, 10]
are used for training. (c) 25 equidistant points in [0, 10] are used for training.
(e) Non-uniform partitions of [0,10] using 10 points which are used for training.
(b) Obtained absolute errors on the interval [0, 12] when [0, 10] is discretized
into 9 equal parts. (d) Obtained absolute errors on the interval [0, 12] when
[0, 10] is discretized into 24 equal parts. (f) Obtained absolute errors on the
interval [0, 12] when [0, 10] is discretized into 9 non-uniform parts.
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The influence of increasing number of training points on the optimal value of
the kernel bandwidth σ is also shown in Fig. 3.5(d). A comparison with
Matlab built-in solver ode45 is made. The most intuitive way of comparing
the results of the two approaches is in terms of accuracy versus computational
time which is shown in Fig 3.5. We analyze the scenario where the number
of training points is increasing which results in improving the accuracy at the
expense of increasing computation time. For the ode45 solver, the tolerance
provided by the user is chosen from the set [10−4, 10−5, . . . , 10−9]. For this
example, one can observe that the proposed approach requires less training
computational time in order to reach a desired accuracy in range [10−6, 10−14].
This is expected as few number of training points was needed to obtain the
desired accuracy. However one may notice the error saturation behavior of the
proposed approach. Previous studies have also confirmed the occurrence of
error saturation for many types of kernels including RBFs. (Interested readers
are referred to [31, 30, 108] and references therein for more details on the
saturation error for Gaussian RBFs).

Problem 3: Consider the following nonlinear first order ODE:

d

dt
y(t) = y(t)2 + t2, y(0) = 1, t ∈ [0, 0.5].

Twenty equidistant points in the given interval are used for the training process.
The obtained approximate solution by the proposed method and the solution
obtained by Matlab built-in solver ode45 are displayed in Fig 3.5(b). The
obtained absolute errors for points inside and outside the domain [0,0.5] are
tabulated in Table 3.1. The kernel bandwidth parameter used in the simulation
is σ = 0.2.

Problem 4: Consider the following first order ODE with time varying
coefficient [89, Problem 1]:

d

dt
y(t) +

(
t+

1 + 3t2

1 + t+ t3

)
y(t) = t3 + 2t+ t2

1 + 3t2

1 + t+ t3
,

y(0) = 1, t ∈ [0, 1].

In order to have a fair comparison with the results reported in [89], ten
equidistant points in the given interval are used for the training process. The
analytic solution and obtained solution via our proposed method are displayed
in Fig 3.5(c). The obtained absolute errors for points inside and outside the
domain [0,1] are recorded in Table 3.1, which shows the superiority of the
proposed method over the described method in [89]. (Note that in [89, Fig 2] the
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maximum absolute error outside the domain [0, 1] is approximately 12× 10−2).
The kernel bandwidth parameter used in the simulation is σ = 20.0.
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Figure 3.5: (a) Numerical results for Problem 2. Twenty equidistant points
in [0,10] are used for training. (b) Numerical results for Problem 3. Twenty
equidistant points in [0,0.5] are used for training. (c) Numerical results for
Problem 4.4. Ten equidistant points in [0,1] are used for training. (d) Effect of
increasing number of training points on the optimal σ value. (e) Comparison
with ode45 solver in terms of accuracy and computational time. (f) Tuning the
model parameters using the validation set.
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Problem 5: Consider the following second order boundary value problem with
time-varying input signal

d2

dt2
y(t) + y(t) = 2 + 2 sin(4t) cos(3t),

y(0) = 1, y(1) = 0.

Ten equidistant points in the given interval are used for the training process.
The analytic solution and the obtained solution via our proposed method are
displayed in Fig 3.6(a). The obtained absolute errors for points inside and
outside the domain [0,1] are recorded in Table 3.2. The kernel bandwidth
parameter used in the simulation is σ = 1.02.

Problem 6: Consider the following second order ODE with time-varying input
signal [89, Problem 3] :

d2

dt2
y(t) +

1

5

d

dt
y(t) + y(t) = −1

5
e(−t/5) cos(t),

y(0) = 1, y′(0) = 1.

Ten equidistant points in the interval [0,2] are used for the training process.
The analytic solution and the obtained solution by the proposed method are
shown in Fig 3.6(b). The obtained absolute errors for points inside and outside
the domain [0,2] are tabulated in Table 3.2, which again shows the improvement
of the proposed method over the described method in [89]. (Note that in [89,
Fig 4] the maximum absolute error outside the domain [0, 2] is 8× 10−4). The
kernel bandwidth parameter used in the simulation is σ = 15.63.

Problem 7: Consider the following second order ODE [167, Example 1]:

d2

dt2
y(t) +

1

t

d

dt
y(t)− 1

t
cos(t) = 0, y(0) = 0, y′(0) = 1.

Exact solution: y(t) =

∫ t

0

sin(x)

x
dx.

Ten equidistant points in the interval [0,1] are used as training points and the
obtained result are shown in Fig 3.6(c) and recorded in Table 3.2. The obtained
maximum absolute error outside the domain [0, 1] is 6.51×10−2 which is smaller
than 14 × 10−1 shown in [167, Fig 6]. The kernel bandwidth parameter used
in the simulation is σ = 2.00.
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Figure 3.6: (a) Numerical results for Problem 5. Ten equidistant points in
[0,1] are used for training, (b) Numerical results for Problem 6. Ten equidistant
points in [0,2] are used for training. (c) Numerical results for Problem 7. Ten
equidistant points in [0,1] are used for training.

Table 3.1: Numerical results of the proposed method for solving Problems 2, 3 and 4.

Problem Domain ‖y − ŷ‖∞ MSE STD

2 Inside 4.56 × 10−3 1.47 × 10−6 1.16 × 10−3

Outside 4.62 × 10−1 3.85 × 10−2 1.56 × 10−1

3 Inside 5.43 × 10−3 8.94 × 10−6 1.60 × 10−3

Outside 8.46 × 10−2 1.49 × 10−3 2.27 × 10−2

4 Inside 1.46 × 10−4 8.15 × 10−9 3.90 × 10−5

Outside 6.76 × 10−2 5.53 × 10−4 2.20 × 10−2

Note: MSE is the mean squared error and STD is the stand deviation.

3.7.1.1 Sensitivity of the solution w.r.t the parameter

In order to illustrate the sensitivity of the result with respect to the parameter
of the model (σ), for two examples we have plotted the MSE, on the validation
set, versus the kernel bandwidth on logarithmic scales in Fig 3.7. From this
figure, it is apparent that there exists a range of σ for which the MSE on the
validation set is quite small.
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Table 3.2: Numerical results of the proposed method for solving Problems 5, 6 and 7.

Problem Domain Variable ‖y − ŷ‖∞ MSE STD

5 Inside y 1.14 × 10−6 4.16 × 10−13 6.43 × 10−7

y′ 4.81 × 10−5 6.78 × 10−11 8.21 × 10−6

Outside y 4.20 × 10−2 2.64 × 10−4 1.26 × 10−2

y′ 1.00 × 10−1 3.27 × 10−3 3.87 × 10−2

6 Inside y 5.88 × 10−6 1.49 × 10−11 1.63 × 10−6

y′ 7.34 × 10−6 2.18 × 10−11 3.28 × 10−6

Outside y 3.96 × 10−4 2.39 × 10−8 1.19 × 10−4

y′ 5.15 × 10−4 7.11 × 10−8 1.74 × 10−4

7 Inside y 6.64 × 10−9 2.01 × 10−16 4.07 × 10−9

y′ 8.41 × 10−8 1.30 × 10−15 3.59 × 10−8

Outside y 6.51 × 10−2 3.90 × 10−4 1.65 × 10−2

y′ 7.80 × 10−2 7.31 × 10−4 2.15 × 10−2

Note: MSE is the mean squared error and STD is the stand deviation.
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Figure 3.7: Sensitivity of the obtained result with respect to model parameter
σ. log10(MSE) vs. log10 σ is plotted for Problems 2 and 6.

3.7.1.2 Large interval

Let us consider problem 1 when the time interval is [0, 105]. It is known in
advance that the solution of this problem is oscillating. The problem is solved
by decomposing the given interval of interest into S sub-intervals. Then the
problem is solved on each sub-interval using N local collocation points. The
execution time and the mean squared error (MSE) for the training and test
sets

MSEtrain =

∑N×S
i=1 (y(ti)− ŷ(ti))

2

N × S ,

MSEtest =

∑M
i=1(y(ti)− ŷ(ti))

2

M
,
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where N×S is the total number of collocation points and M is the total number
of test points over the interval [0, 105], are tabulated in Table 3.3. The test set
is the same for all the cases and it consists of M = 5×105 points. It is apparent
that when S is fixed and N increases, the accuracy is improved whereas the
execution time is increased. The same pattern is observed when N is fixed and
S increases. Fig. 3.8(a) and (b) show the residual error et = y(t)− ŷ(t) when
Problem 1 is solved over the interval [0, 105], using N = 50 local collocation
points, S = 5000 sub-intervals and N = 500, collocation points, S = 500 sub-
intervals respectively. It should be noted that the result depicted in Fig. 3.8(a)
is obtained much faster than that shown in Fig. 3.8(b).

In Table 3.4, we analyze the situation where the total number of collocation
points i.e. N × S in the given interval [0, 4000] is fixed. It can be seen that as
the number of sub-intervals increases (number of collocation points in each sub-
interval increases) the computational time decreases without losing the order
of accuracy. In this case the test set consists of M = 2× 104 points.

Table 3.3: Numerical result of the proposed method for solving Problem 1 with time interval
[0, 105]. N is the number of local collocation points and S is the number sub-intervals.

MSE

N S CPU time Training Test

20 1000 5.5 2.4 × 10−2 7.2 × 10−2

2000 10.6 1.3 × 10−3 3.3 × 10−3

5000 29.5 8.4 × 10−8 2.3 × 10−7

30 1000 6.6 2.2 × 10−2 5.9 × 10−2

2000 13.4 4.1 × 10−6 1.3 × 10−5

5000 37.1 8.2 × 10−9 2.7 × 10−8

40 1000 9.6 5.8 × 10−4 1.4 × 10−3

2000 20.1 1.7 × 10−7 5.8 × 10−7

5000 54.2 2.3 × 10−9 8.1 × 10−9

Note: The execution time is in seconds.

Table 3.4: Numerical results of the proposed method for solving Problem 1 with time interval
[0,4000], while total number of collocation points i.e. N × S is constant

MSE

N S CPU time Training Test

800 10 85.5 1.36 × 10−8 2.06 × 10−8

400 20 26.1 1.37 × 10−8 2.08 × 10−8

20 400 2.06 1.68 × 10−8 2.52 × 10−8

Note: The execution time is in seconds.
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Figure 3.8: (a) Residual y(t) − ŷ(t) when problem 1 is solved on the interval
[0, 105], by using 5000 sub-intervals and 50 local collocation points. (b)
Obtained residual y(t)− ŷ(t) for the same problem by using 500 sub-intervals
and 500 local collocation points.

3.7.2 DAE test problems

Three experiments are performed to demonstrate the capability of the proposed
method for solving initial and boundary value problems in DAEs. The accuracy
of an approximate solution is measured by means of mean squared error (MSE)
which is defined as follows:

MSEtest =

∑M
i=1(x(ti)− x̂(ti))

2

M

where M is the number test points. In all the experiments M is set to 200
points on the given domain.

Problem 8: Consider the following nonsingular system of time varying
ordinary differential equations

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

−2
t2

2
t2

] [
x1(t)
x2(t)

]
+

[
0

t log(t)

]
(3.41)

subject to
x1(1) = 1, x2(1) = 0.

This problem is solved for t ∈ [1, 10] and the approximate solution obtained
by the proposed method is compared with the solution obtained by Matlab
built-in solver ode45 in Fig 3.9. The obtained results with different numbers of
training points are tabulated in Table 3.5. Note that the subroutine DSolve of
Mathematica 6.0 failed to find the analytical solution for the above equation.
The kernel bandwidth parameter used in the simulation is σ = 1.67.
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Figure 3.9: Obtained approximate solution and model errors for problem 8,
when 80 equidistant mesh points on the interval [1,10] are used for training.

Table 3.5: Numerical results of the proposed method for solving Problem 8 on time interval
[1,10], with N number of collocation points.

MSEtest

N x1 x2

20 3.1× 10−2 1.2× 10−3

40 3.9× 10−5 1.4× 10−6

60 2.6× 10−7 1.1× 10−8

80 4.8× 10−9 3.5× 10−10

Problem 9: Consider the singular system of index-3 discussed as follows [125]:

Z(t)Ẋ(t) = A(t)X(t) +B(t)u(t), t ∈ [0, 20], X(0) = X0 (3.42)
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where

Z =




0 −t 0
1 0 t
0 1 0


 , A =



−1 0 0
0 −1 0
0 0 −1




and B(t) = 0 with x(0) = [0, e−1, e−1]T . The exact solution is given by

x1(t) = −t exp(−(t+ 1)), x2(t) = x3(t) = exp(−(t+ 1)).

The problem is solved on domain t ∈ [0, 20] for different N (number of
collocation points) values. The approximate solution obtained by the proposed
method is compared with the exact solution (see Fig 3.10) and the results are
recorded in Table 3.6. From Table 3.6, it is apparent that as N increases, the
solution converges to the true solution. Note that the Matlab built-in solver
ode15i can solve DAEs Up to index-1. The kernel bandwidth parameter used
in the simulation is σ = 4.49.

Table 3.6: Numerical results of the proposed method for solving Problem 9 on time interval
[0,20], with N number of collocation points.

MSEtest

N x1 x2 x3

20 1.33 × 10−5 4.82 × 10−8 4.73 × 10−7

40 1.38 × 10−8 1.39 × 10−10 3.14 × 10−9

60 4.82 × 10−10 3.54 × 10−12 2.38 × 10−10

Problem 10: Consider the linear time varying singular system [126]

Z(t)Ẋ(t) = A(t)X(t) +B(t)u(t), t ∈ [0, 10], X(0) = X0

y(t) = C(t)x(t)
(3.43)

where y(t) is the output vector and

Z =




1 + t 0 0 0
0 0 0 0
0 0 1 + t 0
0 0 0 0


 , A =




0 1 0 0
1 1 0 0
0 0 0 1
0 −(1 + t) 1 1




B =




0 0
1 0
0 0
0 1


 , C =

[
0 1 + t 0 −1
0 0 0 (1 + e−t) sin(t)

]
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Figure 3.10: Obtained approximate solution and model errors for problem 9,
when 70 equidistant mesh points on the interval [0,20] are used for training.

with u = [1 + t+ t2/2, 0]T and x(0) = [0,−1, 0,−1]T the exact solution is given
by

y1(t) = −
(

1 + t+ t2 +
t3

3

)
+

1 + t+ 3t2/2 + t3 + t4/4

1 + t
,

y2(t) = −(1 + e−t) sin(t)

(
1 + t+ 3t2/2 + t3 + t4/4

1 + t

)
.

The interval [0,10] is discretized into N points. The obtained mean squared
errors for test set are tabulated in Table 3.7. The results reveal that higher
order accuracy can be achieved by an increasing number of collocation points.
Analytical solution and obtained approximate solution, with 50 equidistant
mesh points on the interval [0, 10] as training points, are compared in Fig 3.11.
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Note that the Matlab built-in solver ode15i failed to solve problem 10. The
kernel bandwidth parameter used in the simulation is σ = 10.00.

Table 3.7: Numerical results of the proposed method for solving Problem 10 on time interval
[0,10], with N collocation points.

MSEtest

N y1 y2

10 1.23 × 10−3 8.76 × 10−4

20 1.25 × 10−5 1.31 × 10−5

30 1.42 × 10−6 7.80 × 10−7

40 5.35 × 10−9 7.62 × 10−9

3.7.3 PDE test problems

Problem 11: Consider the singular linear second order hyperbolic equation
defined on a rectangular domain [123, Example 2]

utt +
2

x2
ut +

1

x2
u = (1 + x2)uxx−

e−2t
(
x4 − 3x2 + 3

)
sinh(x)

x2
, 0 < x < 1, 0 < t < T,

subject to the initial and boundary conditions (3.31) and (3.32) with exact
solution u(x, t) = e−2t sinh(x). The approximate solution obtained by the
proposed method is compared with the exact solution in Fig 3.12. The step
length used to generate the mesh points for the training and test set are 1

10
and 1

64 respectively. The kernel bandwidth parameter used in the simulation
is σ = 0.90.

The obtained results are tabulated in Table 3.8. The proposed method shows
a better performance in comparison with the unconditionally stable finite
difference scheme of O(k2 + h2) described in [123] in terms of accuracy despite
the fact that much less number of mesh points are used.

Problem 12: Consider the linear second order elliptic equation defined on a
rectangular domain [89, Example 5]

∇2u(x, y) = exp(−x)(x− 2 + y3 + 6y)

with x, y ∈ [0, 1] and the Dirichlet boundary conditions:

u(0, y) = y3, u(1, y) = (1 + y3) exp(−1)
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Figure 3.11: Obtained approximate solution and model errors for problem 10,
when 50 equidistant mesh points on the interval [0,10] are used for training.

and
u(x, 0) = x exp(−x), u(x, 1) = x exp(−x)(x+ 1)

The exact solution is u(x, y) = e−x(x+y3). The approximate solution obtained
by the proposed method is compared with the exact solution in Fig 3.13.

In order to make a fair comparison, the same number of grid points as in [89]
is used for training and test sets. [89] uses an approach based on Artificial
neural networks where a trial solution is provided by the user. The proposed
method shows slightly better performance in comparison with the described
method in [89] in terms of accuracy (The maximum absolute error for training
and test points shown in [89, Fig. 9 and Fig. 10] is approximately 5 × 10−7).
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Table 3.8: Numerical result of the proposed method for solving Problem 11 with time interval
[0, T ].

RMSE L ∞

Method T Training Test Training Test

LSSVM 1 3.79 × 10−5 3.71 × 10−5 8.38 × 10−5 9.52 × 10−5

FDM [123] − − − − − 0.22 × 10−3 − − − − − − − − − −

LSSVM 2 1.78 × 10−5 1.76 × 10−5 4.48 × 10−5 4.89 × 10−5

FDM [123] − − − − − 0.62 × 10−4 − − − − − − − − − −
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Figure 3.12: Obtained model errors for problem 11, when a grid consists of
171 mesh points inside the domain [0, 1]× [0, 2] are used for training.

Furthermore as opposed to the neural networks approach here one does not
need to provide a trial neural form of the solution and the solution is obtained
by solving a linear system of equations. The kernel bandwidth parameter used
in the simulation is σ = 0.71.
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Figure 3.13: The obtained approximate solution and the model errors for
problem 12. (a) The obtained approximate solution, (b) The model error on
training set when a grid consists of 100 mesh points inside the domain [0, 1]×
[0, 1] are used for training, (c) The model error on test set consists of 900 mesh
points inside the domain [0, 1]× [0, 1] are used for testing.
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Problem 13: Consider the linear second order elliptic PDE [152, Section V-
B1]

∇2u(x, y) = 4x cos(x) + (5− x2 − y2) sin(x) (3.44)

defined on a circular domain, i.e.

Σ :=

{
(x, y)

∣∣∣x2 + y2 − 1 = 0, −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

}

with the Dirichlet condition u(x, y) = 0 on ∂Σ. The exact solution is given
by u(x, y) = (x2 + y2 − 1) sin(x). The approximate solution obtained by
the proposed method is compared with the exact solution in Fig 3.14. The
distribution of the collocation points used to undertake the learning process is
shown in Fig. 3.3(b). The kernel bandwidth parameter used in the simulation
is σ = 3.0. The number of collocation points (training points) inside and on
the boundary of the domain are as follows,

|ZD| = 45, |ZB| = 19,

which are less than those (52 and 24 collocation points inside and on the
boundary of the domain respectively) used in [152]. The obtained results
are tabulated in Table 3.9. The proposed method outperforms the described
method in [152] in terms of accuracy despite the fact that less training points
are used. (Note that in [152] the maximum absolute error shown in [152, Fig. 7]
is approximately 2×10−3 and the reported mean square error in [152, Table II],
obtained by using genetic programming with boosting approach, is 2.05×10−4).

Table 3.9: Numerical result of the proposed method for solving Problem 13 and 14.

MSE L ∞

Problem Method Training Test Training Test

13 LSSVM 5.18 × 10−11 5.94 × 10−11 1.91 × 10−5 2.71 × 10−5

GPA[152] − − − − − 2.04 × 10−4 − − − − − − − − − −

14 LSSVM 7.93 × 10−9 1.32 × 10−8 3.95 × 10−4 5.90 × 10−4

GPA[152] − − − − − 4.46 × 10−4 − − − − − − − − − −

Problem 14: Consider the second order elliptic PDE [152, Section V-B2]

∇2u(x, y) = 2 exp(x− y) (3.45)

defined on the following domain, i.e.

Σ :=

{
(x, y)

∣∣∣ (x, y) = r(θ)
(

cos(θ), sin(θ)
)
, 0 ≤ θ ≤ 2π,

}
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Figure 3.14: Obtained model error for problem 13, when a grid consists of 45
and 19 mesh points inside and on the boundary of the domain respectively are
used for training.

with r(θ) =

√
cos(2θ) +

√
1.1− sin2(2θ) and the Dirichlet boundary condition

u(x, y) = ex−y + ex cos(y) on ∂Σ. The exact solution is given by u(x, y) =
ex−y + ex cos(y). The approximate solution obtained by the proposed method
is compared with the exact solution in Fig 3.15. The distribution of the
collocation points used to undertake the learning process is shown in Fig. 3.3(c).
The kernel bandwidth parameter used in the simulation is σ = 1.0. The number
of collocation points (training points) inside and on the boundary of the domain
are as follows,

|XD| = 48, |XB| = 28,

which are almost the same as the ones (48 and 32 collocation points inside and
on the boundary of the domain respectively) used in [152]. The computed
residuals are displayed in Fig 3.15(b)-(d). The mean squared errors and
maximum absolute errors for the test set are also recorded in Table 3.9, which
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Figure 3.15: Obtained model error for problem 14, when a grid consists of 48
and 28 mesh points inside and on the boundary of the domain respectively are
used for training.

shows the improvement of the proposed method over the described method in
[152]. (Note that in [152] the maximum absolute error shown in [152, Fig. 11]
is approximately 2×10−2 and the reported mean square error in [152, Table II],
obtained by using genetic programming with boosting approach, is 4.46×10−4).

Problem 15: Consider an example of nonlinear PDE

∇2u(x, y) + u(x, y)2 = sin(πx)

(
2− (πy)2 + y4 sin(πx)

)
(3.46)

defined on a circular domain, i.e.

Σ :=

{
(x, y)

∣∣∣x2 + y2 − 1 = 0, −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

}
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with the Dirichlet condition on ∂Σ. The exact solution is given by u(x, y) =
y2 sin(πx). The approximate solution obtained by the proposed method is
compared with the exact solution in Fig 3.16(b). The kernel bandwidth
parameter used in the simulation is σ = 0.80. The number of collocation points
(training points) inside and on the boundary of the domain are as follows,

|ZD| = 24, |ZB| = 19.
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Figure 3.16: Obtained model error for problem 15.

3.8 Conclusions

In this chapter, we presented an LSSVM based formulation for learning the
trajectories of a dynamical system whose dynamics is described by either ODEs,
DAEs or PDEs. The solution in the primal is in terms of the feature map
and the optimal representation is obtained in the dual by solving a set of
linear/nonlinear equations. The approach produces a closed form solution and
the training points do not need to be uniformly distributed and in fact can be
scattered discrete points. As the proposed approach does not require meshing,
it has a potential to become an alternative method for learning the solution
of high-dimensional PDEs. However the derivation of the dual system still
needs user effort. We showed the applicability of the approach for providing
the solution of high-index DAEs with variable rank without a need of using
any index reduction technique.





Chapter 4

Parameter Estimation of
Dynamical Systems

In this chapter, a new approach based on Least Squares Support Vector
Machines (LSSVMs) for parameter estimation of time invariant as well as
time varying dynamical SISO systems is proposed. Closed-form approximate
models for the state and its derivative are first derived from the observed data
by means of LSSVMs. The time-derivative information is then substituted
into the system of ODEs, converting the parameter estimation problem into
an algebraic optimization problem. In the case of time invariant systems one
can use least-squares to solve the obtained system of algebraic equations. The
estimation of time-varying coefficients in SISO models, is obtained by assuming
an LSSVM model for it. Furthermore we extend the approach for approximating
time-varying as well as constant parameters in deterministic parameter-affine
delay differential equations (DDEs). As opposed to conventional approaches,
it avoids iterative simulation of the given dynamical system. The solution
obtained by the proposed approach can be further utilized for initialization of
the conventional nonconvex optimization methods for parameter estimation of
DDEs. The highlights of this chapter can be summarized as follows:

• Reducing the parameter estimation problem to an algebraic optimization
problem.

• Avoiding iterative simulation of the dynamical system governed by ODEs,
DDEs and delay differential equation of neutral type (NDDEs) in the
parameter estimation process.

83
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• Providing closed-form approximation for the time varying parameters.

• Requiring no prior knowledge about the history function while the fixed
delay parameter is being estimated.

• Overcoming the non-convexity of the optimization problems for parameter
estimation of parameter affine ODEs and DDEs.

4.1 Related Work

Parameter estimation is widely used in modelling of dynamic processes in
physics, engineering and biology. Various methods have been previously
investigated in the literature for handling this problem. Mainly they fall
into two categories. In the first category the approaches are based on a
classical parameter estimator, usually the least square estimator [25]. First
the dynamical system is simulated using initial guesses for parameters (if the
initial conditions are unavailable they will be appended to the parameters of
the model). Then model predictions are compared with measured data and an
optimization algorithm updates the parameters. The process of updating the
parameters continues until no significant improvement in the objective function
is observed. These approaches require numerical integration of differential
equations for each update of the parameters. Therefore there is a large amount
of computational work involved. Studies show that more than 90% of the
computation time is consumed in the ODE solver during the identification
process [124].

The second category includes methods, originally proposed by [171], that do
not require repeated numerical integration and are referred to as two-step
approaches. In [171] first a cubic spline is used to estimate the system dynamics
from observational data. The predicted model then can be differentiated with
respect to time to obtain the estimate of the derivative of the solution. In
the second step these estimates are plugged into a given differential equation
and the unknown parameters are found by minimizing the squared difference
of both sides of the differential equation.

Identification of unknown parameters in differential equations has been studied
and addressed by many authors (see [17, 18, 3, 73, 74, 181]). Most of the
available approaches utilize the classical parametric inference such as the
least squares estimator or the maximum likelihood estimation [26]. In these
approaches first the dynamical system is simulated using initial guesses for the
parameters. Then model predictions are compared with measured data and an
optimization algorithm updates the parameters.
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Therefore one has to solve the following optimization problem:

argmin
θ(t),τ1

J(θ(t), τ1) =

N∑

k=1

(ym(tk)− y p(tk))2, (4.1)

where ym(t) and y p(t) are the measured data and model prediction respec-
tively.

It should be noted that the objective function of the optimization problem for
DDE differs from that of ODE. The cost function J(θ(t), τ1) in (4.1) might be
non-smooth because the state trajectory might be non-smooth in the parameter
and this will make the optimization problem more complicated.

Solving (4.1) requires repeated simulation of the system of DDE under study.
Since the analytic solution of DDE is usually not available, therefore one
needs to apply a numerical algorithm to simulate the given dynamic system.
Although quite efficient numerical routines for solving differential equations are
available they usually slow down the parameterization process dramatically and
this situation is even more sensible when the underlying dynamics is described
by delay differential equations. That is due to the existence of delay terms
that force the solver to use an interpolation technique in order to advance
the solution. It should also be noted that, as opposed to ordinary differential
equations, the numerical solution of DDEs not only depends on the parameter
values, but also on the history function, H1(t) for t ∈ [ρ, tin], which is usually
unknown. Given that the initial function is in an infinite-dimensional set,
the problem becomes an infinite-dimensional optimization problem and very
difficult to solve [176]. Consequently, it would be of great benefit to eliminate
any need of numerical DDE solvers.

The authors in [58] first estimate the derivative ẋ(t) from the noisy data using
nonparametric smoothing methods and then inferred the constant delay τ , for
a special DDE model, in the framework of the generalized additive model. The
author in [56] proposed a method where an artificial neural network model is
used to estimate the time invariant parameters of a dynamical systems governed
by ordinary differential equations. Despite the fact that the classical neural
networks have nice properties such as universal approximation, they still suffer
from having two persistent drawbacks. The first problem is the existence of
many local minima solutions. The second problem is how to choose the number
of hidden units. It is the purpose of this chapter to introduce an approach based
on least squares support vector machines for estimation of time invariant as well
as time varying systems in state-space form.

Throughout this chapter, we assume that the dynamical system is uniquely
solvable and that the parameters of the model are identifiable. For stability of
the solutions of systems with delays one may refer to [88, 128].
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4.2 Dynamical Systems Governed by ODEs

Suppose that we are given a dynamical system in state-space form

dX

dt
= F (t,X, θ), X(0) = X0, (4.2)

subject to certain boundary or initial conditions which may be imposed on
the basis of observation data. t denotes the independent variable (usually
time). X is the state vector of the system where d

dtX̂ = [ d
dt x̂1, ...,

d
dt x̂m]T , X =

[x1, ..., xm]T and F = [f1, ..., fm]T . θ = [θ1, ..., θp] are unknown parameters of
the system and X0 are initial values.

In order to estimate the unknown parameters θ, the state variable X(t) is
observed at N time instants {t1, ..., tN}, so that we have

Y (ti) = X(ti) + Ei, i = 1, ..., N,

where {Ei}N
i=1 are independent measurement errors with zero mean. The

objective is to determine appropriate parameter values so that errors between
the outputs of the estimated model and the measured data are minimized.

4.2.1 Constant parameter estimation

First we approximate the trajectory X̂(t) = [x̂1, ..., x̂m]T on the basis of
observations at N points {ti, Y (ti)}N

i=1. Note that Y (ti) are the experimentally
observed values of the state variables at time instant ti, i.e. Y (ti) =
[y1(ti), ..., ym(ti)]

T . Then the estimation of the state derivative is obtained
by differentiating the model with respect to time. Here we model the state xk

for k = 1, ...,m as a Least-Squares Support Vector Machine [159]. Therefore
the goal is to find a model of the form x̂k(t) = wT

k ϕ(t) + bk. For the k-th state
variable we formulate the following convex primal LSSVM problem [159],

minimize
wk,bk,ek

1

2
wT

k wk +
γk

2
‖ek‖2

2

subject to yk(ti) = wT
k ϕ(ti) + bk + ei

k, i = 1, ..., N,

(4.3)

where γk ∈ R+, bk ∈ R, wk ∈ Rh. ϕ(·) : R→ Rh is the feature map and h is the
dimension of the feature space. The dual solution is then given by


 Ω + γ−1IN 1N

1T
N 0




[
αk

bk

]
=

[
yk

0

]
(4.4)
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where Ωij = K(ti, tj) = ϕ(ti)
Tϕ(tj) is the (i, j)-th entry of the positive definite

kernel matrix. 1N = [1; ...; 1] ∈ RN , αk = [αk
1 ; ...;αk

N ], yk = [yk(t1); ...; yk(tN )]
and IN is the identity matrix. The model in dual form becomes:

x̂k(t) = wT
k ϕ(t) + bk =

N∑

i=1

αk
i K(ti, t) + bk (4.5)

where K is the kernel function. Differentiating (4.5) with respect to t, one can
obtain an analytical approximate expression for the derivative of the model

d

dt
x̂k(t) =wT

k ϕ̇(t) =
N∑

i=1

αk
i ϕ(ti)

T ϕ̇(t). (4.6)

Making use of Mercer’s Theorem [170], derivatives of the feature map can be
written in terms of derivatives of the kernel function [95]. Therefore ϕ(t)T ϕ̇(s)
is given by the derivative of K(t, s) with respect to s. If we denote Ks(t, s) =
∂K(t,s)

∂s , then equation (4.6) can be written as

d

dt
x̂k(t) =wT

k ϕ̇(t) =

N∑

i=1

αk
i Ks(ti, t). (4.7)

Eqs. (4.5) and (4.7) are closed-form approximations for the k-th state in
equation (4.2) and its derivative respectively. By applying the above procedure
for all the state variables one can obtain the LSSVM expression for X̂ =
[x̂1, ..., x̂m]T and d

dtX̂ = [ d
dt x̂1, ...,

d
dt x̂m]T . Therefore the values of the solution

and time-derivative curves at some set of sample points {tk}M
k=1, which are

not necessarily the same as the original points where the states are observed,
can be obtained by evaluating the LSSVM expressions for X̂ and d

dtX̂. These
numerical values then are substituted into the system description (4.2), so that
the unknown parameters appear in an algebraic expression, resulting in linear
(if the system is linear in the parameters) or nonlinear (otherwise) least-squares
estimation. Therefore the estimation of time invariant parameters is obtained
by solving the following optimization problem [114]:

minimize
θ

1

2

∑

i

‖Ξi‖2
2

subject to Ξi =
d

dt
X̂(ti)− F (ti, X̂(ti), θ), i = 1, ...,M.

