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Abstract    1 

Purpose  2 

The objectives of this in vitro project were to  compare the dynamic three-dimensional 3 

patellofemoral  kinematics, contact forces, contact areas and contact pressures  of a 4 

contemporary patellofemoral prosthetic implant  with those of the native knee and to measure 5 

the influence  of patellar resurfacing and patellar thickness. The hypothesis  was that these 6 

designs are capable to reproduce the  natural kinematics but result in higher contact pressures.   7 

Methods  8 

Six fresh-frozen specimens were tested on a  custom-made mechanical knee rig before and after 9 

prosthetic  trochlear resurfacing, without and with patellar  resurfacing in three different 10 

patellar thicknesses. Full  three-dimensional kinematics were analysed during three  different 11 

motor tasks, using infrared motion capture cameras  and retroflective markers. Patellar contact 12 

characteristics  were registered using a pressure measuring device.   13 

Results  14 

The patellofemoral kinematic behaviour of the  patellofemoral arthroplasty was similar to that 15 

of the   normal knee when the patella was resurfaced, showing only  significant (p < 0.0001) 16 

changes in patellar flexion. Without  patellar resurfacing, significant more patellar flexion, 17 

lateral  tilt and lateral rotation was noticed. Compared to the  normal knee, contact pressures 18 

were significantly elevated  after isolated trochlear resurfacing. However, the values  were more 19 

than doubled after patellar resurfacing. Changes  in patellar thickness only influenced the 20 

antero-posterior  patellar position. There was no other influence on the kinematics,  and only a 21 

limited influence on the contact pressures  in the low flexion angles.   22 

Conclusion  23 

The investigated design reproduced the nor- mal patellofemoral kinematics acceptable well 24 

when the  patella was resurfaced. From a kinematic point of view,  patellar resurfacing may be 25 

advisable. However, the substantially  elevated patellar contact pressures remain a point  of 26 

concern in the decision whether or not to resurface the  patella. This study therefore not only 27 

adds a new point in  the discussion whether or not to resurface the patella, but  also supports  28 

the claimed advantage that a patellofemoral  arthroplasty is capable to reproduce the natural 29 

knee  kinematics.    30 
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Introduction    33 

Although patellofemoral arthroplasty (PFA) has been regularly  used for more than three 34 

decades, its place in the  treatment of isolated patellofemoral arthritis remains at  present still 35 

controversial [24, 48, 49]. This is due to the  inconsistent clinical results published in literature, 36 

mainly  related to patellar tracking and catching problems in the first generation of ‘inlay’ 37 

patellofemoral implants [1, 2,  4, 9, 11–13, 18–21, 26, 27, 29–32, 36, 37, 41, 42]. The  second 38 

generation of ‘onlay’ patellofemoral prostheses,  based on the anterior and trochlear femoral 39 

cuts of the  total knee arthroplasty (TKA), was expected to reduce the  incidence of patellar 40 

maltracking and instability problems  [30]. Furthermore, introduction of better instrumentation  41 

made it easier to optimize the rotation of the trochlear  component. This should result in a 42 

better reproduction of  the natural patellofemoral kinematics and as such in bet- ter functional 43 

outcomes and survival rates. The published  medium term follow-up results are at least 44 

promising [16,  20, 28, 39]. The progression of tibiofemoral osteoarthritis,  reported with ranges 45 

from 0 to 22 %, is currently the  most important known reason for late failure of PFA [18,  19, 46 

38]. Nevertheless, the most frequent ‘indication’ for  early revision remains unexplained pain 47 

[5]. Although  the published high revision rate might be partially due to  inadequate surgical 48 

selection and the ease of the revision  procedure, it has encouraged much surgeons to stick to  49 

TKA for the treatment of isolated patellofemoral cartilage  degeneration [35].    50 

The design improvements of the second generation of  patellofemoral prostheses already 51 

significantly reduced  complication rates, and subgroup analysis suggested a  relation between 52 

revision rate and implant design. Therefore,  PFA has gained importance and may be the 53 

preferential  treatment for isolated patellofemoral destruction in  the middle-aged population 54 

[14]. Although there is a clear  correlation between implant design and complication rate,  there 55 

is still no general consensus on the ideal trochlear  ‘onlay’ design [23, 25].   56 

