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Abstract

In structural engineering, model updating is often used for non-destructive damage assessment: by calibrat-
ing stiffness parameters of finite element models based on experimentally obtained (modal) data, structural
damage can be identified, quantified and located. However, the model updating problem is an inverse prob-
lem prone to ill-posedness and ill-conditioning. This means the problem is extremely sensitive to small errors,
which may potentially detract from the method’s robustness and reliability. As many errors or uncertainties
are present in model updating, both regarding the measurements as well as the employed numerical model,
it is important to take these uncertainties suitably into account. This paper aims to provide an overview
of the available approaches to this end, where two methods are treated in detail: a non-probabilistic fuzzy
approach and a probabilistic Bayesian approach. These methods are both elaborated for the specific case of
vibration-based finite element model updating for damage assessment purposes.
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1. Introduction

1.1. Why model updating?

In practically all areas of science and engineering, numerical or mathematical models are used to simulate
the behavior of real systems. The purposes of these numerical models vary widely, but can generally be clas-
sified into three main categories: analysis, prediction, and design. In civil and structural engineering, finite
element (FE) models are most often used to analyze e.g. the internal forces and displacements of structures
in several limit states, or to predict vibration responses due to dynamic loading such as earthquakes, wind
and traffic. These FE analyses can also be used to design structural components or complete structures.
It goes without saying that for all the above purposes, the validity of the adopted numerical models is
imperative. There are, however, always numerous unknown or uncertain system properties (e.g. regarding
material properties, geometric properties, boundary conditions, load conditions) for which inevitably con-
jectures have to be made. Moreover, due to a lack of knowledge or other restrictions, often simplifying
modeling assumptions regarding the model structure are required or implicitly made. These issues may
detract from the quality and accuracy of the numerical model and its purposes.

This has led to the development of model updating techniques, also referred to as model calibration or,
in more generic terms, parameter identification or estimation. Generally speaking, model updating aims to
reconstruct or calibrate unknown system properties which appear as parameters in numerical models, based
on actually observed behavior of the system of interest. In a structural mechanics context, often (processed)
data acquired in vibration experiments (i.e. acceleration time histories, frequency response functions, natural
frequencies and mode shape displacements, modal strains or curvatures, modal flexibilities, etc.) are deemed
most suited for FE model updating purposes, as they provide detailed information regarding the global and
local behavior of the structure of interest, and can be measured in an operational state of the structure.
Standard reference works on deterministic vibration-based FE model updating include those of Mottershead

2



and Friswell [1, 2], Fritzen et al. [3] and Imregun and Visser [4]; for a comprehensive overview of FE model
updating in civil engineering applications, the reader is referred to the work of Teughels [5].

Structural FE model updating serves a wide array of purposes; it can for instance be applied for design
verification and validation, to obtain improved predictions of structural response quantities, or simply to
identify unknown system characteristics. One of the most prominent application areas of vibration-based FE
model updating is found in structural health monitoring (SHM). The basic principle behind this consists in
assuming that localized structural damage results in a local reduction of stiffness. As such, updating stiffness
parameters of the FE model in several damage states provides a (non-destructive) means to thoroughly and
accurately investigate the condition of the structure. Up-to-date reference works on SHM can be retrieved
in [6–9]; for vibration-based SHM, the reader is referred to the extensive literature reviews by Doebling et
al. [10, 11], and Carden and Fanning [12], and recent works by Brownjohn et al. [13] and Deraemaeker and
Worden [14]. Rytter [15] describes a four-tiered approach to damage assessment: (1) damage detection or
identification, (2) damage localization, (3) damage quantification and (4) prognosis of the remaining service
life of the structure. Application of FE model updating directly allows damage assessment up to level 3;
it provides a means to detect the presence of damage, locate the damage along the structure and quantify
the extent of the damage. Notwithstanding the importance of the first three levels, the fourth level is the
ultimate goal of any SHM procedure, but it is also by far the most challenging.

1.2. Why uncertainty assessment?

Model updating problems are inverse problems, as they aim to invert the standard “forward” relationship
between parameters and output of a model; the objective is instead to obtain the parameters that produce
a certain given output. More specifically, deterministic model updating aims to find the optimal parameters
of a numerical model such that the best possible fit is obtained between the model output and the observed
data. This is usually accomplished by formulating the problem as a constrained optimization problem, where
the objective is to minimize the discrepancy between computed and measured data.