(4.8)

When the ODE model is linear in the parameters this problem is a convex
optimization problem. As it has been remarked in [171], what we really are
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interested in to minimize is the error between the observed and model predicted
values of the state variables i.e. the integrated residual errors

RI(θest) =
M∑

k=1

∥∥X(tk)− X̃(tk)
∥∥2

2
(4.9)

where X̃(tk) is obtained by simulating the system with the estimated parameter
θest.

4.2.2 Time varying parameter estimation

Consider a first order dynamical system of the form:

dx

dt
+ θ(t)f(x(t)) = g(t), x(0) = x0 (4.10)

subject to certain initial conditions which may be imposed on the basis of
observation data. The technique can be extended to higher order systems. f
is an arbitrary known function and θ(t) is the time varying parameter of the
system and is considered to be unknown. The state x(t) has been measured at
certain time instants {ti}N

i=1, which can be non-equidistant, i.e.

y(ti) = x(ti) + ξi, i = 1, ..., N

where ξi’s are i.i.d. random errors with zero mean and constant variance. g(t)
is the input signal whose values are known at data points {ti}N

i=1 i.e. gi = g(ti)
for i = 1, ..., N . The problem is to estimate the function θ(t) so that the
solution of (4.10) with the estimated parameter θ(t) is as close as possible to
the given data.

First we approximate functions x̂(t) and ĝ(t) on the basis of observations at N
points {ti, yi}N

i=1, {ti, gi}N
i=1 by means of least squares support vector regression

(4.3). The model in dual form becomes,

x̂(t) = wTϕ(t) + b =

N∑

i=1

αiK(ti, t) + b (4.11)

where K is the kernel function. The same procedure can be applied to obtain
the LSSVM approximation of the excitation ĝ(t). Note that the analytic
LSSVM expression for the state trajectory allows us to obtain a closed-form
approximation for its derivative by differentiating (4.11) with respect to t,

d

dt
x̂(t) =wT ϕ̇(t) =

N∑

i=1

αiϕ(ti)
T ϕ̇(t) =

N∑

i=1

αiKs(ti, t). (4.12)
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Here Ks(t, s) is defined as previously. Eqs. (4.11) and (4.12) are approxi-
mations for the solution of the differential equation (4.10) and its derivative
respectively. Therefore the derivative of the solution at some set of sample
points {tk}M

k=1 can be obtained from (4.12). These time-derivative information
together with values of the state variable at points {tk}M

k=1 are then substituted
into the model description (4.10). But since the parameter present in (4.10) is
time-varying, it can not be estimated by Eq. (4.8). Therefore let us assume an
explicit LSSVM model

θ̂(t) = vTψ(t) + bθ

as an approximation for the parameter θ(t). Having available the state and its
derivative at {tk}M

k=1 points, we can estimate the time-varying coefficient θ(t)
by solving the following optimization problem [114]:

minimize
v,bθ,e

1

2
vT v +

γ

2

M∑

i=1

e2
i

subject to
d

dt
x̂(ti) +

[
vTψ(ti) + bθ

]
f(x̂(ti)) =

ĝ(ti) + ei, for i = 1, ...,M.

(4.13)

Lemma 4.2.1. Given a positive definite kernel function K̃ : R × R → R with
K̃(t, s) = ψ(t)Tψ(s) and a regularization constant γ ∈ R+, the solution to
(4.13) is given by the following dual problem


 DΩD + γ−1IM f(x̂)

f(x̂)T 0





 α

bθ


 =


 ĝ − dx̂

dt

0


 (4.14)

where Ω(i, j) = K̃(ti, tj) = ψ(ti)
Tψ(tj) is the (i, j)-th entry of the positive

definite kernel matrix. Also α = [α1; ...;αM ], f(x̂) = [f(x̂(t1)); ...; f(x̂(tM ))],
ĝ = [ĝ(t1); ...; ĝ(tM )], dx̂

dt = [ d
dt x̂(t1); ...; d

dt x̂(tM )] and IM is the identity matrix.
D is a diagonal matrix with the elements of f(x̂) on the main diagonal.

Proof. The Lagrangian of the constrained optimization problem (4.13) becomes

L(v, bθ, ei, αi) =
1

2
vT v +

γ

2

M∑

i=1

e2
i−

M∑

i=1

αi

[
d

dt
x̂i +

(
vTψ(ti) + bθ

)
f(x̂i)− ĝi − ei

]
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where
{
αi

}M

i=1
are Lagrange multipliers. ĝi = ĝ(ti), f(x̂i) = f(x̂(ti)) and

d
dt x̂i = d

dt x̂(ti) for i = 1, ...,M . Then the Karush-Kuhn-Tucker (KKT)
optimality conditions are as follows,

∂L

∂v
= 0→ v =

M∑

i=1

αif(x̂i)ψ(ti),

∂L

∂bθ
= 0→

M∑

i=1

αif(x̂i) = 0,

∂L

∂ei
= 0→ ei = −αi

γ
, i = 1, ...,M,

∂L

∂αi
= 0→

(
vTψ(ti) + bθ

)
f(x̂i)− ei = ĝi −

d

dt
x̂i,

for i = 1, ...,M.

After elimination of the primal variables v and {ei}M
i=1 and making use of

Mercer’s Theorem, the solution is given in the dual by




ĝi − d
dt x̂i =

M∑

j=1

αjf(x̂j)Ωjif(x̂i) +
αi

γ
+

bθf(x̂i), i = 1, ...,M

0 =

M∑

i=1

αif(x̂i)

and writing these equations in matrix form gives the linear system in (4.14).

The model in the dual form becomes

θ̂(t) = vTψ(t) + bθ =

M∑

i=1

αif(x̂i)K̃(ti, t) + bθ (4.15)

where K̃ is the kernel function.

The procedure of the proposed approach is outlined in Algorithm 3.

4.3 LSSVM Based Initialization Approach

Parameter estimation is typically formulated as the following non-convex
optimization problem where the multiple-shooting approach (see Fig. 4.1) is
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Algorithm 3: Approximating the model’s time varying parameter

Input: Observational data and the underlying differential equations
Output: Estimation of the unknown model’s parameters

1 Estimate the trajectories X̂ from the observational data by using LSSVM
model, Eq. (4.5).

2 Differentiate the predicted model with respect to time to get an approximate
model for the derivative of the state, Eq. (4.7).

3 Evaluate the state and its derivative model at time instants {ti}M
i=1.

4 if parameters are time invariant then
5 solve optimization problem (4.8)

else
6 solve Eq. (4.14) to get the estimate of the time varying parameter of the

dynamical system.

7 return Model parameters

employed.

minimize
X(t0),...,X(tN ),θ

1

2

N∑

i=0

‖Y (ti)−X(ti)‖2
2

subject to X(tk+1) = X(tk) +

∫ tk+1

tk

F (τ,X(τ), θ) dτ, k = 0, ..., N − 1.

(4.16)
Due to the nonconvexity coming from the nonlinear model, a Newton type
method can only find locally optimal solutions. Depending on the initialization,
one can obtain a different local solution.

X(t)

Initialization

Simulation

t1 t2 t3 tf

Figure 4.1: The gap between � , ◦ is minimized when the junction conditions
are satisfied.
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In case of parameter-affine models attempts have been made to provide a
good initial guess through a convex optimization approach. A Least Squares
Prediction Error Method (PEM) proposed in [101] is formulated as a convex
problem to provide such an initial guess for (4.16), with parameter-affine
function F , as follows:

minimize
X(t0),...,X(tN ),θ

1

2

N∑

i=0

‖Y (ti)−X(ti)‖2
2

subject to X(tk+1) = Y (tk) + TsF (tk, Y (tk), θ), k = 0, ..., N − 1,
(4.17)

where Ts is the sampling time. However the solution obtained by the PEM
approach can be biased if the process and measurement noise are not modeled
appropriately. Therefore the method does not perform well in the presence of
noisy data and one needs to filter the residual errors. On the other hand, the
authors in [28] proposed a so-called Least Squares Convex Approach (CA). In
contrast to the PEM approach, there is no need for filtering the residual error
in CA formulation [28]:

minimize
X(t0),...,X(tN ),θ

1

2

N∑

i=0

‖Y (ti)−X(ti)‖2
2

subject to X(tk+1) = X(tk) + TsF (tk, Y (tk), θ), k = 0, ..., N − 1.
(4.18)

However in this approach in order to keep the optimization problem (4.20)
convex, one still has to rely on a simple Euler discretization of the system.

The aim of this section is to first employ the method described in section 4.2
to obtain an initial guess for the parameters and then to solve the original non-
convex problem. The latter is done using a multiple shooting discretization
and constrained Gauss-Newton to solve the nonlinear programming problem
(NLP). Furthermore, a denoising scheme using LSSVM is proposed to first
filter the measured data then proceed with the filtered signals for parameter
estimation problem. As opposed to the previous approaches, one does not need
to use any integration method to simulate the dynamical system. Therefore
the drawbacks of using the Euler method, concerning its stability region, are
removed. We refer further to this approach as LSSVM (see [114]).
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4.4 Pre-processing using LSSVM

Data pre-processing plays a very important role in many applications. We will
make use of the LSSVM regression ability to reduce the effect of noise and as
a result having a smoother signal to proceed with. Given observational data
Y (t) = [y1(t), . . . , ym(t)]T , the LSSVM based model (4.5) obtained from (4.3)
can be considered as a denoised version of the observational data Y (t). The idea
now would be to replace the measurements Y (t) in PEM and CA formulations

(4.19) and (4.20) by X̂(t) where X̂(t) = [x̂1(t), . . . , x̂m(t)]T . Therefore their
optimization problems become [114]:

minimize
X(t0),...,X(tN ),θ

1

2

N∑

i=0

‖Y (ti)−X(ti)‖2
2

subject to X(tk+1) = X̂(tk) + TsF (tk, X̂(tk), θ), k = 0, ..., N − 1,
(4.19)

and

minimize
X(t0),...,X(tN ),θ

1

2

N∑

i=0

‖Y (ti)−X(ti)‖2
2

subject to X(tk+1) = X(tk) + TsF (tk, X̂(tk), θ), k = 0, ..., N − 1,
(4.20)

These schemes will be referred to as PEM+LSSVM (4.19) and CA+LSSVM
(4.20) respectively.

4.5 Dynamical Systems Governed by DDEs

Delay differential equations (DDEs) have been successfully used in the
mathematical formulation of real life phenomena in a wide variety of
applications especially in science and engineering such as population dynamics,
infectious diseases, control problems, secure communication, traffic control and
economics [22, 20, 84]. In contrast with ordinary differential equations (ODEs)
where the unknown function and its derivatives are evaluated at the same time
instant, in a DDE the evolution of the system at a certain time instant, depends
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on the state of the system at an earlier time. A typical first order single-delay
scalar DDE model may be expressed as:

ẋ(t) = f1(t, x(t), x(t− τ1), θ(t)), t ≥ tin,

x(t) = H1(t), ρ ≤ t ≤ tin
(4.21)

where H1(t) is the initial function (history function), τ1 is the delay or lag
which is non-negative and can in general be constant, time dependent or state
dependent i.e. τ1 = τ1(t, x(t)) and ρ = min

t≥tin

{t − τ1}. The term x(t − τ1) is

called the delay term. In more general models, the derivative ẋ(t) may depend
on x(t) and ẋ(t) itself at some past value t − τ1. In this case equation (4.21)
can be rewritten in a more general form as follows

ẋ(t) = f2(t, x(t), x(t− τ1), ẋ(t− τ2), θ(t)), t ≥ tin,

x(t) = H2(t), ρ ≤ t ≤ tin
(4.22)

where ρ = min
1≤i≤2

{min
t≥tin

(t − τi)}. Equation (4.22) is called delay differential

equation of neutral type (NDDE). Models (4.21) and (4.22) usually involve
some unknown parameters that require to be estimated from the observational
data. We consider sets {θ(t),H1(t), τ1} and {θ(t),H2(t), τ1, τ2} as parameters
of the models (4.21) and (4.22) respectively.

4.5.1 Problem statement

Here we consider two cases, the fixed delays are unknown or there is an unknown
time varying parameter in the system. Next the precise problem statements
are described.

4.5.1.1 Reconstruction of fixed delays

Consider the dynamics of a process during a given time interval modeled by a
system of nonlinear DDEs with associated history functions H(t) of the form:

ẋ(t) = f(t, x(t), x(t− τ1), x(t− τ2), . . . , x(t− τp)), t ≥ tin,

x(t) = H(t), ρ ≤ t ≤ tin
(4.23)

where ρ = min
1≤i≤p

{min
t≥tin

(t − τi)}, x(t) ∈ Rn and the delays {τi}p
i=1 are constant

and unknown. In order to estimate the model parameters, all the states of the
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system are measured i.e. y(ti) = x(ti) + e(ti) where {e(ti)}N
i=1 are independent

measurement errors with zero mean. Here a particular structure of (4.23) is
considered. It is assumed that nonlinear model (4.23) exhibits the parameter-
affine form i.e. it is affine in the x(t− τi) for i = 1, . . . , p.

4.5.1.2 Reconstruction of time varying parameters

Consider the nonlinear state-dependent delay differential equation given in
(4.21) with associated history functionH1(t). In order to estimate the unknown
parameters, a set of measurements y(ti) are collected. In general the set
of measurements y(ti) do not necessarily correspond to the model states
x(ti). However here it is assumed that the system states are measured with
measurement error e(ti), therefore the sate space model has the following form:

ẋ(t) = f1(t, x(t), x(t− τ1), θ(t)), t ≥ tin,

y(ti) = x(ti) + ei, i = 1, . . . , N
(4.24)

where y(t) is the output of the system which has been observed at N time
instants and {ei}N

i=1 are independent measurement errors with zero mean.
The unknown {H1(t), θ(t)} are time dependent. In order to keep the model
affine in the unknown time varying parameters we do not assume that both
of them are unknown at the same time. Therefore as in [73, 74], we consider
the case that one of them is unknown at the time of applying the estimation
procedure. Hence the following cases can be studied: (i) H1(t) is known and
θ(t) is unknown, (ii) θ(t) is known and the history function H1(t) is unknown,
The same assumption is made for parameter estimation of the neutral delay
differential equation (4.22). The general stages of the procedure when the
dynamic system follows model (4.21) is described by the following flow-chart:
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Model (1)
along with

observational
data {ti, yi}N

i=1

are given

Estimate the
state trajectory

by means of
LSSVM model

Estimate the
derivative of

state by means
of LSSVM model

Is H1(t)
unknown ?

Is θ(t)
unknown ?

Is fixed lag τ
unknown ?

Estimate H1(t)
using the
approach

described in
section 4.5.5

Estimate θ(t)
using the
approach

described in
section 4.5.4

Estimate the
fixed lag τ using

the approach
described in
section 4.5.3

4.5.2 General Methodology

The proposed scheme will make use of the LSSVM ability to provide a closed-
form approximation for the state trajectory and its derivative from measured
data. We approximate the trajectory x̂(t) on the basis of observations at N
points {ti, y(ti)}N

i=1 using (4.5). Then (4.7) is utilized for approximating the
state derivative. These closed-form expressions will be used later in the process
of parameter estimation.

4.5.3 Fixed delay τ is unknown

For the sake of simplicity the methodology is described for a scalar DDE with
single delay, but the approach is applicable for identifying multi-delays in a
system of DDEs provided that they are identifiable. Consider the following
single delay parameter-affine DDE:

ẋ(t) = f(t, x(t))x(t− τ), t ≥ tin, (4.25)

where f(·) : R2 −→ R is an arbitrary nonlinear function and τ is the constant
parameter of the system which is unknown. In order to estimate the unknown
τ value, the state of the system is measured i.e. y(ti) = x(ti) + e(ti) where
{e(ti)}N

i=1 are independent measurement errors with zero mean. Let us assume
an explicit LSSVM model

x̂τ (t) = vTψ(t) + d,
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as an approximation for the term x(t − τ) where ψ(·) : R → Rh is the
feature map. Substituting the closed-form expressions for the state and its
derivative, d

dt x̂(t) and x̂(t) obtained from (4.5) and (4.7) respectively, into the
model description (4.25), the sought parameters v and d are identified as those
minimizing the following optimization problem [117]:

minimize
v,d,e

1

2
vT v +

γ

2

M∑

i=1

e2
i

subject to
d

dt
x̂(ti) =

(
vTψ(ti) + d

)
f(ti, x̂(ti)) + ei, for i = 1, ...,M.

(4.26)

Remark 4.5.1. Since closed-form expressions for the state and its derivative
are available we are not limited to choose M = N , i.e. we can evaluate the
constraint of the above optimization problem at the time instant ti which is not
necessarily the same as time instants that the system is measured.

Lemma 4.5.1. Given a positive definite kernel function K̃ : R × R → R with
K̃(t, s) = ψ(t)Tψ(s) and a regularization constant γ ∈ R+, the solution to
(4.26) is given by the following dual problem


 DΩ̃D + γ−1I F

FT 0





 α

d


 =




dx̂
dt

0


 (4.27)

where Ω̃(i, j) = K̃(ti, tj) = ψ(ti)
Tψ(tj) is the (i, j)-th entry of the positive

definite kernel matrix and I is the identity matrix. Also α = [α1, . . . , αM ]T ,
F = [f(t1, x̂(t1)), . . . , f(tM , x̂(tM ))]T , dx̂

dt = [ d
dt x̂(t1), . . . , d

dt x̂(tM )]T . D is a
diagonal matrix with the elements of F on the main diagonal.

Proof. The Lagrangian of the constrained optimization problem (4.26) becomes

L(v, d, ei, αi) =
1

2
vT v +

γ

2

M∑

i=1

e2
i −

M∑

i=1

αi

[(
vTψ(ti) + d

)
f(ti, x̂(ti)) + ei −

d

dt
x̂(ti)

]
,
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where
{
αi

}M

i=1
are Lagrange multipliers. Then the Karush-Kuhn-Tucker (KKT)

optimality conditions are as follows,

∂L

∂v
= 0→ v =

M∑

i=1

αif(ti, x̂(ti))ψ(ti),

∂L

∂d
= 0→

M∑

i=1

αif(ti, x̂(ti)) = 0,

∂L

∂ei
= 0→ ei =

αi

γ
, i = 1, . . . ,M,

∂L

∂αi
= 0→

(
vTψ(ti) + d

)
f(ti, x̂(ti)) + ei =

d

dt
x̂(ti), for i = 1, . . . ,M.

After elimination of the primal variables v and {ei}M
i=1 and making use of

Mercer’s Theorem, the solution is given in the dual by





d
dt x̂(ti) =

M∑

j=1

αjf(tj , x̂(tj))Ωjif(ti, x̂(ti)) +
αi

γ
+ df(ti, x̂(ti)), i = 1, . . . ,M

0 =

M∑

i=1

αif(ti, x̂(ti))

Writing these equations in matrix form gives the linear system in (4.27).

The model in the dual form becomes

x̂τ (t) = vTψ(t) + d =
M∑

i=1

αif(ti, x̂(ti))K̃(ti, t) + d, (4.28)

where K̃ is the kernel function.

Remark 4.5.2. If one is not interested in having a closed-form approximation
to the term x(t − τ), an alternative way to obtain an approximation for
x(t − τ) at the time instant ti is by using (4.25) directly, i.e. x(ti − τ) =
d
dt x̂(ti)

−1f(ti, x̂(ti)). A similar strategy can be applied in the case that the
dynamics of the process is described by a system of delay differential equations.
After substituting the closed-form expressions for the states and their derivatives
into the model, then one has to solve a system of linear equations (provided
that the underlying system is affine in the unknown parameter) to obtain the
approximation of the delay terms x(t − τj) for j = 1, . . . , p at time instants
t = ti, for i = 1, . . . , N .
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After obtaining the estimation x̂τ (t), the task is to estimate the fixed delay
τ . To this end, let us first define a shifting operator ∆m(·) which will be used
in the process of estimation of the delay τ . Operator ∆m(·) shifts the given
time series, which in our problem setting can for example be x̂(t) or ˆ̇x(t), m
steps forward in time in a certain manner, while keeping the length of the time
series unchanged. This is done by adding a constant vector of size m (whose
values will be clarified later) from the left to the time series and removing the
m last elements of the time series simultaneously. Therefore, given the time
series x̂(t) = [x̂(t1), x̂(t2), . . . , x̂(tN )]T , operator ∆m(·) is defined as follows:

z(t) = ∆m(x̂(t)) =





[z(t1), . . . , z(tm)︸ ︷︷ ︸
Constant vector

, x̂(t1), . . . , x̂(tN−m)]T , 1 ≤ m ≤ N − 1

x̂(t), for m = 0
(4.29)

with z(t1) = z(t2) = . . . , z(tm) = c where c is a constant. Noting that in an
ideal case (noise free) one can expect a delay differential equation to have the
following property

x̂τ (t)


t=τ

= x̂(t)


t=tin

, for τ ≥ 0, (4.30)

it is natural to utilize the first element of x̂(t), i.e., x̂(t1) as a constant c used in
operator ∆m(·). In order to estimate the delay τ , we use the sample correlation
coefficient function defined as:

rzx̂τ
=

∑N
i=1(z(ti)− µ1)(x̂τ (ti)− µ2)√∑N

i=1(z(ti)− µ1)2

√∑N
i=1(x̂τ (ti)− µ2)2

, (4.31)

where µ1 and µ2 denote the sample mean of time series z(t) and x̂τ (t)
respectively. Given x̂(t) and x̂τ (t) the process of estimating the unknown delay
τ is described in Algorithm 4.

Algorithm 4: Approximating the constant delay of a given DDE

Input: Time series x̂(t) and x̂τ (t) of size N ; sampling time Ts (in seconds).
Output: Time delay τ

1 for m← 0 to N − 1 do
2 z(t)← ∆m(x̂(t))
3 R(m)← Corrcoef(z(t), x̂τ (t))

4 τ ← Ts × argmax
m

R(m)

5 return τ
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In Algorithm 4, Corrcoef is a Matlab built-in function that computes the
correlation coefficient of two signals and R(m) corresponds to rzx̂τ

. One may
notice that in this approach we are not using the history function for estimating
the time delay τ . But if the history function is known a priori, one may use
it for constructing the constant vector used in operator ∆m(·) by taking the
value of history function at time tin.

4.5.4 Parameter θ(t) is unknown

Consider model (4.21) and case (i) where the time varying parameter θ(t) is
unknown and delay τ1 is known. Therefore with a slight abuse of notation, let
us assume an explicit LSSVM model

θ̂(t) = vTψ(t) + d,

as an approximation for the parameter θ(t). The adjustable parameters v and
d are to be found by solving the following optimization problem [117]:

minimize
v,d,e,ǫ,θi

1

2
vT v +

γ

2
(

M∑

i=1

e2
i +

M∑

i=1

ǫ2i )

subject to
d

dt
x̂(ti) = f1(ti, x̂(ti), x̂(ti − τ1), θi) + ei, for i = 1, . . . ,M,

θi = vTψ(ti) + d+ ǫi, for i = 1, . . . ,M.
(4.32)

Here the obtained closed-form expressions for the state and its derivative,
d
dt x̂(t) and x̂(t) obtained from (4.5) and (4.7), are substituted into the model
description (4.21). If f1 is nonlinear in θ(t) then the above optimization
problem is non-convex. The solution of (4.32) in the dual can be obtained
by solving a system of nonlinear equations. However, here we present our
results for the case that the nonlinear model (4.21) is affine in the parameter
θ(t). More precisely we consider the following parameter-affine form of (4.21)

ẋ(t) = θ(t)f1(t, x(t), x(t− τ1)), t ≥ tin,

x(t) = H1(t), t ≤ tin.
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This will result in the following convex optimization problem:

minimize
v,d,e

1

2
vT v +

γ

2

M∑

i=1

e2
i

subject to
d

dt
x̂(ti) =

(
vTψ(ti) + d

)
f1(ti, x̂(ti), x̂(ti − τ1)) + ei, for i = 1, . . . ,M.

(4.33)

Lemma 4.5.2. Given a positive definite kernel function K̃ : R × R → R with
K̃(t, s) = ψ(t)Tψ(s) and a regularization constant γ ∈ R+, the solution to
(4.33) is given by the following dual problem


 DΩ̃D + γ−1I F1

FT
1 0





 α

d


 =




dx̂
dt

0


 (4.34)

where Ω̃(i, j) = K̃(ti, tj) = ψ(ti)
Tψ(tj) is the (i, j)-th entry of the pos-

itive definite kernel matrix and I is the identity matrix. Also α =
[α1, . . . , αM ]T , F1 = [f1(t1, x̂(t1), x̂(t1 − τ1)), . . . , f1(tM , x̂(tM ), x̂(tM − τ1))]T ,
dx̂
dt = [ d

dt x̂(t1), . . . , d
dt x̂(tM )]T . D is a diagonal matrix with the elements of F1

on the main diagonal.

The model in the dual form becomes:

θ̂(t) =

M∑

i=1

αif1(ti, x̂(ti), x̂(ti − τ1))K̃(ti, t) + d, (4.35)

where K̃ is the kernel function.

Proof. The approach is the same as in proof of Lemma 4.5.1.

It should be noted that in the process of estimating θ(t), the values of the
history function H1(t) are not used. Therefore H1(t) can also be unknown
while θ(t) is being estimated which is the advantage of the proposed method
compared with conventional approaches that require the history function for
simulating the underlying model.

Remark 4.5.3. The same procedure can be applied for estimating the unknown
parameter θ(t) in parameter-affine form of model (4.22).
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4.5.5 History function H1(t) is unknown

Consider model (4.21) and case (ii) where the parameter H1(t) is unknown and
all the other parameters are known. It is assumed that the nonlinear function
f1 is affine in x(t− τ1). More precisely we consider the following form of (4.21):

ẋ(t) = x(t− τ1)f1(t, x(t), θ(t)), t ≥ tin,

x(t) = H1(t), t ≤ tin
(4.36)

where τ1 can be time and state dependent. Since the history function is time
varying let us, with a slight abuse of notation, assume an explicit LSSVM model

Ĥ1(t) = vTψ(t) + d,

as an approximation to the true H1(t). Optimal value for v and d can be
obtained by solving the following convex optimization problem [117]:

minimize
v,d,e

1

2
vT v +

γ

2

|T|∑

i=1

e2
i

subject to
d

dt
x̂(tisel) =

(
vTψ(tisel) + d

)
f1(tisel, x̂(tisel), θ(t

i
sel)) + ei,

for i = 1, . . . , |T|,

(4.37)

where d
dt x̂(tisel) and x̂(tisel) are estimations of the state trajectory and its

derivative obtained by using LSSVM models (4.5) and (4.7) respectively. |T|
is the cardinality of the ordered set T = {t1sel, t

2
sel, . . . , t

|T|
sel} whose elements are

selected using Algorithm 5.

Algorithm 5: Approximating the model’s time varying history function

Input: Vector T consists of time instants {ti}N
i=1 and the delay τ1

Output: set T

1 for i← 1 to N do
2 tlag(i)← ti − τ1(ti)
3

4 Find a vector of indices of elements of tlag whose values are less than tin
(assuming that tin = t1)

5 T ← elements of T corresponding to the indices found in step 2.
6 return T

The solution to (4.37) in the dual can be obtained by solving linear system (4.34)

with α = [α1, . . . , α|T|]
T , F1 = [f1(t1sel, x̂(t1sel), θ(t

1
sel)), . . . , f1(t

|T|
sel, x̂(t

|T|
sel), θ(t

|T|
sel))]

T
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and dx̂
dt = [ d

dt x̂(t1sel), . . . ,
d
dt x̂(t

|T|
sel)]

T . D is a diagonal matrix with the elements
of F1 on the main diagonal. The model in the dual form becomes:

Ĥ1(t) =

|T|∑

i=1

αif1(tisel, x̂(tisel), θ(t
i
sel))K̃(ti, t) + d, (4.38)

where K̃ is the kernel function. If delay τ1 in the model (4.36) is constant, one
can first utilize Algorithm 1 to estimate the delay τ1 and then apply Algorithm
2 to obtain a closed-form approximation to the history function H1(t).

Remark 4.5.4. The same procedure can be applied for estimating the unknown
history function H2(t) in a parameter-affine form of model (4.22).

4.6 Experiments

4.6.1 Parameter estimation of ODEs

To illustrate the applicability of the proposed method, we list the computed
results of the parameter estimation for three systems with time invariant
coefficients and two first order systems with time varying parameter. For all

the experiments, the RBF kernel is used, i.e. K(x, y) = exp(− (x−y)2

σ2 ).

4.6.1.1 Constant parameters

Example 1. Consider the nonlinear Bellman’s problem originated from a
chemical reaction [23]

dx

dt
= θ1(126.2− x)(91.9− x)2 − θ2x

2, x(1) = 0. (4.39)

The observations of the state x with one decimal place accuracy are given in
Table 4.1.

Table 4.1: Observations of state x for Bellman’s problem (4.39) [171].

t 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
x 0.0 1.4 6.3 10.4 14.2 17.6 21.4 23.0
t 10 12 15 20 25 30 40
x 27.0 30.4 34.4 38.8 41.6 43.5 45.3
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Cross-validation is used to tune the regularization constant γ and kernel
bandwidth σ, on a meaningful grid of possible (γ, σ) combinations. The
estimated parameter values obtained by averaging over 50 simulation runs and
the corresponding integrated residual RI are as follows

[θ̂1, θ̂2, RI ] = [0.45× 10−6, 0.28× 10−3, 1.45]

which agree well with the true solution [θ1, θ2] = [0.45×10−6, 0.27×10−3]. The
standard deviation of our approach for the parameters θ1 and θ2 are 8.92 ×
10−8 and 1.30 × 10−5 respectively. It should be noted that in the described
approach in [171] the spline knots have been chosen interactively. Whereas in
our proposed method one does not need to work with the knots and instead the
regularization constant γ is chosen automatically to avoid overfitting. Therefore
in contrast with the approach of [171] in our proposed method less human effort
is needed.

Example 2. Consider Barne’s problem which is based on the Lotka-Voltra
differential equations consisting of two ordinary differential equations with
three parameters θ1, θ2 and θ3 [171]

dx1

dt
= θ1x1 − θ2x1x2, x1(0) = x10

dx2

dt
= θ2x1x2 − θ3x2, x2(0) = x20.

The observed data values as given by [171] are reported in Table 4.2.

Table 4.2: Observations of the states x1 and x2 for Barne’s problem [171].

t 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

x1 1.0 1.1 1.3 1.1 0.9 0.7 0.5 0.6 0.7 0.8 1.0

x2 0.3 0.35 0.4 0.5 0.5 0.4 0.3 0.25 0.25 0.3 0.35

The estimated parameter values are obtained by taking the average over 50
simulation runs where each run corresponds to different training and validation
sets. Table 4.3, shows the values of the parameters reported in [171], [150],
Matlab diffpar [57] toolbox and the computed results obtained by the proposed
method. It can be seen that they all are in good agreement.

The standard deviation of our approach for the parameters θ1, θ2 and θ3 are
6.78 × 10−2, 1.83 × 10−1 and 1.69 × 10−1 respectively. In our approach the
RI(θest) = 0.11 which is also less than that (i.e. R2

I = 0.35) reported in [171].
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Table 4.3: Estimated parameters of Barne’s problem.