The claimed advantages of PFA, such as a less invasive  procedure, less bone and tissue 57 

destruction, less blood loss,  a shorter operation time and shorter rehabilitation, are without  58 

any doubt legitimated [49]. However, there is a lack  of studies supporting the mentioned 59 

potential advantage  of ‘more normal’ knee kinematics. Most of the published  studies 60 

concerning PFA are pro-or retrospective clinical  studies on outcomes and complications. There 61 

are only a  few biomechanical studies investigating the patellofemoral  kinematics of 62 

patellofemoral replacements (PFR), mainly  in the sagittal plane [17, 34].    63 



The aim of this project was therefore to measure and  compare the full 3D patellofemoral 64 

kinematics, patellar  contact force, contact area and contact pressure before  and after placing 65 

an isolated patellofemoral prosthesis with  a contemporary, ‘modern’, design, and to study the 66 

influence  of patellar resurfacing and patellar thickness. The null  hypothesis was that PFA 67 

reproduces the natural patellofemoral  kinematics acceptable well, but induces significant  68 

changes in contact mechanism.    69 

 70 

Materials and methods    71 

Six unmatched lower leg specimens from Caucasian subjects  (one female, five male, median 72 

age 80.5 years, range  78–91 years) were disarticulated at the hip and frozen at  -20 °C. The 73 

tested specimens had no signs of previous  surgery, traumatic bone or ligament lesions. None 74 

of the  specimens had major arthritic damage at the level of the  knee, nor abnormal anatomical 75 

features or malalignment,  which might be responsible for abnormal patellofemoral  tracking. 76 

Three frames, with on each frame four reflective  marker spheres (NDI, Waterloo, Ontario, 77 

Canada), were  rigidly fixed to the frozen specimens, one at the level of  the femoral diaphysis, 78 

one in the proximal tibia at a minimum  of 10 cm distal to the joint and one onto the anterior  79 

aspect of the patella. A volumetric CT scan was performed  (Siemens Somatom Definition Flash, 80 

Siemens AG, Erlangen,  Germany). The images were obtained at 120 kV and  200 mAs + Care 81 

Dose, with a pitch of 0.8 mm per revolution,  1 mm slice thickness and slice increment, 1.0 s 82 

rotation  time and B70–B30 reconstruction kernel.    83 

Each specimen was thawed during 36 h before the start  of the experiments. The three-84 

dimensional motion capture  system, composed of six infrared cameras (Vicon Motion  85 

Systems™, LA, California), was calibrated and positioned  in such way that the optical reference 86 

markers were visible  at all time to register the kinematic data. The specimen was  prepared and 87 

embedded in metal containers with PMMA,  taking care of the physiologic alignment of femur 88 

and tibia,  as described in previous publications [45, 47]. The quadriceps  tendon was prepared 89 

and rigidly fixed in a clamp at a  distance of 6 cm above the proximal patellar pole. Lateral  and 90 

medial hamstrings were isolated and sutured. In a next  step, the knee joint was opened by 91 

using a classic medial  arthrotomy. A K-scan 4000/9000 psi sensor (Tekscan™,  South Boston, 92 

Massachusetts) was calibrated according  to the instructions of the manufacturer. Previous  93 

studies  revealed the accuracy of this pressure measurement device  to be within 10 % for 94 

average contact pressure and area,  comparable to the values for pressure-sensitive film. 95 



However,  it is thinner and allows for dynamic measurements  [15, 50]. The sensor was 96 

applicated to cover the entire  patellar articular surface and fixed with multiple, small,  individual 97 

sutures in a way not to interfere with the articular  interface (Fig. 1).    98 

The prepared natural knee specimen was then mounted  on a customized dynamic knee rig, 99 

simulating normal knee  motions and loads and leaving six degrees of freedom. Each  specimen 100 

performed a passive motion, an unresisted open  chain motion, a resisted open chain motion 101 

and a squat  movement, with loading of quadriceps and 50 N loading  of medial as well as lateral 102 

hamstrings. Passive motion was induced manually with three cycles from extension to maximal  103 

flexion, with the femoral container mounted on the rig.  During the open chain movement, the 104 

leg was extended at  a fixed speed from about 110° of flexion to about -20° of  extension by 105 

