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Abstract

Expert opinion plays an important role when choosing clusters of chemical com-

pounds for further investigation. Often, the process by which the clusters are assigned

to the experts for evaluation, the so-called selection process, and the qualitative ratings

given by the experts to the clusters (chosen/not chosen) need to be jointly modeled to

avoid bias. This approach is referred to as the joint modeling approach. However, mis-

specifying the selection model may impact the estimation and inferences on parameters

in the rating model, which are of most scientific interest. We propose to incorporate

the selection process into the analysis by adding a new set of random effects to the

rating model and, in this way, avoid the need to model it parametrically. This approach

is referred to as the combined model approach. Through simulations, the performance

of the combined and joint models were compared in terms of bias and confidence in-

terval coverage. The estimates from the combined model were nearly unbiased and

the derived confidence intervals had coverage probability around 95% in all scenarios

considered. In contrast, the estimates from the joint model were severely biased under

some form of misspecification of the selection model and fitting the model was often

numerically challenging. The results show that the combined model may offer a safer

alternative on which to base inferences when there are doubts about the validity of the

selection model. Importantly, thanks to its greater numerical stability, the combined

model may outperform the joint model even when the latter is correctly specified.
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1 Introduction

Developing chemical compounds into effective drugs is an expensive and lengthy process.

Therefore, pharmaceutical companies need to carefully evaluate the amount of evidence sup-

porting their potential, before investing more resources on them [1]. Expert opinion is a

valuable tool for the assessment of these compounds at early stages in the drug discovery

process [2, 3]. In practice, similar compounds are grouped into clusters that are qualitatively

assessed by experts regarding their selection for future scrutiny. Further, with appropriate sta-

tistical methods, these assessments can be quantified as a success probability for each cluster,

where success is defined as being chosen for further investigation [4, 5].

The large number of clusters typically involved in these studies implies that a selection proce-

dure, by which every expert chooses or gets assigned a number of clusters for evaluation, needs

to be implemented. Alonso et al. [6] showed that some selection procedures may introduce a

selection bias in the rating process and lead to invalid conclusions. In these scenarios, complex

joint hierarchical models, describing the selection and rating processes, are required to get valid

results. Actually, these authors demonstrated that, even in the absence of selection bias in the

rating process, one often needs to jointly model both processes to get valid estimates. Ideally,

one would like to know all factors influencing the selection process beforehand. However, in

practice, such information is seldom available and making assumptions on the selection process

is then virtually inescapable.

We shall consider two approaches to account for the selection process. In the first approach,

two generalized linear mixed models (GLMM) are used to describe the rating and selection

processes and it is assumed that, given some random effects, both processes are independent.

We shall refer to this approach as the joint modeling approach. The joint modeling approach

is closely related to the shared parameter (SP) and generalized shared parameter (GSP) mod-

eling frameworks, used to describe a Missing Not At Random (MNAR) mechanism in missing

data analysis [7, 8]. In addition, the assumption of conditional independence is at the core of

complex hierarchical models developed to describe, for instance, the joint evolution of longi-

tudinal and survival outcomes and, in the present work, it simplifies the joint distribution of

the rating and selection processes, facilitating the joint fit of both models [9–11].

This approach hinges on the assumption that the distribution for the selection process is

correctly specified. In general, if the selection model is misspecified then the estimates of

the parameters in the rating model may be biased and inferential procedures, like obtaining

confidence intervals, may be affected as well. Therefore, a sensitivity analysis to assess the

stability of the results is always highly recommended [12].

Our second approach is based on the so-called combined model introduced by Booth et al.

[13] and Molenberghs et al. [14] for members of the exponential family, where an extra set

of random effects is used to account for overdispersion in correlated outcomes. Similarly,
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in this work, we propose to take into account the selection process by adding a new set of

random effects to the rating model. We extensively study the performance of both approaches

using theoretical elements and simulations. Our results show that the combined model could

be a robust alternative to the joint model when analyzing this type of data, even when the

selection model is correctly specified. Therefore, we think that the combined model may serve

two purposes: (i) it may be a reliable tool for sensitivity analysis and (ii) when there are doubts

regarding the performance of the joint model, it may be a safer alternative on which to base

inferences.

The paper is organized as follows; before presenting the two modeling approaches in Sections 3

and 4, respectively, we discuss the motivating case study in Section 2. The simulation study is

presented in Section 5 followed by the analysis of the case study in Section 6. Brief concluding

remarks in Section 7 wind up the paper.

2 Case Study

The pharmaceutical company Johnson&Johnson carried out a study to evaluate the potential

of 22 015 clusters of chemical compounds, in order to determine those that warrant further

screening. In total, 147 experts were asked to evaluate several of these clusters and their

assessments were coded as 1 if they recommended the cluster for further screening, −1 if

not recommended and 0 if indifferent. The response was dichotomized for the analysis. We

adopted a coding scheme where 1 corresponds to a positive recommendation and 0 otherwise.

However, the methodology presented can easily accommodate other coding schemes as well.

Experts carried out the evaluation of the clusters using the desk-top application Third Dimen-

sion Explorer (3DX) [15]. In a regular session a random subset of clusters, selected from the

entire set of 22 015, was assigned to each expert for evaluation. Clusters were presented with

additional information that included their size, the structure of some of their distinctive mem-

bers like the compound with the lowest/highest molecular weight, and 1–3 other randomly

chosen members of the clusters. The application was designed to support multiple sessions

that would allow the experts to stop and resume the evaluation at their own convenience. A

new random subset of clusters, excluding the ones already rated, was assigned for evaluation

only when all the clusters in the previous subset were evaluated, or when the experts resumed

the evaluation after interrupting the previous session for a break. Clusters assigned but not

evaluated could, in principle, be assigned again in another session.

The histogram in Figure 1 displays the distribution of the number of clusters evaluated by the

experts. Clearly, the distribution is positively skewed, indicating that, as one would expect,

many experts opted to evaluate few clusters. Indeed, 25% of the experts evaluated less than

345 clusters, 50% less than 1200, and 75% of the experts evaluated less than 2370 clusters.

Evidently, the large differences in the number of clusters evaluated by the experts are not
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Figure 1: Histogram for the number of clusters rated by the experts. The height of a bar
indicates the number of experts whose number of rated clusters fall within the range given by
the width of the bar.

the result of the random allocation, but rather are dictated by the number of evaluation

sessions each expert found convenient. Actually, the possibility of interrupting and resuming

the evaluation session at will allowed the experts to influence the selection process and, hence,

standard models that assume complete randomization may not be appropriate.

Alonso et al. [6] explored how such a design may lead to biased results and discussed a method

for correcting the problem. Basically, these authors carried out two different analyses: One that

completely ignored the selection process and another one that accounted for it using the joint

modeling approach. The results from these two analyses were staggeringly different. These

differences and the information available about the study design clearly call for a cautious

analysis of these data.