Method θ̂1 θ̂2 θ̂3 x̂10 x̂20

[171] 0.85 2.13 1.91 1.02 0.25
[57] 0.81 2.29 2.00 0.99 0.21
[150] 0.98 1.95 1.69 0.96 0.29

LSSVM approach 0.84 2.14 1.96 0.99 0.29

Furthermore, we have used the approach presented in section 4.3 to estimate
the unknown parameters of the Barne’s equations and the obtained results are
shown in Fig. 4.2.
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Figure 4.2: The Barne’s system is first simulated over domain [0, 200] using the
true parameter values. Sampling time Ts = 1s is used i.e. 200 measurements.
Gaussian white noise, with zero mean and std 0.1, is added to the true solution.
(a) The obtained Mean Squared Error for Barne’s model. (b) Number of
required Newton iterations needed to satisfy the given tolerance.

In Fig. 4.2, the case where the user is providing some starting point, based
upon available prior knowledge, is referred to as USER initialization approach.
The implementations and simulations were carried out in MATLAB and for the
discretization of (4.16), the ACADO integrators were used as presented in [138].
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Fig. 4.2 shows that LSSVM based initialization requires the least number of
iterations to converge.

Example 3. Consider the Lorenz equation [102] which form a system of three
differential equations that are important in climate and weather predictions.
It is well known that the Lorenz equation is an example of a nonlinear and
chaotic system

dx1

dt
= a(x2 − x1)

dx2

dt
= x1(b− x3)− x2

dx3

dt
= x1x2 − cx3

where a, b and c are the unknown parameters within the system. The initial
condition at t = 0 is taken to be (x1(0), x2(0), x3(0)) = (−9.42,−9.34, 28.3).
The correct parameters we are trying to reconstruct are a = 10, b = 28 and c =
8/3. The solution of the Lorenz system is prepared by numerically integrating
the Lorenz equations using MATLAB built-in solver ode45, on domain [0,3]
with the relative error tolerance RelTol= 10−6. Then the model observation
data are constructed by adding Gaussian white noise with zero mean to the
true solution. The level of noise (standard deviation of the noise) is denoted by
η. In this problem η is considered to be η = 0.0, 0.2 and 0.5. The observation
points are prepared within the domain of [0, 3] at every ∆t = 0.05. After
obtaining the closed-form approximation for the states x1, x2 and x3 by means
of LSSVM, we used 301 equally spaced sample points in the interval [0, 3] to
solve optimization problem (4.8). Table 4.4 reports the estimated parameters
of the Lorenz system by averaging over 50 simulation runs. The average and
standard deviation of our results after 50 simulations are depicted in Fig 4.3.

Table 4.4: The values of parameters estimated of Lorenz model. Parameter η
is the standard deviation of the noise.

η Estimated parameters
a b c

aest |ea| best |eb| cest |ec|
0.0 9.99 0.0014 28.00 0.0062 2.67 0.0041
0.2 9.60 0.3919 28.03 0.0352 2.67 0.0042
0.5 9.34 0.6532 27.86 0.112 2.68 0.0147

The true values of model parameters a, b and c are 10.0, 28.0 and 8/3
respectively. Absolute errors are denoted by |e.|.
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Figure 4.3: Estimation of Lorenz parameters a, b and c from data with
observational noise. The true value is indicated by the dashed line.
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Furthermore, we have used the approach presented in section 4.3 to estimate
the unknown parameters of the Lorenz equations and the obtained results
are shown in Fig. 4.4. Fig. 4.4 shows that LSSVM based initialization is
comparable to that of conventional convex initialization approaches.
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Figure 4.4: The Lorenz system is first simulated over domain [0, 12] using the
true parameter values. Sampling time Ts = 0.04s is used i.e. 300 measurements.
Gaussian white noise, with zero mean and std 0.05, is added to the true solution.
(a) The obtained Mean Squared Error for Lorenz model.(b) Number of required
Newton iterations needed to satisfy the given tolerance.

4.6.1.2 Time varying parameters

Example 4. Consider the following linear time varying system,

dx

dt
− sin(t)

t+ 1
x(t) = cos(t), x(0) = 1. (4.40)

The aim is to estimate the time varying coefficient sin(t)
t+1 from measured data.

For collecting the data, the solution of this equation has been obtained using
Matlab built-in solver ode45, with the relative error tolerance RelTol= 10−6,
over the domain of [0, 20]. Thereafter the process is observed at N discrete time
instants. Then we have artificially introduced random noise (Gaussian white
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noise with noise level η) to the true solution in order to create observational
data. After obtaining the LSSVM closed form approximation for the state x,
we used M = 200 equally spaced sample points in the interval [0, 20] to solve
optimization problem (4.13). The mean square error (MSE) for the test set (500
sample points in interval [0,20]) are tabulated in Table 4.5. Fig 4.5, shows the
influence of noise level on the parameter estimation. 10-fold cross-validation
is used for the model selection by choosing one of several models that has the
smallest estimated generalization error.

Table 4.5: The influence of noise level and number of observed data on the
parameter estimation. Parameter η is the standard deviation of the noise and
N is the number of observed data.

N η MSE
100 0.0 2.02× 10−8

0.1 3.9× 10−4

200 0.0 1.09× 10−8

0.1 3.4× 10−4

Example 5. Consider the following nonlinear and time varying dynamical
system,

dx

dt
− cos(t)

sin(t) + 2
cos(x(t)2) = cos(t), x(0) = 1. (4.41)

In order to estimate the time-varying coefficient cos(t)
sin(t)+2 , we generate the

solution to (4.41) with the true parameter. Then random noise (Gaussian
white noise with noise level η) is added to the true solution in order to
create observational data. The mean square error (MSE) for the test set (500
sample points in interval [0,20]) is tabulated in Table 4.6. Fig 4.6, shows the
influence of noise level on the parameter estimation. The kernel bandwidth σ
and regularization constant γ are tuned by 10-fold cross validation, while the
preference is given to less complex models.

Table 4.6: The influence of noise level and number of observed data on the
parameter estimates. Parameter η is the standard deviation of the noise and
N is the number of observed data.

N η MSE
100 0.0 8.34× 10−5

0.05 3.5× 10−3

200 0.0 3.06× 10−6

0.05 2.0× 10−3
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Figure 4.5: Estimation of time varying parameter of dynamical system
formulated in Example 4 using M = 200 sample points. 500 sample points
in the interval [0, 20] are used for the test set.
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Figure 4.6: Estimation of time varying parameter of dynamical system
formulated in Example 5 using M = 200 sample points. 500 sample points
in the interval [0, 20] are used for the test set.

4.6.2 Parameter estimation of DDEs

In this section, six experiments are performed to demonstrate the capability of
the proposed method for time varying/invariant parameters of parameter-affine
non-neutral DDEs and neutral DDEs. The last three test problems are taken
from [73] and [74], but in contrast with the approach given in these references,
we allow to have measurement errors. The performance of the LSSVM model
depends on the choice of the tuning parameters. For all experiments, the

Gaussian RBF kernel i.e. K(x, y) = exp(−‖x−y‖2
2

σ2 ) is used. Therefore, a model
is determined by the regularization parameter γ and the kernel bandwidth σ.
The 10-fold cross validation criterion is used to tune these parameters. The
SNR stands for signal to noise ratio which is calculated using 20 log10(

Asignal

Anoise
)

where Asignal and Anoise are the root mean square of the signal and noise
respectively. The estimated parameter values are obtained by averaging over
10 simulation runs. As error bounds we used about twice the standard deviation
of the error.
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4.6.2.1 Constant parameters

Problem 6. Consider a Kermack-McKendrick model of an infectious disease
with periodic outbreak [146, Example 1]

ẋ1(t) = −x1(t)x2(t− τ1) + x2(t− τ2)

ẋ2(t) = x1(t)x2(t− τ1)− x2(t)

ẋ3(t) = x2(t)− x2(t− τ2)

(4.42)

on [0, 20] with history x1(t) = 5, x2(t) = 0.1 and x3(t) = 1 for t ≤ 0. The
true value of the delays are τ1 = 1 and τ2 = 10. For collecting the data, the
solution of the this system is prepared by numerically integrating the differential
equation (4.42) using MATLAB built-in solver dde23, on domain [0, 20] with
the relative error tolerance RelTol= 10−6. Then the model observation data
are constructed by adding Gaussian white noise with zero mean to the true
solution. The observation data points are prepared within the domain of [0, 20]
with sampling time Ts = 100 ms (i.e. 201 data points). The obtained results are
shown in Fig. 4.7. As Fig. 4.7(e) and (g) suggest the peaks of the correlation
coefficients occurred nearly at indices 10 and 100. Multiplying these indices
with sampling time Ts (in seconds), yields an estimate of the unknown delays
τ1 and τ2, respectively. Fig. 4.8(a) and (b) show the influence of noise level
on the parameter estimation. It should be noted that as the value of signal to
noise ratio increases, the standard deviation of the estimation error decreases.

Problem 7. Consider a triangle wave defined by the following scalar NDDE:

ẋ(t) = −ẋ(t− τ)

x(t) = t, −τ ≤ t ≤ 0.
(4.43)

In order to prepare the observational data, the solution to (4.43) is generated,
with the true delay τ = 1, by using MATLAB built-in solver ddesd, on
domain [0,2] with the relative error tolerance RelTol= 10−6. Then the model
observation data are constructed by adding Gaussian white noise with zero
mean to the true solution. The observation points are prepared within the
domain of [0, 2] with sampling time Ts = 10 ms (i.e. 201 data points). Fig. 4.9
represents the results obtained by applying the proposed method for estimating
the unknown delay τ . The result of parameter estimation for different values
of signal to noise ratio is depicted in Fig. 4.8(c). From Fig. 4.8(c), one may
notice that as the value of signal to noise ratio increases, the standard deviation
of the estimation error decreases.
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Figure 4.7: Estimation of constant delays τ1 and τ2 in Problem 6 from observational data. (a)
Estimation of the first state x1(t) and its derivative from the observational data. (b) Estimation
of the second state x2(t) and its derivative from observational data. (c) Estimation of the third
state x3(t) and its derivative from observational data. (d) Estimation of x2(t − τ1) and x2(t). (e)
Correlation-coefficient values as a function of time index m for two time series x2(t) and x2(t − τ1)
as computed in Algorithm 4. (f) Estimation of x2(t − τ2) and x2(t). (g) Correlation-coefficient
values as a function of time index m for two time series x2(t) and x2(t − τ2), as computed in
Algorithm 4.

Problem 8. Consider an artificial example:

ẋ(t) = sin(x(t) + t)x(t− τ), t ∈ [0, 2]

x(0) = 1,
(4.44)
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Figure 4.8: Estimation of constant delays τ1 and τ2 in Problem 6 and delay τ
in Problem 7 from observational data for different values of signal to noise ratio.
The exact value of the lags are denoted by the dashed lines. (a) Estimation
of delay τ1 for problem 6. (b) Estimation of the delay τ2 for problem 6. (c)
Estimation of the delay τ for problem 7.
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Figure 4.9: Estimation of constant lag τ in Problem 7 from observational data.
(a) Estimation of the state x(t) and its derivative from observational data. (b)
Estimation of ˆ̇x(t− τ) and ˆ̇x(t). (c) Correlation-coefficient values as a function
of time index m for two time series ˆ̇x(t) and ˆ̇x(t−τ), as computed in Algorithm
4.

where the true delay τ = 0. The solution to (4.44) is generated, with the true
delay τ = 0, by using MATLAB built-in solver ode45, on domain [0,2] with the
relative error tolerance RelTol= 10−6. Then the model observation data are
constructed by adding Gaussian white noise with zero mean to the true solution.
The observation points are prepared within the domain of [0, 2] with sampling
time Ts = 10 ms (i.e. 201 data points). The obtained results for estimating
the unknown delay τ are shown in Fig. 4.10. As Fig. 4.10(c) suggests the peak
of the correlation coefficient occurred at index m = 0. Based on Algorithm 1,
multiplying this index with sampling time Ts (in seconds), yields an estimate
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of the unknown delays τ . Thus the estimated lag τ is zero.
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Figure 4.10: Estimation of constant lag τ in Problem 8 from observational
data. (a) Estimation of the state x(t) and its derivative from observational
data. (b) Estimation of x̂(t− τ) and x̂(t). (c) Correlation-coefficient values as
a function of time index m for two time series x̂(t) and x̂(t− τ), as computed
in Algorithm 4.

4.6.2.2 Time varying parameters

Problem 9. Consider the linear delay equation [73, Problem 2]

ẋ(t) = θ(t)x(t− ξ(t)), t ∈ [0, 2]

x(t) = H1(t), t ∈ [−2, 0]
(4.45)

where

ξ(t) =

{
2− t2, t ∈ [0, 1]
1, t ∈ [1, 2]

, θ(t) =

{
−t
t+1 , t ∈ [0, 1]

− 1
2 , t ∈ [1, 2]

andH1(t) = t2. It is assumed that the initial functionH1(t) and ξ(t) are known
and we aim at estimating the unknown parameter θ(t) from measured data.
For collecting the data, the solution of this system is prepared by numerically
integrating the differential equation (4.45) using MATLAB built-in solver ddesd,
on domain [0,2] with the relative error tolerance RelTol= 10−6. Then the
model observation data are constructed by adding Gaussian white noise with
zero mean to the true solution. The observation points are prepared within
the domain of [0, 2] with sampling time Ts = 10 ms (i.e. 201 data points).

Applying the presented scheme in section 4.3, an estimation θ̂(t) is obtained
and the results are depicted in Fig. 4.11(a) and (b). The root mean square
errors (RMSE) for different values of signal to noise ratio are also tabulated in
Table 4.7. From Table 4.7, it is apparent that as the value of signal to noise
ratio (SNR) increases, the estimation error decreases.
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Figure 4.11: (a) and (b) Estimation of time varying parameter θ(t) in Problem
9 from observational data for different values of signal to noise ratio. (c) and
(d) Estimation of History function H1(t) in Problem 10 from observational data
for different values of signal to noise ratio.

Problem 10. Consider the linear delay equation (4.45). In this problem
we assume that θ(t) and ξ(t) are known and we aim at estimating the initial
function from measured data [73, Problem 1]

ẋ(t) = θ(t)x(t− ξ(t)), t ∈ [0, 2]

x(t) = H1(t), t ∈ [−2, 0].
(4.46)

As in Problem 9, the observational data are prepared within the domain of
[0, 2] with sampling time Ts = 10 ms (i.e. 201 data points). Fig. 4.11(c) and
(d), shows the obtained approximation Ĥ1(t) for the history function when the
scheme described in subsection 4.5.5 is utilized. The root mean square errors
(RMSE) for different values of signal to noise ratio are recorded in Table 4.7.
From Table 4.7, it is apparent that as the value of signal to noise ratio (SNR)
increases, the estimated parameter converges to the true parameter.
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Table 4.7: The influence of signal to noise ratio on the parameter estimates
for problems 9, 10, 11 when 201 data points is used.

RMS Error

SNR Problem 5.4 Problem 5.5 Problem 5.6

6 1.72e− 2 2.87e− 1 1.13e− 1
11 1.32e− 2 2.12e− 2 1.17e− 2
18 7.01e− 3 4.02e− 3 3.14e− 3
24 2.10e− 3 2.03e− 3 1.01e− 3

SNR stands for signal to noise ratio.

Problem 11. Consider the following state dependent delay neutral delay
differential equations [74, Problem 1]

ẋ(t) = θ(t) + ẋ(t− t2

t2 + 4
|x(t)| − 1), t ∈ [0, 1]

x(t) =
1

4
t2 + 1, t ≤ 0.

(4.47)

It is assumed that the time varying parameter θ(t) is unknown and has to be
estimated from measured data. The true parameter is θ(t) = 1

8 t
2 + 1

2 . It is
easy to check that the true solution of for the given θ(t) is x(t) = 1

4 t
2 + 1.

The model observation data are constructed by adding Gaussian white noise
with zero mean to the true solution. The observation points are prepared within
the domain of [0, 1] with sampling time Ts = 5 ms (i.e. 201 data points). The
obtained results are shown in Fig. 4.12. The root mean square errors (RMSE)
for different values of signal to noise ratio are given in Table 4.7. The results
reveal that higher order accuracy can be achieved by increasing the value of
signal to noise ratio.
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Figure 4.12: Estimation of time varying parameter θ(t) in Problem 11 from
observational data for different values of signal to noise ratio.

4.7 Conclusions

In this chapter, a novel approach based on LSSVM is proposed for estimation
of the unknown parameters of a dynamical system governed by ODEs and
DDEs. The ability of LSSVM for producing a continuous output is exploited
to generate a closed form solution for the time-varying parameters of the
model understudy. The approach showed a comparable performance compared
to other existing methods and can provide a good initial estimate for the
parameters that can be used as a starting point for conventional optimization
approaches that seek the optimal model parameters.



Chapter 5

Non-Parallel Classifiers

In this chapter, a general framework of non-parallel support vector machines,
which involves a regularization term, a scatter loss and a misclassification
loss is introduced. When dealing with binary problems, the framework
with proper losses covers some existing non-parallel classifiers, such as
multisurface proximal support vector machine via generalized eigenvalues, twin
support vector machines, and their least squares version. The possibility of
incorporating different existing scatter and misclassification loss functions into
the general framework is discussed. Moreover, in contrast with the mentioned
methods, which apply kernel-generated surfaces, we directly apply the kernel
trick in the dual and then obtain nonparametric models. Therefore, one does
not need to formulate two different primal problems for the linear and nonlinear
kernel respectively. In addition, experimental results are given to illustrate the
performance of different loss functions. In addition the possibility of learning
from few labeled and large amount of unlabeled data points using a non-parallel
classifier is discussed through introducing the NP-Semi-KSC.

5.1 Related Work

For binary classification problems, both SVMs and LSSVMs aim at con-
structing two parallel hyperplanes (or the hyperplanes in the feature space)
to do classification. An extension is to consider non-parallel hyperplanes.
The concept of applying two non-parallel hyperplanes was first introduced
in [106], where two non-parallel hyperplanes were determined via solving two
generalized eigenvalue problems, and called generalized eigenvalue proximal

119
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SVM (GEPSVM). In this case one obtains two non-parallel hyperplanes where
each one is as close as possible to the data points of one class and as far as
possible from the data points of the other class. Recently many approaches,
based on non-parallel hyperplanes, have been developed for classification,
regression and feature selection tasks (see [187, 135, 136, 147]).

The authors in [86] modified GEPSVM and proposed a non-parallel classifier
called Twin Support Vector Machines (TWSVM), that obtains two non-parallel
hyperplanes by solving a pair of quadratic programming problems. An
improved TWSVM termed as TBSVM is given in [148] where the structural
risk is minimized. Motivated by the ideas given in [160] and [63], recently least
squares twin support vector machines (LSTSVM) is presented in [8], where the
primal quadratic problems of TSVM is modified into least squares problem via
replacing inequalities constraints by equalities.

In the above mentioned approaches, kernel-generated surfaces are used for
designing a nonlinear classifier. In addition one has to construct different primal
problems depending on whether a linear or nonlinear kernel is applied. It is
the purpose of this chapter to formulate a non-parallel support vector machine
classifier for which we can directly apply the kernel trick and thus it enjoys the
primal and dual properties as in classical support vector machines classifiers.
A general framework of non-parallel support vector machine, which consists of
a regularization term, a scatter loss and a misclassification loss, is provided.
The framework is designed for multi-class problems. Several choices for the
losses are investigated. The corresponding nonparametric models are given via
considering the dual problems and the kernel trick.

5.2 Non-parallel Support Vector Machine

Let us consider a given training dataset {xi, yi}N
i=1, where xi ∈ Rd, yi is the

label of the i-th data point and there are M classes. Here the one-vs-all strategy
is utilized to build the codebook, i.e., the training points belonging to the m-th
class are labeled by +1 and all the remaining data from the rest of the classes
are considered to have negative labels. The index set corresponding to class m
is denoted by Im. We seek non-parallel hyperplanes in the feature space:

fm(x) = wT
mϕm(x) + bm = 0, m = 1, 2, . . . ,M

each of which is as close as possible to the points of its own class and as far as
possible from the data points of the other class.
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5.2.1 General formulation

In the primal, the hyperplane fm(x) = 0 for class m can be constructed by the
following problem, [115]:

min
wm,bm,e,ξ

1

2
wT

mwm +
γ1

2

∑

i∈Im

L(1)(ei) +
γ2

2

∑

i6∈Im

L(2)(ξi)

subject to wT
mφm(xi) + bm = ei,∀i ∈ Im

1 +

(
wT

mφm(xi) + bm

)
= ξi,∀i 6∈ Im.

(5.1)

After solving (5.1) for m = 1, 2, . . . ,M , we obtain M non-parallel hyperplanes
in the feature space. Then the label of the new test point x∗ is determined
depending on the perpendicular distances of the test point from the hyperplanes.
Mathematically, the decision rule can be written as follows:

L̂abel(x∗) = arg min
m=1,2,...,M

{dm(x∗)} , (5.2)

where the perpendicular distance dm(x∗) is calculated by

dm(x∗) =

∣∣wT
mφm(x∗) + bm

∣∣
‖wm‖2

, m = 1, 2, . . . ,M.

The target of (5.1) is to establish a hyperplane which is close to the points
in class Im and also is far away from the points that are not in this class.
Therefore, any scatter loss function can be used for L(1)(·) and at the same time
any misclassification loss function can be utilized for L(2)(·). Possible choices for
L(1)(·) include least squares, ǫ-insensitive tube, absolute, and Huber loss. For
L(2)(·), one can consider least squares, hinge, or squared hinge loss. Different
loss has its own statistical properties and is suitable for different tasks. The
proposed general formulation (5.1) is to handle multi-class problems, for which
we essentially solve a series of binary problems. In the binary problem related
to class m, we regard xi, i ∈ Im and the remaining points as two classes. Hence,
the basic scheme of (5.1) for multi-class problems and binary problems is similar.
For the convenience of expression, we focus on binary problems in theoretical
discussion and evaluate multi-class problems in numerical experiments. Besides,
for each class, one can apply a different nonlinear feature mapping in (5.1). Here
we discuss the case that a unique φ(x) is used for all the classes.

Remark 5.2.1. In general if one uses a nonlinear feature map ϕ(·), obviously
two non-parallel hyper-surfaces will be obtained. Here the term “hyperplane” is
used.
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5.2.2 Related existing methods

For a binary problem, we assume that there are n1 points in class 1 and n2

points in class 2, i.e., there are n1 elements in I1 and n2 in I2. Suppose
X1 and X2 are matrices, containing data points of class 1 and 2 respectively.
The corresponding matrices with feature mapping ϕ(·) are denoted by Φ1 and
Φ2, i.e. the i-th row of Φ1 is the vector ϕ(xi), i ∈ I1, and so is Φ2. Denote
Yn1

= diag{+1}n1
i=1 ∈ Rn1×n1 , Yn2

= diag{−1}n2
i=1 ∈ Rn2×n2 , and 1n as an n

dimensional vector with all components equal to one. Then the non-parallel
SVM (5.1) can be written in matrix formulation as the following two problems:

min
w1,b1,e,ξ

1

2
wT

1 w1 +
γ1

2
L(1)(e) +

γ2

2
L(2)(ξ)

subject to Φ1w1 + b11n1
= e

Yn2

[
Φ2w1 + b11n2

]
+ ξ = 1n2

,

(5.3)

and

min
w2,b2,e,ξ

1

2
wT

2 w2 +
γ1

2
L(1)(e) +

γ2

2
L(2)(ξ)

subject to Φ2w2 + b21n2
= e

Yn1

[
Φ1w2 + b21n1

]
+ ξ = 1n1

.

(5.4)

As discussed previously, L(1)(·) could be any scatter loss function and any
misclassification loss can be used in L(2)(·). For example, if one chooses least
squares loss for L(1)(·) and hinge loss for L(2)(·) and let γ1 = γ2 → ∞, the
problem formulations (5.28) and (5.29), when a linear kernel is used, will reduce
to TWSVM introduced in [86]:

TWSVM1 min
w1,b1,ξ

1

2
‖X1w1 + b11n1

‖2 + C11T
n2
ξ

subject to − (X2w1 + b11n2
) + ξ ≥ 1n2

,

(5.5)

TWSVM2 min
w2,b2,ξ

1

2
‖X2w2 + b21n2

‖2 + C21T
n1
ξ

subject to (X1w2 + b21n1
) + ξ ≥ 1n1

.

(5.6)
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Another example is choosing the least squares loss for both L(1)(·) and L(2)(·).
Again, letting γ1 = γ2 →∞ in (5.28) and (5.29) and using a linear kernel, one
obtains the LSTSVM formulation reported in [8]

LSTSVM1 min
w1,b1,ξ

1

2
‖X1w1 + b11n1

‖2 +
C1

2
ξT ξ

subject to − (X2w1 + b11n2
) + ξ = 1n2

,

(5.7)

LSTSVM2 min
w2,b2,ξ

1

2
‖X2w2 + b21n2

‖2 +
C2

2
ξT ξ

subject to (X1w2 + b21n1
) + ξ = 1n1

.

(5.8)

In contrast with the classical support vector machines technique, TWSVM
and LSTSVM do not take the structural risk minimization into account. For
TWSVM, the authors in [148] gave an improvement by adding a regularization
term in the objective function aiming at minimizing the structural risk by
maximizing the margin. This method is called TBSVM, where the bias
term is also penalized. But penalizing the bias term will not affect the
result significantly and will change the optimization problem slightly. From
a geometric point of view it is sufficient to penalize the norm of w in order to
maximize the margin.

Another noticeable point is that TWSVM, LSTSVM, and TBSVM use a kernel
generated surface to apply nonlinear kernels. As opposed to these methods, in
our formulation, the burden of designing another two optimization formulations,
when a nonlinear kernel is used, is reduced by applying Mercer’s theorem and
the kernel trick directly, which will be investigated in the following section.

5.3 Different Loss Functions

There are several possibilities for choosing the loss functions L(1)(·) and L(2)(·).
Our target is to make the points in one class clustered in the hyperplane by
minimizing L(1)(·), which hence should be a scatter loss. For this aim, we
prefer to use the least squares loss for L(1)(·), because the related problem is
easy to handle. Its weak point is that the least squares loss is sensitive to large
outliers, then one may also consider ℓ1-norm or Huber loss under the proposed
framework. For L(2)(·), which penalizes misclassification error to push the
points in other classes away from the hyperplane, we need a misclassification
loss. In what follows, we illustrate the following loss functions used in (5.3)
and (5.4). Other loss functions can be discussed similarly:
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• Least squares loss for L(1)(·) and L(2)(·) (will be referred to as LS-LS
case).

• Least squares loss for L(1)(·) and hinge loss for L(2)(·) (will be referred
to as LS-Hinge case).

• Least squares loss for L(1)(·) and pinball loss for L(2)(·) (will be referred
to as LS-Pinball case).

The above-mentioned loss functions are depicted in Fig 5.1.
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Figure 5.1: Some loss functions for L(2)(·): hinge loss (solid line), least squares
loss (dot-dashed line), and pinball loss with τ = 0.5 (dotted line).

5.3.1 Case: LS-LS loss

We first investigate the case using a least squares loss in both L(1)(·) and
L(2)(·). Due to the fact that applying least squares loss will lead to a set of
linear systems, this choice has much lower computational cost in comparison
with other loss functions, which may result in solving quadratic programming
problems or nonlinear systems of equations. Specifically, using least squares
loss in (5.28) and (5.29) leads to the following problems:

min
w1,b1,e,ξ

1

2
wT

1 w1 +
γ1

2
eT e+

γ2

2
ξT ξ

subject to Φ1w1 + b11n1
= e

Yn2

[
Φ2w1 + b11n2

]
+ ξ = 1n2

,

(5.9)
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and

min
w2,b2,e,ξ

1

2
wT

2 w2 +
γ1

2
eT e+

γ2

2
ξT ξ

subject to Φ2w2 + b21n2
= e

Yn1

[
Φ1w2 + b21n1

]
+ ξ = 1n1

.

(5.10)

In this case, problems (5.9) or (5.10) become a quadratic minimizations under
linear equality constraints, which enables a straightforward solution.

The obtained formulations (5.9) and (5.10) are closely related to LSTSVM
(5.7) and (5.8). An important difference is that there are regularization terms
involved in (5.9) and (5.10), which makes the kernel trick applicable to obtain
nonparametric models. In [8], the kernel generated surfaces were introduced
to LSTSVM, which does not consider structural risk minimization and also
brings the burden of designing another two optimization formulations when a
nonlinear kernel is used. Our nonparametric model can be directly obtained
from the dual problem of (5.9) and (5.10), illustrated below.

Theorem 5.3.1. Given a positive definite kernel K : Rd × Rd → R with
K(t, s) = ϕ(t)Tϕ(s) and regularization constants γ1, γ2 ∈ R+, the dual problem
of (5.9) is posed as:




Ω11 + In1
/γ1 Ω12Yn2

1n1

Yn2
Ω21 Ω22 + In2

/γ2 Yn2
1n2

1T
n1

1T
n2
Yn2

0






α1

β1

b1


 =




0n1

1n2

0


 (5.11)

with α1 ∈ Rn1 , β1 ∈ Rn2 ,Ω11 = Φ1ΦT
1 ,Ω22 = Φ2ΦT

2 ,Ω12 = Φ1ΦT
2 and Ω21 =

ΩT
12. In other words, the elements of Ω11 are calculated by K(xi, xj), i, j ∈ I1,

and so are Ω12,Ω21 and Ω22.

Proof. The Lagrangian of the constrained optimization problem (5.9) becomes

L(w1, b1, e, ξ, α1, β1) =

1

2
wT

1 w1 +
γ1

2
eT e+

γ1

2
ξT ξ − αT

1

(
Φ1w1 + b11n1

− e
)
−

βT
1

(
Yn2

[
Φ2w1 + b11n2

]
+ ξ − 1n2

)

where α1 and β1 are the Lagrange multipliers corresponding to the constraints
in (5.9). Then the Karush-Kuhn-Tucker (KKT) optimality conditions are as
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follows,

∂L
∂w1

= 0→ w1 = ΦT
1 α1 + ΦT

2 Yn2
β1,

∂L
∂b1

= 0→ 1T
n1
α1 + 1T

n2
Yn2

β1 = 0,

∂L
∂e

= 0→ e = −α1

γ1
,

∂L
∂ξ

= 0→ ξ =
β1

γ2
,

∂L
∂α1

= 0→ Φ1w1 + b11n1
− e = 0,

∂L
∂β1

= 0→ Yn2

[
Φ2w1 + b11n2

]
+ ξ = 1n2

.

After elimination of the primal variables w1, e, ξ and making use of Mercer’s
Theorem, one can obtain the solution in the dual by solving linear system
(5.11).

Using a similar argument, one can show that the solution of optimization
problem (5.4) can be obtained in the dual by solving the following linear system:




Ω22 + In2
/γ1 Ω21Yn1

1n2

Yn1
Ω12 Ω11 + In1

/γ2 Yn1
1n1

1T
n2

1T
n1
Yn1

0






α2

β2

b2


 =




0n2

1n1

0


 (5.12)

with α2 ∈ Rn2 , β2 ∈ Rn1 .

Via solving (5.11) and (5.12), we obtain the optimal dual variables α1,2, β1,2,
and b1,2. Then for the unseen test data points Dtest = {x∗

j}ntest
j=1 the labels can

be determined using (5.2) where

d1(Dtest) =
|Φtestw1 + b11ntest

|
‖w1‖2

=
|Φtest(Φ

T
1 α1 + ΦT

2 Yn2
β1) + b11ntest

|
‖ΦT

1 α1 + ΦT
2 Yn2

β1‖2
,
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and

d2(Dtest) =
|Φtestw2 + b21ntest

|
‖w2‖2

=
|Φtest(Φ

T
2 α2 + ΦT

1 Yn1
β2) + b21ntest

|
‖ΦT

2 α2 + ΦT
1 Yn1

β2‖2
.

Here Φtest = [ϕ(x∗
1), . . . , ϕ(x∗

ntest
)]T . Thanks to the KKT optimality conditions,

w1 and w2 are written in terms of Lagrange multipliers.

Next we will show that when we set γ1 = γ2, (5.11) and (5.12) reduce to least
squares support vector machine classifier [160], given below,

min
w,b,e

1

2
wTw +

γ

2
eT e

subject to Y

[
Φw + b1N

]
= 1N − e,

(5.13)

where N = n1 + n2 is the number of training data in both class 1 and class 2.
and Y is a diagonal matrix which contains the labels of all classes i.e. -1 and
+1 on the main diagonal.