pulling on the quadriceps tendon with variable  load while the ankle was hanging free. Near full 106 

extension,  the quadriceps load reached values between 60 and 100 N,  depending on the weight 107 

of the lower leg. The resisted open  chain was performed in the same way, with a 3 kg weight  108 

fixed to the tibial container at the distal end. Close to full  extension, quadriceps load reached 109 

values around 300 N.  For the squat, the tibial container was also mounted in  the rig. The hip 110 

height was programmed as a function of  time, thus controlling flexion of the knee between 20° 111 

and  120° of flexion, while applying a variable quadriceps force  to induce a vertical constant 112 

ankle load of 130 N (Fig. 2).  During this closed chain knee motion, the quadriceps load  was 113 

highest at 110° of flexion with values around 1,400 N.  The six infrared cameras dynamically 114 

registered the motion  of the marker frames on femur, tibia and patella as a function  of time. 115 

Meanwhile, calibrated load cells recorded  quadriceps and ankle loads and moments, and 116 

patellofemoral  contact area and pressure. 117 

In a following step, a trochlear resurfacing was performed,  using the trochlear component of 118 

the Journey  PFJ™ (Smith–Nephew™, Memphis, TN, USA), without  resurfacing the patella. The 119 

rotational alignment and varus–  valgus positioning of the implant were determined, based  on 120 

the surgical instrumentation sets provided by the company,  combining the tibial and femoral 121 

referencing technique.  The goal was to mimic the standard in vivo operative  technique. The 122 

author has a large clinical experience with  this type of prosthesis, avoiding a learning curve. In 123 

a first  step, the rotation and valgus–varus position of the trochlear component were 124 

determined by using the tibiofemoral  alignment guide. This guide was positioned referencing 125 

a  line perpendicular to the longitudinal mechanical tibial axis. The position of the femoral 126 

(anterior) cutting guide  was then checked with visual reference to the surgical epicondylar  and 127 



AP femoral axes. Subsequently, the cutting  block was fixed, and the anterior cut was made. The 128 

TekscanTM  remained in place, and the joint was again carefully  closed. All measurements of 129 

kinematics and contact  mechanism were repeated again. In the next steps, patellar  resurfacing 130 

was performed, using a biconvex button centred  on the ridge, starting with a 3 mm under 131 

resection (overstuffing),  followed by a reconstruction of the natural patellar  thickness and by 132 

a 3 mm over resection (thinning). After  each step, the Tekscan™ was positioned in the same 133 

place,  the joint was closed and the knee was tested while performing  the four different motor 134 

tasks. 135 

A second post-test CT was then performed to confirm  the unchanged positions of the reference 136 

frames and to con- trol the rotational position of the trochlear component.    137 

 138 

Data processing    139 

To analyse kinematics, the pre-test CT data were loaded  and analysed using Mimics 11.02 and 140 

its MedCAD module  (Materialise, Haasrode, Belgium). Surface reconstructions  of femur, tibia 141 

and patella were created, and  the relevant bony landmarks were identified. Based on  these 142 

landmarks, relevant axes and planes on tibia, femur  and patella were determined, as described 143 

in previous publications and the work of Belvedere [7, 45–47]. These  coordinate systems were 144 

then used to convert the marker  trajectories, as measured with the camera system, in an  145 

anatomically meaningful description of patellofemoral  kinematics. Accuracy and precision of 146 

the motion analysis  system, used for the kinematic recordings of the markers,  were on the 147 

order of 0.2 mm. The six degree-of-freedom  patellofemoral joint motion was described as 148 

motion in  terms of rotation about and translation along a combination  of femoral and patellar 149 

axes, according to the articular  convention proposed by Bull et al. [8]. The kinematic  results 150 

were presented as a function of tibiofemoral flexion  angle, every 5°. Total contact pressures 151 

and areas were  measured and statistically analysed every 0.4° of flexion,  but presented as a 152 

function of the knee flexion angle,  every 4°.    153 

This study has been approved by the ethical committee of  the University of Leuven (ID-number 154 