In many cases, however, this optimization problem is prone to ill-posedness and ill-conditioning, meaning
that the existence, uniqueness and stability (with respect to small errors) of a solution of the inverse problem
cannot be guaranteed. This is a non-negligible issue in model updating, as the problem is always subject to
measurement and modeling errors, which give rise to uncertain data and model predictions. Accounting for
these uncertainties is therefore an important and indispensable undertaking in model updating. Applying
uncertainty quantification (UQ) in model updating not only allows assessing the effect of uncertainty on
the updated model parameters, but moreover provides a means to evaluate the uncertainties on derived
quantities such as response predictions. Ultimately, this allows assessing the robustness of decisions made
based on these predictions and, as such, the degree of usability the model [16].

Over the last decades, UQ in science and engineering has gained substantially in interest, leading to the
development of a huge amount of UQ approaches in various scientific domains. The question that arises is
whether (and how) these approaches can be applied for efficient UQ in vibration-based FE model updating,
and which are most suited to which end purpose. This will constitute the main topic of the current review
paper, where the focus will be placed on civil engineering SHM applications. In the following section, the
specifics of deterministic FE model updating are recalled and the importance of accounting for uncertainty is
pointed out; the types of uncertainty occurring in model updating are discussed in section 3. Out of the wide
array of available UQ approaches, two are treated in detail in this paper: a probabilistic Bayesian approach
(section 4) and a non-probabilistic fuzzy approach (section 5). Arguably, these two methods constitute the
most popular of their corresponding domains.

1.3. An illustrative example of FE model updating

Throughout this paper, a simple but instructive engineering application will serve as a running example
to illustrate the workings of both UQ methods. The application concerns the damage assessment of a
reinforced concrete (RC) beam with a length of 6 m and dimensions as shown in figure 1a. The beam was
built in a laboratory environment, and controlled damage was induced by applying a static load of 25 kN
at two thirds of the length of the beam (figure 1b). After applying the damage, free-free vibration tests
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Figure 1: (a) Cross-section of the reinforced concrete beam, (b) set-up of static loading and (c) image of vibration testing [21].
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Figure 2: (a) Six different stiffness patterns along a reinforced concrete beam that yield almost identical modal properties, as
demonstrated in (b) where the corresponding first two predicted bending modes of the beam are shown.

(figure 1c) were performed which allowed identifying a set of modal characteristics (i.e. natural frequencies
and mode shapes) of the beam in its damaged condition. The objective of this example is to use these
measurements to assess the structural damage occurring in the RC beam through FE model updating, by
calibrating the stiffness pattern along the beam.

Figure 2 illustrates the ill-conditioning issues for this RC beam example. Figure 2a shows six different
stiffness patterns along the beam, and figure 2b shows the first two computed bending modes corresponding
to the patterns in figure 2a. It is clear that all the stiffness patterns lead to virtually identical low order
bending modes, making it very difficult to uniquely and accurately determine the stiffness values when only
these mode shapes are given. Moreover, it is clear that small variations in the measurements or in the model
predictions could lead to widely varying updating results.

2. Deterministic FE model updating

Before discussing uncertainties and means to deal with uncertainty in model updating, a brief overview
is given of vibration-based deterministic FE model updating, starting with a short formal description of
model classes and model updating.

2.1. Models, model classes and model updating

Most generally, a model is defined as a description of the assumed relationship between input and output
variables of a system, taking the (known or assumed) properties of that system into account. The input-
output behavior of the system can then be described by its model or transfer operator GM. This model
operator is specified in terms of a finite number of numerical model parameters θM, so that the output
response y due to any input vector x can be written in a general way as y = GM(x, θM). The outputs of
interest can relate to directly measurable system response quantities (accelerations, displacements, strains,
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etc.) or derived features such as frequency response functions. It is often convenient to work with outputs
that are independent from the input x (such as modal properties, see section 2.2.1), as the input is in many
practical applications not precisely known. In the remainder of this text, this will be presumed the case
and the input x is dropped from the notations: y = GM(θM). It is essential to note that, as the parameter
vector θM ranges over a subset DM of RNM , GM(θM) represents not a single model but a set or class of
models MM. Each model in the structural model class MM = {MM(θM) | θM ∈ DM} provides a mapping
from the model parameter space DM to the output space R