Theorem 5.3.2. Problems (5.9) and (5.10) are equivalent to the standard least
squares support vector machine classifier (5.13) when γ1 = γ2.

Proof. Consider problem (5.9) with least squares loss and γ1 = γ2. We
introduce a new variable b̃1 = b1 + 1/2, and rewrite (5.9) as follows:

min
w1,b̃1,e,ξ

1

2
wT

1 w1 +
γ1

2
eT e+

γ2

2
ξT ξ

subject to Yn1

[
Φ1w1 + b̃11n1

]
− e =

1

2
1n1

Yn2

[
Φ2w1 + b̃11n2

]
+ ξ =

1

2
1n2

,

(5.14)

where Yn1
is defined as previously. Since γ1 = γ2, by combining the constraints,

one can rewrite (5.14) as follows:

min
w1,b̃1,ẽ

1

2
wT

1 w1 +
γ

2
ẽT ẽ

subject to ẽ =
1

2
1N − YN

[
Φ2w1 + 2b̃11N

]
,

(5.15)
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where Φ =

[
Φ1

Φ2

]
, ẽ =

[
e
ξ

]
, YN =

[
Yn1

Yn2

]
and 1N =

[
1n1

1n2

]
.

Now let w̄ = 2w1 and b̄ = 2b̃, then one can find that (5.15) is equivalent to the
following optimization problem:

min
w̄,b̄,ē

1

2
(w̄ )T (w̄ ) +

γ

2
(ē )T (ē )

subject to ē = 1N − YN

[
Φw̄ + b̄1N

]
,

(5.16)

which is indeed the classical LSSVM classifier formulation.

Similarly one can demonstrate that (5.29) with least squares loss and γ1 = γ2

will be equivalent to (5.13). This relationship implies that the LS-LS is an
extension to LSSVM, from which we can start from LSSVM and then improve
the classifier using LS-LS model.

5.3.2 Case: LS-Hinge loss

In the non-parallel SVM framework (5.3) and (5.4), if we choose the least
squares loss for L(1)(·) and hinge loss for L(2)(·), then the problem in the
primal has the following form

min
w1,b1,e,ξ

1

2
wT

1 w1 +
γ1

2
eT e+ γ21T

n2
ξ

subject to Φ1w1 + b11n1
= e

Yn2

[
Φ2w1 + b11n2

]
+ ξ ≥ 1n2

ξ ≥ 0n2
,

(5.17)

and

min
w2,b2,e,ξ

1

2
wT

2 w2 +
γ1

2
eT e+ γ21T

n1
ξ

subject to Φ2w2 + b21n2
= e

Yn1

[
Φ1w2 + b21n1

]
+ ξ ≥ 1n1

ξ ≥ 0n1
.

(5.18)
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The Lagrangian of the constrained optimization problem (5.17) becomes

L(w1, b1, e, ξ, α1, β1, β2) = (5.19)

1

2
wT

1 w1 +
γ1

2
eT e+ γ21T

n2
ξ − αT

1

(
Φ1w1 + b11n1

− e
)
− (5.20)

βT
1

(
Yn2

[
Φ2w1 + b11n2

]
+ ξ − 1n2

)
− βT

2 ξ, (5.21)

where α1 and β1 ≥ 0 and β2 ≥ 0 are the Lagrange multipliers corresponding
to the constraints in (5.17). Then the solution is characterized by the saddle
point of the Lagrangian

max
α1,β1,β2

min
w1,b1,e,ξ

L(w1, b1, e, ξ, α1, β1, β2).

The Karush-Kuhn-Tucker (KKT) optimality conditions are as follows,

∂L
∂w1

= 0→ w1 = ΦT
1 α1 + ΦT

2 Yn2
β1,

∂L
∂b1

= 0→ 1T
n1
α1 + 1T

n2
Yn2

β1 = 0,

∂L
∂e

= 0→ e = −α1

γ1
,

∂L
∂ξ

= 0→ 0 ≤ β1 ≤ γ21n2

β1 ≥ 0

β2 ≥ 0.

Substituting the equations obtained from KKT conditions into the Lagrangian
(5.19) and maximizing with respect to the Lagrange multipliers yields the
following dual problem of (5.17):

max
µ1

− 1

2
µT

1 H1µ1 + F1µ1

subject to A1µ1 = 0

0 ≤ β1 ≤ γ21n2
,

(5.22)
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where H1 =

[
Ω11 + γ−1

1 In1
Ω12Yn2

Yn2
Ω21 Yn2

Ω22Yn2

]
, µ1 = [α1

T , β1
T ]T , F1 = [0T

n1
, 1T

n2
],

and A1 = [1T
n1
, 1T

n2
Yn2

].

Correspondingly, the dual problem of (5.18) can be constructed as follows:

max
µ2

− 1

2
µT

2 H2µ2 + F2µ2

subject to A2µ2 = 0

0 ≤ β1 ≤ γ21n1
,

(5.23)

where H2 =

[
Ω22 + γ−1

1 In2
Ω21Yn1

Yn1
Ω12 Yn1

Ω11Yn1

]
, µ2 = [α1

T , β1
T ]T , F2 = [0T

n2
, 1T

n1
],

and A2 = [1T
n2
, 1T

n1
Yn1

].

In (5.22) and (5.23) the kernel generated surfaces are not used and our
formulation enjoys the advantages of having primal and dual formulations with
applying the kernel trick. Also the structural risk minimization is obtained by
means of the regularization terms wT

1 w1 and wT
2 w2.

If one uses the least squares loss for both L(1)(·) and L(2)(·), then in the dual a
set of linear systems have to be solved but no sparsity will be achieved. Whereas
if one chooses typical SVM losses, e.g., ǫ-insensitive zone loss for L(1)(·), and
hinge loss for L(2)(·), then in the dual the hyperparameters of the model can
be obtained by solving a convex quadratic optimization problem. In this case
sparsity is enhanced since the training points that are correctly classified and
are far enough from the margins will have no influence on the decision boundary.
One can also use Huber loss function for L(1)(·) to cope with the noise or outliers
in the data set.

5.3.3 Case: LS-Pinball loss

When the hinge loss is minimized, the distance that we maximize is related to
the nearest points which is prone to be sensitive to noise. Therefore attempts
have been made to overcome this weak point by changing the definition of the
distance between two sets. For instance, if one uses the distance of the nearest
20% points to measure the distance between two sets, the result is more robust.
Such distance is a kind of quantile value, which is closely related to pinball loss
[87, 153]. In classification, we consider the following definition of pinball loss:

Lτ (u) =

{
u, u ≥ 0,
−τu, u < 0.
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The pinball loss has been used for classification problems in [78]. The
advantage of using the pinball loss holds as well for non-parallel classifiers. The
corresponding model can be formulated as the following quadratic programming
problems,

min
w1,b1,e,ξ

1

2
w1

Tw1 +
γ1

2
eT e+ γ21T

n2
ξ

subject to Φ1w1 + b11n1
= e

Yn2
[Φ2w1 + b11n2

] + ξ ≥ 1n2

Yn2
[Φ2w1 + b11n2

]− 1

τ
ξ ≤ 1n2

,

(5.24)

and

min
w2,b2,e,ξ

1

2
w2

Tw2 +
γ1

2
eT e+ γ21T

n1
ξ

subject to Φ2w2 + b21n2
= e

Yn1
[Φ1w2 + b21n1

] + ξ ≥ 1n1

Yn1
[Φ1w2 + b21n1

]− 1

τ
ξ ≤ 1n1

.

(5.25)

Similar to the previous discussions (see subsection 5.3.2), we can derive the
corresponding nonparametric model. The dual problem of (5.24) is

max
µ1

− 1

2
µT

1 H1µ1 + F1µ1

subject to A1µ1 = 0

− τγ21n2
≤ β1 ≤ γ21n2

,

(5.26)

and that of (5.25) is

max
µ2

− 1

2
µT

2 H2µ2 + F2µ2

subject to A2µ2 = 0

− τγ21n1
≤ β1 ≤ γ21n1

.

(5.27)

When τ = 0, (5.26) and (5.27) reduces to (5.22) and (5.23), respectively. From
this point of view, the LS-Pinball is an extension to the LS-Hinge. This
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relationship also can be observed via comparing the hinge loss and pinball
loss in the primal.

Theorem 5.3.2 tells us that LS-LS with particular parameters reduces to
LSSVM. We are also interested in the relationship between other non-parallel
classifiers and parallel ones. In parallel classification methods, only one loss
function is minimized. In the proposed non-parallel framework (5.1), there are
two loss functions involved. Only when we choose a unique loss for both L(1)(·)
and L(2)(·), it is possible to reduce the non-parallel models to parallel ones.

5.4 Guidelines for the User

The proposed framework for constructing the non-parallel classifier consists
of two types of loss functions: scatter and misclassification. As mentioned
previously, any scatter loss function can be used for L(1)(·) and at the same
time any misclassification loss can be employed for L(2)(·). Depending on the
prior knowledge about the data under study, one may choose a specific scatter
or misclassification loss function. For instance if the data is corrupted by label
noise one may prefer to use the hinge or pinball loss misclassification which
are less sensitive to outliers compared to least squares loss. In case no prior
knowledge is available, then, in general, choosing the loss functions can be
regarded as user defined choice. One may try different loss functions and select
the one with minimum misclassification error on the validation set. Based on
the statistical properties of each of the loss functions the following qualitative
conclusion can be drawn.

Table 5.1: Qualitative conclusion for different loss functions

Type of noise LS-LS LS-Hinge LS-Pinball

Label noise ✗ ✓ ✓
Feature noise ✓ ✗ ✓

Remark 5.4.1. One may notice that according to Theorem 5.3.2 the LSSVM
is a special case of LS-LS (with the ratio r = 1). Therefore in practice one
can start with the LSSVM algorithm and gradually change (tune) the ratio
r, to obtain the non-parallel classifier with a better performance compared to
the LSSVM. After reaching the stage where the non-parallel classifier is built,
one then can choose empirically the loss function that obtains the minimum
misclassification error on the validation set.
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Algorithm 6: Guidelines for the user

Input: Training data set D = {xi}N
i=1, labels {yi}N

i=1, the tuning parameters
(if any)

Output: Class membership of test data points Dtest

Option 1. Try all combinations of the loss functions and choose the one with
minimum misclassification error on the validation set.
Option 2. Start with the LSSVM approach,
Employ Theorem 5.3.2 and obtain a non-parallel classifier,
Search for the best possible loss functions with minimum misclassification
error on the validation set.

5.5 Non-parallel Semi-Supervised KSC

Here the LS-LS loss function introduced in section 5.3 is used to build a non-
parallel semi-supervised classifier (NP-Semi-KSC). The model uses the Kernel
Spectral Clustering as core model and the available labeled data points are
integrated into the primal optimization problem via a regularization term. In
the training phase, the algorithm learns two non-parallel hyperplanes using
both labeled and unlabeled data points. Suppose the training data set X
consists of M data points and is defined as follows:

X = {x1, ..., xN︸ ︷︷ ︸
Unlabeled

(XU )

, xN+1, .., xN+ℓ1︸ ︷︷ ︸
Labeled with (+1)

(XL1 )

, xN+ℓ1+1, .., xN+ℓ1+ℓ2︸ ︷︷ ︸
Labeled with (−1)

(XL2 )

}

where {xi}M
i=1 ∈ Rd. Let us decompose the training data into unlabeled

and labeled parts as X = XU ∪ XL1
∪ XL2

where subsets XU , XL1
and XL2

consisting of NU unlabeled samples, NL1 samples of class I and NL2 samples of
II respectively. Note that the total number of samples is M = NU +NL1 +NL2.
The target values are denoted by set Y which consists of binary labels:

Y = {+1, . . . ,+1︸ ︷︷ ︸
y1

,−1, . . . ,−1︸ ︷︷ ︸
y2

}.

The same decomposition procedure is applied for the available target values i.e.
Y = y1 ∪ y2 where y1 and y2 consist of labels of the samples from class I and
II respectively.

We seek two non-parallel hyperplanes

f1(x) = wT
1 ϕ(x) + b1 = 0, f2(x) = wT

2 ϕ(x) + b2 = 0
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where each one is as close as possible to the points of its own class and as far
as possible from the data of the other class.

5.5.1 Primal-Dual formulation of the method

We formulate a non-parallel semi-supervised KSC, in the primal, as the
following two optimization problems [118]:

min
w1,b1,e,η,ξ

1

2
wT

1 w1 +
γ1

2
ηT η +

γ2

2
ξT ξ − γ3

2
eTD−1e

subject to wT
1 ϕ(xi) + b1 = ηi, ∀xi ∈ I

y2
i

[
wT

1 ϕ(xi) + b1

]
+ ξi = 1, ∀xi ∈ II

wT
1 ϕ(xi) + b1 = ei, ∀xi ∈ X

(5.28)

where γ1, γ2 and γ3 ∈ R+, b1 ∈ R, η ∈ RNL1 , ξ ∈ RNL2 , e ∈ RM , w1 ∈ Rh.
ϕ(·) : Rd → Rh is the feature map and h is the dimension of the feature space.

min
w2,b2,e,ρ,ν

1

2
wT

2 w2 +
γ4

2
ρT ρ+

γ5

2
νT ν − γ6

2
eTD−1e

subject to wT
2 ϕ(xi) + b2 = ρi, ∀xi ∈ II

y1
i

[
wT

2 ϕ(xi) + b2

]
+ νi = 1, ∀xi ∈ I

wT
2 ϕ(xi) + b2 = ei, ∀xi ∈ X

(5.29)

where γ4, γ5 and γ6 ∈ R+. b2 ∈ R, ρ ∈ RNL2 , ν ∈ RNL1 , e ∈ RM , w2 ∈ Rh. ϕ(·)
is defined as previously.

The intuition for the above formulation can be expressed as follows. Consider
optimization problem (5.28), the first constraint is the sum of squared distances
of the points in class I from the first hyperplane i.e. f1(x) and minimizing this
distance will make f1(x) to be located close to points of class I. The second
constraint will push f1(x) away from data points of class II (the distance of
f1(x) from the points of class II should be at least 1). The third constraint is
part of the core model (KSC). A similar argument can be made for the second
optimization problem (5.29). By solving optimization problems (5.28) and
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(5.29) one can obtain two non-parallel hyperplanes where each one is surrounded
by the data points of the corresponding cluster (class). Let us assume that class
I and II consist of samples with targets (+1) and (-1) respectively. Then one
can manipulate the objective function of the above optimization problems and
rewrite them in primal as follows:

min
w1,b1,e

1

2
wT

1 w1 +
γ1

2
eTAe+

γ2

2
(S1 +Be)T (S1 +Be)

− γ3

2
eTD−1e

subject to wT
1 ϕ(xi) + b1 = ei, ∀xi ∈ X

(5.30)

min
w2,b2,e

1

2
wT

2 w2 +
γ4

2
eTBe+

γ5

2
(S2 −Ae)T (S2 −Ae)

− γ6

2
eTD−1e

subject to wT
2 ϕ(xi) + b2 = ei, ∀xi ∈ X ,

(5.31)

where

A =




0NU ×NU
0NU ×NL1

0NU ×NL2

0NL1×NU
INL1

0NL1×NL2

0NL2×NU
0NL2×NL1

0NL2×NL2


 , (5.32)

B =




0NU ×NU
0NU ×NL1

0NU ×NL2

0NL1×NU
0NL1×NL1

0NL1×NL2

0NL2×NU
0NL2×NL1

INL2


 (5.33)

S1 = B 1M , S2 = A 1M . (5.34)

Here 1M is vector of all ones with size M . INL1
and INL2

are identity matrix
of size NL1 × NL1 and NL2 × NL2 respectively. One can further simplify the
objective of the (5.30) and (5.31) and rewrite them as follows:

min
w1,b1,e

1

2
wT

1 w1 −
1

2
eT (γ3D

−1 − γ1A− γ2B)e+

γ2

2
(ST

1 S1 + 2ST
1 e)

subject to Φw1 + b11M = e,

(5.35)
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min
w2,b2,e

1

2
wT

2 w2 −
1

2
eT (γ6D

−1 − γ4B − γ5A)e+

γ5

2
(ST

2 S2 − 2ST
2 e)

subject to Φw2 + b21M = e,

(5.36)

Here Φ = [ϕ(x1), . . . , ϕ(xM )]T .

Lemma 5.5.1. Given a positive definite kernel function K : Rd×Rd → R with
K(x, z) = ϕ(x)Tϕ(z) and regularization constants γ1, γ2, γ3 ∈ R+, the solution
to (5.35) is obtained by solving the following dual problem [118]:

(V1C1Ω− IM )α = γ2C
T
1 S1 (5.37)

where V1 = γ3D
−1 − γ1A − γ2B and C1 = IM − (1/1T

MV11M )1M 1T
MV1, α =

[α1, . . . , αM ]T and Ω = ΦΦT is the kernel matrix.

Proof. The Lagrangian of the constrained optimization problem (5.35) becomes

L(w1, b1, e, α) =
1

2
wT

1 w1 −
1

2
eT (γ3D

−1 − γ1A− γ2B)e+

γ2

2
(ST

1 S1 + 2ST
1 e) + αT

(
e− Φw1 − b11M

)

where α is the vector of Lagrange multipliers. Then the Karush-Kuhn-Tucker
(KKT) optimality conditions are as follows,





∂L
∂w1

= 0→ w1 = ΦTα,

∂L
∂b1

= 0→ 1T
Mα = 0,

∂L
∂e = 0→ α = (γ3D

−1 − γ1A− γ2B)e− γ2S1,

∂L
∂α = 0→ e = Φw1 + b11M .

(5.38)

Elimination of the primal variables w1, e and making use of Mercer’s Theorem,
will result in the following equation

V1Ωα+ b1V11M = α+ γ2S1 (5.39)
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where V1 = γ3D
−1 − γ1A − γ2B. From the second KKT optimality condition

and (6.5), the bias term becomes:

b1 = (1/1T
MV11M )(1T

Mγ2S1 − 1T
MV1Ωα). (5.40)

Substituting the obtained expression for the bias term b1 into (6.5) along with
some algebraic manipulation one can obtain the solution in dual as the following
linear system:

γ2

(
IM −

V11M 1T
M

1T
MV11M

)
S1 = V1

(
IM −

1M 1T
MV1

1T
MV11M

)
Ωα− α.

Lemma 5.5.2. Given a positive definite kernel function K : Rd×Rd → R with
K(x, z) = ϕ(z)Tϕ(z) and regularization constants γ4, γ5, γ6 ∈ R+, the solution
to (5.36) is obtained by solving the following dual problem:

(IM − V2C2Ω)β = γ5C
T
2 S2, (5.41)

where V2 = γ6D
−1−γ4B−γ5A, β = [β1, . . . , βM ]T are the Lagrange multipliers

and C2 = IM − (1/1T
MV21M )1M 1T

MV2. Ω and IM are defined as previously.

Proof. The Lagrangian of the constrained optimization problem (5.36) becomes

L(w2, b2, e, β) =
1

2
wT

2 w2 −
1

2
eT (γ6D

−1 − γ4B − γ5A)e+

γ5

2
(ST

2 S2 − 2ST
2 e) + βT

(
e− Φw2 − b21M

)

where β are the Lagrange multipliers. Then the Karush-Kuhn-Tucker (KKT)
optimality conditions are as follows,





∂L
∂w2

= 0→ w2 = ΦTβ,

∂L
∂b2

= 0→ 1T
Mβ = 0,

∂L
∂e = 0→ β = (γ6D

−1 − γ4B − γ5A)e+ γ5S2,

∂L
∂β = 0→ e = Φw2 + b21M .

(5.42)

After elimination of the primal variables w2, e and making use of Mercer’s
Theorem, one can obtain the following equation

V2Ωβ + b2V21M = β − γ5S2 (5.43)
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where V2 = γ6D
−1 − γ4B − γ5A. From (5.43) and the second KKT optimality

condition, the bias term becomes:

b2 = (1/1T
MV21M )(−1T

Mγ2S2 − 1T
MV2Ωβ). (5.44)

Substituting the obtained expression for the bias term b2 into (5.43) along with
some algebraic manipulation will result in the following linear system:

γ5

(
IM −

V21M 1T
M

1T
MV21M

)
S2 = β − V2

(
IM −

1M 1T
MV2

1T
MV21M

)
Ωβ.

The proposed model selection criterion can be expressed as follows:

argmax
γ1,γ2,γ3,σ

κF(γ1, γ2, γ3, σ) + (1− κ)Acc(γ1, γ2, γ3, σ)

which is an affine combination of Fisher criterion (F) [27] and classification
accuracy (Acc). The Fisher criterion measures how localized the clusters
appear. κ ∈ [0, 1] is a user-defined parameter that controls the trade off between
the importance given to unlabeled and labeled samples. In case few labeled
samples are available one may give more weight to Fisher criterion and vice
versa.

After completing the training stage and obtaining two non-parallel hyperplanes,
the labels of the unseen test data points Xtest = {x1

test, . . . , x
n
test} are

determined depending on the perpendicular distances of the test points from
the hyperplanes (see Fig. 5.2):

L̂abel(Xtest) = arg min
k=1,2

{dk(Xtest)}, (5.45)

where

dk(Xtest) =
|Φtestwk + bk1n|

‖wk‖2
, k = 1, 2. (5.46)

Here Φtest = [ϕ(x1
test), . . . , ϕ(xn

test)]
T .

The procedure of the proposed non-parallel semi-supervised classification is
outlined in Algorithm 7.
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Figure 5.2: Data points of class I and II are marked by plus and circle signs
respectively. The obtained non-parallel hyperplanes wT

1 ϕ(x) + b1 = 0 and
wT

2 ϕ(x) + b2 = 0, are depicted by solid lines. The obtained decision boundary
is shown by the dashed line.

Algorithm 7: Non-parallel semi-supervised KSC (NP-Semi-KSC)

Input: Training data set X , labels Y, the tuning parameters {γi}3
i=1, the

kernel bandwidth σ and the test set Xtest.
Output: Class membership of test data.

1: Solve the dual linear system (5.37) to obtain α and compute the bias
term b1 by (6.6). Therefore the first hyperplane (hypersurface) can be
constructed.

2: Solve the dual linear system (6.3) to obtain β and compute the bias term
b2 by (5.44). Therefore the second hyperplane (hypersurface) can be
constructed.

3: Compute the class membership of test data points using (5.45) and (5.46).
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5.6 Numerical Experiments

5.6.1 Classification

In this section experimental results on a synthetic dataset called “cross-planes”
and real-life datasets from the UCI machine learning repository [13] are given.
We compare the performance of the proposed methods (LS-Hinge, LS-LS, LS-
pinball) with classical LSSVMs and the method described in [8] over the above-
mentioned datasets.

We first consider the cross-planes data set for the relationship between LSSVMs
and LS-LS, which has been studied in Theorem 5.3.2. The obtained results are
depicted in Figure 5.3. LSSVMs with linear kernel are first tuned on this data
set to obtain the optimal regularization parameter γ. Then the obtained γ is
fed into the LS-LS formulation as γ1 and regularization parameter γ2 is set to
γ1

r .

From Figure 5.3, it can be seen that the performance of the LS-LS when r = 1
(γ1 = γ2), is exactly equal to the performance of classical LSSVMs, i.e., we
obtain two parallel hyperplanes. Whereas by changing the ratio r, which is
defined as γ1/γ2, the classification accuracy is improved significantly. This
is purely due to the ability of the proposed approach for designing two non-
parallel hyperplanes. By changing the r value, hyperplanes start changing their
directions. The optimal value for r is obtained by cross-validation method.

Figure 5.4, corresponds to the case when we have label noise, which can be
regarded as outliers, in the data. As it was expected LS-LS is sensitive to noise
whereas applying hinge or pinball loss functions will compensate the outliers
to large extend.

For UCI data sets, the parameters, including regularization constants γ1, γ2,
kernel bandwidth σ, and in the case of pinball loss the parameter τ , are obtained
using Coupled Simulated Annealing [182] approach initialized with 5 random
sets of parameters. On every iteration step for CSA method we proceed with
a 10-fold cross-validation.

Descriptions of the used datasets from [13] can be found in Table 5.2. For
Ecoli dataset some of the classes are merged in order to avoid unbalanced
classes. One may consider the works reviewed in [156] to tackle the unbalanced
classes.

We have artificially introduced random label and feature noise. To generate
label noise, we randomly select 5% of samplings and change the observed labels.
To generate feature noise, we add Gaussian noise to each feature and the signal-
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Figure 5.3: (a) Classification result obtained by LSSVMs with linear kernel,
(b) Classification result obtained by LS-LS with linear kernel and r = 1, (c)
Classification result obtained by LS-LS with linear kernel and r = 166.82, (d)
Classification result obtained by LS-LS with linear kernel and r = 10000.



142 NON-PARALLEL CLASSIFIERS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

Class 1

Class 2

LS-LS with r = 3162.27

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

Class 1

Class 2

LS-Hinge with r = 56.2341

(b)

Figure 5.4: (a) Classification result obtained by LS-LS with nonlinear RBF
kernel and, (b) Classification result obtained by LS-Hinge with nonlinear RBF
kernel.

Table 5.2: Dataset statistics

Dataset # training data # testing data # attributes # classes

Iris 105 45 4 3
Spect 80 187 21 2
Heart 135 135 13 2
Ecoli 100 236 7 5
Monk1 124 432 6 2
Monk2 169 132 6 2
Monk3 122 432 6 2
Ionosphere 176 175 33 2
Spambase 500 4101 57 2
Magic 500 18520 10 2
Seeds 147 63 7 3
Wine 125 53 13 3

to-noise ratio is set to 20. All features for these data sets were normalized in
a preprocessing step. We computed the means of the obtained accuracy over
10 simulation runs (every run includes 10 fold cross validation). The obtained
results for RBF kernel are tabulated in Table 5.3, where the type of noise (no
noise, label noise, feature noise, both label and feature noise), dimension of the
data, and the size of the training and testing sets are reported.

As discussed previously, the proposed non-parallel SVMs have more flexibility
than the classical SVMs. The advantage of non-parallel classifiers is more
obvious in the linear kernel than in the RBF kernel case, since the RBF
kernel itself provides enough flexibility for many cases. Therefore, in many



NUMERICAL EXPERIMENTS 143

Table 5.3: Average binary classification accuracy on test sets with RBF kernel
over 10 simulation runs with 5% label or/and feature noise

Datasets Noise LSSVM [160] LS-Hinge LS-Pinball LS-LS LSTWSVM [8]

Monk1 no noise 0.77 0.81 0.91 0.96 0.77
label 0.78 0.79 0.79 0.78 0.78

feature 0.72 0.73 0.72 0.72 0.64
both 0.71 0.71 0.73 0.71 0.73

Monk2 no noise 0.87 0.86 0.87 0.88 0.88
label 0.83 0.82 0.83 0.83 0.84

feature 0.71 0.70 0.71 0.70 0.72
both 0.69 0.72 0.72 0.70 0.71

Monk3 no noise 0.92 0.92 0.92 0.93 0.91
label 0.90 0.91 0.92 0.90 0.88

feature 0.85 0.85 0.87 0.83 0.81
both 0.84 0.84 0.86 0.84 0.80

Spect no noise 0.74 0.76 0.77 0.84 0.81
label 0.77 0.78 0.75 0.77 0.77

feature 0.71 0.77 0.74 0.78 0.81
both 0.67 0.71 0.77 0.73 0.74

Ionosphere no noise 0.94 0.94 0.94 0.94 0.93
label 0.93 0.93 0.94 0.94 0.93

feature 0.92 0.92 0.93 0.93 0.90
both 0.89 0.92 0.93 0.93 0.92

Heart no noise 0.83 0.82 0.81 0.83 0.70
label 0.82 0.82 0.82 0.82 0.62

feature 0.86 0.85 0.85 0.85 0.54
both 0.82 0.82 0.82 0.83 0.63

Magic no noise 0.78 0.79 0.79 0.78 0.59
label 0.78 0.78 0.78 0.79 0.50

feature 0.78 0.78 0.77 0.78 0.54
both 0.77 0.71 0.77 0.78 0.51

Spambase no noise 0.88 0.91 0.91 0.91 0.50
label 0.89 0.90 0.90 0.90 0.50

feature 0.88 0.88 0.89 0.89 0.51
both 0.86 0.86 0.88 0.88 0.50

applications, the performance of classical SVMs and the non-parallel SVMs
are similar. In Table 5.2, we only list the data sets with significant difference.
The proposed non-parallel SVMs have different properties, due to the used loss
functions. These properties have been discussed previously. The least squares
error is insensitive to feature noise but could be significantly affected by large
outliers. Hence LS-LS generally performs well in feature noise cases but not in
label noise cases. The LSTWSVM is also a kind LS-LS scheme and has similar
performance as LS-LS. In contrast, the hinge loss is robust to outliers but only
a few samples contribute the classifier. In this way the obtained classifier is
robust to label noise but is sensitive to feature noise. The property of pinball
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loss used in classification has been discussed in [78]. Accordingly, LS-Pinball
is a trade of between LS-LS and LS-Hinge and can give a good classifier when
the data are contaminated by both label and feature noise.

The non-parallel framework (5.1) is proposed for multi-class problems. In
the next experiment, we consider four data sets from UCI machine learning
repository. As for binary case, four scenarios: no noise, label noise, feature noise
and feature/label noise are investigated. The average classification accuracy on
test sets over 10 simulation runs are tabulated in Table 5.4. The performance
of the proposed schemes on multi-class problem coincides with our explanation
for binary classification tasks.

Table 5.4: Average multi-class classification accuracy on test sets with RBF
kernel over 10 simulation runs with 5% label or/and feature noise.

Datasets Noise LSSVM [160] LS-Hinge LS-Pinball LS-LS LSTWSVM [8]

Ecoli no noise 0.85 0.84 0.84 0.85 0.84
label 0.81 0.82 0.81 0.79 0.81

feature 0.83 0.82 0.83 0.81 0.80
both 0.78 0.77 0.79 0.79 0.76

Iris no noise 0.97 0.96 0.96 0.94 0.96
label 0.93 0.94 0.95 0.93 0.93

feature 0.93 0.93 0.94 0.94 0.93
both 0.93 0.92 0.94 0.93 0.89

Seeds no noise 0.95 0.93 0.94 0.95 0.95
label 0.93 0.94 0.94 0.91 0.92

feature 0.92 0.92 0.93 0.94 0.92
both 0.89 0.90 0.91 0.90 0.89

Wine no noise 0.98 0.99 0.99 0.97 0.98
label 0.97 0.98 0.99 0.96 0.98

feature 0.97 0.98 0.98 0.98 0.97
both 0.97 0.98 0.98 0.97 0.97

5.6.2 Semi-supervised classification

The synthetic problem consist of four Gaussians with some overlap. The full
dataset includes 200 data points. Each one of the training and validation sets
consist of 100 points randomly selected form the entire dataset. Artificially
binary labels are introduced for eight points.

The performance of the Semi-KSC [5] and the proposed method in this chapter
when a linear kernel is used are shown in Fig. 5.5. Due to the ability of the
method to produce two non-parallel hyperplanes the data points are almost
correctly classified whereas Semi-KSC is not able to do the task well in this
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case. This example can motivate the use of non-parallel Semi-KSC over Semi-
KSC.

The performance of the method is also tested on some of the benchmark
datasets for semi-supervised learning described in [42]. The benchmark consists
of four data sets as shown in Table 5.5. The first two i.e. g241c and g241d,
which consist of 1500 data points with dimensionality of 241, were artificially
created. The other two datasets BCI and Text were derived from real data. All
datasets have binary labels. BCI has 400 data points and dimension 117. Text

includes 1500 data points with dimensionality 11960.

For each data set, 12 splits into labeled points and remaining unlabeled points
is already provided (each split contains at least one point of each class). The
tabulated results indicate the variability with respect to these 12 splits. In
order to have a fair comparison with the recorded results in [5], for each split a
training set of Ntr = 150 unlabeled samples are randomly selected for BCI data
set and for all the other data sets Ntr = 600. The same number of unlabeled
samples used in training sets are drawn at random to form the unlabeled
samples of the validation sets. Among the labeled data points, 70% is used
for training and 30% for the validation sets.

