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Abstract 

A Closed-loop Compressive Sensing (CS) based neural recording system is presented. Implemented using 
efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural 
spike band (500 - 6KHz) while consuming only 0.83uW (@0.53VDD) additional digital power per 
electrode. When only the spikes are desired, the system is able to further compress the detected spikes 
by around 16 times. The entire system consists of an Application-Specific Integrated Circuit (ASIC) with 4 
recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality 
evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS 
performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public 
neural databases. Unlike other similar systems, the characteristic spikes and inter-spike data can both be 
recovered while guarantee >95% spike classification success rate. The complete signal processing circuit 
consumes <16uW/electrode.  

1. Introduction  

1.1 The need for efficient compression in neural recording systems  

Neural recording microsystems are essential tools for neuroscientists to study the activity of the brain. 
These devices, consisting of one or more recording sites or electrodes, can be deployed within the 
cortex to collect neural action potentials (a.k.a 'spikes') generated by individual neurons. Studying these 
neural signals allows the neuroscientists to analyze the function and connectivity of brain circuits and 
their role in cognition and behavior [Mitra '13][Lopez '13]. Clinically, the neural recordings collected by 
the device can also be utilized to diagnose neuropsychological illnesses such as epilepsy, depression and 
traumatic brain injuries [Staba '02][Aziz '09].  

The development of neural recording microsystems has continued to evolve in the past decades. The 
number of electrodes integrated into one device has increased from one [Hubel ‘59] to arrays that 
contains up to hundreds of electrodes [ShahrokhI ‘10]. However, given a cortical density of  100,000 
neurons per mm3 volume, the neural recording devices must be able to integrate even higher number of 
recording sites into a small volume to fully access the brain circuits [Braitenberg '91]. To prompt the next 
generation of neural recording device, the latest NeuroSeeker project funded by the European 
Commission aims to develop a neural probe with more than 10,000 electrodes [NeuroSeeker ‘13].   

A major challenge that impedes massive electrode integration is the amount of data acquired by large 
number of electrodes in a device. Assuming each electrode is sampled at Nyquist rate of 20 kHz with at 
least 10 bits of resolution, the data collected by the system will exceed 200 Megabits-per-second (Mbps) 
as the number of integrated electrodes increases above 1000. This enormous amount of data poses 
significant challenges for the design of digital data readout interfaces. This is mostly due to the available 
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power budget that can be dissipated close to the brain that does not result in a temperature rise that 
exceeds the safe limit of 1oC [Kim ‘06]. The challenge is even larger when neural probes with wireless 
transmission are considered. The limited weight of head-mounted devices that can be carried by small 
laboratory animals like mice, rats etc. (~10% of body weight) puts a severe restriction on the battery life 
of these devices. 

The design challenges can be summarized below:  

 Readout Interface: Most of the power in the recording circuits is needed to drive the output 
pads. Even with a wired connection, there are no standard cables that can carry this large 
amount of data and yet be lightweight and flexible for the animal to move in an unrestricted 
way. 
 

 Wireless transmission: The same high data rate challenge occurs whenever wireless 
transmission of the data is desired. Furthermore, the current state-of-art wireless neural 
recording chips are limited in capacity, and consequently rarely allow more than a few Mbps to 
be transmitted [Abdelhalim ‘13]. 

Both of aforementioned issues are difficult to resolve without applying some kind of signal compression 
techniques prior to data readout or wireless transmission.  

1.2 Prior works on neural signal compression 

 Many prior multi-electrode array designs rely on spike detection and windowing techniques to 
reduce transmission bandwidth [Mitra '13][Gosselin '09(a)][Chae '08][Gosselin '09(b)]. After a spike is 
identified through a threshold crossing detector, a small 1-2 ms long window around each spike is 
retained. This event based compression method achieves a decent Compression Rate (CR) for electrodes 
with sparse neuronal firing rates. When the aggregate firing rate of all detectable neurons is high (e.g. > 
150 Hz), however, the CR is greatly reduced [Chen '13].  

 To further reduce the transmission bandwidth, wavelet transform based techniques have been 
proposed to provide compression for detected spikes [Oweiss '07][Kamboh '08]. While high CR can be 
achieved, the wavelet transform method requires significant amount of additional hardware. Its 
implementation consists of digital filters with additional memories that operate at a speed several times 
faster than the Nyquist rate of neural signals (~20 kHz). The complexity of the processing unit increases 
circuit area and on-chip power consumption, hence hinders the utilization of this technique to arrays of 
recording electrodes or silicon probes with large number of recording sites.  

 Compressive Sensing (CS) is a technique that gained popularity for compression of bio-signals 
due to its simple and power efficient mathematical operations using only additions and subtractions 
[Chen '13][Mamaghanian '11][Dixon '12][Charbiwala '13][Gangopadhyay '14]. Different from wavelet 
transform based techniques, data compression can be implemented using a few digital accumulators. 
Despite this advantage, previously implemented CS approaches only achieve limited CR before signal 
recovery quality degrades below an acceptable level for data analysis [Baluch '12]. The recovery quality 
of CS-based system heavily depends on the choice of sparsifying transforms (a.k.a. dictionary), through 
which the signal can be compactly represented. The limitation of previous systems is largely due to a 
less optimal choice of the dictionary.  
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 Additionally, all previous compression systems are unable to measure the recovery quality of 
the signal since they have no knowledge of the original signal. Hence, the user has no understanding of 
how well the recovered signal resembles the real neural signal. Without such evaluation, these 
compression systems operate in open loop and provide no feedback to adjust the CR to balance the 
tradeoff between compression and recovery quality.  