N as follows:

MM : DM ⊆ R
NM → R

N : θM 7→ y = GM (θM) (1)

Deterministic model updating now consists in determining an optimal set of model parameters θ∗

M that
minimizes the misfit between some experimental data, denoted as d̄, and model predictions GM (θM). This
discrepancy is represented by the so-called misfit or cost function F , so that the model updating problem is
equivalent to the following optimization problem:

θ∗

M = argmin
θM∈DM

F
(
GM (θM) , d̄

)
= argmin

θM∈DM

F (θM) (2)

where the latter equality takes into account that for a given model class and a given set of experimental data
d̄, the cost function F only depends on the model parameters θM. In many cases, the optimization problem
(2) is formulated as a constrained optimization problem, where the constraints depend on the nature of the
considered model updating problem and on the information that is available on the updating parameters.
For instance, inequality constraints can be set when it is known that the parameters lie within a certain
interval.

2.2. Vibration-based FE model updating

2.2.1. Experimental data

The experimental data d̄ used for damage assessment through FE model updating most often consist
of measurements obtained during dynamic vibration experiments, where a structure is equipped with a
set of measurement sensors (e.g. accelerometers, strain gauges, fibre-optic sensors, etc.) which register the
system’s response due to some dynamic excitation. However, response time domain data such as accelerations
are not often used directly for model updating, as this would require the precise knowledge of the input
excitation – a condition seldom fulfilled in civil engineering applications. Therefore, most often use is made
of modal characteristics, which are extracted from the measured response time histories using modal analysis
techniques [22]. Modal data are in general rich in information content, and can be obtained in an operational

state of the structure, meaning that no external excitation (e.g. drop weights, shaker) needs to be applied
or known. A drawback of operational testing versus forced excitation testing is that modal masses cannot
be uniquely determined.

Several types of modal data can be used. Most basically, model updating can be performed based
only on changes of Nm natural frequencies f̄r or eigenvalues λ̄r = (2πf̄r)

2, which are well known to be
significantly affected by changes in structural stiffness, and can be measured fairly accurately. However,
eigenfrequencies provide only global information on the structure’s condition. In order to allow for effective
damage localization, mode shape displacements φ̄r ∈ R

No can be added to the data set; this constitutes
one of the most common data configurations for FE model updating. However, mode shape displacements
are usually more difficult to measure accurately, and are not extremely sensitive to moderate changes in
structure stiffness (as demonstrated in figure 2). Moreover, obtaining a sufficiently informative mode shape
data set often necessitates a large number of sensors. Therefore, the (additional) use of other derived modal
characteristics is advocated by many authors. The most popular quantities include modal flexibilities [23–
26], modal curvatures [27, 28], and modal strain energies [29, 30], which are considered to be much more
sensitive to changes in stiffness. All modal features discussed here can be used for model updating, both
separately or combined.

Instead of modal domain data, frequency domain data such as frequency response functions (FRFs) can
be employed directly for structural model updating as well [31, 32]. Even though this technique requires the
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knowledge of the excitation forces (and thus require forced excitations), FRFs are sometimes preferred over
modal data as additional errors due to the modal analysis procedure are avoided [33]. The use of FRFs in
the modal updating process requires, in addition, an estimation of the modal damping ratios, as these can
in general not be very accurately predicted.

2.2.2. Model class and computed data

The dynamic behavior of a structural FE model class with Nd degrees of freedom is described by the
following set of Nd differential equations, relating the displacement vector u(t) ∈ R

Nd and the excitation
vector f(t) ∈ R

Nd :

M(θM)ü(t) +C(θM)u̇(t) +K(θM)u(t) = f(t) (3)

where M(θM), C(θM) and K(θM) ∈ R
Nd×Nd represent the global mass, damping and stiffness matrices,

respectively. These matrices are constructed based on the characteristics of the elements describing the
structure. Using the equations of motion (3), the structural model class MM can be constructed, depending
on the output quantities of interest. Time and frequency responses to an excitation f(t) can be computed
directly from equation (3) and its frequency domain transform; modal data follow from the solution of the
(undamped) eigenvalue equation K(θM)Φ = M(θM)ΦΛ. In this equation, matrix Φ ∈ R

Nd×Nd collects the
Nd eigenvectors φr ∈ R

Nd that correspond to the eigenvalues λr = (2πfr)
2 located on the diagonal of Λ.