The result of the proposed method (NP-Semi-KSC) is compared with that
of Semi-KSC, Laplacian SVM (LapSVM) [21] and its recent version LapSVMp
[122] recorded in [5] over the datasets mentioned. When few labeled data points
are available the proposed method shows a comparable result with respect to
other methods. But as the number of labeled data points increases NP-Semi-
KSC outperforms in most cases the other methods.

Table 5.5: Average misclassification test error ×100%. The calculation of the
test error is done by evaluating the methods on the full data sets. Two cases for
the labeled data size are considered (i.e. # labeled data points=10 and 100).
In the case of 10 labeled data points, the performance of the proposed method
is comparable to that of the other methods. When 100 labeled data points are
used, the proposed method shows a better perfromance compared to LapSVM
[21], LapSVMp [122] and Semi-KSC [5].

# of Labeled data Method g241c g241d BCI Text

10 LapSVM 0.48 ± 0.02 0.42 ± 0.03 0.48 ± 0.03 0.37 ± 0.04
LapSVMp 0.49 ± 0.01 0.43 ± 0.03 0.48 ± 0.02 0.40 ± 0.05
Semi-KSC 0.42 ± 0.03 0.43 ± 0.04 0.46 ± 0.03 0.29 ± 0.06

NP-Semi-KSC 0.44 ± 0.03 0.41 ± 0.02 0.47 ± 0.03 0.40 ± 0.05

100 LapSVM 0.40 ± 0.06 0.31 ± 0.03 0.37 ± 0.04 0.27 ± 0.02
LapSVMp 0.36 ± 0.07 0.31 ± 0.02 0.32 ± 0.02 0.32 ± 0.02
Semi-KSC 0.29 ± 0.05 0.28 ± 0.05 0.28 ± 0.02 0.22 ± 0.02

NP-Semi-KSC 0.23 ± 0.01 0.26 ± 0.02 0.26 ± 0.01 0.23 ± 0.02
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Figure 5.5: Toy Problem-Four Gaussians with some overlap. The training and
validation parts consist of Ntr = 100 and Nval = 100 unlabeled data points
respectively. The labeled data points of two classes are depicted by the blue
squares and green circles. (a) Result of kernel spectral clustering (completely
unsupervised). (b): Result of semi-supervised kernel spectral clustering when
linear kernel is used. The separating hyperplane is shown by blue dashed line.
(c): Result of the proposed non-parallel semi-supervised KSC when linear kernel
is used. Two non- parallel hyperplanes are depicted by blue and green dashed
lines.
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5.7 Conclusions

In this chapter, a general framework for non-parallel classifier is proposed.
As opposed to conventional approaches, the burden of formulating different
optimization problems in the case of applying a non linear kernel, is avoided
via utilizing the kernel trick in the dual. This framework enables the possibility
of using different types of loss function. Generally, different loss functions
perform well for different problems, which is supported by the numerical
experiments. With the proposed non-parallel classifiers, one can choose
the suitable loss functions and achieve satisfactory performance for different
noise levels. Moreover, a non-parallel semi-supervised formulation based on
kernel spectral clustering is developed. Semi-KSC formulation [5] is a special
case of the proposed method when parameters of the new model are chosen
appropriately. The validity and applicability of the proposed method is shown
on synthetic examples as well as on real benchmark datasets.





Chapter 6

Semi-Supervised Learning

In this chapter, a multi-class semi-supervised learning algorithm using kernel
spectral clustering (KSC) as a core model is proposed. A regularized KSC
is formulated to estimate the class memberships of data points in a semi-
supervised setting using the one-vs-all strategy while both labeled and unlabeled
data points are present in the learning process. The propagation of the labels
to a large amount of unlabeled data points is achieved by adding regularization
terms to the cost function of the KSC formulation. In other words, imposing
the regularization term enforces certain desired memberships. The model is
then obtained by solving a linear system in the dual. Furthermore, the optimal
embedding dimension is designed for semi-supervised clustering. This plays
a key role when one deals with a large number of clusters. In addition, two
approaches are proposed in order to make the algorithm scalable to large scale
data sets where a huge amount of unlabeled data points is available. The
highlights of this chapter can be summarized as follows:

• Using an unsupervised model as the core model and incorporating the
available side-information (labels) through a regularization term.

• Addressing both multi-class semi-supervised classification and semi-supe-
rvised clustering.

• Extension of the binary case to multi-class case and addressing the
encoding schemes.

• Realizing low embedding dimension to reveal the existing number of
clusters.

149
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• Addressing scalability of the algorithm for dealing with large scale data
sets.

6.1 Related Work

The incorporation of some form of prior knowledge of the problem at hand into
the learning process is a key element that allows an increase of performance in
many applications.

In many contexts, ranging from data mining to machine perception, obtaining
the labels of input data is often difficult and expensive. Therefore in many
cases one deals with a huge amount of unlabeled data, while the fraction of
labeled data points will typically be small.

Semi-supervised algorithms aim at learning from both labeled and unlabeled
data points. In fact in semi-supervised learning one tries to incorporate
the labels (prior knowledge) in the learning process to enhance the cluster-
ing/classification performance. Semi-supervised learning can be classified into
two categories, i.e. transductive and inductive learning. Transductive learning
aims at predicting the labels for a specified set of test data by taking both
labeled and unlabeled data together into account in the learning process. In
contrast, in inductive learning the goal is to learn a decision function from a
training set consisting of labeled and unlabeled data for future unseen test data
points. Throughout this chapter we refer to semi-supervised inductive learning
as semi-supervised learning.

The semi-supervised inductive learning itself can be categorized into semi-
supervised clustering and classification. The former addresses the problem
of exploiting additional labeled data to adjust the cluster memberships of the
unlabeled data. The latter aims at utilizing both unlabeled and labeled data to
obtain a better classification model, and higher quality predictions on unseen
test data points.

In some classical semi-supervised techniques, a classifier is first trained using
the available labeled data points and then the labels for the unlabeled data
points are predicted using out-of-extension. In the second step, unlabeled data
that are classified with the highest confidence score are added incrementally to
the training set and the process is repeated until the convergence is satisfactory
[42, 189, 2]. Several semi-supervised algorithms have been proposed in the
literature, see [79, 131, 21, 183, 184, 85, 177]. For instance, the Laplacian
support vector machine (LapSVM) [21], is one of the graph based methods
with a data-dependent geometric regularization which provides a natural out-
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of-sample extension. The authors in [183] used local spline regression for semi-
supervised classification by introducing splines developed in Sobolev space to
map the data points to class labels. A transductive semi-supervised algorithm
called ranking with Local Regression and Global Alignment (LRGA) to learn
a robust Laplacian matrix for data ranking is proposed in [184]. In this
approach, for each data point, the ranking scores of neighboring points are
estimated using a local linear regression model. A label propagation approach
in graph-based semi-supervised learning has been introduced in [85]. The
authors in [177] developed a semi-supervised classification method based on
class membership, motivated by the fact that similar instances should share
similar label memberships.

Many semi-supervised algorithms perform well on relatively small problems,
(see [42] and references therein), but they do not scale well to large
datasets. Therefore turning semi-supervised learning algorithms into practice
is important. For instance a family of semi-supervised linear support vector
classifiers for large data sets is introduced in [151].

Spectral clustering methods belong to a family of unsupervised learning
algorithms that make use of the eigenspectrum of the Laplacian matrix of
the data to divide a dataset into natural groups such that points within the
same group are similar and points in different groups are dissimilar to each
other [130, 174, 49].

Kernel spectral clustering (KSC) is an unsupervised algorithm that represents
a spectral clustering formulation as a weighted kernel PCA problem, cast in
the LSSVM framework [4]. In contrast to classical spectral clustering, there
is a systematic model selection scheme for tuning the parameters and also the
extension of the clustering model to out-of-sample points is possible.

In [157], for the sake of dimensionality reduction, kernel maps with a reference
point are generated from a least squares support vector machine core model
via an additional regularization term for preserving local mutual distances
together with reference point constraints. In contrast with the class of kernel
eigenmap methods, the solution (coordinates in the low dimensional space) is
characterized by a linear system instead of an eigenvalue problem.

Recently the authors in [5] have extended the kernel spectral clustering to
binary semi-supervised learning (semi-KSC) by incorporating the information
of labeled data points in the learning process. Therefore the problem formu-
lation is a combination of unsupervised and binary classification approaches.
Contrary to the approach described in [5], a non-parallel semi-supervised
classification (NP-Semi-KSC) is introduced in [118]. It generates two non-
parallel hyperplanes which are then used for out-of-sample extension.
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It is the purpose of this chapter to develop a new Multi-class Semi-Supervised
KSC-based algorithm (MSS-KSC) using a one-versus-all strategy. In contrast
to the methods described in [42, 189, 2, 21, 183, 184, 85], in the proposed
approach we start with a purely unsupervised algorithm as a core model and
the available side information is incorporated via a regularization term. Given
Q labels, the approach is not restricted to find just Q classes (semi-supervised
classification) and instead it is able to uncover up to 2Q hidden clusters (semi-
supervised clustering). In addition, it uses low embedding dimension to reveal
the existing number of clusters which is important when one deals with large
number of clusters. There is a systematic model selection scheme for tuning
the parameters and it is provided with the out-of-sample extension property.
Furthermore the formulation is constructed for the multi-class semi-supervised
classification and clustering.

Here KSC [4] is used as the core model. In this case thanks to the discriminative
property of KSC one can benefit from unlabeled data points. Unlike the KSC
approach that projects the data to a k− 1 dimensional space for being able to
group the data into k clusters, here the embedding dimension is rather equal to
the number of available class-labels in the semi-supervised learning framework.

6.2 Semi-Supervised Classification

In this section we assume that there is a total number of Q classes (Cj , j =
1, . . . , Q). The corresponding number of available class labels is also equal to
Q. Suppose the training data set D consists of M data points and is defined
as follows

D = { x1, ..., xN︸ ︷︷ ︸
Unlabeled data

(DU )

, xN+1, .., xM︸ ︷︷ ︸
Labeled data

(DL)

}

where {xi}M
i=1 ∈ Rd. The labels are available for the last NL = M − N data

points in DL and are denoted by

Z =
[
zT

N+1, . . . , z
T
M

]T ∈ R(M−N)×Q,

with zi ∈ {+1,−1}Q is the encoding vector for the training point xi.

In the proposed method we start with an unsupervised algorithm as a core
model. Then by introducing a regularization term, we incorporate the available
side information, which in this case are the labels, to the core model. Here the
kernel spectral clustering is used as the core model. Because as it has been
shown in [4] in contrast to classical spectral clustering, KSC has a systematic
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model selection scheme for tuning the parameters and it is provided with the
out-of-sample extension property.

The one-vs-all strategy is utilized to build the codebook, i.e., the training points
belonging to the i-th class are labeled by +1 and all the remaining data from
the rest of the classes are considered to have negative labels. Both the labeled
and unlabeled data points are arranged such that the top N data points are the
unlabeled ones and the rest, i.e. NL, are the labeled data points. We consider
the labels of the unlabeled data points to be zero as in [5]. In our formulation
unlabeled data points are only regularized using the KSC core model.

6.2.1 Primal-Dual formulation of the method

We formulate the multi-class semi-supervised learning in the primal as the
following optimization problem [112]:

min
w(ℓ),b(ℓ),e(ℓ)

1

2

Q∑

ℓ=1

w(ℓ)T
w(ℓ) − γ1

2

Q∑

ℓ=1

e(ℓ)T
V e(ℓ)+

γ2

2

Q∑

ℓ=1

(e(ℓ) − c(ℓ))TA(e(ℓ) − c(ℓ))

subject to e(ℓ) = Φw(ℓ) + b(ℓ)1M , ℓ = 1, . . . , Q,

(6.1)

where c(ℓ) is the ℓ-th column of the matrix C defined as

C = [c(1), . . . , c(Q)]M×Q =

[
0N×Q

Z

]

M×Q

, (6.2)

where 0N×Q is a zero matrix of size N ×Q and Z is defined as previously. b(ℓ)

is a bias term which is a scalar. The matrix A is defined as follows:

A =

[
0N×N 0N×NL

0NL×N INL×NL

]
,

where INL×NL
is the identity matrix of size NL ×NL.

The available prior knowledge, i.e. the labels, is added to the KSC model
through the third term in the objective function of (6.1). This term aims
at minimizing the difference between the score variables of the labeled data
points, i.e. ei for i ∈ DL, and the actual labels provided by the user. Therefore
it enforces the ei values for the labeled data points to be close enough to the
actual labels in the projection space. Furthermore, since we do not intend to
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prejudge about the memberships of the unlabeled data points, the matrix A is
taking place in the third term in the objective function.

Lemma 6.2.1. Given a positive definite kernel function K : Rd×Rd → R with
K(x, z) = ϕ(x)Tϕ(z) and regularization constants γ1, γ2 ∈ R+, the solution to
(6.1) is obtained by solving the following dual problem [112]:

(IM −RSΩ)α(ℓ) = γ2S
T c(ℓ), ℓ = 1, . . . , Q, (6.3)

where R = γ1V −γ2A, α(ℓ) = [α
(ℓ)
1 , . . . , α

(ℓ)
M ]T are the Lagrange multipliers and

S = IM − (1/1T
MR1M )1M 1T

MR. Ω and IM are defined as previously.

Proof. The Lagrangian of the constrained optimization problem (6.1) becomes

L(w(ℓ), b(ℓ), e(ℓ), α(ℓ)) =
1

2

Q∑

ℓ=1

w(ℓ)T
w(ℓ) − γ1

2

Q∑

ℓ=1

e(ℓ)T
V e(ℓ)

+
γ2

2

Q∑

ℓ=1

(e(ℓ) − c(ℓ))TA(e(ℓ) − c(ℓ))+

Q∑

ℓ=1

α(ℓ)T
(
e(ℓ) − Φw(ℓ) − b(ℓ)1M

)
,

where α(ℓ) is the vector of Lagrange multipliers. Then the Karush-Kuhn-Tucker
(KKT) optimality conditions are as follows,





∂L
∂w(ℓ) = 0→ w(ℓ) = ΦTα(ℓ), ℓ = 1, . . . , Q,

∂L
∂b(ℓ) = 0→ 1T

Mα(ℓ) = 0, ℓ = 1, . . . , Q,

∂L
∂e(ℓ) = 0→ α(ℓ) = (γ1V − γ2A)e(ℓ) + γ2c

(ℓ), ℓ = 1, . . . , Q,

∂L
∂α(ℓ) = 0→ e(ℓ) = Φw(ℓ) + b(ℓ)1M , ℓ = 1, . . . , Q.

(6.4)

Elimination of the primal variables w(ℓ), e(ℓ) and making use of Mercer’s
Theorem [170], results in the following equation

RΩα(ℓ) + b(ℓ)R1M = α(ℓ) − γ2c
(ℓ), ℓ = 1, . . . , Q, (6.5)

where R = γ1V − γ2A. From the second KKT optimality condition and (6.5),
the bias term becomes:

b(ℓ) = (1/1T
MR1M )(−1T

Mγ2c
(ℓ) − 1T

MRΩα(ℓ)), ℓ = 1, . . . , Q. (6.6)
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Substituting the obtained expression for the bias term b(ℓ) into (6.5) along
with some algebraic manipulation one can obtain the solution in dual as the
following linear system:

γ2

(
IM −

R1M 1T
M

1T
MR1M

)
c(ℓ) = α(ℓ) −R

(
IM −

1M 1T
MR

1T
MR1M

)
Ωα(ℓ).

Remark 6.2.1. It should be noted that since the optimization problem (6.1)
does have equality constraints therefore the KKT conditions include the primal
equality constraints and the gradient of the Lagrangian with respect to the primal
variables (see [32, Chapter 5]). In (6.4), the first three equations correspond
to the derivative of the Lagrangian with respect to primal variables and the
primal equality constraints are equivalently obtained by taking the derivative of
the Lagrangian with respect to dual variables.

It should be noticed that one can also obtain the following linear system when
the primal variables w(ℓ), e(ℓ) are eliminated from (KKT) optimality conditions
in (6.4):


 Ω−R−1 1M

1T
M 0





α

(ℓ)

b(ℓ)


 =


−R

−1γ2c
(ℓ)

0


 , ℓ = 1, . . . , Q, (6.7)

where α(ℓ) = [α
(ℓ)
1 , . . . , α

(ℓ)
M ]T and Ω = ΦΦT is the kernel matrix. Matrix R is

a diagonal matrix and it is invertible if and only if γ1vi 6= γ2 for i = 1, . . . ,M .

The linear systems (6.3) and (6.7) have a unique solution when the associated
coefficient matrix is full-rank which depends on the regularization parameters.

6.2.2 Encoding/Decoding scheme

In semi-supervised classification, the encoding scheme is chosen in advance since
the number of existing classes is known beforehand. The codebook CB used
for out-of-sample extension is defined based on the encoding vectors for the
training points. If Z = [zT

N+1, . . . , z
T
M ]T is the encoding matrix for the training

points, the CB = {cq}Q
q=1, where cq ∈ {−1, 1}Q, is defined by the unique rows

of Z (i.e. from identical rows of Z one selects one row). Considering the test
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set Dtest = {xtest
i }Ntest

i=1 the score variables evaluated at the test points become:

e
(ℓ)
test = Φtestw

ℓ + b(ℓ)1Ntest

= Ωtestα
(ℓ) + b(ℓ)1Ntest

, ℓ = 1, . . . , Q, (6.8)

where Ωtest = ΦtestΦ
T . The procedure for the multi-class semi-supervised

classification is summarized in Algorithm 8.

Algorithm 8: Multi-class semi-supervised classification

Input: Training data set D, labels Z, tuning parameters {γi}2
i=1, kernel

parameter (if any), test set Dtest = {xtest
i }Ntest

i=1 and codebook

CB = {cq}Q
q=1

Output: Class membership of test data points Dtest

1 Solve the dual linear system (6.3) to obtain {αℓ}Q
ℓ=1 and compute the bias

term {bℓ}Q
ℓ=1 using (6.6).

2 Estimate the test data projections {e(ℓ)
test}Q

ℓ=1 using (6.8).
3 Binarize the test projections and form the encoding matrix

[sign(e
(1)
test), . . . , sign(e

(Q)
test)]Ntest×Q for the test points (Here

e
(ℓ)
test = [e

(ℓ)
test,1, . . . , e

(ℓ)
test,Ntest

]T ).

4 ∀i, assign xtest
i to class q∗, where q∗ = argmin

q
dH(eℓ

test,i, cq) and dH(·, ·) is the

Hamming distance.

6.3 Semi-Supervised Clustering

In what follows we assume that there is a total number of T clusters and a
few labels from Q of the clusters are available (Q ≤ T ). Therefore we are
dealing with the case that some of the clusters are partially labeled. The aim
is to incorporate these labels in the learning process to guide the clustering
algorithm to adjust the membership of the unlabeled data. Next we will show
how one can use the approach described in section 6.2 in this setting.

6.3.1 From solution of linear systems to clusters: encoding

Since the number of existing clusters is not known a priori, one cannot use
the predefined codebook as in semi-supervised classification. Therefore a new
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scheme is developed for generating a codebook to be used in the learning
process.

It has been observed that the solution vector α(ℓ), ℓ = 1, . . . , Q of the dual linear
system (6.3) has a piecewise constant property when there is an underlying
cluster structure in the data (see Fig. 2(d)). Once the solution to (6.3) is found,
the codebook CB ∈ {−1, 1}p×Q is formed by the unique rows of the binarized
solution matrix (i.e. [sign(α(1)), . . . , sign(α(Q))]). The maximum number of
clusters that can be decoded is 2Q since the maximum value that p can take is
2Q. In our approach the number of encodings, i.e. p, is tuned along with the
model selection procedure. Therefore a grid search on the interval [Q, 2Q] is
conducted to determine the number of clusters.

It should be noted that in Algorithm 8, the static codebook CB (static in a
sense that the number of codewords is fixed and only depends on Q) is known
beforehand and is of size Q × Q. On the other hand in Algorithm 9, the
codebook CB is no longer a static codebook and is of size p ×Q, where p can
be maximally 2Q. Furthermore, it is obtained based on the solution matrix Sα

(see steps 2 and 3 in Algorithm 9).

6.3.2 Low dimensional spectral embedding

One may notice that as opposed to kernel spectral clustering [4] where the score
variables lie in a T − 1 (where T is the actual number of clusters) dimensional
space, in our formulation the embedding dimension is Q which can be smaller
than T . This can also be seen as the optimized embedding dimension for
clustering which plays an important role when the number of existing clusters
is large. In fact one only requires Q = log T solution vectors to uncover T
clusters. Therefore one is able to deal with a larger number of clusters in
a more compact way. In contrast with the KSC approach where one needs
to solve an eigenvalue problem, in MSS-KSC formulation one solves a linear
system. It should be noted that although the two approaches share almost the
same computational complexity, the quality of the solution vector obtained by
the proposed algorithm is higher than that of KSC as shown in Fig. 6.6 and
6.7. This demonstrates the advantage of prior knowledge incorporation. The
proposed semi-supervised clustering is summarized in Algorithm 9.
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Algorithm 9: Semi-supervised clustering

Input: Training data set D, labels Z, the tuning parameters {γi}2
i=1, the

kernel parameter (if any), number of clusters k, the test set
Dtest = {xtest

i }Ntest

i=1 and number of available class labels i.e. Q
Output: Cluster membership of test data points Dtest

1 Solve the dual linear system (6.3) to obtain {αℓ}Q
ℓ=1 and compute the bias

term {bℓ}Q
ℓ=1 using (6.6).

2 Binarize the solution matrix Sα = [sign(α(1)), . . . , sign(α(Q))]M×Q, where

αℓ = [αℓ
1, . . . , α

ℓ
M ]T .

3 Form the codebook CB = {cq}p
q=1, where cq ∈ {−1, 1}Q, using the k most

frequently occurring encodings from unique rows of solution matrix Sα.

4 Estimate the test data projections {e(ℓ)
test}Q

ℓ=1 using (6.8).
5 Binarize the test projections and form the encoding matrix

[sign(e
(1)
test), . . . , sign(e

(Q)
test)]Ntest×Q for the test points (Here

eℓ
test = [eℓ

test,1, . . . , e
ℓ
test,Ntest

]T ).

6 ∀i, assign xtest
i to class/cluster q∗, where q∗ = argmin

q
dH(eℓ

test,i, cq) and

dH(·, ·) is the Hamming distance.

6.4 Model Selection

The performance of the multi-class semi-supervised model depends on the
choice of the tuning parameters. In the case of RBF kernel the optimal
values of γ1, γ2 and the kernel parameter σ can be obtained by evaluating the
performance of the model (classification accuracy) on the validation set using
a grid search over the parameters. One may also consider to utilize Coupled
Simulated Annealing (CSA) in order to minimize the misclassification error in
the cross-validation process. CSA leads to an improved optimization efficiency
due to the fact that it reduces the sensitivity of the algorithm with respect to
the initialization of the parameters while guiding the optimization process to
quasi-optimal runs [182].

In the experiments, based on the analysis given in [5, Section III.C] we set
γ1 = 1. Then γ2 and σ are tuned through a grid search. The range in which
the search is made is discussed for each of the experiments in section VI. In
general in the experiments we observed that a good value for γ2, most of the
times, is selected from the range [0, 1].

Since labeled and unlabeled data points are involved in the learning process, it
is natural to have a model selection criterion that makes use of both. Therefore,
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for semi-supervised classification, one may combine two criteria where one of
them evaluates the performance of the model on the unlabeled data points
(evaluation of clustering results) and the other one maximizes the classification
accuracy [5, 118].

A common approach for evaluating the quality of the clustering results consists
of using internal cluster validity indices [24] such as Silhouette, Fisher and
Davies-Bouldin index (DB) criteria. Here the Silhouette index is used to assess
the clustering results. The Silhouette technique assigns to the ith sample of
j-th class, Cj , a quality measure s(i) which is defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)} .

Here a(i) is the average distance between the i-th sample and all of the samples
included in Cj . bi is the minimum average distance from the i-th sample to
points in different clusters. The silhouette value for each sample is a measure
of how similar that sample is to samples in its own cluster versus samples in
other clusters, and is in the range of [−1, 1].

The proposed model selection criterion for semi-supervised learning, with kernel
parameter σ, can be expressed as follows:

max
γ1,γ2,σ,k

η Sil(γ1, γ2, σ, k) + (1− η)Acc(γ1, γ2, σ, k). (6.9)

It is a convex combination of Silhouette (Sil) and classification accuracy (Acc).
η ∈ [0, 1] is a user-defined parameter that controls the trade off between the
importance given to unlabeled and labeled instances. In case few labeled data
points are available one may give more weight to Silhouette criterion and vice
versa.

The silhouette criterion is evaluated on the unlabeled data points in the
validation set. One can also consider to evaluate it on the out-of-sample solution
vectors.

In equation (6.9), k denotes the number of clusters that is unknown beforehand.
In the case of semi-supervised classification where the number of classes is
known a priori, one does not need to tune k and thus it can be removed from
the list of decision variables of the aforementioned model selection criterion.

In any unsupervised learning algorithm one has to find the right number of
existing clusters over the specified range which is provided by the user. When
there is a form of prior knowledge about the data under study, the search space
is reduced. In our semi-supervised clustering the lower bound of the range in
which the number of clusters are sought is Q (assuming that Q cluster labels
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are available). Therefore applying the proposed MSS-KSC algorithm will make
it easier to reveal the lower level of the cluster hierarchy. In the proposed MSS-
KSC approach one requires to solve a linear system. Therefore the complexity
of the proposed MSS-KSC algorithm in the worst case scenario is O(M3) where
M is the number of training data points.

6.5 Large Scale Semi-Supervised Learning

Considering the large amount of unlabeled data, making a semi-supervised
algorithm scalable is an important task. In this section I adopt the MSS-KSC
algorithm and make it scalable. To this end, two possible schemes are proposed.

• The first approach, which will be referred to as Fixed-Size MSS-KSC
(FS-MSS-KSC), is based on the Nyström approximation and the primal-
dual formulation of the MSS-KSC. This is done by using a sparse
approximation of the nonlinear mapping induced by the kernel matrix
and solving the problem in the primal.

• The second approach is by means of the reduced kernel technique that
solves the problem in the dual by reducing the dimensionality of the kernel
matrix to a rectangular kernel. The second approach will be referred to
as Reduced MSS-KSC (RD-MSS-KSC) approach.

6.5.1 Approximation to the feature map

In order to handle large data sets the so called fixed-size approach, where the
feature map is approximated by the Nyström method [180, 16], is introduced in
[159] and has been applied in [59, 52]. In what follows, the fixed-size approach
is briefly summarized.

The approach is based on the fact that one can obtain an explicit expression
finite dimension for the feature map ϕ(·) by means of an eigenvalue decompo-
sition of the kernel matrix Ω. Consider the Fredholm integral equation of the
first kind: ∫

C

K(x, xj)φi(x)dµ(x) = λiφi(xj) (6.10)

where, for the sake of simplicity, C is a compact subset of Rd, the kernel K(., .)
is continuous on C × C and µ is a probability measure on C (see e.g. [64]
for more details). Given a finite sample {xj}M

j=1 distributed according to µ,
the approximation of the eigenfunction φi(x) in (6.10) can be obtained by the
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Nyström method which applies a quadrature rule for discretizing the left-hand
side of (6.10). This will lead to the eigenvalue problem [180]:

1

M

M∑

k=1

K(xk, xj)uik = λ
(s)
i uij (6.11)

where here measure µ is approximated by 1
M

∑
i δxi

. The eigenvalues λi and
eigenfunctions φi from the continuous problem (6.10) can be approximated by

the sample eigenvalues λ
(s)
i and eigenvectors ui. Therefore, the i-th component

of the feature map ϕ̂ : Rd → RM , for any point x ∈ Rd, can be obtained as
follows:

ϕ̂i(x) =
1

λ
(s)
i

M∑

k=1

uki K(xk, x) (6.12)

where λ
(s)
i and ui are eigenvalues and eigenvectors of the kernel matrix ΩM×M .

Furthermore, the k-th element of the i-th eigenvector is denoted by uki. In
practice when M is large, one works with a subsample (prototype vectors) of
size m≪M whose elements are selected using an entropy based criterion. The
entropy criterion ensures that the selected subset is spread over the entire data
region and not only concentrated on a certain area of the data set. In this case,
the m-dimensional feature map ϕ̂ : Rd → Rm can be approximated as follows:

ϕ̂(x) = [ϕ̂1(x), . . . , ϕ̂m(x)]T (6.13)

where

ϕ̂i(x) =
1

λ
(s)
i

m∑

k=1

uki K(xk, x), i = 1, . . . ,m (6.14)

where λ
(s)
i and ui are now eigenvalues and eigenvectors of the constructed kernel

matrix Ωm×m using the selected prototype vectors.

6.5.2 Fixed-Size MSS-KSC for large scale datasets

Since in Equation (6.1) the feature map ϕ is not explicitly known, one uses the
kernel trick and solves the problem in the dual. But as it has been shown in
subsection 6.2.1 in the dual one has to solve a linear system of size M (number
of data points). Therefore for large scale data, it is not appropriate to solve
the problem in the dual. In what follows we will show how one can use the
approximation of the feature map to solve the problem in primal. Given the
finite dimensional (m-dimensional) approximation to the feature map, i.e.

Φ̂ = [ϕ̂(x1), . . . , ϕ̂(xM )]T ∈ RM×m (6.15)
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one can rewrite the above optimization problem as an unconstrained optimiza-
tion problem and solve it in primal:

min
w(ℓ),b(ℓ)

J(w(ℓ), b(ℓ)) =
1

2

Q∑

ℓ=1

w(ℓ)T
w(ℓ)−

γ1

2

Q∑

ℓ=1

(Φ̂w(ℓ) + b(ℓ)1M
T

)TV (Φ̂w(ℓ) + b(ℓ)1M )+

γ2

2

Q∑

ℓ=1

(c(ℓ) − Φ̂w(ℓ) + b(ℓ)1M )TA(c(ℓ) − Φ̂w(ℓ) + b(ℓ)1M )

(6.16)

where the matrix C is defined as previously.

Lemma 6.5.1. Given a finite dimensional (m-dimensional) approximation to
the feature map Φ̂ and regularization constants γ1, γ2 ∈ R+, the solution to
(6.16) is obtained by solving the following linear system [120]:

[
w(ℓ)

b(ℓ)

]
=

(
ΦT

e RΦe + I(m+1)

)−1

γ2ΦT
e c

(ℓ), ℓ = 1, . . . , Q, (6.17)

where R = γ2A− γ1V is a diagonal matrix, ΦT
e =

[
Φ̂T

1T
M

]

(m+1)×M

and I(m+1)

is the identity matrix of size (m+ 1)× (m+ 1).

Proof. Taking the derivative of the cost function J with respect to w(ℓ) and
b(ℓ) yields:





∂J
∂w(ℓ) = 0→

(I + Φ̂TRΦ̂)w(ℓ) + Φ̂TR1Mb(ℓ) = γ2Φ̂T c(ℓ), ℓ = 1, . . . , Q,

∂L
∂b(ℓ) = 0→

1T
MRΦ̂w(ℓ) + (1T

MR1M )b(ℓ) = γ21T
Mc(ℓ), ℓ = 1, . . . , Q,

(6.18)

which then by using some algebraic manipulation can be rewritten as in (6.17).

The codebook CB used for out-of-sample extension is defined based on the
encoding vectors for the training points. If Y is the encoding matrix for the
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training points, the CB = {cq}Q
q=1, where cq ∈ {−1, 1}Q, is defined by the

unique rows of Y (i.e. from identical rows of Y one selects one row). The score
variables evaluated at the test set Dtest = {xi}ntest

i=1 become:

e
(ℓ)
test = Φ̂testw

(ℓ) + b(ℓ)1ntest
ℓ = 1, . . . , Q, (6.19)

where Φ̂test = [ϕ̂(x1), . . . , ϕ̂(xntest
)]T ∈ Rntest×m.

The decoding scheme consists of comparing the binarized score variables for
test data points with the codebook CB and selecting the nearest codeword in
terms of Hamming distance. The computational complexity, neglecting lower
order terms, for solving linear system (6.17) is approximately O(m3 + Mm2)
with m ≪ M . (The complexity of calculating the Nyström approximation
O(m3 +m2M) is also included).