1.3 A Closed loop Compressive Sensing based compression system 

 In previous works, we have demonstrated that leveraging the unique shape of each neuron's 
spike, a signal dependent dictionary can be constructed and utilized to increase CR while maintaining 
high recovery quality in the CS framework [Zhang '14][Suo '13]. It is often the case that spike trains 
recorded on a single electrode contain spikes from several nearby neurons. Each neuron’s spike has a 
characteristic shape and amplitude depending on its morphology and proximity to the recording 
electrode. Given that spike waveforms are generally stable over time, they can be used to learn a signal 
dependent dictionary to sparsely represent similar spikes recorded at the same electrode. We have also 
demonstrated that this method allows CS to achieve comparable CR and recovery quality as the wavelet 
transform based method, while using extremely efficient circuitry.  

 However, a signal dependent dictionary in the CS framework needs to be adaptable to 
accommodate changes in the neural signals that may occur during the recording. Without adaptation, 
the recovery quality would degrade over time because the learned dictionary can no longer represent 
spikes sparsely. To address this issue, we introduce a closed-loop Compressive Sensing neural recording 
system in this paper. The system includes: an application specific integrated circuits (ASIC) with 4 
recording electrodes and compression circuits, an off-chip recovery algorithm that recovers the signal in 
real-time, and most importantly, a recovery quality evaluation method that provides adaptive closed-
loop feedback to the ASIC for optimal tradeoff between CR and recovery quality.  

 In the main sections of the paper, we first introduce relevant background of Compressive 
Sensing and Dictionary Learning. We then describe the design of each component of the system and 
finally present a validation of the system using simulations and experimental data.   

2. Background 

We first introduce the basics  of Compressive Sensing and the framework of Dictionary learning.  

2.1. Compressive Sensing 

 Compressive Sensing originated as a theoretical framework regarding encoding and recovery of 
an S-sparse signal, 𝑥, of length 𝑁 [Candes '06][Donoho '06]. A signal is 𝑆-sparse if it can be well 
approximated by its largest 𝑆 coefficients in a certain transform domain (or a 'dictionary'), where 
𝑆 ≪  𝑁. The S-sparse signal, 𝑥 can be encoded by a small measurement vector, 𝑦, of length 𝑀, such that: 

𝑦 = 𝐴𝑥      (1) 

where 𝑆 <  𝑀 ≪  𝑁, and 𝐴 is a sensing matrix of dimension 𝑀 ×  𝑁. The CR achieved in this case is 
𝑁/𝑀. However, recovering 𝑥, given 𝑦 and 𝐴, is not trivial because this system of linear equations 
contains more unknown variables than equations. Fortunately, considering matrix 𝐴  satisfies the 
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Restricted Isometry Property (RIP) and 𝑥 is S-sparse, this underdetermined problem can be solved and 𝑥 
can be recovered exactly with extremely high probability from 𝑦 using optimization methods [Candes 
'06].  

 RIP is the key factor to determine the optimal choices of sensing matrices. RIP describes how 
well the distance of S-Sparse signal can be preserved after the projection using sensing matrix A.  Many 
matrices, such as the random Gaussian, random Bernoulli, and Partial Fourier matrices all satisfies the 
RIP universally with a small number of M. Choices of sensing matrix can be determined based on specific 
applications and desired performance tradeoffs.  

2.2. Dictionary Learning 

 The number of samples, 𝑀, required to successfully recover 𝑥 is proportional to the sparsity, 𝑆, 
of the signal represented using a dictionary. Therefore, a desired dictionary should be able to represent 
𝑥 using as few coefficients as possible to improve CR. Various dictionary learning  methods can be used 

for this purpose [Lewicki '00][Aharon '06][Engan 00']. Given 𝐿   training signals 𝑋 = {𝑥𝑙𝑙=1
𝐿 } , the 

dictionary learning algorithms find a dictionary 𝑫 that can represent the training signals using 𝑆-sparse 

signal 𝑉 = {𝑣𝑙𝑙=1
𝐿 }. In other words, it solves the optimization problem:  

𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ‖𝑥𝑙 − 𝑫𝑣𝑙‖2
2

 
𝐿
𝑙=1     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝑣𝑙‖0 ≤ 𝑠, 1 ≤ 𝑙 ≤ 𝐿                 (2) 

where 𝑆 is the bound on the 𝑙0-norm of S-sparse signal 𝑣𝑙. It sets the bound on the number of non-zero 
coefficients for every 𝑣𝑙.  

3. Methods  

Figure.1. presents the blocks of the entire system. We also describe the system design in detail in this 
section. First, we describe the ASIC which consists of analog preprocessing blocks, ADCs and the CS 
compression block. Next, we present our off-chip Dictionary Learning and Compressive Sensing recovery 
algorithms. Finally, we conclude the section describing our adaptive mechanism of the close-loop 
feedback between on-chip and off-chip blocks.  

3.1. ASIC  

 As shown in Figure.1., the ASIC contains 4 neural recording channels with corresponding CS 
circuits. The signal is first conditioned by the analog front end and sampled by a shared 10 bit Successive 
Approximation Register (SAR) ADC. The ASIC can be configured to operate in either Dictionary Learning 
mode (DL) or Compression Mode (CM). During DL mode, the CS circuit is bypassed and the raw 
waveforms are transmitted to allow the off-chip dictionary learning algorithm to construct a dictionary. 
Then the chip is switched back to CM, where the raw data is condensed by the CS block. For a large 
arrays of electrodes, dictionary learning can be performed per group of electrodes to avoid large data 
transmission during a small period of time. 
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3.1.1. Analog Front End and ADC  

 The Analog Front End (AFE) consists of two gain stages. In the first stage, a capacitive coupled 
Instrumentation Amplifier (IA) is used. The output of the IA passes through a band-pass filter to extract 
neural spiking signals (500Hz– 6kHz). A Programmable Gain Amplifier (PGA) is used at the second stage 
to provide additional gain before the signal is sampled by the ADC. The AFE has an Integrated Noise of 
3.1uVrms (500 – 6kHz band) and CMRR of 75dB, while providing a configurable gain of 230-6K. The 
Successive Approximation Register (SAR) ADC, operating at 80KHz, is used to sample the conditioned 
analog signals from all four recording electrodes. Operating at VDD of 1.8V, the AFE and ADC together 
consume 15μW per electrode.  