NH019-2010-04-02).    155 

 156 

Statistical analysis 157 

Linear mixed models were used to analyse the kinematic  differences between the 158 

measurements. Random effects  accounted for correlation between repeated observations   159 



within the same specimen. The models included a  random intercept for specimen (general or 160 

measurement  specific) and a random slope for flexion angle. The evolution  of motion over an 161 

increasing flexion angle was modelled  with linear-, quadratic- or splines-based models. The  162 

model with the best fit (lowest Akaike information criterion)  was selected and used for 163 

inference. In a first step,  the interaction between kinematic measurement and flexion  angle 164 

was tested using a likelihood ratio test. In case  of significant interaction, pairwise differences 165 

between  measurements were analysed at different flexion angles.  In case of non-significant 166 

interaction, a likelihood ratio  test was performed for a main effect. In case of an overall  effect, 167 

all pairwise differences between settings were  further tested. The evolution of the pressure or 168 

area over increasing flexion angles was modelled through restricted  cubic splines using five 169 

knots. Interactions between the  setting and flexion angle were considered, allowing to  model 170 

different evolutions for the measurements. Bonferroni  step-down correction for multiple 171 

testing was  performed. Five percentage of significance level was  assumed. 172 

An additional statistical reliability analysis was carried  out on the native patellofemoral 173 

kinematic measurements  of the first six specimens. This relative measure for reliability  yields 174 

values between 0 and 1 with values close to 1  indicating highly reliable/repeatable 175 

measurements. 176 

All analyses were performed using the SAS package,  version 9.2 of the SAS System for Windows.    177 

 178 

Results 179 

Patellofemoral kinematics of the Journey PFA (Fig. 3). 180 

During squat motions, significant differences in patellar  flexion (p < 0.0001), patellar rotation 181 

(p < 0.05) and patellar  tilt (p < 0.001) were noticed after isolated trochlear resurfacing:  more 182 

patellar flexion, more lateral rotation in the  mid-flexion range and more lateral tilt in the low- 183 

and midflexion  range after isolated trochlear resurfacing. Table 1  gives the mean differences 184 

in patellar flexion (Table 1a),  rotation (Table 1b) and tilt (Table 1c) at different tibiofemoral  185 

flexion angles. After additional patellar resurfacing, no  significant differences in patellar 186 

rotational motions were  measured compared to the native knee, except more patellar flexion 187 

in the low flexion range (<40°) and more patellar  extension in the high flexion range (>80°) in 188 

the knees  with a PFA. Overall, there were no significant differences  in patellar translations.    189 

During open chain motion, the same trends were  noticed, but only the difference in lateral tilt 190 

between the  natural knee and the knee after trochlear resurfacing was  statistically significant 191 



(p < 0.0001). Lateral patellar tilt  was increased in the resurfaced knee (Table 2). There were  no 192 

significant differences in patellar rotations and translations  once the patella was resurfaced.    193 

During passive motion, not any significant difference in  patellar motion was measured between 194 

the native and the  resurfaced knee.    195 

Both 2 mm overstuffing and 2 mm thinning of the patellofemoral  compartment did not induce 196 

changes in the  patellofemoral kinematic patterns, with exception of the  expected changes in 197 

antero-posterior patellar position.    198 

 199 

Patellar contact force, contact area and contact pressure after PFA. 200 

When performing a squat motion, the average patellar contact  pressures were statistically 201 

significant (p < 0.0001)  and increased over almost the whole flexion range when  a trochlear 202 

resurfacing was performed, both without and  with patellar resurfacing (Fig. 4). However, the 203 

differences  reached clinically meaningful values after additional patellar  resurfacing (Table 3). 204 

The average contact area was significantly  (p < 0.0001) reduced after patellar resurfacing  205 

beyond 35° of knee flexion, whereas no significant differences  were noticed when an isolated 206 

trochlear resurfacing  was performed, with exception of a reduction in contact  area (p < 0.05) 207 

in the flexion range between 50° and 60°.  The contact force was not significantly different.    208 

During open chain motions, findings for patellar pressure  were the same as during squatting. 209 