The model class is represented using its model operator GM, so that the set of computed output data is
denoted as y = GM(θM).

FE model parameterization. The choice of a suitable set of updating parameters θM is a non-trivial task: the
set of selected parameters should be able to represent the unknown structural properties, but the number
of updating parameters should also remain limited in order to avoid ill-conditioning problems (section 2.3).
When using model updating for damage assessment purposes, the basic premise is that structural damage
results in a local loss of stiffness; therefore the model parameterization can usually be limited to a parame-
terization of the stiffness matrix and, occasionally, the mass matrix. Although nonlinear parameterizations
are possible, a linear relation between the system matrices and the model parameters is usually adopted as
follows:

K(θM) = K0 +

NM∑

j=1

θM,jKj and/or M(θM) = M0 +

NM∑

j=1

θM,jMj (4)

where each Kj and Mj are substructure contributions to the global stiffness and mass matrix, specified by
the finite element model of the structure.

2.2.3. Cost function

As previously indicated, essential in the model updating scheme is the confrontation of the measured
and computed data in a cost function F (equation (2)). Many alternative formulations are possible for the
cost function, but most often it is expressed as a weighted least squares fit between the predictions GM(θM)
and the data d̄ as follows:

F (θM) =
1

2
η(θM)T W η(θM) =

1

2
‖ W1/2η(θM) ‖22 (5)

where ‖ · ‖2 denotes the Euclidian or 2-norm of a vector, and where W ∈ R
N×N is a weighting matrix. The

residual vector η(θM) = d̄−GM(θM) ∈ R
N contains the difference between the model predictions and the

data; it is therefore often referred to as the prediction error.
In most practical applications, a diagonal weighting matrix W is assumed, where the weighting coeffi-

cients are chosen proportionate to the inverse measured data so that the individual residuals are in effect
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normalized:

F (θM) =
1

2

N∑

k=1

ak
(d̄k − yk(θM))2

d̄2k
(6)

Factors ak reflect the weight appointed to the normalized residuals, and can generally be interpreted as
“confidence” measures representing the accuracy of the measured data on the one hand, and regarding
the capability of the model class to correctly represent the true structural behavior on the other hand.
In selected cases, some information regarding e.g. the measurement accuracy is available, and weighting
factors can be taken inversely proportional to observed standard deviations. In fact, this can be shown to
be the most optimal choice for the weighting factors, at least for linear prediction models (Gauss-Markov
theorem). However, in most cases the weighting factors are chosen based on engineering judgment and/or
trial-and-error.

When several types of data or residuals are used, they are usually combined in one single objective
function which is then minimized. An alternative is to apply a multi-objective optimization scheme, which
allows for the minimization of multiple objective functions simultaneously, thereby avoiding the challenging
task of weighting the individual (and possibly contradictory) objectives. For instance, Haralampidis et
al. [34] and Christodoulou and Papadimitriou [35] define separate eigenfrequency and mode shape residuals,
Jaishi and Ren [30] use the approach to incorporate both eigenfrequency and strain energy residuals, and
Schlune et al. [36] combine static and dynamic measurements in multiple objectives. A different approach
to the modal updating problem in structural dynamics was developed by Ladevèze and his co-workers [17–
20]. Here, the cost function is not defined in terms of residuals in modal data such as eigenfrequencies and
mode shapes but contains an energy-based indicator, termed the Constitutive Relation Error (CRE). In this
approach, a distinction is made between reliable data (e.g. position and direction of sensors) and less reliable
data (e.g. constitutive relation) and model updating parameters are selected after a prior localization of
errors in the model based on the local values of the CRE. In the following, the focus is on model updating
methods based on cost functions as given by equation (6) that contain residuals in modal data.