3.1.2. Compresive Sensing Block  

In CM mode, The CS block can be further configured into two sub-modes of operation: either the entire 
band-passed neural signal or only the spikes are compressed. When configured to compress the entire 
neural signal, the CS block preserves the fidelity of the spikes as well as the inter-spike signals. If only 
spikes are desired, the compressed output is only produced when a spike is detected by a threshold 
crossing detector applied to the absolute magnitude of the signal. 64 samples of the detected spikes are 
kept for compression.  

The CS block implements the linear operation of equation (1): 𝒚 = 𝑨𝒙. This equation can also be written 

 

Figure 1. Overview of the Neural Recording ASIC, Off-chip recovery system and the Closed-Loop Feedback linking two sub-
systems.  
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Figure 2. Architecture of the CS Block 

 

as a system of linear equations:  

𝑦1 = 𝐴1,1𝑥1 + 𝐴1,2𝑥2 + ⋯ + 𝐴1,𝑁𝑥𝑁

𝑦2 = 𝐴2,1𝑥1 + 𝐴2,2𝑥2 + ⋯ + 𝐴2,𝑁𝑥𝑁

⋮ ⋮ ⋮
𝑦𝑀 = 𝐴𝑀,1𝑥1 + 𝐴𝑀,2𝑥2 + ⋯ + 𝐴𝑀,𝑁𝑥𝑁

               (3) 

where, 𝑥1 … 𝑥𝑁 are the digitized neural signal from ADC at discrete time 1 to 𝑁, 𝑦1 … 𝑦𝑀 are entries of 
compressed sample 𝑦 of length 𝑀 (𝑀 ≤ 𝑁), and A is the sensing matrix of size 𝑀 × 𝑁. In our design, 
matrix A is a random Bernoulli matrix, which can be configured by the user. Among matrices that 
satisfies RIP requirement, random Bernoulli matrices are the most optimal for hardware implementation 
as their entries are either +1 or -1. Therefore the system of equation (3) can be implemented using 𝑀 
digital accumulators. Depending on the corresponding value of A, the accumulators either adds or 
subtracts digitized signal 𝑥𝑖 from the value of the accumulator to generate 𝑦𝑖. Other matrices, such the 
random Gaussian and optimized sensing matrices all contains fractional entries [Elad '07][Sapiro '09]. 
Thus implementing equation (3) with these choices requires the use of digital or analog multipliers in 
addition to accumulators. These additional components consume a large amount of chip area. For 
example, an implementation of a Gaussian matrices using M-DAC occupies around 0.6 mm2 
[Gangopadhyay '14], whereas our digital implementation of a Bernoulli sensing operation only occupies 
0.11 mm2.  
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 The CS block uses arrays of accumulator shift-registers (ASRs) to implement the matrix 
multiplication of equation (1), shown in Figure 2. The accumulations are clocked at signal Nyquist rate of 
20 kHz (C20K). The Matrix block, shared across all the channels, contains registers to hold one row of a 
random Bernoulli matrix. Their values are updated off-chip at every Nyquist period. Depending on the 
value of a particular matrix entry (either 1 or 0), the corresponding ASR either adds or subtracts the 
current digitized signal from the accumulated value. Each ASR can be disabled by applying clock gating 
to control the compression rate (CR=N/M). To avoid implementation of extra registers to buffer the data 
for transmission, a 4MHz (C4M) clock is used to shift the data in the ASRs to the output pin near the end 
of each accumulation cycle. Vector 𝒚 is generated every 𝑁 clock cycles. 𝑁 can be configured to be either 
128 or 64, depending on the operation mode, corresponding to signal length of 6.4ms and 3.2ms.  

 To conserve power, when the 
ASIC is configured to compress only the 
spikes, clock gating is applied to the ASRs 
and the matrix block so that they remain 
inactive until the Spike Detection block 
registers a threshold crossing event.  A 
digital FIFO is used to buffer a variable 
length of pre-trigger samples (up to 15 
samples) before a threshold crossing 
event. After the compressed vector 𝑦 is 
sent off-chip, the CS block becomes 
inactive again until the next threshold crossing event. The spike detection information is also used when 
the ASIC is configured to compress the entire band-passed neural signal. It informs the off-chip recovery 
block how many spikes have occurred and their peak locations within the signal segment [Zhang '14]. A 
Micrograph of the ASIC is shown in Figure.3. 

3.2. Off-Chip Dictionary Learning and Signal Recovery  

The off-chip recovery algorithms consist of two blocks, the Dictionary Learning block and the signal 
recovery block. Both of these blocks are implemented using MATLAB.   

3.2.1. Dictionary Learning  

 Operating in the Dictionary Learning Mode (DL), the ASIC bypasses the CS block and outputs the 
uncompressed neural signal. The raw signals form a training signal set that is used to learn a dictionary. 
The most straight forward method to construct a dictionary is to use detected neural signals to form 
bases in this dictionary [Suo '13]. Alternatively, dictionary learning methods such as K-SVD [Aharon '06] 
can be utilized to train a dictionary given a set of training spike waveforms [Zhang '14]. As described in 
section II, like other dictionary learning method K-SVD algorithm finds a dictionary, 𝐷, through iterations 
to minimize error between the training data and its corresponding sparse representations using 𝐷. 
Analysis has shown that dictionaries created with raw spikes result in slightly better reconstruction 
performance when tested using synthetic neural database (with various amount of additive noise) [Suo 
'13][Quiroga '04]. On the other hand, the K-SVD trained dictionary does well when evaluated using an in-
vivo recording database [Henze '00][Suo '13][Suo '14]. 