However, patellar  contact area, as well as patellar contact force, were, both without and with 210 

patellar resurfacing, significantly  (p < 0.0001) reduced.    211 

Overstuffing the anterior compartment, by a 2 mm under  resection of patellar bone, created 212 

higher contact pressures,  but differences were only significant in the low flexion  range (<40°) 213 

during squatting (p < 0.001) and between 50°  and 70° of knee flexion during resisted open chain 214 

motion  (p < 0.05). 215 

 216 

Rotational position of the trochlear component. 217 

The rotational alignment of the trochlear component was  measured on surface reconstructions  218 

based on the post- op CT scan. Determining the plane of the anterior cut  appeared to be very 219 

difficult due to bone loss after removing  the component and scattering from the marker frame.  220 

The measured rotational positions have therefore to be interpreted with care. With reference 221 

to the condylar centre line, the femoral component showed a mean internal rotation of 0.2° ± 222 



4.5°. With reference to the anatomical transepicondylar line and to the posterior condylar line, 223 

the component  showed a mean internal rotation of 5.3° ± 3.6° and 0.2° ± 4.7°, respectively.  224 

 225 

Discussion  226 

The present study supported the assumption that the investigated anatomical patellofemoral 227 

implant design reproduced the natural patellofemoral kinematics, provided the patella is also 228 

resurfaced. Only changes in patellar flexion were  found, with significant less patellar flexion 229 

beyond 80° of  tibiofemoral flexion in knees with a PFA. Without patellar  resurfacing, significant 230 

differences in patellar flexion, rotation and tilt were measured, compared to the normal knee.  231 

However, as previously published for TKA, patellar resurfacing  resulted in a significant increase 232 

in average patellar  pressure and a decrease in contact area [22]. These changes  were not 233 

noticed when the patella was not resurfaced. As such, our hypothesis can be accepted.  234 

Overstuffing the patellofemoral joint by increasing the  patellar thickness with 2 mm had no 235 

other influence on  the patellofemoral kinematics than the expected change in AP position. The 236 

average patellar pressures were, however, increased in a limited flexion range. It is not clear to  237 

which extent the elevated pressures may explain the clinical  observation of a greater incidence 238 

of anterior knee  pain when the anterior compartment has been build up [2].  However, a large 239 

retrospective clinical study of Pierson et al. [40] of 1100 TKAs did not endorse this vision. Others  240 

could not find a relation between an increase in antero-posterior  dimension of the anterior 241 

compartment after PFA and  range of motion or clinical outcome [33]. There is, however,  a lack 242 

of clinical studies focusing on that subject. 243 

This study was performed using a specific patellofemoral  implant (Journey PFJ™, Smith–244 

Nephew, Memphis, TN,  USA), which can be considered as an ‘anterior cut prosthesis’  implant 245 

design. Results can therefore not be generalized,  as there is a wide variation in geometric design 246 

criteria between the different prostheses, available on the  market. Design features, such as 247 

orientation, depth of the  trochlear groove and geometry of the patellar buttons, can  have a 248 

major influence on patellofemoral kinematics and  contact mechanism [10]. The tested device 249 

completely  replaces the anterior joint compartment of the knee, similar  to a total knee 250 

prosthesis (TKP). The trochlear design  has the same characteristics as the trochlear 251 

configuration  of the Genesis 2™ TKP (Smith–Nephew™, Memphis, TN,  USA). In contrast to the 252 

Avon™ patellofemoral prosthesis  from Stryker™, which is the most clinically investigated  253 

patellofemoral design from the second generation, the currently  used design has an 254 



asymmetric trochlear groove,  which should make it more anatomical [2, 23, 38, 39].  The 255 

trochlear groove is lateralized and deepened, and the  relative broad lateral flange has a 256 

proximal extension on to  the anterior femur. This is responsible for a fast trochlear  engagement 257 

of the patella in the early flexion range [3, 30].  The available instrumentation technique 258 

provides a better  control on the femoral rotational position. So far, there is  only one study, 259 

recently published, that reports the clinical  and radiological results after PFA with this design 260 

at  short-term (2 years) follow-up [6]. The authors noticed an  overall significant improvement 261 

of all scores, with however  a greater and more continuous benefit for the group  of patients 262 

that needed a combined surgical intervention for  instability. This was in contrast to previous  263 

publications,  reporting a greater success rate in patients with patellofemoral  destruction 264 

secondary to trochlear dysplasia, or reporting  no influence of the initial pathology on the 265 

outcome [4,  44].  266 

To our knowledge, the literature on patellofemoral  kinematics of knees with a PFA is limited to 267 