3 The Joint Modeling Approach

To facilitate the decision making process, Milanzi [4], Milanzi et al. [5] and Alonso et al. [6]

proposed to summarize the large number of qualitative assessments given by the experts into

a single probability of success for every cluster. Denoting by Y i = (Yij)j∈Λi
the vector of

ratings associated with expert i, where Λi is the subset of all clusters evaluated by the expert
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and i = 1, . . . , n, these authors considered the following logistic-normal model

logit [P (Yij = 1|bi)] = βj + bi, (1)

where Yij = 1 if expert i recommends cluster j for further scrutiny, βj is a fixed parameter

characterizing the effect of cluster Cj with j ∈ Λi and the bis are independent expert effects

with bi ∼ N(0, σ2
b ). Based on model (1), the marginal probability of success for cluster Cj

can be calculated by integrating over the random effect, i.e.,

P (Yj = 1) =

∫
exp (βj + bi)

1 + exp (βj + bi)
φ(bi|0, σ2

b ) dbi, (2)

where φ(bi|0, σ2
b ) denotes a normal density with mean zero and variance σ2

b .

Notice that the likelihood associated with model (1) suffers from a severe dimensionality

problem. Indeed, the vector of fixed effects β = (β1, . . . , βN)T has dimension N = 22 015 and

the dimension (Ni) of the response vector Y i ranges from 20 to 22 015. As a consequence,

serious computational issues can emerge when fitting model (1) with the most commonly

available computing resources. Milanzi et al. [5] developed a procedure that allows to handle

these issues with a very small loss of efficiency and in the present work the dimensionality

problem will just be discussed briefly for the case study analysis.

Alonso et al. [6] pointed out that model (1) quantifies the probability that expert i would rate

cluster j as 1, given that he actually evaluates it and introduced two GLMM P (Xij = xij|ai, αj)
and P (Yij = yij|Xij = xij, bi, βj) to describe the selection and rating procedures, respectively,

where Xij = 1 if expert i evaluates cluster j and 0 otherwise. The vectors of expert-specific

random effects (ai, bi)
T are assumed to follow a bivariate normal distribution with mean zero

and covariance matrix Σ.

These authors stated that there is selection bias in the rating process if the rating that would

be given to a cluster by an expert depends on whether he selects it or not for evaluation, i.e.,

if P
(
Yij = yij|Xij = 1, bi

)
6= P

(
Yij = yij|Xij = 0, bi

)
and showed that absence of selection

bias in the rating process is equivalent to the validity of the following conditional independence

assumption

P (Yij = yij, Xij = xij|ai, bi) = P (Yij = yij|bi)P (Xij = xij|ai) . (3)

Essentially, (3) states that for every expert the rating and selection procedures are independent

and governed by different, although possibly marginally correlated, random effects. In the most

general scenario, the potential of cluster j can be quantified as

P (Yj = 1) =

∫ ∫
P (Yij = 1|ai, bi) φ(ai, bi|0,Σ) daidbi, (4)
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where φ(·|0,Σ) denotes a bivariate normal density with mean zero and covariance matrix Σ

and

P (Yij = 1|ai, bi) = EX [P (Yij = 1|Xij = xij, bi)] (5)

= P (Yij = 1|Xij = 1, bi)P (Xij = 1|ai) + P (Yij = 1|Xij = 0, bi)P (Xij = 0|ai) .

Clearly, there is information about how the experts rated the clusters they evaluated and,

therefore, P (Yij = 1|Xij = 1, bi) can be estimated from the data using, for instance, model

(1). Furthermore, there is also information about which clusters every expert evaluated and this

information could be used to estimate P (Xij = 1|ai). However, the events {Yij = yij|Xij =

0, bi} are counterfactual and we do not have information about how the experts would have

rated a cluster they did not evaluate if, contrary to fact, they had evaluated it. As a result,

the probabilities P (Yij = 1|Xij = 0, bi) are not identifiable from the data without additional

assumptions.

Importantly, under conditional independence, one has that P
(
Yij = yij|Xij = 1, bi

)
=

P
(
Yij = yij|Xij = 0, bi

)
and (4) simplifies to (2). Alonso et al. [6] argued that, even in absence

of a selection bias in the rating process, the selection process given by P (Xij = xij|ai, βj, αj)
may need to be explicitly modeled. The reason for this counter intuitive finding is that, even

though the selection procedure does not affect the ratings, ignoring it when constructing the

likelihood function may induce bias in the estimates of βj, σ
2
b and, consequently, in the es-

timate of P (Yj = 1). To illustrate this important fact, in the rest of this section, we will

assume conditional independence and that the components of the vectors Y i,X i ∈ {0, 1}N

are also independent conditionally on the random effects, with X i denoting the vector of

selection-indicators for expert i.

The parameters of interest are estimated based on the complete data {Y i,X i}. The vector

of ratings can be decomposed as Y i = (Y T
0i,Y

T
1i)

T , where Y 1i ∈ {0, 1}Ni is the sub-vector

associated with the clusters the expert actually evaluated, Y T
0i is the obvious complement and

Ni = 1TX i. Alonso et al. [6] showed that, under conditional independence, the marginal

likelihood takes the form

L (β,α,Σ) =
n∏
i

P (Y 1i = y1i,X i = xi|β,α,Σ) , (6)

where

P (Y 1i = y1i,X i = xi|β,α,Σ)

=

∫ ∫
P (Y 1i = y1i|bi,β)P (X i = xi|ai,α) φ(ai, bi|0,Σ) daidbi (7)
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and

P (Y 1i = y1i|bi,β) =
∏
j∈Λi

P (Y1ij = y1ij|bi, βj),

P (X i = xi|ai,α) =
N∏
j

P (Xij = xij|ai, αj).

Using the maximum likelihood estimators β̂, α̂, σ̂2
b obtained from (6), one can estimate

the probabilities of success by substituting β̂, σ̂2
b into (2). Note, however, that to estimate

β, σ2
b , one may need to explicitly model the selection process using, for example, GLMM.

An important special instance where the selection mechanism can be ignored is when the

selection and rating processes are also marginally independent, i.e, when φ(ai, bi|0,Σ) =

φ(ai|0, σ2
a)φ(bi|0, σ2

b ) and have a disjoint parametric space. In fact, under these assumptions

(7) simplifies to

P
(
Y 1i = y1i,X i = xi|β,α, σ2

)
=

∫
P (X i = xi|ai,α) φ(ai|0, σ2

a) dai

∫
P (Y 1i = y1i|bi,β) φ(bi|0, σ2

b ) dbi.

Consequently, regarding the parameters of interest β and σ2
b , the contribution of expert i to

the likelihood becomes∫
P (Y 1i = y1i|bi,β) φ(bi|0, σ2

b ) dbi,=

∫ [∏
j∈Λi

P (Y1ij = y1ij|bi, βj)

]
φ(bi|0, σ2

b ) dbi.

The previous expression is the contribution of expert i to the likelihood when the selection

mechanism has been discarded. Therefore, in this scenario, if conditional independence holds,

the selection procedure can be ignored. This setting will result, for instance, if a fully random

allocation of the clusters to experts is implemented, so that the experts have no influence

whatsoever on the selection process. However, if experts can influence the selection process

then a selection model may need to be incorporated into the analysis in order to achieve valid

results, even when there is not a selection bias in the rating process.