2.3. Solution and ill-posedness of the optimization problem

The (single-objective) least squares problem associated with model updating can be constructed using
equations (2) and (5) as:

θ∗

M = argmin
θM

F (θM) = argmin
θM

1

2
‖ W1/2

(
d̄−GM(θM)

)
‖22 (7)

The solution θ∗

M should satisfy the stationarity condition ∇θM
F (θ∗

M) = 0. For a linear model, i.e.GM(θM) =
JθM, this yields the following set of normal equations for θM:

(
JTWJ

)
θM = JTWd̄ (8)

In this equation, J ∈ R
N×NM is the Jacobian or sensitivity matrix containing the first order derivatives of

the N model outputs with respect to the NM model parameters, and matrix (JTWJ) is the Hessian matrix
H ∈ R

NM×NM . It is clear that this Hessian matrix needs to be inverted in order to solve expression (8) for
θM. Generally, linear least squares problems can be solved relatively straightforwardly using decomposition
methods such as singular value decomposition (SVD), QR factorization or Cholesky factorization.

In order for problem (8) to have a unique solution, the Hessian should be a positive definite matrix; this
is generally referred to as the second order necessary optimality condition (SONC), and is in fact equivalent
to having a sensitivity matrix J of full column rank. Even though rank-deficiency of J is usually not a
problem in model updating, near -rank-deficiency is extremely common. This so-called ill-conditioning of
J causes the Hessian to become near-singular and difficult to invert accurately, which results in a solution
that is very unstable with respect to small changes in the data vector d̄ and the model predictions.

When the relationship between model parameters and model outputs is nonlinear – as is most often the
case – the least squares problem in equation (7) cannot be solved directly anymore, but requires an iterative
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approach. Although a multitude of efficient methods has been developed [5, 37, 38], local gradient-based
iterative algorithms such as the Gauss-Newton approach are most often employed. It can be shown that
these methods require the solution of a set of equations very similar to (8) in each iteration, only now the
Jacobian J and Hessian H are local approximations, which can be computed numerically or analytically
(see below). In other words, both in the linear and in the nonlinear case, the uniqueness and stability of the
solution are determined by the conditioning of the sensitivity matrix J.

By far the most common cause of ill-conditioning in model updating is found in the incompatibility of
the prediction model and its parameterization with the resolution and type of the observational data [39].
In general, ill-conditioning through parameterization can be avoided or abated by (1) choosing physically
relevant parameters that sufficiently affect the observed data (thereby avoiding near-zero columns in the sen-
sitivity matrix); and (2) avoiding overparameterization along the structure (thereby avoiding nearly linearly
dependent columns in the sensitivity matrix for neighboring elements). The latter is usually accomplished
by not defining the updating parameter element-wise, but instead for sets of (adjacent) elements, also re-
ferred to as substructures. Alternatively, the variation of the parameter values along the structure can be
described by a function (e.g. a linear or quadratic interpolation function) which is characterized by only
a few parameters, thus reducing the number of updating parameters significantly [40]. Additionally, it is
often advantageous to select correction factors instead of the physical parameters themselves; as such it is
avoided that largely varying orders of magnitude cause numerical difficulties (inaccuracy) when inverting
the Hessian matrix.

When ill-conditioning cannot be resolved by well thought out parameterization of the model, regular-
ization techniques may provide an answer. The basic idea behind these methods is to replace the ill-posed
problem with a well-conditioned one that behaves similarly and produces an approximate solution to the
original problem. Usually, this is done by augmenting the objective function with a regularization term that
incorporates some form of prior information on the solution (e.g. smoothness, sparsity, etc). For further
details regarding regularization techniques, the reader is referred to the extensive literature by Hansen [41]
and Neumaier [42]. A detailed review of regularization techniques in model updating can be found in Titurus
and Friswell [43].

2.4. RC beam example

Experimental data. For the RC beam introduced in section 1.3, a set of four experimental natural frequencies
and mode shapes are extracted from the time-domain vibration data by stochastic subspace identification
(SSI) [44]. The transverse mode shape displacements are observed at No = 31 equidistant locations along
the beam; the resulting mode shape measurements are shown with their corresponding natural frequencies
f̄r in figure 3.

Prediction model. A 2D FE beam model of the reinforced concrete beam is constructed which consists of
30 elements and 31 nodes, with two DOFs per node so that Nd = 62. Shear deformation is included in
the FE model, with a factor ky = A/As = 1.2, and the moment of inertia of the equivalent cross-section
equals 1.93× 10−4 m4. Substructuring is applied in order to avoid ill-conditioning: the beam is divided into
10 substructures with a uniform stiffness value or Young’s modulus (figure 4); these 10 stiffness values are
adopted as the updating parameters θM. Initially, all stiffness parameters are assumed to equal θM0 = 37.5
GPa.
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(a) f̄1 = 19.49 Hz
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(b) f̄2 = 56.66 Hz
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Figure 3: First four experimental bending modes and corresponding natural frequencies for the damaged state.
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Figure 4: Definition of the 10 substructures in the RC beam.