 

Figure 3. Micrograph of the ASIC 
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 Here we implement the K-SVD algorithm to learn the dictionary, due to its fast computation 
speed and superior performance over dictionaries created with raw spikes. For example, implemented 
using MATLAB on a PC with Intel Core i7 and 16 Gbyte of RAM, K-SVD algorithm takes approximately 
0.01s to compute a dictionary of size 64 by 100, using around 300 observations of different spikes. The 
size of the dictionary and training data size could vary depending user's preferences.  

3.2.2. Compressive Sensing  Recovery  

After a dictionary is trained, the ASIC switches back to the CM mode and outputs the compressed vector 
𝑦. From the compressed measurement, 𝑦, the signal can be reconstructed by solving a L1-minimization 
problem:  

    𝑎𝑟𝑔𝑚𝑖𝑛𝑥‖𝑥‖1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 = 𝐴𝑥 (5)  

We solve (5) using Matching pursuit methods due to their efficient computation time. A detailed 
discussion on the recovery method and signal model is provided here [Zhang '14]. The average 
computational time for recovery is around 1.3 ms if only spikes are reconstructed and 2 ms if the entire 
neural signals are reconstructed. This suggests that the system can recovery the around 700 spikes per 
second for real time applications. For large array of electrodes, multiple systems could be used to handle 
the recovery or FPGA implementation of the recovery algorithm could be developed to speed up the 
recovery.  

We measure the recovery performance of a spike train using the Signal to Noise and Distortion Ratio 
(𝑆𝑁𝐷𝑅). In here, we add a subscript 𝑥 to derive a notation 𝑆𝑁𝐷𝑅𝑥  to represent 𝑆𝑁𝐷𝑅 measured 
between the original signal and the recovered signal:  

𝑆𝑁𝐷𝑅𝑥 =
1

𝑇
∑ 20𝑙𝑜𝑔

‖𝑥𝑖‖2

‖𝑥𝑖−𝑥̂𝑖‖2

𝑇
𝑖=1                                  (6) 

where 𝑥𝑖 is 𝑖th spike belonging to a spike train having 𝑇 spikes, and 𝑥𝑖 is the reconstructed spikes from 
compressed measurements. 𝑆𝑁𝐷𝑅𝑥 is a purely theoretical estimate. It has been used by other authors 
to verify the validity of their compression and recovery approaches using known signals [Chen '13].  

3.3. Closed Loop Feedback  

An obvious disadvantage of 𝑆𝑁𝐷𝑅𝑥 is that it requires the knowledge of the original signal, which is not 
available when the ASIC is generating the compressed measurements. The failure to address this 
problem makes previously reported neural signal compressive sensing systems impractical for real 
recording application. Without a Quality Evaluation (QE) block, the users have no means to quantify the 
performance and adjust compression rate for optimal tradeoff between recovery quality and 
compression. Furthermore, the QE block is essential in our system where a learned dictionary is used. 
QE block can detect the case when the existing dictionary can no longer represent the neural spike 
trains and then switch the ASIC back to DL mode where a new dictionary will be learned. No data is lost 
while the system is in the DL mode, since raw data is transmitted in this mode. As we shall demonstrate 
in an in-vivo experiment, the system only need to switch to DL mode once for around 2 minutes during a 
two hour recording session.0020 
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As shown in Figure.1., QE block examines the quality of the recovered signal and provides feedbacks to 
the ASIC to adjust CR or to switch between DL mode and CM mode. QE block is also implemented using 
MATLAB.  

Due to the inability to calculate 𝑆𝑁𝐷𝑅𝑥, the QE block calculates Signal to Noise and Distortion Ratio 
measured in compressed domain (𝑆𝑁𝐷𝑅𝑦) as the metric for recovery performance. 𝑆𝑁𝐷𝑅𝑦 is defined as:  

𝑆𝑁𝐷𝑅𝑦 =
1

𝑇
∑ 20𝑙𝑜𝑔10

‖𝑦𝑖‖

‖𝑦𝑖−𝑦̂𝑖‖
𝑇
𝑖=1                                 (7) 

𝑦̂𝑖 = 𝐴𝑥𝑖  

where 𝑦𝑖  is the CS measurement of 𝑖th spike within a spike train containing total of 𝑇 spikes, and 𝑦̂𝑖  is 
the CS measurements estimated from the recovered spike 𝑥𝑖. When a signal is not well reconstructed, 
the reconstruction error can also be reflected in the CS measurements after a linear mapping using the 
sensing matrix, 𝐴. In the Experiments section, we shall demonstrate the correlation between 𝑆𝑁𝐷𝑅𝑥 
and 𝑆𝑁𝐷𝑅𝑦.  

The QE block calculates the moving average and the standard deviation of the 𝑆𝑁𝐷𝑅𝑦 across many time 

intervals. It can initiate feedback to the ASIC to increase the compression rate or to learn a new 
dictionary if the measured  𝑆𝑁𝐷𝑅𝑦 decreases below a tolerable threshold set at a few standard 

deviation from the moving average.   

4. Experiments and Results   

In this section, we describe the experiments we conducted to validate each part of the system. First, we 
used a dataset from fifteen week long multi-electrode recording experiment to characterize the 
recovery performance. This data is essential to validate the efficacy of the system under different noise 
condition and over an extended period of time. Here we also show the correlation between 
performance metrics 𝑆𝑁𝐷𝑅𝑥  and 𝑆𝑁𝐷𝑅𝑦 . Second, we used a dataset from a two hour tetrode 

experiment to evaluate the closed-loop feedback system and demonstrate the dynamic CR evaluation 
and dictionary updates. We further tested the ASIC's functionality by deploying it a recording 
experiment conducted on an awake Rhesus Macaque. Finally, we also characterized the system 
performance using a standard database in order to compare our system with previous published works. 