4 Combined Model Approach

In this section, a new modeling framework for quantifying expert opinion will be introduced.

To this end, let us assume that there exists independent latent selection traits θij for ev-

ery expert-cluster combination. Further, we will denote by f (yij, θij, bi) the distribution of

the vector (yij, θij, bi)
T and it will be assumed that, conditional on θi = (θi1, θi2, . . . , θiN)T

and bi, the components of Y i are independent. More specifically, it will be assumed that
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P (Y i = yi|bi,θi) =
∏N

j P (Yij = yij|bi, θij). Basically, the latter assumption states that

conditional on the selection traits, the ratings of expert i are independent. Similarly, it will be

assumed that the random variables θij and bi are independent as well. Under all the previous

assumptions one has

f (Y i = yi,θi, bi) =P (Y i = yi|bi,θi) f (θi) f(bi)

=

[
N∏
j

P (Yij = yij|bi, θij) f (θij)

]
f(bi). (8)

In expression (8), P (Yij = yij|bi, θij) describes the rating process conditional on the latent

selection trait and the expert effect bi. It is important to point out that, although θij and bi
are marginally independent, conditional on Yij they are dependent.

The rating and selection processes are not independent if P (Yij = yij|bi, θij) 6= P (Yij = yij|bi).

Essentially, unlike in the joint model where the association between the selection and rating

processes is implicitly captured by the correlation between ai and bi, in the combined model

this association is explicitly given in P (Yij = yij|bi, θij).

The new model is completed by making parametric assumptions for the distributions in (8).

For practical reasons that will become clear later we have chosen

Yij|bi, θij ∼Bernoulli(θijπij), πij =
exp(βj + bi)

1 + exp(βj + bi)
,

θij ∼ f(θij) = Beta (θij|λ, τ), bi ∼N(0, σ2
b ).

In this framework, the probability of success for compound Cj is given by

P (Yj = 1) =

∫ ∫
P (Yij = 1, θij, bi) dθij dbi =

λ

λ+ τ
Eb (πij) . (9)

Some insight can be gained by assuming that a larger selection trait is associated with a higher

probability of selection. Under this assumption, clusters evaluated have a higher probability

of being chosen for further investigation than unevaluated ones. Indeed, to fix ideas let us

assume that Xij = 1 if θij ≥ γij and zero otherwise, where the γijs are the threshold values

at which the latent selection traits are manifested. It can be easily shown that (details in the
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web supporting materials)

P (Yij = 1|Xij = 1, bi) = πij

∫ 1

γij
θijf(θij) dθij∫ 1

γij
f(θij) dθij

, (10)

P (Yij = 1|Xij = 0, bi) = πij

∫ γij
0

θijf(θij) dθij∫ γij
0

f(θij) dθij
.

Using some properties of the beta and the incomplete beta distributions one can show that,

as expected, P (Yij = 1|bi, Xij = 0) ≤ P (Yij = 1|bi, Xij = 1) if γij ∈ (0, 1). Alonso et al. [6]

called this inequality the monotonicity assumption and showed that, when there is a selection

bias in the rating process and monotonicity holds, the use of likelihood (6) in combination with

(2) will produce an upper bound for the probabilities of success. The flexibility of the combined

model allows to accommodate monotone and non-monotone settings, however, the validity

of the results obtained from it relies on several untestable assumptions, like the multiplicative

effect of θij on πij and the use of a convenient conjugate distribution for θij. Some additional

insights into the properties and interpretation of the combined model are provided in the web

supporting materials.

Considering the previously introduced partition Y i = (Y T
0i,Y

T
1i)

T and the corresponding

counterpart θi = (θT0i,θ
T
1i)

T , expression (8) takes the form

f (Y 0i,Y 1i,θ0i,θ1i, bi) = P (Y 0i|θ0i, bi)P (Y 1i|θ1i, bi) f (θ0i,θ1i) f(bi),

and after marginalizing over the subvectors Y 0i, θ0i one gets

f (Y 1i,θ1i, bi) = P (Y 1i|θ1i, bi) f (θ1i) f(bi).

The parameter estimates are derived using the marginal likelihood obtained after integrating

out the random effects bi and θ1i. This process is carried out in two steps. First, after

analytically integrating over θ1i the likelihood contribution for each expert follows as

L∗c(β, λ, τ, bi) =

∫
f (Y 1i,θ1i, bi) dθ1i, (11)

=

Ni∏
j=1

{
1

1 + k
(πij)

yij [(1− πij) + k]1−yij
}
,

where k = τ/λ and, eventually, in the second step the marginal likelihood can be obtained

by numerically integrating over the normal random effect bi, using readily available statistical
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software, i.e., the parameter estimates follow from maximizing

Lm(β, k, σ2) =
n∏
i

∫
L∗c(β, λ, τ, bi)φ(bi|0, σ2) dbi. (12)

Estimation of k instead of individual parameters λ and τ is necessary to avoid identification

problems [14]. For example, if individual parameters were to be estimated, the following sets

of parameters would lead to the same solution for (12): (λ = 2, τ = 1), (λ = 4, τ = 2), and

(λ = 6, τ = 3). The multiplicative factor in (9) becomes, 1/(1 + k).

In both this model as well as in the joint model, the connection between rating and selection

processes is at the level of latent variables. In the joint model, this is via the correlation between

the random effects ai and bi in (3). In the combined model, the link follows from the latent

variable θij and its threshold γij, as in (10). Thus, the connection with the corresponding

missing-data concepts is at the level of the likelihood.

5 Simulation Study

To numerically evaluate the performance of the combined and joint models a simulation study

was designed. The data were generated by mimicking the case study introduced in Section 2.

This notwithstanding, the size of the simulated data sets were chosen so that all models

could be fitted using maximum likelihood in order to minimize the numerical noise and provide

a clearer idea regarding the performance of both approaches. Two hundred data sets were

generated in each setting.

The simulation study considered three settings with the following parameters held constant

across data sets in the first setting: (1) number of clusters N = 30, chosen to ensure

tractability of maximum likelihood estimation for the whole data, (2) number of experts n =

147, and (3) the fixed-effects βj, αj, sampled one time from a N(0, 2) and N(0, 1) respectively

and then held constant in all data sets. Factors varying across the data sets were: the

number of ratings per expert Ni and a set of 147 expert random-effects bi. Conceptually,

each generated data set represents a replication of the evaluation study in which a new set of

experts rates the same clusters. Therefore, varying Ni and bi from one data set to another

resembles the use of different groups of experts in each study, sampled from the entire experts’

population. The random expert specific effects bi were sampled from N(0, 10), the clusters

evaluated by each expert were determined using the selection process Xij|bi ∼ Bernoulli (ρij)

with logit(ρij) = αj + bi and the ratings Yij|bi were generated from a Bernoulli(πij) with

logit(πij) = βj + bi.

Note that in the aforementioned setting the same expert specific random effects were used

for the generation of the selection and rating processes and, consequently, the joint model
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used in Section 5.1 to analyze this setting also satisfied this property, i.e., ai = bi. This is a

special case of the general modeling framework introduced in Section 3, the so-called shared

parameter model (SPM), in which the selection and rating processes shared a common random

effect [8]. This simplified version was appealing to use in the simulation studies due to its

reduced computational burden, since it only uses one set of random effects compared to two

sets required for the general modeling framework.