The procedure for the Fixed-Size MSS-KSC approach is summarized in
Algorithm 10.

Algorithm 10: Fixed-size MSS-KSC approach for large scale data

Input: Training data set D, labels Y , tuning parameters γ1 and γ2, kernel
parameter (if any), test set Dtest = {xi}ntest

i=1 and codebook

CB = {cq}Q
q=1

Output: Class membership of test data points Dtest

1 Select m prototype vectors (small working set) using quadratic Rényi entropy
criterion [66]. (see section IV. B)

2 Obtain the m-dimensional approximation of the feature map (6.15) by means
of Nyström approximation (6.14).

3 Compute {w(ℓ)}Q
ℓ=1 and the bias term {b(ℓ)}Q

ℓ=1 using (6.17).

4 Estimate the test data projections {e(ℓ)
test}Q

ℓ=1 using (6.19).
5 Binarize the test projections and form the encoding matrix

[sign(e
(1)
test), . . . , sign(e

(Q)
test)]ntest×Q for the test points (Here

e
(ℓ)
test = [e

(ℓ)
test,1, . . . , e

(ℓ)
test,ntest

]T ).

6 ∀i (i = 1, . . . , ntest), assign xi to class q∗, where q∗ = argmin
q

dH(eℓ
test,i, cq) and

dH(·, ·) is the Hamming distance.

6.5.3 Subsample selection for Nyström approximation

We aim at using an m-dimensional approximation to the feature map ϕ.
Therefore as it is explained in subsection 6.5.1, one needs to select a subset



164 SEMI-SUPERVISED LEARNING

of fixed size m from a pool of training points of size M . Since the training set
is composed of labeled and unlabeled data points, we select a subset (of size
m) such that it consists of m1 and m2 data points from labeled and unlabeled
training data points. (m = m1 + m2). As it has been motivated in [159], the
Rényi entropy criterion [66] is used, twice only, to select m1 points from the
labeled and m2 points from the unlabeled training data. Once the subset is
available, the m-dimensional feature map is obtained using equation (6.14). See
Fig. 6.11 as an application of FS-MSS-KSC approach on two moons problems.

6.5.4 Reduced MSS-KSC for large scale datasets

For large-scale problems, the difficulty of solving the MSS-KSC formulation
(6.1) in the dual results from the huge kernel matrix which cannot be stored into
memory. The authors in [97] proposed to restrict the number of support vectors
by solving the reduced support vector machines (RSVM) for classification
problem. The reduced kernel technique is utilized to reduce the M × M
dimensionality of the kernel Ω to a much smallerM×n̄ dimensionality. Here n̄ is
the size of a randomly selected subset of training data considered as candidates
of support vectors. A smaller matrix then can be stored into memory.

In what follows, the reduced kernel technique described in [97] is applied to the
MSS-KSC formulation (6.1) in order to make it scalable. Suppose the matrix
of training data points which includes both labeled and unlabeled samples is
denoted by:

X = [x1, . . . , xM ]T ∈ RM×d.

Let us start with a linear kernel and reformulate (6.1) as follows:

min
w(ℓ),b(ℓ),e(ℓ)

1

2

Q∑

ℓ=1

(
w(ℓ)T

w(ℓ) + (b(ℓ))2
)
− γ1

2

Q∑

ℓ=1

e(ℓ)T
V e(ℓ)

+
γ2

2

Q∑

ℓ=1

(e(ℓ) − c(ℓ))TA(e(ℓ) − c(ℓ))

subject to e(ℓ) = Xw(ℓ) + b(ℓ)1M , ℓ = 1, . . . , Q,

(6.20)

where here the bias term is also penalized just to make the subsequent
derivations simpler. Setting the gradient of the associated Lagrangian of (6.20)
with respect to w(ℓ) to zero gives the following KKT condition:

w(ℓ) = XTα(ℓ), (6.21)
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where α(ℓ) are the Lagrange multipliers associated with the equality constraint
of (6.20). By replacing the primal variables w(ℓ) from (6.21) one obtains:

min
α(ℓ),b(ℓ),e(ℓ)

1

2

Q∑

ℓ=1

(
α(ℓ)T

α(ℓ) + (b(ℓ))2
)
− γ1

2

Q∑

ℓ=1

e(ℓ)T
V e(ℓ)

+
γ2

2

Q∑

ℓ=1

(e(ℓ) − c(ℓ))TA(e(ℓ) − c(ℓ))

subject to e(ℓ) = XXTα(ℓ) + b(ℓ)1M , ℓ = 1, . . . , Q,

(6.22)

where the objective function is modified to have the L2 norm regularization
of the problem variables α(ℓ), b(ℓ), e(ℓ). Following the lines of [97] one can
now replace the linear kernel matrix XXT by a nonlinear kernel matrix with
elements Ωij = K(xi, xj) to obtain the following optimization problem:

min
α(ℓ),b(ℓ),e(ℓ)

1

2

Q∑

ℓ=1

(
α(ℓ)T

α(ℓ) + (b(ℓ))2
)
− γ1

2

Q∑

ℓ=1

e(ℓ)T
V e(ℓ)

+
γ2

2

Q∑

ℓ=1

(e(ℓ) − c(ℓ))TA(e(ℓ) − c(ℓ))

subject to e(ℓ) = Ωα(ℓ) + b(ℓ)1M , ℓ = 1, . . . , Q.

(6.23)

Lemma 6.5.2. Given regularization constants γ1, γ2 ∈ R+, the solution to
(6.23) is obtained as follows [120]:

(
R−1 +GGT

)
β(ℓ) = Rγ2c

(ℓ), ℓ = 1, . . . , Q, (6.24)

where R = γ2A − γ1V is a diagonal matrix and G = [Ω, 1M ]. β(ℓ) =

[β
(ℓ)
1 , . . . , β

(ℓ)
M ]T are the Lagrange multipliers.
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Proof. The Lagrangian of the constrained optimization problem (6.23) be-
comes:

L(α(ℓ), b(ℓ), e(ℓ), β(ℓ)) =
1

2

Q∑

ℓ=1

(
α(ℓ)T

α(ℓ) + (b(ℓ))2
)
−

γ1

2

Q∑

ℓ=1

e(ℓ)T
V e(ℓ) +

γ2

2

Q∑

ℓ=1

(e(ℓ) − c(ℓ))TA(e(ℓ) − c(ℓ))+

Q∑

ℓ=1

β(ℓ)T
(
e(ℓ) − Ωα(ℓ) − b(ℓ)1M

)
,

where β(ℓ) is the vector of Lagrange multipliers. Then the Karush-Kuhn-Tucker
(KKT) optimality conditions are as follows,





∂L
∂e(ℓ) = 0→ e(ℓ) = R−1

(
γ2Ac

(ℓ) − βℓ

)
, ℓ = 1, . . . , Q,

∂L
∂b(ℓ) = 0→ b(ℓ) = 1T

Mβ(ℓ), ℓ = 1, . . . , Q,

∂L
∂α(ℓ) = 0→ α(ℓ) = ΩTβ(ℓ), ℓ = 1, . . . , Q,

∂L
∂β(ℓ) = 0→ Ωα(ℓ) + b(ℓ)1M = e(ℓ), ℓ = 1, . . . , Q,

(6.25)

where R is defined as previously. Elimination of the primal variables α(ℓ), e(ℓ),
results in the following equation

(
R−1 +GGT

)
β(ℓ) = Rγ2c

(ℓ), ℓ = 1, . . . , Q, (6.26)

with G defined as previously.

Obviously for large scale data, still matrix G is of size M × M which is
problematic. Therefore here the reduced kernel technique can be used to
overcome this issue by reducing the M × M dimensionality of kernel Ω to
a much smaller dimensionality of a rectangular kernel matrix Ω̄ ∈ RM×n̄ with
Ω̄ij = K(xi, xj) and xi ∈ X and xj ∈ X̄. Here X̄ is a (n̄×d) random submatrix
of X. Here, the subset is selected using a Rényi entropy based criterion [66]). If
one works with the reduced kernel Ω̄ in the primal optimization problem (6.23),
then by using the Sherman-Morrison-Woodbury formula [68], the solution in
the dual can be obtained as follows:

β
(ℓ) =

[
IM − RḠ

(
In̄+1 + Ḡ

T
RḠ

)
−1

Ḡ
T

]
γ2c

(ℓ)
, ℓ = 1, . . . , Q, (6.27)
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where Ḡ = [Ω̄, 1M ] ∈ RM×(n̄+1) and IM is the identity matrix. The expression
(6.27) involves the inversion of a small matrix of order (n̄+ 1)× (n̄+ 1). After
obtaining the β(ℓ) , the score variables evaluated at the test set Xtest = {xi}ntest

i=1

become:

e
(ℓ)
test = Ω̄test α(ℓ) + b(ℓ)1ntest

=

[
Ω̄test Ω̄T

]
β(ℓ) + b(ℓ)1ntest

, ℓ = 1, . . . , Q, (6.28)

where Ω̄test
ij = K(xi, xj) with xi ∈ Xtest and xj ∈ X̄.

The decoding scheme consists of comparing the binarized score variables for test
data points with the codebook CB and selecting the nearest codeword in terms
of Hamming distance. The procedure for Reduced MSS-KSC is summarized in
Algorithm 11.

Algorithm 11: Reduced MSS-KSC approach for large scale data

Input: Training data set X, labels Y , tuning parameters γ1 and γ2, kernel
parameter (if any), test set Xtest = {xi}ntest

i=1 and codebook

CB = {cq}Q
q=1

Output: Class membership of test data points Xtest

1 Select a subset matrix X̄ ∈ Rn̄×d from the original training data matrix

X ∈ RM×d using Rényi entropy based criterion [66]).

2 Solve the linear system (6.27) to obtain {β(ℓ)}Q
ℓ=1 and compute the bias term

{b(ℓ)}Q
ℓ=1 using the second equation of the KKT condition (6.4).

3 Estimate the test data projections {e(ℓ)
test}Q

ℓ=1 using (6.28).
4 Binarize the test projections and form the encoding matrix

[sign(e
(1)
test), . . . , sign(e

(Q)
test)]ntest×Q for the test points (Here

e
(ℓ)
test = [e

(ℓ)
test,1, . . . , e

(ℓ)
test,ntest

]T ).

5 ∀i (i = 1, . . . , ntest), assign xi to class q∗, where q∗ = argmin
q

dH(eℓ
test,i, cq) and

dH(·, ·) is the Hamming distance.

Remark 6.5.1. Without loss of generality, in our experiments we set n̄ (in
Algorithm 11) equal to the number of prototype vectors, i.e. m, used in
Algorithm 10.

Remark 6.5.2. Based on the given formulations in subsections 6.5.2 and 6.5.4,
the following differences between the Reduced and Fixed-size MSS-KSC can be
observed:

In the Fixed-Size MSS-KSC approach:
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• One relies on the eigen-decomposition of the kernel matrix (associated
with the prototype vectors) to approximate the feature map.

• The solution vector w(ℓ) obtained by Fixed-size MSS-KSC has the same
dimension as the number of prototype vectors.

• One solves the problem in the primal.

In the Reduced MSS-KSC approach:

• One does not need to apply the eigen-decomposition of the kernel matrix
associated with the prototype vectors to obtain the explicit feature map.

• The solution vector β(ℓ) obtained by Reduced MSS-KSC has the same
dimension as the number of training points.

• One solves the problem in dual.

6.6 Experimental Results

In this section, some experimental results are presented to illustrate the
applicability of the proposed semi-supervised classification and clustering
approaches. We start with a toy problem and show the differences between
the obtained results when semi-supervised classification and semi-supervised
clustering are applied on the same data. (see Fig. 6.1 and 6.2).

The performance of the proposed algorithms is also tested on two moons
and two spirals data sets which are standard benchmarks for semi-supervised
learning algorithms used in the literature [43].

Next the proposed semi-supervised classification is applied to some benchmark
data sets taken from the UCI machine learning repository and the performance
is compared with Laplacian SVM [21] and Means3VM [100]. Afterwards,
the performance of the semi-supervised clustering on image segmentation
tasks has been tested and the obtained results are compared with the kernel
spectral clustering algorithm [4]. Finally the application of the semi-supervised
classification is also shown in community detection of real-world networks.

6.6.1 Toy problems

The performance of the proposed semi-supervised classification and clustering
algorithms are shown on a synthetic data set consisting of seven well separated
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Gaussians. Some labeled data points from three of them are available (see Fig.
6.1(a)). When the semi-supervised classification algorithm is used the data
are grouped into three classes due the fact that the codebook used in semi-
supervised classification is a static codebook and it consists of three codewords.
On the other hand, in semi-supervised clustering algorithm the codebook is
designed based on the solution vector of the associated linear system and is not
static, i.e. the number of codewords is not fixed and is tuned. Therefore, by
applying the semi-supervised clustering one is able to partition the data into
seven clusters. As it can be seen from Fig. 6.1(d) and 6.2(b), the projected
data points are embedded in 3 dimensional space and yet we are able to cluster
them in contrast with kernel spectral clustering algorithm [4] which requires
an embedding space with dimension 6 to be able to group the given data sets
into 7 clusters.

We also conducted experiments on nonlinear toy problems such as two moons
and two spirals and the obtained results are shown in Fig. 6.3. For two spirals
data set two scenarios are tested corresponding to different positions of the
labeled data point. A comparison is made with LRGA algorithm1 proposed in
[184]. The LRGA algorithm has two parameters k and λ. In these experiments
the parameter k (size of the neighborhood) is set to 10 and λ is searched within
[1, 1016] using a logarithmic scale. As Fig. 6.3 shows, for the two moons data
set the results of both method are comparable. However the results of the two
spirals data set indicate that our proposed algorithm is less sensitive to the
position of labeled data points2 compared to LRGA algorithm.

In these experiments, γ2 and σ are tuned through a grid search. The range in
which the search (using a logarithmic scale) is made for γ2 and σ is shown in
Fig. 6.2(c) and Fig. 6.4. From these figures, it is apparent that there exist a
range of γ2 and σ for which the value of the utilized model selection criterion
is quite high on the validation set.

6.6.2 Real-life benchmark data sets

Four benchmark data sets used in the following experiments are chosen from
the UCI machine learning repository [13]. The benchmark consists of Wine,
Iris, Zoo and Seeds data sets. In all cases, the data points are divided using
proportion 80% and 20% into training and test counterparts respectively. Then
one fourth of randomly selected data points in the training set are considered to
be labeled and the remaining three fourths are unlabeled. The performance of
the proposed semi-supervised classification approach (MSS-KSC), is compared

1Available at: http://www.cs.cmu.edu/∼yiyang/LRGA_ranking.m
2The equivalent of the query provided by the user.
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Figure 6.1: Toy Problem: Seven well separated Gaussians. The labeled data
points of only three classes are available and are depicted by the blue squares
(�) , green triangles (N) and red circles (•). (a): Data points in the original
space (b): Result of multi-class semi-supervised classification using LapSVMp
with RBF kernel. (c): Result of the proposed multi-class semi-supervised
classification with RBF kernel (Note that the algorithm detected three classes.
The first class consists of one cluster whereas the second and third class consist
of three clusters respectively). (d): The projections of the validation data points
when the proposed semi-supervised classification algorithm is used (indicating
the line structure in the projection-space).
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Figure 6.2: Toy Problem: Seven well separated Gaussians. The labeled data
points of only three classes are available and are depicted by the blue squares
(�) , green triangles (N) and red circles (•). (a): Result of the proposed
multi-class semi-supervised clustering with RBF kernel. (b): The projections
of the validation data points when semi-supervised clustering algorithm is used
(indicating the line structure in the projection-space). (c): Model selection for
semi-supervised clustering using Silhouette validity index corresponding to the
best case T = 7. The asterisk (*) marks the optimal model. (d): Piecewise
constant property of the solution vector.
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Figure 6.3: Toy Problems: two spiral and two moon data sets. The labeled data
point is depicted by the red squares (�). First row: Data points in the original space.
Second row: Result of the proposed semi-supervised algorithm with RBF kernel.
Third row: Model selection of the proposed algorithm. (The asterisk (*) marks the
optimal model for these examples.) Fourth row: Result of the LRGA algorithm
corresponding to the worst case when the parameter k (size of the neighborhood) is
set to 10 and λ is searched within [1, 1e16] using a logarithmic scale. Fifth row:

Result of the LRGA algorithm corresponding to the best case when the parameter
k (size of the neighborhood) is set to 10 and λ is searched within [1, 1e16] using a
logarithmic scale.
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Figure 6.4: Toy Problems: two spiral and two moon data sets. The labeled data
point is depicted by the red squares (�). Model selection of the proposed algorithm.
(The asterisk (*) marks the optimal model for these examples.)

with Laplacian SVM (LapSVMp)3 [21] and MeanS3VM [100] using the one-vs-
all strategy.

In this experiment, the procedure used for model selection is a two-step
procedure which consists of Coupled Simulated Annealing [182] initialized with
random sets of parameters for the first step and the simplex method [129] for
the second step. After CSA converges to some local minima, the parameters
that obtained the lowest misclassification error are used for initialization of the
simplex procedure to refine our selection. At every iteration for CSA method
a 10-fold cross-validation is utilized. In all the experiments the RBF kernel is
used.

For MeanS3VM method, the regularization parameters C1 and C2 are fixed to
1 and 0.1 (default values), respectively and the width parameter in RBF kernel
is tuned with respect to the accuracy on the validation set. For the Laplacian
SVMs, the kernel parameter and γA are tuned with respect to the accuracy
on the validation set. The remaining parameters, i.e. γI and NN (number of
nearest neighbors), are set to their default values (γI = 1 and NN = 6).

The mean and standard deviation of the accuracy rates on test data points
with respect to 10 random splits are reported in Table 6.1. Table 6.1 shows
that the proposed MSS-KSC approach outperforms in most cases the other
approaches on these tested problems. The effect of changing the value of the
user defined parameter η, used for model selection, on the performance of the
proposed algorithm with respect to 10 random splits can be seen in Fig. 6.5.

3Available at: http://www.dii.unisi.it/∼melacci/lapsvmp/
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Table 6.1: The average accuracy and the standard deviation of the LapSVMp [21], means3vm-
iter [100], means3vm-mkl [100] and the proposed MSS-KSC approach on four real data sets from
UCI repository [13].

Dataset Method
(var,cls,dp) Dtr

L /Dtr
UL/Dtest MSS-KSC LapSVMp means3vm-iter means3vm-mkl

Wine (13, 3, 178) 36/107/35 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.02 0.94 ± 0.07
Iris (4, 3, 150) 30/90/30 0.89 ± 0.08 0.88 ± 0.05 0.90 ± 0.03 0.89 ± 0.01
Zoo (16, 7, 101) 21/60/20 0.93 ± 0.05 0.90 ± 0.06 0.88 ± 0.02 0.89 ± 0.07
Seeds (7, 3, 210) 42/126/42 0.90 ± 0.04 0.89 ± 0.03 0.88 ± 0.07 0.89 ± 0.02

Note: Dtr
L and Dtr

UL denote the labeled and unlabeled training points respectively. Also triple
(var,cls,dp)=(variables,classes,data points).
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Figure 6.5: Obtained accuracy of the proposed MSS-KSC approach, with
respect to different η value, over 10-simulation runs. The outliers are denoted
by red “+”.
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6.6.3 Image segmentation

In this section, the task is to segment the given image using the proposed
semi-supervised clustering. Here the aim is to show that by incorporating the
side-information (labels in this case) to the unsupervised model, it is possible
to improve the result of the unsupervised algorithm.

Experimental results on two synthetic images and some color images from the
Berkeley image data set [107] are shown in Fig. 6.6 and 6.8. For each image, a
local color histogram with a 5× 5 local window around each pixel is computed
using minimum variance color quantization of eight levels. A subset of 500
unlabeled pixels together with some labeled pixels (see Table 6.2) are used for
training and the whole image for testing.

For the synthetic images a qualitative evaluation of both approaches is provided,
since the ground truth of these images were not available. For the Berkeley
images data set for which the ground truth segmentations are known, the
segmentations obtained by MSS-KSC and KSC are compared with the ground
truth in Table 6.2. Two evaluation criteria are used:

• F-measure, i.e. 2×Precision×Recall
Precision+Recall with respect to human ground-truth

boundaries.

• Variation of information (VI): it measures the distance between two
segmentations in terms of their average conditional entropy. Low values
indicate good match between the segmentations [7].

In these experiments, the range in which the search (using a logarithmic scale)
is made for tuning the parameters γ2 and σ are [0, 1] and [10−3, 101] respectively.
The length of the codebook p is also tuned on the interval [Q, 2Q]. The score
variables obtained by the proposed MSS-KSC algorithm for two images are
shown in Fig. 6.6 when Silhouette criterion is used. As it can be seen, the
embedding dimension (spectral embedding) is three and yet we can detect more
than four clusters from the given image. Unlike the toy example 1 for these
images, due to the fact that clusters are not well separated, the line structure
of the score variables is less clear. In Fig. 6.7, the maximum value of the
Silhouette criterion for each p (length of the codebook) while tuning γ and σ
is plotted. Therefore the predicted number of clusters is equal to p for which
the Silhouette value is maximum. The obtained results are shown in Fig. 6.6
and 6.8 which reveal that incorporating the prior knowledge (labels provided
by human), can potentially increase the performance in the segmentation task
with respect to a genuinely unsupervised approach.
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Figure 6.6: First row: Original image used for the KSC algorithm. Second
row: Segmented image using the KSC approach. Third row: Labeled image
used for the proposed MSS-KSC. Fourth row: Segmented image using the
MSS-KSC approach. Fifth row: Score variables in the projection space.
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Figure 6.7: Model selection curves corresponding to the obtained Silhouette
value for different p value. (a) Three labels were provided (Q=3). The
maximum Silhouette value for the first syntactic image, while σ and γ2 are
tuned, over a range of p ∈ {Q, ..., 2Q}. (b) Three labels were provided (Q=3).
The maximum Silhouette value for the second syntactic image, while σ and γ2

are tuned, over a range of p ∈ {Q, ..., 2Q}.

Table 6.2: Comparison of KSC and MSS-KSC for image segmentations in terms of F-measure
and variation of information indices

D Dval F-measure Variation of information

Image ID Q Du DL Du DL KSC MSS-KSC KSC MSS-KSC

100007 4 500 8 3000 8 0.57 0.62 1.64 1.95
295087 4 500 8 3000 5 0.59 0.62 2.54 2.88
372019 3 500 6 3000 6 0.40 0.44 2.83 2.44
385039 5 500 14 3000 12 0.48 0.48 3.20 3.18
388067 3 500 6 3000 6 0.60 0.74 4.61 4.50

8049 3 500 6 3000 7 0.70 0.75 2.22 2.07

Note: For variation of information the lower the value the better, whereas for F-measure the
higher value the better the segmentation is.
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Original image KSC Method Labeled image MSS-KSC

 

 

Figure 6.8: Image segmentation results using the proposed method and the KSC [4]. A subset
of 500 and 3000 randomly chosen pixel histograms (unlabeled data points) together with some
labeled data points are used for training and validation respectively. The whole image is used for
testing. The original image is shown in the first column. The segmentation results obtained by
KSC using the original images are shown in the second column. The third column shows the images
labeled by human. The results of the proposed semi-supervised clustering algorithm applied on
the labeled images are depicted in the fourth column.
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6.6.4 Community detection

Community detection is an important topic related to complex networks [60].
It consist of finding clusters of strongly connected nodes such that nodes in the
same community share more connections than nodes in different communities.
Once properly identified, the community structure can help to shed light on
the whole functioning of the network. Community detection is an unsupervised
technique. However, if some form of prior knowledge of the community
structure is present, semi-supervised techniques could in principle be used to
improve the results [104, 105].

In this section the performance of the proposed method is analyzed in the
community detection problems when there exist some form of prior knowledge
about the existing communities. We conduct the experiments on two well
known real-world networks, i.e. Karate, Football data sets shown in Fig. 6.9,
which are described briefly as follows:

Karate: The Zachary’s karate club network [185] consists of 34 member nodes,
and splits into two smaller clubs after a dispute emerged during the course of
Zachary’s study between the administrator and the instructor.

Football: This network [67] describes American college football games and is
formed by 115 nodes (the teams) and 616 edges (the games). It can be divided
into 12 communities according to athletic conferences.

Concerning the Karate network, a comparison with the methods described
in [173] is performed. In [173] a percentage of node pairs, which then are
determined weather they belong to must-link or cannot-link groups, is used
in the learning process. The reported results in Table 1 of [186] for different
percentages of node pairs are tabulated in Table 6.3.

Since in the proposed approach we work with the labeled nodes, not pairs, we
randomly select some nodes and labeled them according to the true community
to which they belong. The averaged normalized mutual information (NMI) over
10 simulation runs for Karate network is reported in Table 6.3. One can observe
that the proposed method is able to achieve the maximum performance using
less labeled nodes than the other algorithms. In particular with 10 labeled
nodes the maximum value of NMI is achieved.

Concerning the Football network, we conducted the semi-supervised classifica-
tion task. The training set consists of both labeled and unlabeled nodes. 40%
of each class (community) is randomly selected and form the labeled training
nodes and another 40% randomly selected nodes form the unlabeled nodes. The
whole network is considered as the test set and the obtained result is compard
with KSC approach. The partitions found by KSC and MSS-KSC are evaluated
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(a)

(b)

Figure 6.9: Visualization of the networks when nodes are colored according to
their degree value (a) American college football undirected graph. (b) Zachary’s
karate club undirected graph.
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Figure 6.10: American college football network. (a) Obtained ARI value
when KSC and MSS-KSC algorithm are used. (b) Kernel matrix showing the
partitioning related to η = 0.6. A clear block structure revealing the presence
of the 12 communities can be noticed.

according the to adjusted Rand index (ARI) [173]. The obtained ARI values
on the test set after 10 runs is shown in Fig. 6.10 respectively. We can observe
that, the prior knowledge incorporation helps to improve the performance with
respect to KSC.

Table 6.3: Karate network. Comparison of MSS-KSC and methods described in [186] in
terms of averaged normalized mutual information (NMI).

Methods in [186] The proposed method
pairs constraints % # pairs [r,t] NMF-LSE NMF-KL SNMF SP # nodes MSS-KSC

2% 4 [4,8] 0.98 0.73 0.51 0.90 4 0.91
4% 6 [6,12] 0.99 0.85 0.60 0.96 6 0.95
5% 8 [8,16] 0.99 0.89 0.53 0.95 8 0.98

10% 16 [16,32] 1.00 0.89 0.57 1.00 10 1.00
20% 31 [31,34] 1.00 0.98 0.56 1.00 12 1.00

Note: The minimum and maximum number of nodes that could results in the given number of
pairs are denoted by r and t.

6.6.5 Large scale data sets

In this section experimental results on synthetic and real-life datasets taken
from UCI machine learning repository4 [13] and LIBSVM datasets 5 [40] are
given. The experiments are performed on a laptop computer with Intel Core
i7 CPU and 4 GB RAM under Matlab 2012a.

4Available at: http://archive.ics.uci.edu/ml/datasets.html
5Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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The performance of the proposed FS-MSS-KSC algorithm on two moons
dataset with 4000 data points is shown in Figure 6.11. The selected prototype
vectors are depicted by circles. For the real datasets the size of the data on
which the experiments were conducted ranges from small to large and covering
both binary and multi-class classification. The amount of labeled data points
used in the learning process, depending on the size of the dataset, ranges from
1% to 40% of the remaining data points (i.e. test set is not included).

Descriptions of the used datasets from [13] and [40] can be found in Table
6.4. For Ecoli and Covertype datasets we merge some of the classes in order
to avoid unbalanced classes. In both Fixed-Size MSS-KSC and Reduced MSS-
KSC approaches the prototype vectors (small working set) were selected via
maximization of the Rényi entropy. The total amount of prototype vectors
consists of prototype vectors selected from labeled and unlabeled data points.
Noting that in the semi-supervised setting one usually encounters a small
amount of labeled and a large amount of unlabeled data points, in our
experiments, for the labeled data points the number of the prototype vectors
is set as follows:

PVL =

{
NL if NL < 200
⌈q1

√
NL ⌉ otherwise,

(6.29)

where q1 ∈ Q+\{0}. For all the experiments q1 is set to one. For the unlabeled
data points if its number is small (less than 1000) then the number of the
prototype vectors is set as follows:

PVu =

{
N if N < 500

⌈
√
N ⌉ otherwise.

(6.30)

In case the amount of unlabeled data points is huge, first we randomly select a
fraction of them of size Nnew = ⌈pNL⌉, where p ∈ N, for training set and then
choose the number of prototype vectors from the new set of unlabeled data
points as follows:

PVu =

{
⌈Nnew⌉ if ⌈Nnew⌉ < 500

⌈q2

√
Nnew ⌉ otherwise,

(6.31)

where q2 ∈ Q+\{0}. It should be noted that q1, q2 and p are the user defined
parameters that can be designed in accordance with the available memory
of the computer that is being used to conduct the experiments. The values
of these parameters, i.e. q2 and p, together with the number of training
and validation data points used in the experiment are tabulated in Table
6.5. The obtained results of the proposed (Fixed-Size and Reduced) MSS-
KSC approaches together with the Fixed-Size implementation of the LSSVM
approach [159] are tabulated in Table 6.6. The results reported in Table 6.6,
are obtained by averaging over 10 simulation runs with κ = 0.25 used in the
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model selection criterion. For the LapSVMp approach, we tuned the kernel
parameter and γA with respect to the accuracy on the validation set. The
remaining parameters, i.e. γI and NN (the number of neighbors), are set to
their default values (γI = 1 and NN = 6).

Table 6.4: Dataset statistics

Dataset # of data points # of attributes # of classes

Iris 154 4 3
Spect 267 21 2
Heart 270 13 2
Ecoli 336 7 5
Pima-Indian 768 8 2
Spambase 4597 57 2
Satimage 6435 36 6
Ring 7400 20 2
Magic 19020 10 2
Cod-rna 331152 8 2
Covertype 581012 54 3
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2

Two moons dataset with 2000 data points each

Figure 6.11: The performance of the FS-MSS-KSC method with RBF kernel
on two moons dataset yielding a sparse kernel-based model. In total there are
4000 data points. The prototype vectors (small working set) selected by the
Rényi entropy criterion are depicted by circles.

Table 6.6 shows that for these data one can improve the generalization
performance by incorporating unlabeled data points into the learning process.
It should be noted that the FS-LSSVM is a supervised algorithm that uses only
the labeled training points. The training computation times for the algorithms
used to obtain the results of Table 6.6 are then reported in Table 6.7. These
results are expected since the FS-LSSVM does not use unlabeled data in the
training process therefore it is the fastest one. The FS-MSS-KSC requires to
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Table 6.5: The average test accuracy and the standard deviation of the
proposed Fixed-Size, Reduced MSS-KSC approaches and Fixed-Size LSSVM
[159] method on real datasets over 10 simulation runs.

nL/nu

Dataset q2/p (% of Labeled data) nvalidation
L /nvalidation

u P VL/P Vu

Heart 1/1 19/76 (20%) 19/75 19/76
Pima-Indian 1/1 54/215 (20%) 54/215 54/215
Spect 1/1 19/75 (20%) 19/74 19/75
Iris 1/1 24/36 (40%) 24/36 24/36
Ecoli 1/1 54/81 (40%) 54/80 54/81
Satimage 1/1 1030/1030 (40%) 1030/1030 33/33
Ring 1/1 592/592 (20%) 592/592 25/25
Spambase 2/2 368/736 (20%) 368/736 20/55
Magic 2/2 761/1522 (10%) 761/1522 28/79
Cod-rna 1/1 1325/1325 (1%) 1325/1325 37/37
Covertype 1/1 2760/2760 (1%) 2760/2760 53/53

Note: The reported (%) of the labeled data used in the learning process, is the percentage from
D\Dtest, i.e. the test set is not included.

Table 6.6: The average test accuracy and the standard deviation of the
proposed Fixed-Size, Reduced MSS-KSC approaches and Fixed-Size LSSVM
[159] method on real datasets over 10 simulation runs.