4.1. Off-chip Recovery Performance Characterization 

4.1.1 Experiment Setup  

Data from a fifteen week long multi-electrode recording experiment is used to characterize the off-chip 
recovery performance. The close relationship between performance metrics 𝑆𝑁𝐷𝑅𝑥 and 𝑆𝑁𝐷𝑅𝑦 is also 

validated using this experiment. Data from this experiment is ideal for recovery performance evaluation 
since they contain recordings collected at many different electrodes with different Signal to Noise Ratio 
(SNR). Additionally, a few electrodes also detect multi-neuron activities.  Both signal compression and 
recovery are carried out using offline algorithm implemented using a PC. Since the compression block on 
the ASIC is implemented using digital circuits, it does not introduce additional noise to the recording. 
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Figure 4. (a) Example of the original recorded neural waveforms and recovered waveforms using CS and Wavelet 
Transform method (week 0). (b) Layout of the electrode on the silicon probe. (c) Zoomed in views of CS and Wavelet 

recovery. 

Therefore its performance can be exactly modeled by an offline algorithm. The performance of the ASIC 
is characterized through an in-vivo experiment discussed later in the paper.  

In this fifteen week long recording experiment, a high density recording array containing 32 electrodes 
on a single shank (70 µm wide) is implanted in the thalamus of a rat's brain when it is under anesthesia. 
The scientific aim of the experiment is to examine the long-term recording SNR of an implanted silcon 
probe. We acquired one minute of raw data from the implanted electrodes every week for fifteen weeks. 
The recorded signals are digitized at 25KHz and filtered at 500-5KHz. In week 0, spikes are observed at 
13 out of 32 electrodes. The relative position of the electrodes are shown in Figure 4 (b). Electrodes 1, 2, 
7, 8, 9 and 16 have contact diameter of 10 µm, while electrodes 5 and 10 to 15 have contact diameter of 
5 µm. During 15 weeks of recording, the electrode average SNR is found to be stable and does not suffer 
major loss over time.  

For each recording electrode, we used 20% of the extracted spikes (around 50 - 120 spikes) to train a 
representation dictionary with K-SVD method, while using the remaining 80% as test signals to evaluate 
CS recovery performance. The raw recording first goes through an offline spike detection block which 
extract the spikes after their amplitude exceed a pre-set threshold at around 4 standard deviation above 
and below the average signal amplitude of the dictionary training data. For each detected spikes, 64 
discrete samples are retained around a spike corresponding to 2.6ms temporal duration. In week 0's 
recording, electrode 8 records the spikes from two neurons, while the rest of the electrode only have 
one distinguishable spike cluster. 
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We compress each spike by multiplying it with a random Bernoulli sensing matrix of size 𝑀 x 64, where 
𝑀 is the number of compressed samples. For comparison, we also present recovery results using 
wavelet transformed based recovery. In this method, the extracted spike first undergoes a wavelet 
transform. Wavelet components at 𝑀 biggest locations determined using the training data are retained 
and used to reconstruct the spike. The wavelet used is Daubachies-8 wavelet, which is a standard 
wavelet choices for compression [Bulach '12]. Figure 4. illustrates the electrode layout on the silicon 
probe, the original signal and the signals recovered using CS and wavelet at three of the 13 electrodes at 
week 0.  

As performance metrics, we first compute the 𝑆𝑁𝐷𝑅𝑥 of the spike train at every electrode. In addition, 
for each recovered spike, we also compute the difference of its amplitude at its main trough compared 
to the original spike. To account for the variation of the CS recovery over the choice of sensing matrix, 
we compress and recover each spike train using 20 different randomly generated Bernoulli matrices. We 
then average 𝑆𝑁𝐷𝑅𝑥 over the entire 20 trials to acquire a single measurement of 𝑆𝑁𝐷𝑅𝑥 for the spike 
trains collected at that particular electrode.  

To analyze the spike recovery quality under different noise levels, we calculate Signal to Noise Ratio 
(SNR) for each type of spikes. SNR is computed as:  

𝑆𝑁𝑅 =  
𝑆𝑖𝑔𝑛𝑎𝑙 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

𝑃𝑒𝑎𝑘 𝑡𝑜 𝑃𝑒𝑎𝑘 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑟
        (8) 

Peak to peak amplitude of the noise floor is taken as six times the standard deviation of the recorded 
signal after spikes are removed, spanning ~99.7% of normally distributed noise data [Ludwig '09]. Spike 
clusters with a SNR of 1.1 or greater are considered to be discriminable units [Ludwig '09].   

For electrode No.8, where distinguishable multi-unit activities are seen, we examined spike clusters’ 
distance in the Principal Component subspace after they are reconstructed by CS and wavelet method. 
The larger the cluster distance, the easier it is to cluster the spikes. From the original spikes, we 
observed that there are two types of spikes at electrod No.8, class C1 and C2. They contain 608 and 86 
spikes respectively. In this analysis, we first use the same training spikes to learn a dictionary for CS 
reconstruction. The spikes are then compressed and reconstructed using CS and Wavelet method for 
various CR. We perform the Principal Component Analysis (PCA) on the reconstructed spikes. Finally, we 
calculate the cluster mean of reconstructed C1 and C2 in the subspace spanned by their first two Prinical 
Components. Figure 6.b. shows the original spikes cluster C1, C2 and their means.  

4.1.2. Results on CS recovery quality vs. Wavelet recovery quality 

Figure 5.a. shows the SNR for spikes at each electrode. Figure 5.b. and 5.c. illustrate the recovery quality 
of CS and wavelet method for week 0's data. In this case, the length of compressed samples (𝑀) is set to 
be 4, corresponding to CR of 16.  In terms of both 𝑆𝑁𝐷𝑅𝑥 and recovery error at the main trough of the 
spike, CS performs better or comparable to wavelet recovery method across all electrodes with different 
SNR.  
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Figure 5. (a) SNR for every types of spike seen at electrodes at week 0. (b) 𝑆𝑁𝐷𝑅𝑥 of the recovered spikes. (c) recovery 
error at main trough of the spikes.  