To compare the performances of the combined and joint model in the most general and

computationally demanding scenario presented in Section 3, a second setting was also con-

sidered on a smaller scale. In this second setting: (i) the total number of clusters was

N = 15, (ii) the clusters evaluated by each expert were determined using the selection process

Xij|ai ∼ Bernoulli (ρij) with logit(ρij) = αj + ai, (iii) the rating process Yij|bi was generated

from a Bernoulli(πij) with logit(πij) = βj + bi and (iv) the random expert specific effects were

generated as [
bi

ai

]
∼ N

{[
0

0

]
,

[
10 4.95

4.95 5

]}
.

All the other parameters were like in the first setting. Following this data generating mecha-

nism, the completely general version of the joint model, presented in in Section 3, was used

in Section 5.1 to analyze these data.

In the two previous settings P
(
Yij = yij|Xij = 1, bi

)
= P

(
Yij = yij|Xij = 0, bi

)
and,

therefore, there is no selection bias in the rating process.

In order to evaluate the performance of both modelling approaches when there is a selection

bias in the rating process, a third final setting was considered with the selection process

generated as in the first setting, i.e., Xij|bi ∼ Bernoulli (ρij) with logit(ρij) = αj + bi and the

rating probabilities generated as

logit [P (Yij = 1|Xij = xij, bi)] =

{
βj + bi if xij = 1,

βj + bi − 0.223 if xij = 0.
(13)

Here again all the other parameters were like in the first setting. Basically, (13) implies that,

for every expert i, the odds of rating a cluster as 1 is 25% larger when the cluster is evaluated

than when it is not. In this final setting the shared parameter version of the joint model was

used to analyze the data in Section 5.2.

5.1 Results in absence of selection bias (settings 1 and 2)

Three analyses were carried out for each data set and the main results for the first setting,

i.e., when the shared parameter model was used to generate the data, are summarized in

Tables 1–4 (the results from the second setting are discussed at the end of this section). In
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these tables, the column ‘True’ always gives the true value of the corresponding parameter,

the column ‘Comb’ refers to results obtained from the SPM, the columns with ‘J(·)’ display

results obtained from fitting the SPM using the selection probability derived from the logit in

brackets and, finally, the column ‘Naive’ presents the results obtained from fitting model (1)

which does not account for the selection process.

Notice that model J(αj + bi) assumes that, for every expert, the selection probabilities vary

with the clusters and the parameters governing the rating and selection processes are different.

This model correctly described the data generating mechanism in the first setting of the

simulations. In contrast, J(βj + bi) also postulates different selection probabilities for the

clusters but now the parametric space of the rating and selection processes are assumed to be

equal. The last model J(α + bi) presupposes equal selection probabilities for all the clusters

conditional on the expert.

All models were fitted using maximum likelihood as implemented in the SAS procedure

NLMIXED. The integrals in the likelihood function were approximated using the Gauss-Hermite

quadrature method with 50 quadrature points. The Newton-Raphson algorithm was used to

maximize the objective function and standard errors were derived from the corresponding

Hessian matrix.

The results for the naive model clearly show that, even when there is no selection bias in the

rating process, ignoring the selection process when constructing the likelihood for the estima-

tion of the parameters can lead to extremely biased point estimates and confidence intervals

with very low coverage probabilities. Interestingly, the correctly specified SPM J(αj + bi) also

produced very biased point estimates for the parameters of interest and confidence intervals

with low coverage. It is important to point out that the correctly specified SPM suffered heav-

ily from lack-of-convergence problems and, therefore, numerical instability may be the reason

behind its poor performance. The misspecified SPM J(α + bi) produced very biased point es-

timates for some of the parameters of interest and the coverage probability of some confidence

intervals were much smaller than the pre-specified 95%. However, in spite of these problems,

this misspecified SPM clearly outperformed the correctly specified one in this scenario. Here

again numerical stability seems to be the reason behind this awkward result. With 32 pa-

rameters, the misspecified model is computationally lighter than the correctly specified (61

parameters) and suffered from fewer convergence problems. Actually, in additional simulations

with only 15 clusters (not shown) the correctly specified model unmistakably outperformed all

the others, stressing the importance of numerical issues when analyzing this type of complex

data.

The other misspecified SPM J(βj + bi) had an extremely poor performance with relative biases

larger than 1000% for some estimates and confidence intervals with null coverage probabilities.

Incorrectly using the same set of parameters for the rating and selection model leads to

estimates that try to describe both processes simultaneously and, hence, the rating modeled is

12



estimated with bias. Essentially, these results illustrate that misspecifying the selection model

may have a huge negative impact on both point estimates and inferences.

Finally, the combined model always led to unbiased estimates of the parameters and confidence

intervals with coverage probabilities close to the pre-specified 95%. The combined model

was also the most stable numerically and its performance was the same when either 15 or 30

clusters were considered. In addition, while the average computation time for a single correctly

specified SPM was 24 hours, for a single combined model the computational time was merely

40 minutes. This makes the combined model a competitive alternative to the joint model

approach. It is important to point out that, while the use of random effects may help to avoid

misspecification in the selection process, this level of generality also seems to produce less

precise estimates in this setting, as illustrated by the larger standard errors in Table 1 and the

wider confidence intervals in Table 3.

The results from the second setting, i.e, when the data were generated using different random

effects for the selection and rating processes, as presented in Section 3, further vindicated the

good performance of the combined model (results provided in the web supporting materials).

Indeed, as in the previous setting, the combined model produced unbiased estimates for all

parameters. In addition, the true joint model produced unbiased estimates for most parameters

in this setting and its results were more precise than those of the combined model. Actually, the

use of 15 instead of 30 clusters largely eliminated the numerical issues afflicting the correctly

specified joint model and, hence, its performance was substantially improved. Analogous to

the first setting, the misspecified joint model J(α + ai) exhibited similar performance to the

true joint model, while the joint model J(βj + ai) performed the worst in terms of bias.

Another important difference between the joint and combined modelling approaches is the

amount of information from the X is they use. In fact, whereas the joint model uses all the

information contained in X i explicitly, the combined model only uses the information of the

evaluated clusters and, hence, it only implicitly uses the information contained inX i. This may

help to explain the more precise results produced by the joint model in the simulations with 15

clusters. However, this advantage comes with the caveat of additional modeling assumptions

for the selection process and, as the simulations showed, violation of these assumptions may

produce misleading results.

5.2 Results in the presence of selection bias (setting 3)

The results obtained when ratings are generated under model (13) were similar to those in

Section 5.1 (results provided in the web supporting materials). The combined model produced

unbiased estimates for both the cluster effects and probabilities of success. In some cases the

SPM and naive model overestimated the probability of success. Despite these good results

obtained for the combined model in presence of selection bias, one should be cautious when
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generalizing these findings. The combined model assumes a very specific form of selection

bias in the rating process, for instance as portrayed in (10), and this assumption may not

always lead to satisfactory results. Obviously more theoretical research and simulation studies

considering other mechanisms different from (13) will be necessary to assess the performance

of the combined model in this scenario.