Method

Dataset Dtest(%) FS-MSS-KSC RD-MSS-KSC LapSVMp FS-LSSVM

Heart 81 (30%) 0.803 ± 0.05 0.795 ± 0.05 0.761 ± 0.001 0.759 ± 0.05
Pima-Indian 230 (30%) 0.740 ± 0.02 0.746 ± 0.02 0.748 ± 0.001 0.729 ± 0.03
Spect 80 (30%) 0.832 ± 0.07 0.838 ± 0.02 0.821 ± 0.01 0.825 ± 0.03
Iris 30 (20%) 0.946 ± 0.05 0.960 ± 0.02 0.938 ± 0.13 0.601 ± 0.05
Ecoli 67 (20%) 0.746 ± 0.03 0.740 ± 0.04 0.748 ± 0.06 0.468 ± 0.03
Satimage 1287 (20%) 0.864 ± 0.006 0.831 ± 0.009 0.834 ± 0.007 0.325 ± 0.08
Ring 1480 (20%) 0.975 ± 0.005 0.974 ± 0.005 0.972 ± 0.006 0.968 ± 0.007
Spambase 919 (20%) 0.885 ± 0.01 0.883 ± 0.01 0.880 ± 0.03 0.838 ± 0.02
Magic 3804 (20%) 0.836 ± 0.006 0.829 ± 0.006 0.827 ± 0.005 0.825 ± 0.005
Cod-rna 66230 (20%) 0.957 ± 0.006 0.947 ± 0.008 0.951 ± 0.001 0.941 ± 0.006
Covertype 29050 (5%) 0.715 ± 0.005 0.684 ± 0.008 0.697 ± 0.001 0.362 ± 0.003

Note: The reported (%) of test set is the percentage from the entire data set.

apply an eigen-decomposition technique whereas RD-MSS-KSC does not apply
any eigen-decomposition technique.

In Table 6.8, we examine the situation where the utilized size of unlabeled data
is large and therefore applying LapSVMp will result in out-of-memory problems
whereas the proposed FS-MSS-KSC and RD-MSS-KSC approaches that use an
approximation of the feature map and reduced kernel matrix respectively, can
deal with a large amount of unlabeled data points. Figure 6.12 shows the
training computation times with respect to an increasing number of training
points for Covertype data set. The RD-MSS-KSC showed a considerably
reduced computation times due to the fact that, unlike FS-MSS-KSC, it does
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Table 6.7: The average training computation times in seconds for the proposed
Fixed-Size, Reduced MSS-KSC approaches, LapSVMp [21] and Fixed-Size
LSSVM [159] methods on real datasets over 10 simulation runs.

Training computation times in seconds

Dataset FS-MSS-KSC RD-MSS-KSC LapSVMp FS-LSSVM

Heart 0.0090 0.0043 0.0267 0.0017
Pima-Indian 0.0381 0.0192 0.0295 0.0040
Spect 0.0081 0.0051 0.0265 0.0019
Iris 0.0090 0.0055 0.0025 0.0032
Ecoli 0.0395 0.0184 0.0030 0.0095
Satimage 0.1552 0.1192 0.2317 0.0277
Ring 0.0172 0.0139 0.1727 0.0069
Spambase 0.0246 0.0179 0.1497 0.0053
Magic 0.0737 0.0474 0.6026 0.0107
Cod-rna 0.3646 0.2349 7.6779 0.1590
Covertype 1.0721 0.7231 8.0201 0.6572
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Figure 6.12: Training computation time in seconds for the Covertype dataset
with an increasing number of unlabeled training points and fix number of
labeled points (nL = 2760). The Reduced MSS-KSC approach takes less
training time than the Fixed-Size MSS-KSC approach.

not involve an eigen-decomposition step.
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Table 6.8: The average test accuracy of the proposed methods on Covertype
dataset. The test set is 5% of the entire dataset.

Method

nL/nu q2/p P VL/P Vu FS-MSS-KSC RD-MSS-KSC LapSVMp

2760/2760 1/1 53/53 0.715 ± 0.01 0.684 ± 0.03 N.A
2760/27600 0.5/10 53/84 0.729 ± 0.04 0.709 ± 0.05 N.A
2760/55200 0.5/20 53/118 0.731 ± 0.02 0.712 ± 0.04 N.A
2760/82800 0.5/30 53/144 0.739 ± 0.04 0.716 ± 0.03 N.A
2760/138000 0.5/50 53/186 0.742 ± 0.05 0.723 ± 0.06 N.A

6.7 Conclusions

In this chapter, a multi-class semi-supervised formulation based on kernel
spectral clustering (MSS-KSC) has been proposed. MSS-KSC can address
both semi-supervised classification and clustering. A low embedding dimension
is designed and utilized for semi-supervised clustering. The method is able to
find hidden micro clusters without requiring to have a side-information about
them. The validity and applicability of the MSS-KSC is shown on synthetic
examples as well as on real benchmark datasets in different areas including
semi-supervised classification, image segmentation and community detection
problems. In order to deal with large scale data, two approaches are proposed
to make the MSS-KSC scalable. The first approach, FS-MSS-KSC, uses the
Nyström approximation of the feature map and solves the semi-supervised
problem in the primal space. The second approach, RD-MSS-KSC, solves the
problem in the dual using a reduced kernel matrix. The first approach requires
an eigen-decomposition technique to obtain the explicit feature map whereas
the second one does not rely on any eigen-decomposition technique.



Chapter 7

Incremental Semi-Supervised
Learning Regularized by
Kalman Filtering

In this chapter an on-line semi-supervised learning algorithm is formulated by
a regularized kernel spectral clustering (KSC) approach. We consider the case
where new data arrive sequentially but only a small fraction of it is labeled. The
available labeled data act as prototypes and help to improve the performance of
the algorithm to estimate the labels of the unlabeled data points. We adopt a
recently proposed multi-class semi-supervised KSC based algorithm (MSS-KSC)
and make it applicable for on-line data clustering. Given a few user-labeled
data points the initial model is learned and then the class membership of the
remaining data points in the current and subsequent time instants are estimated
and propagated in an on-line fashion. The update of the memberships is carried
out mainly using the out-of-sample extension property of the model. Initially
the algorithm is tested on computer-generated data sets, then we show that video
segmentation can be cast as a semi-supervised learning problem. Furthermore
we show how the tracking capabilities of the Kalman filter can be used to provide
the labels of objects in motion and thus regularizing the solution obtained by the
MSS-KSC algorithm. In the experiments, we demonstrate the performance of
the proposed method on synthetic data sets and real-life videos where the clusters
evolve in a smooth fashion over time.

187
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7.1 Related Work

In many real-life applications, ranging from data mining to machine perception,
obtaining the labels of input data is often cumbersome and expensive.
Therefore in many cases one encounters a large amount of unlabeled data
while the labeled data are rare. Semi-supervised learning (SSL) is a framework
in machine learning that aims at learning from both labeled and unlabeled
data points [189]. SSL algorithms received a lot of attention in the last
years due to rapidly increasing amounts of unlabeled data. Several semi-
supervised algorithm have been proposed in the literature [21, 183, 184, 41, 177].
However, most of the SSL algorithms, operate in batch mode, hence requiring
a large amount of computation time and memory to handle data streams like
the ones found in real-life applications such as voice and face recognition,
community detection of evolving networks and object tracking in computer
vision. Therefore designing SSL algorithms that can operate in an on-line
fashion is necessary for dealing with such data streams.

In the context of on-line clustering, due to the complex underlying dynamics
and non-stationary behavior of real-life data, attempts have been made to
design adaptive clustering algorithms. For instance, evolutionary spectral
clustering based algorithms [38, 134, 47], incremental K-means [39], self-
organizing time map [144]. However, in all above-mentioned algorithms the
side-information (labels) is not incorporated and therefore they might under-
perform in certain situations. Here we adopt the recently proposed multi-class
semi-supervised kernel spectral clustering (MSS-KSC) algorithm introduced in
Chapter 6 and make it applicable for an on-line data clustering/classification.
In MSS-KSC the core model is kernel spectral clustering (KSC) algorithm
introduced in [4]. MSS-KSC is a regularized version of KSC which aims at
incorporating the information of the labeled data points in the learning process.
It has a systematic model selection criterion and the out-of-sample extension
property.

In contrast to the methods described in [21, 183, 184, 41, 2], in the MSS-
KSC approach a purely unsupervised algorithm acts as a core model and the
available side information is incorporated via a regularization term. In addition,
the method can be applied for both on-line semi-supervised classification and
clustering and uses a low-dimensional embedding. In the MSS-KSC approach,
one needs to solve a linear system of equations to obtain the model parameters.
Therefore with n number of training points, the algorithm has O(n3) training
complexity with naive implementations. The MSS-KSC model can be trained
on a subset of the data (training data points) and then applied to the rest of the
data in a learning framework. Thanks to the previously learned model, the out-
of-sample extension property of the MSS-KSC model allows the prediction of
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the membership of a new point. However, in order to cope with non-stationary
data-stream one also needs to continuously adjust the initial MSS-KSC model.

To this end, in this chapter we propose the Incremental MSS-KSC (I-MSS-
KSC) algorithm which takes advantage of the available side-information to
continuously adapt the initial MSS-KSC model and learn the underlying
complex dynamics of the data-stream. The proposed method is rather general
and can be used in several application domains including complex networks,
medical imaging and video segmentation.

There have been some reports in the literature on formulating the object
tracking task as a binary classification problem. For instance in [163] a tracking-
based semi-supervised learning algorithm is developed for the classification
of objects that have been segmented. The authors in [15] introduced a tree
structured graphical model for video segmentation.

Due to the increasing demands in robotic applications, Kalman filtering has
received significant attention. In particular Kalman filter has been applied in
wide applications areas such as robot localization, navigation, object tracking
and motion control (see [45] and references therein). The authors in [155] use
the Kalman filter for monitoring a contact in a video surveillance sequence. In
[188], a Kalman filter based algorithm is presented to segment the foreground
objects in video sequences given non-stationary textured background. An
adaptive Kalman filter algorithm has been used for video moving object
tracking in [179].

In case of the video segmentation, we show how Kalman filter can be integrated
into the I-MSS-KSC algorithm as a regularizer by providing an estimation of
the labels throughout the whole video sequences.

7.2 Incremental Multi-class Semi-Supervised Clus-

tering

It has been shown in Algorithm 9 of Chapter 6 that for the MSS-KSC approach,
one has to solve a linear system of size n (number of training data points) in the
dual to obtain the cluster membership of the data points. This is fine for batch
mode but does not fit practical applications such as on-line semi-supervised
clustering, in which the data are entered sequentially. If the distribution of the
new arriving data points is not in line with the one of the training points, then
the trained model cannot explain well the new distribution. Therefore in those
cases an adaptive learning mechanism is required. In what follows we will show
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how one can use the out-of-sample extension property of the MSS-KSC model
for dealing with data streams in an on-line fashion.

7.2.1 Out-of-sample solution vector

In the batch MSS-KSC algorithm 9, the cluster membership of new and
unseen test points Dtest = {xi}ntest

i=1 is done by an Error-Correcting Output
Coding (ECOC) decoding scheme. First the cluster indicators are obtained by
binarizing the score variables for test data points as follows:

q
(ℓ)
test = sign(e

(ℓ)
test) = sign(Φtestw

(ℓ) + b(ℓ)1ntest
)

= sign(Ωtestα
(ℓ) + b(ℓ)1ntest

), ℓ = 1, · · · , Q,

where Φtest = [ϕ(x1), . . . , ϕ(xntest
)]T and Ωtest = ΦtestΦ

T ∈ Rntest×n, (n is the
number of training points). The decoding scheme consists of comparing the
cluster indicators obtained in the test stage with the codebook CB (which is
obtained in the training stage) and selecting the nearest codeword in terms of
Hamming distance.

For an on-line fashion, once the model is built using the training data points,
one can use the above procedure to estimate the cluster membership of the new
test points. But in order for the model to be able to track the non-stationary
changes in the data stream, the initial codebook CB should be adapted on-line
so that it has the information of the more recent data points.

In addition one has to incrementally update the solution vectors α. Since in
the MSS-KSC approach one needs to solve a linear system of equations, it is
possible to use for instance the Sherman-Morrison-Woodbury formula [68] to
efficiently update the inverse of the coefficient matrix whenever a new data
point is arrived without explicitly computing the matrix inverse. In this case,
also one should use some decremental algorithm to cope with non-stationary
data stream [111].

Here we aim at using the out-of-sample extension capability of the MSS-KSC
model. Consider ntest new data points, Dtest = {xi}ntest

i=1 . The score variables
are:

e
(ℓ)
test = Φtestw

(ℓ) + b(ℓ)1ntest
= Ωtestα

(ℓ) + b(ℓ)1ntest
, ℓ = 1, · · · , Q, (7.1)

where Φtest and Ωtest are defined as previously. The third KKT condition in
(6.4),

α(ℓ) = (γ1V − γ2A)e(ℓ) + γ2c
(ℓ), ℓ = 1, . . . , Q,
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links the score variables for training, i.e. e, to the solution vector α. The idea
now is to extend this link to out-of-sample projections, such that we obtain an
out-of-sample solution with localized properties. An estimation of the out-of-
sample solution vector α(ℓ), ℓ = 1, · · · , Q for the new test data points can be
computed as follows:

α̂
(ℓ)
test

∆
= (γ1Vtest − γ2Atest)e

(ℓ)
test + γ2c

(ℓ)
test, ℓ = 1, . . . , Q, (7.2)

where ctest consists of label information of some data points. Vtest = D−1
test =

diag( 1
d1
, · · · , 1

dntest
) is the inverse degree matrix for the test data points. If

there is no label available, one can simply estimate the solution vector by
setting ctest and Atest equal zero. In case that the test dataset is sampled from
the same distribution as the training data points, then the approximated out-of-
sample solution vector α̂test, from equation (7.2), will display localized cluster
structures. Thus the data points xi ∈ Rd are embedded in the Q-dimensional
Euclidean space called α-space, i.e.

xi → αi := (α
(1)
i , · · · , α(Q)

i ),∀i = 1, · · · , ntest.

In the MSS-KSC formulation, the clusters in the projection space (e-space)
obtained by e(ℓ) form lines with well-tuned RBF kernel parameters. Whereas
the projection of the points in the α-space obtained by α(ℓ) show a localized
behavior. For the sake of clarity we illustrate the projected points in both α
and e-spaces, in the case of a synthetic two moons dataset in Fig 7.1.

In the case of well separated clusters, the data points that lie in the same cluster
in the original space, are all mapped to one point in α-space. But in practical
applications where clusters are not well separated, the data points in the same
cluster in the input space will be close to each other in the α-space with respect
to the other points in different clusters. Using this localized representation for
out-of-sample solutions in α-space it is possible to introduce the representative
or conceptual centroid of a cluster in this space.

From now on, we use two spaces: the original space X where the data point
xi lies and the α-space where the embedded solution vector αi lies. Before
starting to introduce the on-line semi-supervised clustering algorithm, let us
introduce some definitions that will be used in the remaining of the chapter.

Definition 1. The representative or conceptual centroid of the ith cluster Ai

in the X -space, is defined as the mean value of the data points in Ai. We denote
the cluster representative in the X -space by repX (Ai).

Definition 2. The representative or conceptual centroid of the ith cluster Ai

in the α-space, is defined as the mean value of the embedded solution vector
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Figure 7.1: Two moons dataset: The labeled data point of only one class is
available and is depicted by the red circle (•). (a): Data points in the original
space. (b): The result of MSS-KSC algorithm with RBF kernel. (c): The
mapped data points in the α space. (d): The mapped data points in the e
space.

αk∈J , (J = {j |xj ∈ Ai}), across all dimensions of the features. We denote
the cluster representative in the α-space by repα(Ai).

Definition 3. A prototype is defined as a point in the X -space or α-space that
has been labeled. The jth prototype is denoted by protX ,j and protα,j in X -space
and α-space respectively.

Definition 4. (Cluster creation and elimination). Assume that the cluster
representatives repX (Ai(k)) at time step k are obtained. A new set of data
points D(k+1) at time step k + 1 are defined as outliers or in other words they
form a new cluster if their kernel evaluations with respect to all training data
points are very close to zero. Therefore x∗ ∈ D(k+1) is considered as outlier
if

∑ntr

i=1 K(x∗, xi)
2 < θ0 where θ0 is a user defined threshold. Furthermore if
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Obtain initial clusters
representatives for initial
set of points (see step 3 of
Algorithm 2).

Provide the prototype
vectors (see step 6 of
Algorithm 2).

Read the data points at
the next time step. Create
a new cluster if necessary
(see Def. 4)

Form the codebook matrix
CB which consists of the
clusters representatives
and the prototype vectors.

calculate the memberships
of the data points (see
step 11 of Algorithm 2).
Eliminate a cluster if
necessary (see Def. 4)

Update the clusters
representatives using
definitions 1 and 2

Compute the out-of-sample
solution vectors (see step 8
of Algorithm 2).

Figure 7.2: Flow-chart of the Incremental Multi-class Semi-Supervised Kernel
Spectral Clustering (I-MSS-KSC) algorithm.

there is no single data point and prototype assigned to the ith cluster Ai then
this cluster is eliminated.

In what follows, the on-line semi-supervised algorithm will be described. The
proposed on-line multi-class semi-supervised clustering consists of two stages.
In the first stage, one trains the MSS-KSC algorithm 9 using n training data
points D (that contains both label and unlabeled data points) to obtain the
initial solution vectors αi and the cluster memberships. Assuming that Nc

clusters are detected, the initial cluster representative repX (Ai) and repα(Ai)
are then obtained. The aim of the second stage is to predict the membership
of the new arriving data points using the updated solution vectors αi. When
batch of new data points are arrived the out-of-sample extension properties of
the MSS-KSC algorithm is used to approximate the score variables associated
with the new points. Next steps composed of the estimation of the projection of
the points in the α-space is obtained using (7.2) and calculating the membership
of the points. Finally the cluster representatives in both α and X -spaces are
updated (step 13 in Algorithm 12).

Remark 7.2.1. If the algorithm is initialized poorly (the first stage), then one
cannot expect to have a good clustering performance for the on-line stage (the
second stage). The good initialization can be achieved by the aid of user labels
and and well tuned model parameters. The performance of the initialization
can be monitored by checking the value of an internal quality index such as
Silhouette, Fisher and Davies-Bouldin indices.
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Remark 7.2.2. The data points that are to be operated can arrive either one-
by-one or as a batch of new points. In the proposed I-MSS-KSC algorithm when
a batch of new data points arrives at time step k, more than one cluster can be
detected without the need of using any extra step (like applying K-means in the
projection space). Given Q cluster representatives at time instant k − 1, the
total number of clusters that can be created at time step k is Q. The binarized
projections of the points in the alpha space is used as an indicator for the
number of new clusters at time instance k. In the case of sequential one-by-one
case since at time instance k, only one sample is fed to the algorithm, there
will be a possibility of creation of at most one cluster.

The proposed on-line semi-supervised clustering algorithm is summarized in
Algorithm 2. The general stages of the I-MSS-KSC approach are described by
the flow-chart in Fig. 7.2. In Algorithm 12, the data-stream might already have
some labeled samples which then can be considered as prototypes. Otherwise,
depending on the application, the prototypes can be provided by the user or for
instance, for a video segmentation task the prototypes of the objects in motion
can be estimated by means of a Kalman filter.

7.2.2 Computational complexity

The computational complexity of the proposed I-MSS-KSC (Algorithm 12)
consists of two parts. In the first stage of the algorithm the MSS-KSC is
employed to obtain the initial clusters representatives. As in MSS-KSC one
needs to solve a linear system of size n× n, therefore the algorithm has O(n3)
training complexity with naive implementations.

In the the second stage which corresponds to updating the clusters repre-
sentatives for the arriving data-stream, mainly computing the kernel matrix,
score variables and out-of-sample solutions vectors contribute to the complexity
of the algorithm. As in the second stage, the number of training points is
ntr = Nc (see step 7 of Algorithm 12), the overall complexity of the second
stage of Algorithm 12, neglecting lower order terms, is O(npoints × d × ntr)
with ntr ≪ npoints and d ≪ npoints. Therefore the complexity of the on-line
algorithm is linear with respect to the number of data-points (npoints) at each
time instant.

7.2.3 Regularizing I-MSS-KSC via Kalman filtering

The Kalman filter, also known as Linear Quadratic Estimator (LQE), is
an algorithm that provides an efficient computational (recursive) means to
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estimate the state of a linear dynamical system from noisy measurements, in a
way that the variance of the estimation error is minimized.

The Kalman filter was introduced in the sixties by R. E. Kalman [83], and it has
been successfully applied to the guidance, navigation and control of vehicles,
particularly aircraft and spacecraft. In computer vision, the Kalman filter has
been extensively used for tracking objects, and it is precisely in this context
that we apply this tool in order to generate the labels for objects in motion.

As it can be seen in equation (6.1) the third term of the cost function is
influenced by the labels c(ℓ) which are provided by either the user or a Kalman
filter. Therefore the Kalman filter is regularizing the solution of the MSS-KSC
through c(ℓ) values associated with the pixels of the objects in motion in a given
video sequence. (See the conceptual diagram in Fig. 7.3) in equation (6.1).

MSS-KSC
Kalman

Filter

Regularization

for the c(ℓ)values

Figure 7.3: Kalman filter acts as a regularizer for the MSS-KSC algorithm

Consider the following discrete-time linear state-space model of a given
dynamical system,

x(k + 1) = Ax(k) +Bu(k) +Gw(k) (7.3)

y(k) = Cx(k) + v(k)

where x(k) ∈ Rnx , u(k) ∈ Rnu and y(k) ∈ Rny are the state, input and
output vectors respectively, A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx are
the matrices defining the system dynamics, G ∈ Rnx×nw is a weighting matrix
and w(k) ∈ Rnw and v(k) ∈ Rny are random variables that represent the
process (model uncertainties) and measurement (measurement uncertainties)
noises respectively. The process noise w(k) is modeled as a Gaussian white
noise with zero mean and covariance matrix Q ∈ Rnw×nw and the measurement
noise v(k) is modeled as a Gaussian white noise with zero mean and covariance
matrix R ∈ Rny×ny .

Notice that for control and object tracking purposes, it is necessary to know
the state vector x(k). However, in general, this vector is not always available.
Therefore the use of an estimator such as the Kalman filter becomes necessary
in order to provide an estimate of x(k) from the inputs and outputs of the
system, on the basis of a mathematical model. The estimate of the state vector
x(k) will be denoted by x̂(k). For the derivation of the Kalman filter equations,
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readers are referred to [19, 61]. The Kalman filter is summarized in Algorithm
13, where P f(k) is the prior error covariance matrix, x̂(k) is the estimate of x(k),
P (k) is the estimation error covariance matrix and y(k) is a vector comprising
the measurements.

In this work, we use some image processing techniques to roughly determine
the position (measurement) of a moving object for which we would like to
provide a label, and afterwards we further improve this position estimate by
using a Kalman filter. We use the following kinetic model to describe the object
motion:

sx(k) = sx(k − 1) + Tvx(k − 1) +
T 2

2
ax(k − 1) (7.4)

vx(k) = vx(k − 1) + Tax(k − 1)

sy(k) = sy(k − 1) + Tvy(k − 1) +
T 2

2
ay(k − 1)

vy(k) = vy(k − 1) + Tay(k − 1)

where T is the sampling time, sx(k), vx(k) and ax(k) are the position, velocity
and acceleration of the object in the x-coordinate, and sy(k), vy(k) and ay(k)
are the position, velocity and acceleration of the object in the y-coordinate. If
we define the state vector as x(k) = [sx(k), sy(k), vx(k), vy(k)]T , we can write
down the kinematic model in a state-space form as follows:

x(k + 1) = Ax(k) +Ga(k) (7.5)

y(k) = Cx(k) + v(k)

where

A =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 , G =




T 2/2 0
0 T 2/2
T 0
0 T


 , C =

[
1 0 0 0
0 1 0 0

]
,

and a = [ax(k), ay(k)]T . Here it is assumed that ax(k) and ay(k) are normally
distributed, with zero mean and standard deviations σax

and σay
respectively.

Observe that there is no Bu(k) term in the previous equations given that there
are no control inputs. Finally, the covariance matrices of the process and
measurement noise are defined as follows:

Q =

[
σ2

ax
0

0 σ2
ay

]
, R =

[
σ2

mx
0

0 σ2
my

]
,

where σmx
and σmy

are the standard deviations of the measured position of
the object in the x and y coordinates respectively. These measurements are
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Figure 7.4: Diagram showing the interaction between Kalman filter and I-MSS-
KSC approaches

generated by using some basic image processing techniques (object detection
based on color, binarization, computation of centroids, etc.).
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Figure 7.5: Some of the frames of the second video sequence. Each slice is
treated as a batch of new data points that are fed to the algorithm.

A video sequence consists of several frames see Fig. 7.5 and each frame will be
treated as batch of new data points for the algorithm.

7.3 Experimental Results

In this section, some experimental results are presented to illustrate the
applicability of the proposed I-MSS-KSC algorithm. In the implementation
of Algorithm 12, there are two possibilities:

• I-MSS-KSC (-): the labels (prototypes) are only provided in the first
stage, i.e. just for obtaining the initial cluster representatives and the
subsequent set of data points do not have any label information.

• I-MSS-KSC (+): the user can also provide the labels (prototypes) for
some of the subsequent set of data points.

In order to illustrate the effect of prototypes (labels), we start with synthetic
problems and show the differences between the obtained results when I-MSS-
KSC(+) and I-MSS-KSC(-) are applied (see Fig. 7.6 and 7.8). Next we
show the application of I-MSS-KSC reqularized by a Kalman filter to video
segmentation. We used RBF kernels for all experiments unless otherwise noted.

1Ai(k) is the ith cluster at time k.
2Here index k denotes the kth frame.
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Algorithm 12: I-MSS-KSC: On-line Semi-supervised clustering

Input: Training data set D, labels Y , the tuning parameters {γi}2
i=1, the

kernel parameter (if any), number of clusters Nc, number of
prototypes p and number of available class labels i.e. Q

Output: Cluster membership of test data points

First stage: Initialization of clusters representatives.

1 Read the training data points (initial set of points, k=1).
2 Train the MSS-KSC model using Algorithm 1 and obtain the cluster

membership of the training data points.
3 Calculate the initial cluster representative repX (Ai) and repα(Ai) for
i = 1, · · · , Nc using Definition 1 and 2.

Second stage: Updating the clusters representatives
for k=2 to the end of the data-stream do

4 Read the set of data points (npoints) at time k, xi(k), i = 1, ..., npoints.
5 Detect the indices of the outlier points according to Def. 4.
6 Provide the prototypes (protα,j(k), j = 1, ..., p) and form the codebook

matrix CB for the current time instant k:

CB =

[
repα(Ai(k))

∣∣∣∣
i=1,...,Nc

, protα,j(k)

∣∣∣∣
j=1,...,p

]T

∈ R(Nc+p)×Q.1

7 Employ the

[
repX (Ai(k))

∣∣∣∣
i=1,...,Nc

]
as training points and calculate the

score variables eℓ
i(k), i = 1, ..., npoints for ℓ = 1, ..., Q using (7.1).

8 Compute the out-of-sample solution vectors αi(k), i = 1, . . . , npoints using
(7.2).

9 Form the encoding matrix for the outlier points by binarizing the
obtained αi(k), for all i belonging to the set of outlier indices. .

10 The unique rows of the encoding matrix obtained in step 9, indicates the
number of new clusters at time step k.

11 For non-outlier points, assign xi(k) to cluster q∗, where
q∗ = argmin

j
dEuc(αi(k), CB(j, :). Here dEuc(·, ·) is the Euclidean distance

and the jth row of the matrix CB is denoted by CB(j, :).
12 Eliminate a cluster if necessary according to Def. 4.
13 Update the cluster representative repX (Ai(k)) and repα(Ai(k)) according

to the Definition 1 and 2.
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Algorithm 13: Kalman filter

Initialization.
1 Provide the initial guess for state vector x̂(0) and the estimation error

covariance matrix P (0).

for k=1 to end do

Time update (prediction)

2 Propagate the state vector x̂(k − 1) one-step ahead, 2

x̂f(k) = Ax̂(k − 1) +Bu(k − 1)

3 Propagate the covariance matrix P (k − 1) one-step ahead,

P f(k) = AP (k − 1)AT +GQGT

Measurement update (correction)

4 Compute the Kalman gain,

L(k) = P f(k)CT
(
CP f(k)CT +R

)−1

5 Update x̂f(k) to x̂(k) by using the measurements y(k),

x̂(k) = x̂f(k) + L(k)
(
y(k)− Cx̂f(k)

)

6 Update P f(k) to P (k),

P (k) = (I − L(k)C)P f(k)

7.3.1 Synthetic data sets

In Fig. 7.6, there is a cloud of points which can be clustered in three groups
(red, blue and green). The red and green clusters are static over time, whereas
the blue cluster is moving toward the other two clusters and then it returns to
its initial position.

Fig. 7.6, shows the snapshots of the evolution at specific time instants where
one can see the impact of having prototypes in the incremental semi-supervised
clustering. At time instants k = 11 and 12, where the blue cluster is close to
the other two clusters, there are some points that are not correctly clustered
using the I-MSS-KSC(-) algorithm. On the other hand I-MSS-KSC(+) that
uses the prototypes (shown by small-squares in the Fig. 7.6) is able to cluster
all the data points correctly. Hence incorporating the prototypes helps to
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improve the performance. In order to evaluate the performance of the two I-
MSS-KSC(-) and I-MSS-KSC(+) algorithms quantitatively, the adjusted rand
index (ARI) [72] is used and the obtained results are tabulated in Table 7.1.
ARI is an external evaluation criterion which measures the agreement between
two partitions and takes values between zero and one. The higher the value of
the ARI the better the clustering result is. In this example, at new time step
k, the algorithm receives a batch of data where the number of data points is
the same as that of time step k− 1. Initially at time step k = 1, there are 1191
data points forming three clusters. The total number of labeled data points is
21 and is fixed along all the time steps. The regularization parameters and the
kernel bandwidth are γ1 = 1, γ2 = 10−3 and σ = 0.7 respectively.

The proposed I-MSS-KSC algorithm is able to detect the creation of more than
one new cluster at the given time step k, when batch of new data are fed to the
algorithm. In the next example, we consider the case that three new clusters
are created and eliminated at different time steps.

At time step 1, the data set consists of three clusters as in the previous example
(see Fig. 7.7). Three other new clusters (clusters 4, 5 and 6) are created at time
step 2. The cluster 4 and 5 are eliminated at time step 10 whereas cluster 6
disappears at time step 12. The Definition 4 is used along with the Algorithm 12
and all the above mentioned events are correctly detected. Fig. 7.7, shows the
snapshots of the evolution at specific time instants where clusters are detected
and eliminated. The number of data points at time step k = 1 is 1171. In the
next step 1371 new data points that form six clusters are fed to the algorithm.
This number of data points is fixed until time step k = 10 where two clusters are
eliminated and therefore the total number of points is 1241 and finally at time
step k = 12 another cluster disappears from this step onward the number of
data points fed into the algorithm at each step is 1171. The model parameters
are γ1 = 1, γ2 = 1 and σ = 1 respectively.

7.3.2 Synthetic time-series

We show the applicability of the proposed I-MSS-KSC algorithm for on-line
time-series clustering. The idea is to cluster signals with similar fundamental
frequencies using a sliding window approach. Therefore we have generated
two groups of signals with length 600 (each group contains 18 signals) with
fundamental frequencies 0.1 rad/s and 0.3 rad/s respectively. Then from time
instant k = 200 till k = 400, some of the pure signals of the first group are
contaminated with noise which has the same fundamental frequency as the
other group. The ground-truth of the time-series are shown in Fig. 7.8. For
I-MSS-KSC, we have labeled one of the pure signals and a contaminated one
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from the first group. The proposed I-MSS-KSC with and without labels has
been applied to cluster the given time-series using a moving window approach.
In this experiment the window size was set to 150. To evaluate the outcomes of
the model, the average adjusted rand index (ARI) [72] is used and the results
are reported in Table 7.1.

Here the similarity between the time-series is computed using the RBF kernel
with the correlation distance [178]. The obtained clustering results are
compared with the known ground-truth. The snapshots of the obtained results
at certain time instants, where the signals from the first group have noise, are
depicted in Fig. 7.9, which shows the advantage of having labels. From Fig.
7.9, one can observe that when the labels are not provided to the algorithm, it
mixes things up, some of the signals from the first group are assigned to the
second group and vice versa. However when the prototypes are used by the
algorithm, this pattern is not observed.