 

Figure 6.a. presents the PCA cluster distance for C1 and C2 spike clusters when spikes are reconstructed 
across different CR by CS and wavelet method. The CS reconstructed clusters maintain very high 
separation even at CR of 32, when only 2 CS samples are retained to reconstruct the spike. This is 
because CS method only uses the sparse dictionary atom from either C1 or C2 to reconstruct a spike. As 
long as it can choose the correct atom during reconstruction, high cluster distance is guranteed. On the 
other hand, wavelet reconstructed cluster distance starts to decrease when CR increases above 9. This is 
because as more wavelet coefficients are removed, the clusters lose their discrimintive features. Figure 
1.b. show the scatter cluster for the original spikes, while Figure 1.c. show the cluster of CS and wavelet 
reconstructed spikes at CR = 32.   
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The recovery results from this dataset suggest that CS performance is comparable to that of the wavelet 
transform based method.  For clustering, the advantage of CS is more apparent at high CR (>9). The 
result from the clustering experiment is consistent with a similar spike classification experiment 
described in our previous publication [Zhang ‘14]. In terms of hardware power and area efficiency, a 6 
Level wavelet transform would require around 32708 transistors [Oweiss '07]. On the other hand, to 
achieve CR=16, CS method only needs 4 digital accumulators of 13 bits, assuming each digitized data has 
10 bits resolution. This corresponds to only 2496 transistors if the D-Flip Flop has 20 transistors and Full-
Adder has 28 Transistors [Zhang '14]. Hence, the power consumption and the area required to 
implement the CS system is much more efficient than the wavelet method to achieve comparable 
performance. A quantitative comparison on hardware efficiency is elaborated in our previous work 
[Zhang '14].  

 

Figure 6. (a) PCA cluster distance with respect to compression rate. (b) Original spikes’ clusters, C1 and C2. (c) C1 and C2 
cluster when the spikes are reconstruction using CS and wavelet method at CR = 32.  
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4.1.3. Correlation between 𝑺𝑵𝑫𝑹𝒙with 𝑺𝑵𝑫𝑹𝒚 

To verify that 𝑆𝑁𝐷𝑅𝑦 can effectively be used 

as a metric to measure recovery quality, we 
must show that these two metrics are highly 
correlated. We calculate the 𝑆𝑁𝐷𝑅𝑥  and 
𝑆𝑁𝐷𝑅𝑦  for the spike trains recording at 

every electrodes from week 0 to week 15, 
shown in Figure 7. On average, a one minute 
recording from each electrode, every week 
contains around 500 spikes (T=500). A 
regression analysis between 𝑆𝑁𝐷𝑅𝑥  and 
𝑆𝑁𝐷𝑅𝑦  results in 𝐹(1,206) = 2.59 × 1031 

and 𝑃 < 10−9 , suggesting a strong linear 
relationship between 𝑆𝑁𝐷𝑅𝑥 and 𝑆𝑁𝐷𝑅𝑦 . 

Therefore, we could use 𝑆𝑁𝐷𝑅𝑦  as a 

alternative metrics to evaluate signal 
recovery quality. 

 

4.2. Quality Evaluation Block and The Closed-loop Feedback Characterization 

4.2.1. Experiment Setup  

We use the data from a two hour tetrode recording experiment as well as a synthetically generated 
spike train to characterize performance of the closed loop feedback block. The tetrode recording was 
acquired with digital Lynx (from Neuralynx). In this experiment, a micro-drive array carrying tetrodes 
was chronically implanted on a rat. The recording is from the CA1 of the hippocampus. For the first hour 
of the experiment, the rat is sleeping inside of a box. Then it is placed on to a treadmill to perform 
running tasks. To detect spikes, a threshold is set at 100uV, and 32 samples of around the spikes are 
retained after a threshold crossing event. Similar to the previous experiment, the compression and 
recovery are all completed offline without using the ASIC, as the offline model is an exact replication of 
the ASIC functionality. In this continuous two hour experiment, we observed activities of different 
neurons at different time intervals. Hence we can evaluate the performance of the QE block when a new 
types of spikes are detected that were not included in the dictionary.  

For each tetrode, the spikes collected during the first two minutes are used to train a dictionary. Then 
we compress the spikes using a random Bernoulli matrix of size 4 × 32, corresponding to CR of 8. Each 
spike is recovered using the same recovery method mentioned in previous section. 𝑆𝑁𝐷𝑅𝑦 is calculated 

by the QE block at every minutes interval. We also computed 𝑆𝑁𝐷𝑅𝑥, which is a truth recovery quality 
metric. The moving average and standard deviation of 𝑆𝑁𝐷𝑅𝑦 is also calculated.  

We computed two trials of compression and recovery: In the first trial, we compress and recover all the 
spikes collected on one of the tetrodes using the initially learned dictionary. In the second trial, QE 

 

Figure 7. 𝑆𝑁𝐷𝑅𝑥and 𝑆𝑁𝐷𝑅𝑦 values for all the recording 

electrode over 15 weeks of recordings 
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blocks triggers the DL mode when 𝑆𝑁𝐷𝑅𝑦 decreases by more than 4 standard deviation compare to its 

moving average. The recovery system then recovers the subsequent spikes in CM mode using the newly 
learned dictionary together with the initially trained dictionary.  