6 Case Study Analysis

The case study introduced in Section 2 was analyzed by Alonso et al. [6] using the naive and

joint model approaches. In the present work the combined model presented in Section 4 was

also fitted to these data. The shared random effects assumption, underlying the SPM, implies

that experts who rate more clusters will tend to give more positive recommendations as well.

This testable assumption was not supported by data of the case study and, therefore, the SPM

was not used in the analysis.

Owing to the high dimensionality problem discussed in Milanzi et al. [5], maximum likelihood

became infeasible and the analysis of the case study was performed using the procedure pro-

posed by the same authors, which basically involves 4 steps. First, the dataset is split into

mutually exclusive and exhaustive subsets of clusters and their corresponding ratings. This

ensures that each subset has the required information to estimate the effect of clusters con-

tained therein. In the second step, the models as described in Sections 3 and 4 are fitted

in each subset using maximum likelihood to obtain the cluster-effects estimates. Collecting

the estimates from all subsets produces one set of estimates for all clusters. The third step

involves permutations of the dataset (W permutations) and repeating steps 1 and 2 for each

permutation. In the final step, estimates for each cluster obtained from the different permuta-

tions are pooled together to obtain the final estimate. In spite of its relevance for the present

work, a lengthy discussion of this procedure would go beyond the scope of the manuscript and

we refer the interested reader to Milanzi et al. [5] for more details.

The main findings are displayed in Table 5 where the clusters are ordered according to the

ranks obtained from the combined model. Clearly, many clusters are ranked consistently high

by the three approaches (for instance clusters 295061, 296535, 84163, etcetera) and, therefore,

should be given priority. Along these lines, in a sensitivity analysis context, a cut-off point can

be agreed upon in terms of probability or rank as illustrated in Figure 2. The figure shows the

top 1000 clusters according to the combined model where, for illustration purposes, cut-off

points of 500 and 0.5 were set for the rank and probability of success, respectively. Using these

criteria, researchers can decide to give priority to clusters that are ranked in the top 500 by

all methods. Alternatively, the decision making could be based on the probabilities of success

directly and clusters whose estimated probability is 0.5 and above for all methods could be

selected for further scrutiny. Notice that both approaches led to a substantial reduction of
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the total number of clusters that would have to be analyzed in future studies. Scientific and

practical considerations will certainly play a role when determining the cut-off points in a real

decision making process.

On the other hand, for other clusters the three approaches led to strikingly different results.

Indeed, the fourth best cluster according to the naive approach (69850) received ranks 182

and 38 from the joint and combined models respectively. Moreover, compound 265222 ranked

first and third by the naive and joint models, respectively, was not among the top ten clusters

according to the combined model. Arguably, these disparate results for some clusters confirm

the utility of basing the decision making process not in a unique modeling approach but several

ones, i.e., the utility of a sensitivity analysis.

Several strategies could be implemented when further exploring these clusters for which the

statistical evidence was inconclusive. For instance, one could compute the average probability

of success over the different approaches and base the selection on this average probability. On

the other hand, given the results of the simulations one could argue that, since the combined

model seems to produced unbiased estimates in most circumstances, it should be the core of

the decision making process. Whatever strategy is finally adopted a careful discussion with the

experts in the field would always be advisable. Eventually, weighting together the quantitative

results obtained from the statistical analysis and more field specific knowledge may help to

make an optimal and thoughtful choice.

Interestingly, although the estimates from the combined model were less precise in the simu-

lations, in the case study it produced estimates as precise as the ones obtained in the other

modelling frameworks. Probably, the larger amount of information available in the case study

and the greater numerical stability of the combined model made the previously observed dif-

ference in precision negligible.

7 Conclusion

We have introduced an alternative approach for the evaluation of clusters of chemical com-

pounds, based on the so-called combined model. The model accounts for the selection process

using a new set of random effects. Simulation results clearly showed that, unlike the naive

and joint model approaches, the combined model seems to produce nearly unbiased estimates

in most settings and exhibited important numerical advantages.

The novel idea of implicitly accounting for the presence of selection bias in the rating process by

adding latent traits, makes the combined model a valuable addition to the literature covering

selection bias methods for repeated measures. More often than not, the selection process is a

nuisance, hence, estimation of parameters specific to the selection process can be viewed as

a waste of degrees of freedom. By treating the selection process as a latent trait nuisance,
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the combined model minimizes this wastage, avoids the need of using explicit models to

describe the selection process and, as the simulation study showed, significantly increases

numerical performance. For instance, in the simulations the SPM needed to estimate 31

parameters specific to the selection process while the combined model only had to estimate one.

Additionally, the impact of misspecification (selection model, for joint model and distribution

of random effects for the selection process, for the combined model) is more likely to be felt

in the former than in the latter as also observed in simulation results.

Given the robustness and numerical stability exhibited by the combined model we believe that,

even when selection bias is not suspected and the factors that drive the selection process are

known and available, one may still want to use the combined model as a sensitivity tool for

the analysis.

It is worth mentioning that by only using information from the evaluated clusters, the way

in which the combined model accounts for the presence of a selection bias in the rating

process falls under the category of conditioning on a common effect as explained in [17],

where the selection process is the common effect. This has been well-illustrated in Section 4.

Hernán, Hernández-Diaz, and Robins [17] further suggest methods to tackle such bias which

include semi-parametric methods, such as inverse probability weighting and their doubly-robust

extensions. There are similarities between the combined model approach and how selection

bias is dealt with in the causal inference literature. In fact, as shown in the web supporting

materials, in the combined model approach the probability of the counterfactual event {Yij =

1|Xij = 0, bi} is implicitly embedded in the structure of the model. The use of counterfactuals

lies at the core of many causal inference methods and the connection between these procedures

and the combined model are worth exploring. In addition, Bayesian methods are particularly

suited to handle situations where a large number of sources of uncertainty need to be taken

into account and their computational flexibility can allow the use of non conjugate distributions

for the latent selection traits in the combined model. Even though the implementation of a

Bayesian approach clearly surpasses the scope of this work, exploring this alternative is certainly

worth pursuing.

It is important to point out that our modeling approach can be given further uses not discussed

here. For example, in addition to rating compounds, also the rater could be rated. Apart from

intrinsic individual differences, also practice and experience can be brought out, if present.

Indeed, it is conceivable that there is a learning curve on the one hand, but also fatigue from

‘over-rating’ on the other.

Obviously, more theoretical developments, simulations, and the analysis of case studies will

be needed to fully understand the potential and limitations of the approaches studied in this

paper.
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Table 1: Mean of the point estimates and (standard errors) from setting 1. True: true cluster-
effect value, Comb: combined model, J(αj + bi): joint model with logit[P (Xij = 1|bi)] =
αj + bi, J(βj + bi): joint model with logit[P (Xij = 1|bi)] = βj + bi, J(α + bi): joint model
with logit[P (Xij = 1|bi)] = α + bi, Naive: Naive model.