two studies,  measuring the sagittal plane kinematics of, respectively, the  Avon™ (Stryker™) 268 

and the FPV (Wright Medical Technology ™) patellofemoral prosthesis [17, 34]. The first 269 

mentioned study [17] examined the patellar tendon angle of 12 patients during different 270 

activities, using fluoroscopic technology [17]. Measurements were done during active knee 271 

extension (open chain motion), active knee flexion (squatting) and a step-up exercise in a 272 

sequential static way at 10° intervals. No significant differences were found between the 273 

kinematics of knees with a PFA and normal knees, except for a slight elevation of the PTA in 274 

knee with PFA, which was contributed to a small anterior displacement of the distal patellar 275 

bone (patellar extension). The exact reason for this finding remained  unclear. Our study also 276 

showed a pattern with less patellar flexion after PFA (with patellar resurfacing), compared to 277 

the normal knee, but only in the deep flexion range, whereas more patellar flexion was found 278 

in the early flexion  range. The cross-over point was localized at about 50° of knee flexion. This 279 

finding seems logical and can probably be explained by the geometry of the biconvex button. 280 

Once the most distal part of the rounded button touches the anterior prosthetic trochlear flange 281 

at engagement of the trochlea, it might indeed induce more patellar flexion than when the 282 

differently shaped distal surface of the natural patella touches the same point. But once the 283 

knee moves to deeper flexion, the patellar contact point on the button moves more proximal 284 

and consequently ‘rides’ up the rounded  button, which inevitably drives the patellar bone to a 285 

somewhat more extended position compared to the natural knee. However, as the patellar 286 



button reaches the  end of the trochlear component at a deeper flexion angle,  its distal tip will 287 

tilt posteriorly once it leaves the groove,  consequently driving the patellar bone again to a more  288 

flexed position. This is the cantilever effect, described by  Monk et al. [34]. This phenomenon 289 

compensates partially  for the trend towards more extension caused by the biconvex button as 290 

it makes contact with the trochlea. We indeed measured a maximum average difference of 5.7° 291 

± 2.4° at  100° of flexion. However, in deeper flexion the average difference decreased, reaching 292 

3.0° ± 1.9° at 120° of flexion.   293 

The study on kinematics of the FPV prosthetic device had  a comparable fluoroscopic-based 294 

methodology, using the  PTA and patellar flexion angle in relation to the knee flexion angle [34]. 295 

The knee was investigated during step-up  and lunge motions. In contrast to the previous study 296 

using  the Avon™ prosthesis, the PTA was lower in the knees with  a PFA at high flexion angles 297 

for the lunge exercise. For the step-up exercise, there was only a significant difference  in PTA 298 

at 50° of flexion. Those findings were contributed  to a deeper patella position in the trochlear 299 

groove, either  by a deeper trochlea or by a thinning of the patella. These  changes in the sagittal 300 

plane were not supported by the current study, although the cantilever theory of Monk can 301 

partially explain our findings. It should be noted that the use of the PTA as measurement tool 302 

for the relative motion of the  femur in the antero-posterior plane is controversial [43]. A  303 

second point of criticism on both studies is that conclusions  are made based on comparison 304 

with a group of non-paired  healthy knees of individuals with a much lower mean age  than the 305 

patients of the PFA group. Considering the high  inter-subject variability in patellofemoral 306 

kinematic patterns  and certainly in absolute values, one should be careful  with interpreting 307 

the results. An in vitro study certainly  cannot perfectly reproduce daily live motions, but on the  308 

other hand, it allows to compare two or more situations  within the same specimen.    309 

Considering the observed kinematic changes in the  prosthetic knee without patellar 310 

resurfacing, one expects a  redistribution of the pressure towards the lateral and distal  part of 311 

the patella. On average, the increase in patellar contact  pressure is limited to a maximum of 312 