In addition to the tetrode data, we have also created a synthetic spike train to further demonstrate 
improvement in recovery quality after closed loop feedback and dictionary retraining. These spikes, 
taken from the Leicester neural database [Quiroga '04], originates from three different neurons. Their 
shapes are shown in Figure 10 (b). 5000 spikes are drawn randomly from three spike clusters and placed 
10 ms apart to form the synthetic spike train of 50 s in duration. In the first 10 s, only neuron 1 fires. 
When then followed by firing of neuron 2 between 10s to 20s. Then neuron 1 and 2 both fire between 
20s to 30s before neuron 3 fires between 30s to 40s. Finally, all three neurons fire between 40s to 50s. 
The CR is set to 16, compressing 64 samples down to 4 samples.  In the recovery experiment, we first 
recover the signal using dictionary learned from only spikes 1. We then repeat the experiment to allow 
dictionary re-training after observing a decrease of more than 4 Standard-Deviation in the 𝑆𝑁𝐷𝑅𝑦. 

4.2.2. Closed loop feedback experiment results 

Figure 8.a. shows the 𝑆𝑁𝐷𝑅𝑥 and 𝑆𝑁𝐷𝑅𝑦 measured at every minute throughout the duration of the 

experiment. In Figure 8.b, the grey dots represent the first and second Principal Components of the all 
the spikes collected during the experiment, after a Principal Component Analysis (PCA). The red dots are 
the spikes used for dictionary learning. They are collected in the first 2 minutes of the experiments. The 
training data covers only a portion of the PCA space where the spikes occurred. The learned dictionary 
using the training data is shown in Figure 8.e. As we could expect, if a spikes falls into the PCA space 
overlapped by the training data, it can be well recovered. On the other hand, if spikes fall outside of this 
region then most likely they cannot be recovered with great accuracy since the their shapes are 
different than the dictionary. 

In Figure 8.a., the recovery quality measured by 𝑆𝑁𝐷𝑅𝑥 and 𝑆𝑁𝐷𝑅𝑦 stays constant above 8 dB and 15 

dB for the time intervals before 60 minutes. This is because the spikes detected during this time can be 
well represented by the learned dictionary. Examples of these spikes' PCA plot are shown in Figure 8.c., 
where the black dots represent the spikes detected between 50 and 51 minutes. Most of the black dots 
fall onto the PCA space covered by the training data, and therefore have similar shape than the 
dictionary. However, at around 61 to 62 minutes, when the rat is first placed on the treadmill, a lot more 
spikes are detected that do not fall into the PCA spaced covered by the training data (Figure 8.d). These 
spikes have different shapes compared to the training data and the learned dictionary, as shown in 
Figure 8.f. Therefore, they cannot be recovered accurately using the learned dictionary. There exists a 
significant amount of mismatch between the original and the recovered signal. Both 𝑆𝑁𝐷𝑅𝑥 and 𝑆𝑁𝐷𝑅𝑦 

experience a decrease of  4.5 dB and 3.5 dB, more than 10 and 8 standard deviation from their 
corresponding running averages. 

Figure 9. demonstrates the scenario when DL mode is trigged at 61 - 62 minutes interval when the 
measured 𝑆𝑁𝐷𝑅𝑦 decreases by more than 4 standard deviation from its running average. Spikes from 

this time interval are used to learn a new dictionary. The new dictionary items are added to form a 
dictionary that is used to recover signal after 62 minutes, shown in Figure.9.c. When the system switch 
from DL mode back to CM mode, we see an increase of both 𝑆𝑁𝐷𝑅𝑥 and 𝑆𝑁𝐷𝑅𝑦 at 62 to 63 minutes 

compare to 𝑆𝑁𝐷𝑅𝑥 and 𝑆𝑁𝐷𝑅𝑦 measurement in Figure 8. Figure 9.d. shows the spikes appeared at 62 

to 63 intervals can now be well recovered using the newly learned dictionary.  
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Figure 8. (a) 𝑆𝑁𝐷𝑅𝑥and 𝑆𝑁𝐷𝑅𝑦of the recovery over a 2 hour experiment. (b) Gray dots: PCA results of all the spikes collected in 2 

hour experiment. Red dots: spikes used for dictionary  learning. (c) Black Dots: spikes recorded around 50 – 51 minutes interval. They are 
well recovered since the their shapes do not vary too much from the dictionary. (d)  Black Dots: spikes recorded around 62-63 minutes 
interval. A new type of spike starts to appear. As its shape vary significantly from the dictionary, the recovery results deteriorate, shown 
by a decrease of 𝑆𝑁𝐷𝑅𝑥and 𝑆𝑁𝐷𝑅𝑦. (e) The trained dictionary (f) Temporal view of original spikes and recovered spikes at different 

time intervals.  

 

 

The results of the experiment using synthetic spike train is plotted in Figure.10.c. Without dictionary re-
training, the 𝑆𝑁𝐷𝑅𝑦 decreases around 15 to 25 dB whenever a new type of spikes appears. On the other 

hand, after re-training the dictionary at around 11s and 31s, the 𝑆𝑁𝐷𝑅𝑦 remain constant around 28 dB 

when new types of spikes appear. The recovery dictionaries are shown in Figure.10.a.  
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Figure 9. (a) 𝑆𝑁𝐷𝑅𝑥of the a 2 hour experiment with and without dictionary retaining (b) 𝑆𝑁𝐷𝑅𝑦 of the a 2 hour experiment with and 

without dictionary retaining (c) The dictionary after dictionary re-training. (d) Temporal view of original spikes and recovered spikes at 62-63 
minutes interval. 
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4.3. In-vivo Experiment and System Characterization Using a standard Neural 
Database 

4.3.1 Experiment Setup  

We recorded neural data using the ASIC from a chronic microelectrode array positioned over premotor 
cortex of the right hemisphere of an awake Rhesus Macaque. The chronic array features 18 
independently movable electrodes, with each electrode positioned by a screw mechanism at a 
resolution of 50 microns. The electrodes themselves were epoxylite-coated tungsten electrodes with 
impedances ranging from 4-6 MOhms (FHC Inc.). Contact can be made from each of the 18 electrode to 
any of the 4 electrode on the ASIC. Each electrode was driven into cortex until neural activity was found. 
From this point, electrodes would be maintained at this position for days or weeks. In the experiment, 
we acquire the digitized data directly after the ADC as well as the compressed data. A detailed 
experiment setup is shown in Figure 11. The monkey is not shown due to regulation and ethics reasons.    