Parameter True Comb J(αj + bi) J(βj + bi) J(α + bi) Naive

β1 3.60 3.60 (0.87) 4.17 (0.72) 0.20 (0.33) 3.66 (0.84) 4.71 (0.84)

β2 -1.98 -1.98 (0.62) -0.36 (0.22) -0.37 (0.27) -1.97 (0.37) 1.33 (0.37)

β3 4.33 4.33 (0.85) 3.89 (0.71) 2.04 (0.34) 4.15 (0.71) 5.11 (0.79)

β4 0.58 0.58 (0.65) 1.80 (0.39) -0.47 (0.32) 0.54 (0.50) 1.47 (0.53)

β5 0.11 0.11 (0.62) 1.48 (0.35) -0.54 (0.31) 0.10 (0.46) 0.96 (0.48)

β6 -0.53 -0.52 (0.63) 1.13 (0.31) -0.77 (0.31) -0.46 (0.45) 0.37 (0.46)

β7 1.70 1.70 (0.91) 2.94 (0.72) -1.00 (0.33) 1.50 (0.71) 2.71 (0.80)

β8 -0.10 -0.10 (0.57) 1.17 (0.28) -0.14 (0.30) -0.12 (0.41) 0.67 (0.42)

β9 1.51 1.51 (0.76) 2.72 (0.52) -0.48 (0.32) 1.54 (0.64) 2.55 (0.70)

β10 1.29 1.30 (0.65) 2.16 (0.40) 0.09 (0.32) 1.24 (0.52) 2.12 (0.55)

β11 0.88 0.88 (0.87) 2.53 (0.60) -1.49 (0.33) 0.89 (0.73) 1.86 (0.74)

β12 -3.52 -3.52 (0.82) -1.01 (0.26) -1.26 (0.26) -3.41 (0.42) 2.73 (0.42)

β13 0.60 0.60 (0.58) 1.57 (0.33) -0.09 (0.31) 0.48 (0.44) 1.43 (0.47)

β14 1.89 1.89 (0.93) 3.65 (0.72) -1.01 (0.33) 1.84 (0.79) 2.88 (0.81)

β15 0.68 0.69 (0.57) 1.52 (0.31) 0.15 (0.31) 0.60 (0.43) 1.49 (0.46)

β16 0.05 0.05 (0.56) 1.11 (0.27) -0.12 (0.30) -0.13 (0.40) 0.77 (0.42)

β17 0.11 0.12 (0.48) 0.63 (0.21) 0.92 (0.28) 0.02 (0.36) 0.72 (0.36)

β18 -4.01 -4.01 (0.87) -1.39 (0.27) -1.12 (0.24) -3.95 (0.43) 3.27 (0.43)

β19 0.27 0.27 (0.55) 1.18 (0.28) 0.10 (0.30) 0.11 (0.41) 1.00 (0.43)

β20 -1.79 -1.79 (0.59) -0.39 (0.21) -0.14 (0.26) -1.82 (0.36) 1.14 (0.36)

β21 1.03 1.03 (0.57) 1.58 (0.31) 0.45 (0.31) 0.90 (0.43) 1.70 (0.46)

β22 0.03 0.03 (0.58) 1.30 (0.32) -0.39 (0.31) 0.02 (0.44) 0.81 (0.45)

β23 -0.05 -0.05 (0.59) 1.30 (0.32) -0.37 (0.31) -0.06 (0.43) 0.79 (0.45)

β24 -0.95 -0.95 (0.54) 0.31 (0.22) -0.06 (0.28) -0.98 (0.37) 0.30 (0.37)

β25 0.10 0.10 (0.63) 1.43 (0.34) -0.63 (0.31) 0.08 (0.46) 0.93 (0.49)

β26 0.87 0.88 (0.58) 1.69 (0.33) 0.19 (0.31) 0.80 (0.45) 1.61 (0.46)

β27 2.13 2.13 (1.01) 3.31 (0.72) -1.41 (0.35) 2.36 (0.83) 3.28 (0.89)

β28 -3.03 -3.03 (0.73) -0.88 (0.24) -0.75 (0.25) -3.05 (0.39) 2.37 (0.39)

β29 -0.34 -0.33 (0.54) 0.79 (0.25) 0.07 (0.29) -0.36 (0.38) 0.42 (0.39)

β30 2.06 2.06 (0.74) 2.64 (0.51) 0.26 (0.32) 1.78 (0.59) 2.89 (0.65)

σ2 10.00 10.14 (5.20) 10.05 (1.54) 7.61 (1.09) 7.99 (1.15) 5.93 (1.19)

κ 0.0007 (0.0814)
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Table 2: Mean relative bias for setting 1. Comb: combined model, J(αj + bi): joint model
with logit[P (Xij = 1|bi)] = αj+bi, J(βj+bi): joint model with logit[P (Xij = 1|bi)] = βj+bi,
J(α + bi): joint model with logit[P (Xij = 1|bi)] = α + bi, Naive: Naive model.

Parameter Comb J(αj + bi) J(βj + bi) J(α + bi) Naive

β1 0.00 0.16 0.94 0.02 0.31

β2 0.00 0.82 0.81 0.00 0.33

β3 0.00 0.10 0.53 0.04 0.18

β4 0.00 2.10 1.80 0.07 1.53

β5 0.02 12.82 6.09 0.06 7.96

β6 0.01 3.15 0.46 0.13 1.70

β7 0.00 0.73 1.59 0.12 0.59

β8 0.03 12.59 0.36 0.21 7.67

β9 0.00 0.81 1.32 0.02 0.69

β10 0.00 0.67 0.93 0.04 0.64

β11 0.00 1.88 2.70 0.02 1.12

β12 0.00 0.71 0.64 0.03 0.22

β13 0.00 1.60 1.14 0.19 1.38

β14 0.00 0.93 1.53 0.03 0.52

β15 0.00 1.22 0.78 0.13 1.18

β16 0.06 20.75 3.37 3.51 14.09

β17 0.03 4.54 7.03 0.81 5.34

β18 0.00 0.65 0.72 0.02 0.18

β19 0.01 3.43 0.61 0.59 2.77

β20 0.00 0.78 0.92 0.02 0.36

β21 0.00 0.53 0.56 0.13 0.65

β22 0.10 48.42 15.80 0.06 29.59

β23 0.06 28.09 6.75 0.33 17.52

β24 0.00 1.33 0.93 0.02 0.69

β25 0.02 12.96 7.16 0.22 8.08

β26 0.00 0.93 0.78 0.08 0.85

β27 0.00 0.56 1.66 0.11 0.54

β28 0.00 0.71 0.75 0.01 0.22

β29 0.01 3.34 1.20 0.09 2.25

β30 0.00 0.28 0.87 0.14 0.40

σ2 0.01 0.01 0.24 0.20 0.41
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Table 3: Mean confidence interval coverage and length for setting 1. Comb: combined model,
J(αj + bi): joint model with logit[P (Xij = 1|bi)] = αj + bi, J(βj + bi): joint model with
logit[P (Xij = 1|bi)] = βj + bi, J(α + bi): joint model with logit[P (Xij = 1|bi)] = α + bi,
Naive: Naive model.