Table 7.1: Averaged ARI index over time for the synthetic data points and
time-series

Experiment I-MSS-KSC(-) I-MSS-KSC(+)

Synthetic data points 0.992 0.999
Synthetic time-series 0.624 0.998

7.3.3 Real-life video segmentation

In this section the proposed I-MSS-KSC algorithm is tested on real-life videos.
We compare the performance of the proposed method with incremental K-
means (IKM)[39]. K-means is one of the most popular data clustering methods
due to its simplicity and computational efficiency. It works by selecting some
random initial centers and then iteratively adjust the centers such that the total
within cluster variance is minimized. In its incremental variant (Incremental K-
means), at each time-step it uses the previous centroids to find the new cluster
centers, thus avoiding to rerun the K-means algorithm from scratch [39].

The EHGB algorithm is an efficient and scalable technique for spatio-
temporal segmentation of long video sequences using a hierarchical graph-based
algorithm. The algorithm begins with oversegmenting a volumetric video graph
into space-time regions grouped by appearance. Then a “region graph” over
the obtained segmentation is constructed and this process is repeated over
multiple levels to create a tree of spatio-temporal segmentations [69]. This
algorithm comes with some parameters. In all the experiments, we have
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selected a minimum and maximum number of regions which are stated in
the corresponding caption of each of the tested video sequence. Although
the EHGB algorithm does not employ labels, it is one of the state-of-the-art
algorithms for video segmentation that uses past and future information (in
offline mode) in order to segment the current frame. Also this algorithm uses
advanced features, such as color and flow histograms. It should be noted
that our algorithm uses the previous segmentation results to perform the
segmentation of the current frame. And the algorithm uses only the color
feature as discriminator (local color histograms).

Four real examples are used to test the validity of the proposed method. The
first example shows two bouncing balls and the second example presents a
human’s hand throwing a ball upwards. The third video is a video sequence
taken from Berkeley video segmentation dataset 3 and is called dominoes video
and the fourth video is a high definition video showing birds. Descriptions of
the used videos can be found in Table 7.2.

In order to extract features from a given frame, a local color histogram
with a 5 × 5 pixels window around each pixel using minimum variance color
quantization is computed. The level of quantization in general depends on the
video under study. The number of levels used for each of the video is reported

in Table 7.3. The χ2 kernel K(h(i), h(j)) = exp(−χ2
ij

σχ
) with parameter σχ ∈ R+

is used to compute the similarity between two color histograms h(i) and h(j).

Here χ2
ij = 1

2

∑nq

q=1
(h(i)

q −h(j)
q )2

h
(i)
q +h

(j)
q

where nq is the number of quantization levels.

The performance of the proposed I-MSS-KSC model depends on the choice of
the tuning parameters. We set the regularization parameters γ1 = γ2 = 1 to
give equal weights to unlabeled and labeled data points. The initial σχ (kernel
parameter) is tuned using a grid search in the range [10−3, 101]. The training
and validation data points, i.e. D and Dval, consist of the histograms of the
chosen pixel (unlabeled data points) together with some labeled data points.
These data points are used for training and validation respectively to obtain
the initial cluster representatives for the first frame. Then the solution vectors
and cluster representatives are updated in an on-line fashion using Algorithm
12 for the subsequent frames. The number of unlabeled/labeled training and
validation data points used to obtain the initial cluster representatives are
tabulated in Table 7.3. We obtain the initial model using the MSS-KSC
algorithm trained on the first frame and then I-MSS-KSC is applied to segment
the upcoming frames in an on-line fashion. For IKM, we let the algorithm to
initialize itself and the maximum number of iterations allowed is set to 100.

3ftp://ftp.cs.berkeley.edu/pub/projects/vision/BVDS_train.tar.gz
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Both qualitative and quantitative evaluations of the proposed approaches are
provided. For quantitative evaluation of the video segmentation there is not
a unique criterion to evaluate the performance of the algorithm under study.
Several evaluation criteria are proposed in the literature [29, 162]. Here two
criteria are used to evaluate the segmentation results. In the first criterion the
segmentation obtained by the I-MSS-KSC and IKM are compared in Table 7.4
with the results of the minimum variance quantization method (the number
of levels is defined by the user) [75] using the Variation of Information (VOI)
index. This index measures the distance between two segmentations in terms
of their average conditional entropy. Low values indicate good match between
segmentations [7].

In the second criterion, the segmentations obtained by I-MSS-KSC and IKM
approaches are compared in Table 7.4 with the original frames using the Cluster
Quality Index (CQI) which is empirically defined in the following lines.

Suppose for a given image I, the segmented image has Nc clusters (regions).
We define the quality index per cluster as follows:

QIj = 1−
∑

i∈{R,G,B} mean(|P i
j −m i

j |)
3

, j = 1, . . . , Nc,

where P i
j denotes the ith channel of the RGB color for pixels of of the original

image I that belong to cluster j. m i
j is the mean value of P i

j . Next the cluster
quality index (CQI) for a given image I is heuristically defined as a weighted
sum of the quality index per cluster i.e.

CQI(I) =

Nc∑

j=1

θjQIj , (7.6)

where
∑Nc

j=1 θj = 1. In our setting the highest weight is assigned to the cluster
with minimum QI index. The CQI takes values in the range [0, 1]. The higher
the value of the CQI(I) the better the segmentation is.

The obtained results of the proposed I-MSS-KSC algorithm (with two modes
of implementation: I-MSS-KSC(-) and I-MSS-KSC(+)) and Incremental K-
means algorithm for some of the frames of the bouncing-ball and Siamak’s
hand videos are depicted in Fig. 7.10 and 7.11 respectively. (The whole videos
of this simulations are presented in the supplementary material of the thesis).
Fig. 7.10 and 7.11, show that it is possible to improve the performance of the
video segmentation by incorporating prototypes. Note that for the first video
sequence, one of the ball and the table are the objects of interest. Since the
table is static, the labels are provided by the user and they are fixed through
out the video sequence. Whereas the ball’s prototype is provided by a Kalman
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filter. Here one may notice that I-MSS-KSC(+) makes it possible to improve
the performance by carrying the object labeled through out the video sequence.
The labeled pixels of the objects are shown by red and white asterisks (*).
The obtained results of the proposed method (I-MSS-KSC(+)) and IKM for
the third video are shown in Fig. 7.13. (The whole video of this simulation
is provided in the supplementary material of the thesis). Fig. 7.13, indicate
that the on-line segmentation results can be improved when the labels are
incorporated into the algorithm. In Fig. 7.13, the labeled pixels of the objects
are shown by yellow and white asterisks (*).

Table 7.2: Videos statistics

Video width × height # batch data points # of frames Frame rate

Bouncing ball 320 × 180 57600 139 29 frames/second
Siamak’s hand 320 × 180 57600 395 29 frames/second
Dominoes 435 × 343 149205 121 29 frames/second
Birds 1280 × 720 921600 162 29 frames/second

Table 7.3: The number of quantization levels, unlabeled/labeled training and
validation points used to obtain the initial cluster representatives.

D Dval

Video Quantization level Q Du DL Dval
u Dval

L

Bouncing ball 10 3 1000 4 1500 3
Siamak’s hand 8 3 800 3 1500 3

Dominoes 15 3 600 3 1500 3

Table 7.4: Comparison of IK-means, EHGB, I-MSS-KSC (-) and I-MSS-KSC
(+) in terms of averaged cluster quality and variational information indices over
number of frames.

Evaluation Method
Video Criterion IKM EHGB I-MSS-KSC (-) I-MSS-KSC (+)

Bouncing ball CQI 0.906 0.875 0.895 0.924
VOI 1.17 0.839 0.912 0.627

Siamak’s hand CQI 0.872 0.890 0.919 0.925
VOI 1.08 1.118 0.494 0.344

Dominoes CQI 0.843 0.880 0.855 0.866
VOI 1.552 1.598 1.584 1.352

Birds CQI 0.848 0.874 0.868 0.868
VOI 0.564 0.539 0.376 0.376

Note: The higher the value of cluster quality index the better the segmentation is. The lower
the value of VOI, the better the segmentation is.
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7.4 Conclusions

A new incremental semi-supervised algorithm is proposed. It uses the multi-
class semi-supervised kernel spectral clustering (MSS-KSC) as core model. The
update of the solution vectors and the memberships are obtained using the
out-of-sample solution property of the MSS-KSC approach. The user labels or
labels provided by a Kalman filter are incorporated into the algorithm in an
on-line fashion to improve the performance of the proposed I-MSS-KSC. The
validity and applicability of the proposed method is shown on synthetic data
sets and some real-life videos sequences. For the video segmentation test cases,
the results obtained by the proposed I-MSS-KSC algorithm where in general
better than those of the incremental K-means (IKM)[39] and comparable with
the ones of the Efficient Hierarchical Graph-Based Video Segmentation (EHGB)
[69].
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Figure 7.6: Synthetic data sets. On-line semi-supervised clustering using the proposed I-MSS-
KSC approach implemented in two modes with and without prototypes (i.e. I-MSS-KSC(-) and
I-MSS-KSC(+)). First row: The original data points at different time steps. Second row: I-MSS-
KSC(-): The results obtained by I-MSS-KSC algorithm without the help of any prototypes after
the initialization. Third row: The embedded solution vector α when I-MSS-KSC(-) is applied.
Fourth row: I-MSS-KSC(+): The results obtained by the proposed I-MSS-KSC algorithm with
the help of prototypes. Fifth row: The embedded solution vector α when I-MSS-KSC(+) is
applied.
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Figure 7.7: Synthetic data sets. On-line detection of the creation of more than one cluster at
time step k using the proposed I-MSS-KSC(+) approach. At time step k = 2, three new clusters
appear and evolve. Two of them disappear at time step k = 10 and the third one dies out at k = 12.
The labels are just provided for the consistent clusters i.e. the ones that are always present at all
the time steps and can possibly evolve over time.
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Figure 7.8: Ground-truth of the time-series (a) Signals that are in cluster 1 ,
(a) Signals that are in cluster 2
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Figure 7.9: Synthetic time-series. On-line semi-supervised clustering using the proposed I-
MSS-KSC approach implemented in two modes with and without prototypes (I-MSS-KSC(-) and I-
MSS-KSC(+)). First row: I-MSS-KSC(-): The signals assigned to cluster 1 using the I-MSS-KSC
algorithm without the help of any prototypes after the initialization. Second row: I-MSS-KSC(+):
The signals assigned to cluster 1 using I-MSS-KSC algorithm with the help of the prototypes.
Third row: I-MSS-KSC(-): The signals assigned to cluster 2 using the I-MSS-KSC algorithm
without the help of any prototypes after the initialization. Fourth row: I-MSS-KSC(+): The
signals assigned to cluster 2 using I-MSS-KSC algorithm with the help of the prototypes.
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Figure 7.10: Bouncing balls video. On-line video segmentation results using the proposed
I-MSS-KSC, IKM [39] and EHGB [69]. First row: The original frames. Second row: The
segmentation results obtained by on-line IKM. Third row: The segmentation results obtained by
EHGB approach [69] with Min/Max Number of regions=10/200. Fourth row: The segmentation
results obtained by the proposed I-MSS-KSC algorithm without the help of any labeled pixels
after the first frame i.e. I-MSS-KSC(-) mode. Fifth row: The results of the proposed I-MSS-
KSC algorithm when labeled pixels for two clusters are provided during on-line segmentation, i.e.
I-MSS-KSC(+) mode.
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Figure 7.11: Siamak’s hand video. On-line video segmentation results using the proposed
I-MSS-KSC, IKM [39] and EHGB [69]. First row: The original frames. Second row: The
segmentation results obtained by on-line IKM. Third row: The segmentation results obtained by
EHGB approach [69] with Min/Max Number of regions=10/200. Fourth row: The segmentation
results obtained by the proposed I-MSS-KSC algorithm without the help of any labeled pixels
after the first frame, i.e. I-MSS-KSC(-) mode. Fifth row: The results of the proposed MSS-
KSC algorithm when labeled pixels for two clusters are provided during on-line segmentation, i.e.
I-MSS-KSC(+) mode.
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Figure 7.12: Dominoes video. On-line video segmentation results using the proposed I-MSS-
KSC, IKM [39] and EHGB [69]. First row: The original frames. Second row: The segmentation
results obtained by on-line K-means. Third row: The segmentation results obtained by EHGB
approach [69] with Min/Max Number of regions=10/100. Fourth row: The segmentation results
obtained by the proposed I-MSS-KSC algorithm without the help of any labeled pixels after the
first frame i.e. I-MSS-KSC(-) mode. Fifth row: The results of the proposed I-MSS-KSC algorithm
when labeled pixels for two clusters (objects) are provided during on-line segmentation. Note that
one object is static and therefore its labels will be static and can be provided by the user.
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Figure 7.13: Birds video. On-line video segmentation results using the proposed I-MSS-KSC,
IKM [39] and EHGB [69]. First row: The original frames. Second row: The segmentation results
obtained by on-line K-means. Third row: The segmentation results obtained by EHGB approach
[69] with Min/Max Number of regions=10/100. Fourth row: The segmentation results obtained
by the proposed I-MSS-KSC algorithm without the help of any labeled pixels after the first frame
i.e. I-MSS-KSC(-) mode. Fifth row: The results of the proposed I-MSS-KSC algorithm when
labeled pixels for two clusters are provided during on-line segmentation.





Chapter 8

General Conclusions

8.1 Concluding Remarks

This thesis discussed a series of novel methodologies for the incorporation of
the available side-information into the kernel based core models in different
contexts such as semi-supervised learning, parameter estimation of dynamical
system and learning the trajectories of a dynamical system. The problems
are formulated in the primal-dual setting where the additional knowledge
at hand is integrated in the primal via regularization terms and/or set of
constraints. The solution in the primal is in terms of the feature map and
the optimal representation of the solution in the dual is obtained through the
KKT optimality conditions.

This thesis adopts Least Squares Support Vector Machines (LSSVM) and
Kernel Spectral Clustering (KSC) as core models and extend them, by
incorporating the the prior knowledge, in the following aspects:

• Learning the solution of a dynamical system: The LSSVM based
model is extended to learn the solution of a dynamical system governed
by ordinary/partial differential equations (ODEs/PDEs) and differential
algebraic equations (DAEs). The solution is learned by imposing a set
of constraints into LSSVM formulation satisfying the given differential
equation and its initial/boundary conditions. In the case of a linear
operator, the solution in the dual is obtained by solving system of linear
equations. For the nonlinear operators, one has to solve a system of
nonlinear equations. The model produces a closed-form solution in the
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dual. The method does not need to reduce the index of DAEs and can
address both initial and boundary value problems.

• Parameter estimation of dynamical system: A two step approach
based on LSSVM core model is introduced for the estimation of the
unknown parameters (constant/time varying) of a dynamical system
described by ODEs and DDEs. For the ODE case, the solution obtained
by the model, is further used as an initial guess for solving the original
non-convex optimization problem for estimating the unknown model
parameters. For the DDE case, the unknown model parameters can
be either the time delay, the history function or constant/time varying
parameter presence in the model. For the parameter affine system, the
problem formulation is convex otherwise non-convex.

• Non-parallel classifiers: A general framework for non-parallel LSSVM
classifier under different loss functions is introduced. For evaluating the
loss functions two types of noise are are considered: label and feature
noise. The strength of each one of the loss functions are discussed under
different circumstances. In particular the proposed non-parallel classifier
with square loss can reduce to the LSSVM formulation for a specific
regularization constant.

• Semi-supervised learning for realistic and large scale data: A
multi-class semi-supervised learning algorithm is proposed. The kernel
spectral clustering (KSC) is used as a core model and the available side-
information is incorporated into the model using a regularization term.
This leads to a model (MSS-KSC) capable of addressing both multi
class semi-supervised classification and clustering using a low dimensional
embedding. The solution in the dual is obtained by solving a system of
linear equations. Furthermore the extension of the approach for large
scale data is carried out by the development of FS-MSS-KSC and RD-
MSS-KSC approaches.

• Online semi-supervised learning: A new online semi-supervised clas-
sification/clustering algorithm (I-MSS-KSC) is introduced for analyzing
non-stationary data streams. The data points can arrive in two modes:
one-by-one or a batch of data points. The method is able to detect more
than one new cluster at the given time step k. For the video segmentation
task, a Kalman filter is used to provide the labels of the objects in motion
thus regularizing the solution obtained by I-MSS-KSC.
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8.2 Future Research

This thesis presented new contributions originated by crossing the borders
between computational mathematics and machine learning. For future work
some possible directions of research may consider the adaptation/application
of the proposed algorithms or the development of new methodologies based on
the existing ones:

• A natural extension of the method proposed for learning the solution of
PDEs would be to consider other types of loss functions and regularization
terms aiming at imposing a low rank solution or having a sparse solution
for high dimensional PDEs. An explicit feature map or other types
of kernels could also be suitable for certain applications. Combining
the proposed method with traditional numerical solvers would be an
additional direction of research. Other types of PDEs that involve more
complex structure could also be considered for future direction.

• Techniques based on LSSVM are designed for estimation of parameters of
dynamical system whose states are all measured. Extending the approach
for estimation of unknown parameters of the partially observed models is
an open research area. The adaptation of the algorithm for other types
of differential equations presents another challenge.

• The non-parallel classifiers introduced in this thesis can also be extended
for semi-supervised learning where one encounters few labeled data points
and large amount of unlabeled data points. This requires the design of
a more generic model selection criteria. Addressing the scalability of
the proposed approach to deal with large scale data and their parallel
implementation can also be an interesting area of research.

• Developing robust to noise models for the proposed semi-supervised
formulation can potentially boost the performance of the method.
Although two algorithms are proposed to handle large scale data, sparse
models with interpretable results and applicable for broader applications
are desirable.
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Appendix

A.1 Symbolic Computing of LSSVM based models

A software tool SYM-LSSVM-SOLVER has been written in Maple to derive
the dual system and the dual model representation of LSSVM based models
with equality constraints, symbolically. SYM-LSSVM-SOLVER constructs the
Lagrangian from the given objective function and list of constraints [116].
Afterwards it obtains the KKT (Karush-Kuhn-Tucker) optimality conditions
and finally formulates a linear system in terms of the dual variables. The
effectiveness of the developed solver is illustrated by applying it to a variety of
problems involving LSSVM based models.

A.2 Motivation

LSSVM core models are formulated in the primal in terms of high-dimensional
feature maps, equality constraints and an L2 loss function. In most
cases, solving the primal problem directly is not possible due to the high
dimensionality of the variables involved in the optimization problem. Through
the constrained optimization framework, it is possible to obtain a dual system
where the problem is recast in terms of kernel evaluations (the so-called kernel
trick) and which grows with the number of data points. Building the dual
is a systematic process: first write the Lagrangian, then obtain the Karush-
Kuhn-Tucker (KKT) optimality conditions and finally wrap up and formulate
a system in terms of the dual variables that fulfills all KKT conditions. Fig.
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A.1 shows an illustration of building models based upon LSSVM core models;
as outlined in [158].

Figure A.1: Illustration of advanced LSSVM models.

A.3 Development of Symbolic Solver

In order to be able to work with a symbolic solver for LSSVM model, at first
the model should be transformed to the symbolic expressions i.e. in the matrix
or vector notation. It should be noted that this stage is done by the user before
utilizing the symbolic solver. An example is provided to clarify this procedure.

Let us consider a given training set {xi, yi}N
i=1 with input data xi ∈ Rd and

output data yi ∈ {−1, 1}. The LSSVM model for classification [158], can be
rewritten in a matrix form as follows

minimize
w,b,e

1

2
w

T
w +

γ

2
e

T
e

subject to Y

[
Φw + b1N

]
= 1N − e

(A.1)

where γ ∈ R+, b ∈ R, e ∈ RN , w ∈ Rh, Y = diag(y1, y2, . . . , yN ) ∈ RN×N ,
1N ∈ RN , Φ ∈ RN×h with

Φ =
[
φ(x1) · · · φ(xN )

]T
,

φ(·) : Rd −→ Rh is the feature map and h is the dimension of the feature space.

The approach on which the LSSVM symbolic solver is based can be summarized
as follows:

1. Constructing the Lagrangian.

2. Taking derivatives of the Lagrangian with respect to the primal and dual
variables and setting them equal zero.

3. Elimination of primal variables (or part of it).
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4. Expressing the solution in terms of the Lagrange multipliers.

5. Obtaining the dual representation of the model.

A.4 SYM-LSSVM-SOLVER Package

A specific module, denoted by SYM_LS_SVM_SOLVER, is designed for the
symbolic solver for LS-SVMs. This module is composed of four main procedures
denoted by:

• Pro_Lag,

• Pro_KKT,

• Pro_Dual system,

• Pro_Dual Model

In Maple one read this as follows:

> print(SYM_LS_SVM_SOLVER);

module()

export Pro_Lag, Pro_KKT, Pro_Dual System, Pro_Dual Model;

end module

More details of these procedures are discussed in the following subsections.

A.4.1 Procedure Pro-Lag

The aim of this procedure is to form the Lagrangian from a given primal
problem. The arguments of the Pro_Lag procedure are thus the objective
function, list of constraints and Lagrange multipliers, respectively. It should
be noticed that in our code the vectors are considered as a special case of
matrices. Also the possibility that the users can define the type of the matrix
is provided.

Example 1. Consider the LSSVM model (A.1). One initially reads the
package into memory using the ‘with’ command. A second task is to utilize
the ‘assume’ command to specify the matrix variables. If the variable
has additional properties such as being symmetric or positive definite, the
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additionally function can be used which adds additional assumptions without
removing previous assumptions.

> with(SYM_LS_SVM_SOLVER);
> assume(w::Matrix,e::Matrix,Phi::Matrix,

> N1::Matrix,alpha::Matrix,Y::Matrix),additionally(Y::symmetric);

> L[1]:=Pro_Lag(0.5*w^T.w+0.5*gamma*(e^T.e),

> [Y.Phi.w+b*(Y.N1)=N1-e],[alpha]);

L1 = 0.5wTw+ 0.5 γeT e−αT · Y ·Φ ·w− bαT · Y ·N1 +αT ·N1 −αT · e Note
that N1 is a vector of all ones and equals 1N .

Example 2. Consider the following problem,

minimize
w,b,e,Ŷ

1

2
w

T
w + γe

T
e + η(Ŷ − Y

∗)T (Ŷ − Y
∗)

subject to Y − Ŷ = e

Ŷ = Φw + b1N

(A.2)

> assume(e::Matrix,w::Matrix,

> Y::Matrix,Yhat::Matrix,alpha[1]::Matrix,alpha[2]::Matrix,

> Phi::Matrix,N1::Matrix, Ystr::Matrix);
> L[2]:=Pro_Lag(0.5*(w^T.w)+gamma*(e^T.e)+eta*((Yhat-Ystr)^T.

> (Yhat-Ystr)),[Y-Yhat-e,Yhat-Phi[1].w-b*N1],[alpha[1],alpha[2]]);

L2 =
1

2
wTw + γ eT e+ η (Yhat −Ystr)

T · (Yhat −Ystr) + α1
T · Y−

α1
T ·Yhat − α1

T · e+ α2
T ·Yhat − α2

T · Φ · w − bα2
T ·N1

Example 3. As another example, we consider the data visualization model,
see ([157]),

> with(SYM_LS_SVM_SOLVER);
> assume(z::Matrix,N1::Matrix,P[D]::Matrix);
> dims:=2;
> for k from 1 to dims do

> assume(w[k]::Matrix,e[k]::Matrix,Phi[k]::Matrix,v[k]::Matrix,

> alpha[k]::Matrix,C[k]::Matrix,M[k]::Matrix,Omega[k]::Matrix,

> beta[1,k]::Matrix,e[1,k]::Matrix); end do;
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> L[3]:=Pro_Lag(-0.5*gamma*z^T.z+0.5*(z-P[D].z)^T.(z-P[D].z)+

> (gamma/2)*(sum(w[j]^T.w[j],j=1..dims))+0.5*eta*(sum(e[j]^T.e[j],

> j=1..dims)),[seq(v[j]^T.z-Phi[j].w[j]-b[j]*N1=e[j],j=1..dims),

> seq(C[j]^T.z=q[j]+e[1,j],j=1..dims)],

> [seq(alpha[j],j=1..dims),seq(beta[1,j],j=1..dims)]);

L3 = −0.5 γ zT z + 0.5 (z − PD · z)T · (z − PD · z) + 0.5 γ
(
w1

Tw1 + w2
Tw2

)
+

0.5 η
(
e1

T e1 + e2
T e2

)
+ α1

T · v1
T · z − α1

T · Φ1 · w1 − b1α1
T ·N1−

α1
T · e1 + α2

T · v2
T · z − α2

T · Φ2 · w2 − b2α2
T ·N1 − α2

T · e2 + β1,1
T · C1

T

· z − β1,1
T · q1 − β1,1

T · e1,1 + β1,2
T · C2

T · z − β1,2
T · q2 − β1,2

T · e1,2

A.4.2 Procedure Pro-KKT

After obtaining the Lagrangian, the task is to take derivatives of this function
with respect to the primal variables and Lagrange multipliers. In our code,
Procedure Pro-KKT sets the derivatives of the Lagrangian to zero which leads
to the system of linear equations.

The built-in differentiator in Maple (i.e diff command) is not able to handle
the derivative with respect to a vector or matrix (of known dimension, but
unknown values). Therefore a special procedure so called Pro_DIFF is
designed to do differential operations on generalized matrices symbolically,
under the framework of LS-SVMs. Pro_DIFF has two parameters, the
algebraic expression that has to be differentiated and differentiation variable
respectively.

Most cases encountered when solving LS-SVMs are as follows,

∂XT A

∂X
=

∂AT X

∂X
= A,

∂AT XB

∂X
= AB

T
,

∂XT X

∂X
= 2X,

∂XT AX

∂X
= (A + A

T )X

Where A, B, X are symbols for matrices. For more details we refer to [137].

Let us give an example to show how this procedure works individually,
> with(SYM_LS_SVM_SOLVER);

> assume(A::Matrix,B::Matrix,X::Matrix),additionally(A::symmetric);

> Pro_DIFF(b*(X^T.A.X)*q+X^T.X-A^T.X^T.B,X);
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2b(A.X)q + 2X − BA
T

Note that b and q were not defined as matrix, so they just behave like a scalar.

Having the Lagrangian function available from the Pro_Lag, we can call
the function Pro_KKT to generate the KKT optimality conditions. The
parameters of Pro_KKT are thus the Lagrangian, list of differentiation
variables and number of w vectors (the dimension of the problem) respectively.
In order to illustrate the procedure we apply it to the example 2 and 3, thus
the KKT optimality conditions are as follows,

For example 2,
> Pro_KKT(L[2],[w,e,alpha[1],alpha[2],Yhat,b],1);

∂L2

∂w
= 2w − ΦT · α2 = 0,

∂L2

∂e
= 2 γ e− α1 = 0,

∂L2

∂α[1]
= Y −Yhat − e = 0,

∂L2

∂α[2]
= Yhat − Φ · w − bN1 = 0,

∂L2

∂Ŷ
= 2 ηYhat − 2 ηYstr − α1 + α2 = 0,

∂L2

∂b
= −N1 T · α2 = 0.

For example 3,
> Pro_KKT(L[3],[seq(w[i],i=1..dims),seq(e[i],i=1..dims),

> seq(e[1,i],i=1..dims),seq(alpha[i],i=1..dims),

> seq(beta[1,i],i=1..dims),seq(b[i],i=1..dims),z],2);
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∂L3

∂w1
= γ w1 − Φ1

T · α1 = 0,

∂L3

∂w2
= γ w2 − Φ2

T · α2 = 0,

∂L3

∂e1
= 1.0 η e1 − α1 = 0,

∂L3

∂e2
= 1.0 η e2 − α2 = 0,

∂L3

∂e1,1
= −β1,1 + 1.0 η e1,1 = 0

∂L3

∂e1,2
= −β1,2 + 1.0 η e1,2 = 0,

∂L3

∂α1
= v1

T · z − Φ1 · w1 − b1N1 − e1 = 0,

∂L3

∂α2
= v2

T · z − Φ2 · w2 − b2N1 − e2 = 0,

∂L3

∂β1,1
= C1

T · z − q1 − e1,1 = 0,

∂L3

∂β1,2
= C2

T · z − q2 − e1,2 = 0,

∂L3

∂b1
= −N1 T · α1 = 0,

∂L3

∂z
= −1.0 γ z + 1.0 (I − PD)

T · (I − PD) · z + v1 · α1 + v2 · α2 + C1 · β1,1+

C2 · β1,2 = 0,

∂L3

∂b2
= −N1 T · α2 = 0.
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A.4.3 Procedure Pro-Dual System

The procedure Pro-Dual System, as its name suggests, will produce the
corresponding dual system for the given primal problem. The remaining
variables are defined by the user. Pro-Dual System has four parameters,
Lagrangian, differentiation variables, remaining variables and number of w
vectors, respectively. In what follows, we illustrate this procedure by applying
it to the example 2.

For example 2, we have
> Pro_Dualsystem(L[2],[w,e,alpha[1],alpha[2],Yhat,b],[alpha[2],b],1);

G1 ·

[
α2

b

]
=

[
2 Y γ + 2 η Ystr

0

]
,

‘where G1‘ =

[
−γ Ω · IN − IN − η Ω · IN 2 γ IN N1 + 2 η IN N1

N1
T · IN 0

]

where Ω=ΦΦT denotes the N ×N kernel matrix.

For example 3, we have
> Pro_Dual system(L[3],[seq(w[i],i=1..dims),seq(e[i],i=1..dims),

> seq(e[1,i],i=1..dims),seq(alpha[i],i=1..dims),seq(beta[1,i],i=1..dims),

> seq(b[i],i=1..dims),z],

> [z,b[1],b[2]],2);

G1 ·




z

b1

b2


 =




C1 · q1η + C2 · q2η

0

0




‘where G1‘ =




U −v1 · M1
−1 · IN N1 −v2 · M2

−1 · IN N1

−N1
T · M1

−1 · v1
T · IN N1

T · M1
−1 · IN N1 0

−N1
T · M2

−1 · v2
T · IN 0 N1

T · M2
−1 · IN N1




‘where U‘ = −1.0 γ IN + 1.0 (I − PD)T · (I − PD) · IN + v1 · M1
−1 · v1

T · IN +

v2 · M2
−1 · v2

T · IN + C1 · C1
T · IN η + C2 · C2

T · IN η
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A.4.4 Procedure Pro_Dual Model

The last procedure denoted by Pro_Dual Model, constructs the dual model
representation. The input of this procedure is just the primal model provided
by the user. Implementing this procedure for the examples 2 and 3 will result
in the following model expressions.

For example 2,
> Pro_DualModel(Phi.w+b*N1);

1

2
ΦΦT · α2 + bN1

For example 3,
> Pro_DualModel([Phi[1].w[1]+b[1]*N1,Phi[2].w[2]+b[2]*N1]);

Φ1Φ1
T · (M1

−1 · v1
T · z − M1

−1 · b1N1)

γ
+b1N1 ,

Φ2Φ2
T · (M2

−1 · v2
T · z − M2

−1 · b2N1)

γ
+b2N1

where
M1 = Φ1Φ1

T +
I

η
, M2 = Φ2Φ2

T +
I

η
.

A.5 GUI Application

In order for the code to be user friendly, the Maplet of the code is designed,
(see Fig. A.2), containing windows, textbox regions and other visual interfaces,
which gives the user point-and-click access. It is an alternative to the worksheet.
Users can perform the SYM-LSSVM-SOLVER Package without having to get
involved in the Maple syntax. Example 1 has been performed using the Maplet
package (see Fig. A.2). The snapshots of the result taken from the Maplets
are shown in Fig. A.3.

A.6 Conclusion and future work

A symbolic solver written in Maple is developed for LSSVM models. The
Maplet of our code is also provided as an alternative to the worksheet. The
application of the solver is illustrated on three examples. Currently the LSSVM
models that can be handled in our symbolic solver include equality constraints
only. Dealing with additional inequality constraints is a further challenge for
future work.
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Figure A.2: The GUI for SYM-LSSVM-SOLVER
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(a) (b)

(c) (d)

Figure A.3: Lagrangian function, KKT optimality conditions, Corresponding
dual system and model representation for Example 1.
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