2.9 ± 0.5 MPa,  which is in contrast to elevations up to 8.5 ± 2.4 MPa after  placing of a biconvex 313 

button. The pressure distribution has  to be further investigated and analysed. If this assumption  314 

would be confirmed in future research projects, performing  a lateral retinacular release might 315 

be an option in situations  where the patella is or cannot be resurfaced in order  to reduce the 316 

lateral tilting and re-distribute the pressures.  317 



In addition to the use of one specific design and the in  vitro set-up, this study had some other 318 

limitations. The  amount of specimens tested was limited. We only tested  a biconvex patellar 319 

button. Resurfacing can also be done  with an anatomical asymmetric button, which might 320 

influence  the kinematic behaviour. However, from the kinematic  standpoint, there is 321 

apparently no need to consider  an asymmetrical button. Nevertheless, the possible impact  on 322 

contact pressure and especially pressure distribution of  such a button justifies further 323 

investigation. 324 

The findings of this study have two clinical implications.  First of all, the ability to reproduce the 325 

natural patellofemoral  kinematics by using an isolated patellofemoral  design makes this type 326 

of procedure more attractive for the  treatment of isolated patellofemoral arthrosis, compared 327 

to  TKA. And secondly, the better kinematic reproduction with  additional patellar resurfacing 328 

adds a point in the clinical  discussion whether or not to resurface the patella in knee  329 

arthroplasty.    330 

 331 

Conclusion  332 

From a pure biomechanical standpoint, resurfacing the  patella in the PFA does not seem to be 333 

advisable, as it significantly  increased the average patellar contact pressures.  It is not clear 334 

whether and to which extent this increased  contact pressure may influence the pressure in the 335 

underlying  bone and may play a role in the onset of persisting anterior knee pain. However, 336 

from a pure kinematic point,  the natural patellar tracking seems to be better reproduced  with 337 

a resurfaced patella, as the absence of resurfacing  induced more patellar flexion, more lateral 338 

patellar rotation  and more lateral tilting. Despite the excellent patellofemoral  kinematic figures 339 

of this design, longer-term clinical  studies are necessary to validate a positive impact on the  340 

complication rate and survival and to prove the durability  of the good short-term clinical results. 341 
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  479 



Captions 480 

Table 1: Mean (SD) patellar  flexion (°) (a), patellar rotation (°) (b) and patellar tilting (°) (c) for 481 

squat motion in the native knee and mean differences  (with SD and p values) after both isolated 482 

trochlear  resurfacing (PFJ) and standard patellofemoral arthroplasty with patellar resurfacing 483 

(PFJ + P neutral), compared to the native knee, at different tibiofemoral  flexion angles. 484 

ns not significant   * p < 0.05, ** p < 0.001,  *** p < 0.0001 485 

 486 

Table 2: Mean (SD) patellar  tilting (°) for open chain motion in the native knee and mean 487 

differences (with SD and p  values) after both isolated  trochlear resurfacing (PFJ)  and standard 488 

PFA with patellar  resurfacing (PFJ + P neutral),  compared to the native knee, at  different 489 

tibiofemoral flexion  angles. 490 

ns not significant   * p < 0.05, ** p < 0.001,  *** p < 0.0001 491 

 492 

Table 3: Mean (SD/p  values) differences (MPa) in  patellofemoral contact pressures between 493 

the native knee, the knee with trochlear implant and the knee with trochlear and patellar 494 

implant, at different  tibiofemoral flexion angles from 30° to 105°. 495 

ns not significant   * p < 0.05, ** p < 0.001,  *** p < 0.0001 496 

 497 

Figure 1: Natural knee specimen with Tekscan covering the patella. 498 

 499 

Figure 2: Knee specimen mounted in knee rig (with Tekscan covering  the patellar surface) to 500 

perform a squat movement. 501 

 502 

Figure 3: Patellar rotation (°) and translation (mm) plots as function of  the tibiofemoral flexion 503 

angle, for the squat motion, comparing the  native knee, after opening and closing the joint 504 

(native opened), the knee after trochlear resurfacing without patellar resurfacing (PFJ) and  the 505 

knee after PFA with patellar resurfacing (PFJ + P neutral). The  error bars depict the standard 506 

deviation. 507 

 508 

Figure 4: Patellar contact pressure (MPa) plots as function of the tibiofemoral  flexion angle (°), 509 

for the native knee (native opened), the  knee with a resurfaced trochlear (PFJ) and the knee 510 



with trochlear  and patellar resurfacing (PFJ + P neutral). The error bars depict the  standard 511 

deviation. 512 
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