Parameter Comb J(αj + bi) J(βj + bi) J(α + bi) Naive

β1 0.98 (12.87) 0.78 (2.77) 0.00 (1.30) 0.66 (3.09) 0.81 (3.58)

β2 0.94 ( 5.30) 0.04 (0.89) 0.00 (1.04) 0.94 (1.45) 0.60 (1.45)

β3 0.98 ( 8.47) 0.70 (2.88) 0.00 (1.32) 0.83 (3.02) 0.94 (3.36)

β4 0.94 ( 4.32) 0.04 (1.75) 0.05 (1.25) 0.94 (2.03) 0.63 (2.17)

β5 0.93 ( 3.64) 0.04 (1.35) 0.47 (1.23) 0.95 (1.84) 0.61 (1.94)

β6 0.94 ( 4.04) 0.04 (1.29) 0.90 (1.22) 0.95 (1.75) 0.51 (1.82)

β7 0.96 ( 6.67) 0.70 (2.79) 0.00 (1.31) 0.86 (2.90) 0.86 (3.29)

β8 0.93 ( 3.73) 0.04 (1.16) 0.97 (1.19) 0.97 (1.62) 0.60 (1.68)

β9 0.96 ( 5.42) 0.30 (2.26) 0.00 (1.28) 0.92 (2.60) 0.75 (2.84)

β10 0.97 ( 3.76) 0.30 (1.69) 0.00 (1.25) 0.94 (2.11) 0.71 (2.25)

β11 0.97 ( 6.31) 0.09 (2.71) 0.00 (1.32) 0.89 (2.95) 0.83 (3.15)

β12 0.94 ( 7.68) 0.04 (1.09) 0.00 (1.02) 0.96 (1.65) 0.54 (1.66)

β13 0.95 ( 3.59) 0.13 (1.33) 0.44 (1.22) 0.93 (1.77) 0.61 (1.88)

β14 0.98 ( 6.58) 0.57 (2.58) 0.00 (1.32) 0.86 (7.36) 0.86 (3.40)

β15 0.94 ( 3.17) 0.13 (1.25) 0.51 (1.21) 0.94 (1.72) 0.60 (1.82)

β16 0.95 ( 3.39) 0.00 (1.10) 0.94 (1.18) 0.93 (1.59) 0.61 (1.67)

β17 0.94 ( 2.71) 0.17 (0.87) 0.17 (1.11) 0.95 (1.40) 0.62 (1.41)

β18 0.95 ( 8.19) 0.09 (1.15) 0.00 (0.97) 0.94 (1.70) 0.58 (1.69)

β19 0.94 ( 3.23) 0.04 (1.12) 0.91 (1.19) 0.94 (1.61) 0.62 (1.68)

β20 0.95 ( 4.97) 0.00 (0.87) 0.00 (1.03) 0.97 (1.42) 0.58 (1.41)

β21 0.95 ( 2.80) 0.48 (1.25) 0.53 (1.21) 0.90 (1.72) 0.70 (1.82)

β22 0.94 ( 3.79) 0.00 (1.28) 0.73 (1.21) 0.95 (1.73) 0.60 (1.79)

β23 0.95 ( 3.77) 0.04 (1.27) 0.85 (1.21) 0.98 (1.70) 0.54 (1.79)

β24 0.93 ( 4.18) 0.00 (0.90) 0.08 (1.10) 0.96 (1.45) 0.58 (1.46)

β25 0.95 ( 3.95) 0.04 (1.38) 0.38 (1.24) 0.97 (1.82) 0.60 (1.94)

β26 0.96 ( 3.40) 0.17 (1.37) 0.43 (1.22) 0.97 (1.76) 0.64 (1.87)

β27 0.95 (10.32) 0.57 (2.19) 0.00 (1.36) 0.65 (4.77) 0.68 (3.44)

β28 0.97 ( 6.67) 0.04 (0.98) 0.00 (0.99) 0.96 (1.55) 0.60 (1.54)

β29 0.95 ( 3.64) 0.00 (1.00) 0.77 (1.15) 0.94 (1.51) 0.52 (1.55)

β30 0.97 ( 4.56) 0.83 (2.06) 0.00 (1.26) 0.94 (5.59) 0.81 (2.69)
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Table 4: Mean probability estimates and relative bias for setting 1. True: true value, Comb:
combined model, J(αj + bi): joint model with logit[P (Xij = 1|bi)] = αj + bi, J(βj + bi):
joint model with logit[P (Xij = 1|bi)] = βj + bi, J(α + bi): joint model with logit[P (Xij =
1|bi)] = α + bi, Naive: Naive model.

Parameter True Comb J(αj + bi) J(βj + bi) J(α + bi) Naive

β3 0.88 0.88 (0.01) 0.86 ( 0.02) 0.73 ( 0.16) 0.89 (0.02) 0.96 (0.09)

β1 0.83 0.84 (0.01) 0.87 ( 0.05) 0.52 ( 0.37) 0.86 (0.04) 0.94 (0.13)

β27 0.71 0.72 (0.01) 0.86 ( 0.21) 0.34 ( 0.53) 0.76 (0.08) 0.86 (0.21)

β30 0.70 0.71 (0.01) 0.76 ( 0.07) 0.53 ( 0.25) 0.70 (0.00) 0.84 (0.19)

β14 0.69 0.70 (0.01) 0.84 ( 0.22) 0.38 ( 0.45) 0.71 (0.03) 0.83 (0.21)

β7 0.67 0.68 (0.02) 0.79 ( 0.18) 0.38 ( 0.43) 0.68 (0.01) 0.82 (0.22)

β9 0.65 0.66 (0.02) 0.77 ( 0.19) 0.44 ( 0.32) 0.68 (0.05) 0.81 (0.24)

β10 0.63 0.64 (0.02) 0.72 ( 0.15) 0.51 ( 0.19) 0.65 (0.03) 0.76 (0.21)

β21 0.60 0.61 (0.02) 0.67 ( 0.12) 0.56 ( 0.08) 0.61 (0.01) 0.72 (0.20)

β11 0.58 0.60 (0.02) 0.77 ( 0.31) 0.33 ( 0.44) 0.60 (0.03) 0.73 (0.25)

β26 0.58 0.59 (0.02) 0.68 ( 0.17) 0.52 ( 0.10) 0.60 (0.03) 0.71 (0.22)

β15 0.56 0.57 (0.02) 0.67 ( 0.18) 0.52 ( 0.08) 0.57 (0.02) 0.69 (0.22)

β13 0.55 0.57 (0.02) 0.67 ( 0.21) 0.49 ( 0.12) 0.56 (0.01) 0.68 (0.23)

β4 0.55 0.56 (0.02) 0.69 ( 0.24) 0.44 ( 0.20) 0.56 (0.02) 0.69 (0.25)

β19 0.52 0.53 (0.02) 0.63 ( 0.22) 0.51 ( 0.01) 0.51 (0.01) 0.63 (0.22)

β17 0.50 0.51 (0.03) 0.57 ( 0.14) 0.61 ( 0.22) 0.50 (0.00) 0.59 (0.19)