To compare the performance of the system with previous works, we also characterized the system using 
a standard neural database [Quiroga '04]. We utilized a 12-bit DAC followed by a 40dB attenuator to 
play back the recorded neural waveforms to be recorded by the ASIC. The ASIC then transmits the 
compressed samples to a PC where the signal recovery block and QE block are implemented.  

 

Figure 10. (a) Dictionary trained on Neuron 1's spikes and the re-trained dictionary after Neuron 3 fires. (b) Three types of spikes from 
different neurons. (d) 𝑆𝑁𝐷𝑅𝑦 of the experiment with and without dictionary re-training. 
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5.3.2. Raw and recorded waveforms from the In-vivo experiment 

We recorded neural signals in from 3 of the 18 electrodes placed within the premotor cortex of a Rhesus 

Macaque, where the electrodes SNR > 1.1. To calculate SNR, the method described in Section 4.1 is used. 

Around one minute of data is collect prior to compression to train a dictionary using method outlined in 

Section 3.1c. Around one minute of the data are collected for each electrode. During recording the ASIC 

is configured to compress the entire neural signal instead of just the spikes. Figure 12.a. shows the 

recovery results from an electrode with SNR=6.21. For this electrode, the CR is set to 12.8. Two types of 

spikes are seen at this electrode. Off-chip recovery block could recover both with great precision, 

achieving an 𝑆𝑁𝐷𝑅𝑥 of 9.52 dB. Figure 12.b. shows the recovery quality of an electrode with lower 

SNR=2.14, where only one spike cluster is seen. CR is set to 4.3. Off-chip recovery block could recover 

spikes and the inter-spike signal at great accuracy, achieving spike 𝑆𝑁𝐷𝑅𝑥 of 4.14 dB. This result 

 

Figure 11. (a) In-vivo recording experiment using the ASIC. (b) The actually in vivo experiment. 
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validates the functionality of the complete system and demonstrates that its performance agrees with 

the offline analysis presented in previous sections. 

5.3.3. System characterization using a standard neural database 

In order to compare our system's performance with previous published works, we characterized the 
system performance using a standard neural data base [Quiroga '04]. The dataset used is named “Easy1” 
in the database. All the spikes in this dataset have nomalized amplitude of 1, with various amount of 
noise added as zero mean Gaussian noise with standard deviation (s.t.d.) from 0.05 to 4.0. Figure 13.a. 
shows a temporal view of the recovery at CR=5 and 16 for Easy1, with noise s.t.d. = 0.05. Figure 13.b 
demonstrates the recovery quality and power consumption with respect to CR. The classification 
accuracy decreases as we increase CR. But as CR increase, more accumulators are turned off, therefore 
the power consumption of the ASIC decreases. For this particular dataset, name, spike classification 
accuracy reaches >95% when CR decreases below 21.3.  

Figure.14 shows comparison of our system to prior works. All these systems intend to perform on-chip 
compression of neural signals to achieve reduction in data bandwidth for wireless (or wireline) 
communication. Like previous work, we have evaluated our approach on Easy1 dataset from [Quiroga 
'04] across all the noise standard deviations (from 0.05 to 4.0). The lowest CR needed to achieve >95% 
spike classification accuracy for all the dataset is used here as a performance metric (CR@95%).The CS 
circuit in this work can function with VDD of 0.53V without performance degradation and hence 
consumes only 0.83uW (per electrode) for the compression architecture. The CS block itself uses only 
0.11mm2 area per electrode. Even with the lowest power consumption and comparable area, this 
implementation achieves more than 5 times better compression rate (CR=10.6) than the state-of-the-art. 
The total power consumption per electrode (<15.83μW), including AFE and ADC, is comparable to 
published state of the art systems.  

 

Figure 12. (a) In vivo test data acquired by the system in CES mode. The electrode SNR=6.21. (a) In vivo test data acquired by the system in 
CES mode. The electrode SNR=2.14 
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6. Conclusion  

 We have demonstrated a compressive sensing neural recording system. Using a learned 
dictionary, this system is capable of achieving high rate of compression for both raw neural signals (CR > 
10.6) as well as detected spikes (CR > 16). This system is extremely low power (<0.83uW per electrode), 
and consumes very small area (<0.11mm2). Thus this system can be scaled and integrated into large 
recording arrays containg thousands of electrodes. 

 Because the demonstrated compressed sensing technique rely on reconstructing the spike 
using dictionary learned using small duration of raw recording, an open-loop recording cannot adapt to 
changes in spike shape. By introducing close-looped recording with reconstruction performance 
evaluation, the system can detect and adapt to this changed, thus making the system more practical for 
long term recording.  

While showing superior performance, the proposed system also has a few limitations: The 
experiments demonstrate that the proposed CS method is able to achieve extremely high compression 

 

Figure 13.  (a) Recovery quality at CR=5 and 16. (b) ASIC power consumption and spike classification accuracy with respect to 
CR. Classification is evaluated using the Easy1 database with noise s.t.d of 0.05 from [Quiroga '04] using a wavelet classification 
method similar to [Quiroga '04]  
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rate for recording channels with high SNR. The compression rate degrades as electrode SNR decreaes, as 
noise affects the performance of the dictionary learning algorithm. Furthermore, without a proper 
dictionary, the system might not be able to reconstruct the waveform of a sparsely firing neuron. We 
will address these limitations in our future work.  
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