β5 0.50 0.51 (0.02) 0.67 ( 0.33) 0.44 ( 0.13) 0.51 (0.03) 0.63 (0.25)

β25 0.50 0.51 (0.03) 0.65 ( 0.30) 0.43 ( 0.14) 0.51 (0.02) 0.62 (0.25)

β16 0.49 0.51 (0.03) 0.62 ( 0.25) 0.49 ( 0.02) 0.48 (0.02) 0.60 (0.23)

β22 0.49 0.50 (0.03) 0.64 ( 0.29) 0.45 ( 0.07) 0.50 (0.02) 0.61 (0.23)

β23 0.48 0.49 (0.03) 0.65 ( 0.35) 0.46 ( 0.06) 0.49 (0.02) 0.60 (0.25)

β8 0.48 0.49 (0.03) 0.63 ( 0.31) 0.48 ( 0.02) 0.49 (0.02) 0.59 (0.24)

β29 0.45 0.46 (0.03) 0.58 ( 0.29) 0.51 ( 0.13) 0.46 (0.01) 0.56 (0.23)

β6 0.43 0.44 (0.03) 0.62 ( 0.45) 0.41 ( 0.05) 0.45 (0.04) 0.55 (0.27)

β24 0.38 0.40 (0.03) 0.53 ( 0.39) 0.49 ( 0.28) 0.38 (0.00) 0.46 (0.19)

β20 0.30 0.31 (0.04) 0.46 ( 0.53) 0.48 ( 0.61) 0.29 (0.02) 0.35 (0.17)

β2 0.28 0.29 (0.04) 0.46 ( 0.64) 0.46 ( 0.61) 0.28 (0.02) 0.33 (0.16)

β28 0.19 0.20 (0.05) 0.40 ( 1.05) 0.41 ( 1.12) 0.18 (0.06) 0.21 (0.11)

β12 0.16 0.17 (0.06) 0.39 ( 1.49) 0.35 ( 1.21) 0.16 (0.01) 0.18 (0.15)

β18 0.13 0.14 (0.06) 0.35 ( 1.75) 0.37 ( 1.85) 0.12 (0.06) 0.14 (0.08)
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Table 5: Estimated parameters (β̂), and standard errors for the top 20 clusters (according to
the combined model approach) from the case study. The models fitted are: Combined model
(Combined), mixed logistic regression (Naive), and joint model with selection probability given
by logit[P (Xij = 1|ai)] = αj + ai [J(αj + ai)]. The column CID gives the cluster id.

Naive J(αj + ai) Combined

CID β̂ Std.Error β̂ Std.Error β̂ Std.Error
295061 3.83 1.38 2.61 1.01 1.69 0.89
296535 2.77 1.35 2.37 1.75 1.58 1.02
333529 1.68 2.72 1.12 3.15 1.51 1.03
313914 2.18 1.58 2.06 1.68 1.47 1.33
356662 1.46 1.45 0.77 1.73 1.41 1.12

84163 5.24 2.42 1.83 3.05 1.34 1.40
296427 1.63 1.94 1.17 2.02 1.35 1.34
263047 1.70 1.26 0.67 1.19 1.32 1.00
315928 2.04 1.52 1.47 1.41 1.26 0.92
150535 1.12 1.48 0.68 1.64 1.23 1.05
292579 1.85 1.95 1.50 2.30 1.23 1.07
465585 -0.10 1.26 -0.17 1.39 1.20 1.23
178994 1.85 1.20 1.57 1.12 1.14 0.89
338571 1.08 1.26 0.84 1.32 1.12 1.14
296560 1.89 0.99 1.86 1.07 1.09 1.02

7608 1.38 0.95 0.83 1.20 1.09 1.03
178828 1.55 1.06 1.42 1.22 1.08 1.06
483662 1.08 1.31 0.10 1.66 1.09 1.23
383873 1.20 1.35 1.01 1.45 1.08 1.05
292805 1.47 1.24 1.20 1.21 1.06 1.09

σ2
b 20.02 29.39 18.61 25.81 6.64 1.59
σ2
a 5.4 1.7
κ 0.0001 0.05
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Table 6: Estimated rank, probability of success (P̂ ), and 95% confidence interval for the top
20 clusters (according to the combined model approach) from the case study. The models
fitted are: Combined model (Combined), mixed logistic regression (Naive), and joint model
with selection probability given by logit[P (Xij = 1|ai)] = αj + ai [J(αj + ai)]. The column
CID gives the cluster id.

Naive J(αj + ai) Combined

CID R P̂ 95% CI R P̂ 95% CI R P̂ 95% CI

295061 2 0.92 0.66 0.98 4 0.71 0.48 0.87 1 0.71 0.48 0.86

296535 10 0.71 0.48 0.87 5 0.70 0.38 0.91 2 0.70 0.44 0.87

333529 21 0.63 0.31 0.87 26 0.59 0.22 0.99 3 0.69 0.43 0.87

313914 11 0.70 0.40 0.89 7 0.68 0.28 0.91 4 0.68 0.35 0.89

356662 23 0.63 0.31 0.85 40 0.57 0.23 0.86 5 0.67 0.39 0.87

84163 5 0.77 0.41 0.97 9 0.65 0.21 0.97 6 0.67 0.32 0.89

296427 24 0.62 0.27 0.87 22 0.60 0.19 0.90 7 0.67 0.33 0.89

263047 27 0.62 0.35 0.83 38 0.57 0.29 0.81 8 0.67 0.41 0.85

315928 9 0.72 0.37 0.92 14 0.62 0.28 0.83 9 0.66 0.42 0.83

150535 43 0.60 0.31 0.83 51 0.56 0.23 0.84 10 0.65 0.39 0.85

292579 19 0.64 0.24 0.90 13 0.63 0.21 0.89 11 0.65 0.39 0.85

465585 98 0.55 0.28 0.79 281 0.48 0.20 0.78 12 0.65 0.35 0.87

178994 13 0.68 0.45 0.84 11 0.64 0.34 0.84 13 0.65 0.43 0.82

338571 36 0.60 0.34 0.82 33 0.57 0.28 0.82 14 0.64 0.36 0.85

296560 14 0.66 0.43 0.83 8 0.66 0.39 0.85 15 0.64 0.38 0.83

7608 30 0.61 0.39 0.80 41 0.57 0.31 0.79 16 0.64 0.38 0.83

178828 25 0.62 0.38 0.81 17 0.61 0.32 0.84 17 0.64 0.38 0.83

483662 78 0.56 0.30 0.81 153 0.51 0.24 0.80 18 0.64 0.35 0.85

383873 33 0.61 0.32 0.83 27 0.59 0.28 0.84 19 0.64 0.38 0.83

292805 17 0.65 0.38 0.84 19 0.61 0.29 0.84 20 0.64 0.37 0.84
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Figure 2: A plot for the top 1000 clusters (according to the combined model). On the left:
Plot of the ranks given to the clusters by the three models (combined, joint and naive) with
a cut-off point at rank=500. On the right: Plot of probabilities of success given to the 1000
clusters by the three models, with a cut-off point at probability=0.5.
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