Cost function. In view of the employed modal data, the prediction error can be partitioned as η = {ηλ;ηφ},
where the eigenvalue and mode shape residual vectors are defined as ηλ = {. . . ; ηλ,r; . . .} ∈ R

Nm and
ηφ = {. . . ;ηφ,r; . . .} ∈ R

NmNo , respectively. In the present work, it is chosen to define the individual modal
residuals as follows:

ηλ,r = λ̄r − λr(θM) ∈ R (9)

ηφ,r = γrφ̄r − Lφr(θM) ∈ R
No (10)

where r = 1 . . .Nm, and the binary matrix L ∈ R
No×Nd selects the No observed degrees of freedom from the

Nd degrees of freedom present in the FE model. The coefficient γr is a scaling factor to ensure that simulated
and measured mode shapes are scaled equally. This is necessary since in most cases, the experimental modes
are identified using output-only data, and therefore cannot be mass-normalized. The scaling factor can be
obtained from a reference value at a single observation point or, alternatively, through a least squares fit
between measured and computed mode shapes, which yields:

γr =
φ̄T

r Lφr(θM)

‖ φ̄r ‖22
(11)

The construction of the cost function further requires a matching of the Nd calculated modes to the Nm

experimental mode shapes, in order to ensure that corresponding modes are compared. To this end, the
modal assurance criterion (MAC) is frequently applied, which consists of computing so-called MAC-values
as a measure for the correspondence between a calculated mode shape φi and a measured mode shape φ̄j :

MAC(φi, φ̄j) =
| (Lφi)

T
φ̄j |2

‖ Lφi ‖22‖ φ̄j ‖22
(12)

The MAC-values always lie between 0 and 1, where values closer to 1 represent a better agreement between
the considered mode shapes. In selected cases with many closely spaced or very similar modes, the MAC-
approach may lead to erroneous mode matching; therefore, alternative mode matching methods often include
an eigenfrequency or eigenvalue residual as well, for instance by matching modes that result in the lowest
value of the following quantity:

1−MAC(φi, φ̄j) +

∣∣∣∣1−
λi

λ̄j

∣∣∣∣ (13)

It is important to note that mode shape matching often results in non-smooth behavior of the objective
function. As the parameter values vary, the mode shapes might get matched differently, resulting in sudden
jumps in the objective function which can hinder the efficiency of gradient-based optimization algorithms
significantly.

A normalized least squares cost function as defined in equation (6) is adopted, which in this case leads
to the following reformulation of the objective function:

F (θM) =
1

2

Nm∑

r=1

ar
(λ̄r − λr(θM))2

λ̄2
r

+
1

2

Nm∑

r=1

br
‖ γrφ̄r − Lφr(θM) ‖22

‖ γrφ̄r ‖22
(14)
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The computed and measured mode shapes are matched and scaled through the MAC and least squares
scaling, respectively. The weighting factors ar and br in the cost function are taken equal to one to obtain
equal weighting between the terms containing eigenvalue and mode shape residuals. The model updating
procedure for the RC beam now consists in minimizing objective function (14) with respect to θM. This can
be achieved through any optimization software; in this case, the nonlinear least squares optimization tool
(lsqnonlin) in matlab [45] is employed, which here results in the application of the Levenberg-Marquardt
variant of the Gauss-Newton algorithm. The initial model is used as starting point for the algorithm.

Modal sensitivities. Most gradient-based optimization methods require the computation of the first and
second order sensitivities of the model predictions with respect to the model parameters, which are collected
in the Jacobian and Hessian matrix, respectively. To this end, two basic approaches are available. By far the
most popular is making use of the finite difference method; however, this approach is very time-consuming
and only locally accurate. Alternatively, use can be made of analytical expressions.

In vibration-based model updating, the required sensitivities relate to the predicted eigenvalues and mode
shapes. The eigenfrequency derivatives can be readily computed from the undamped eigenvalue equation
Kφr − λrMφr = 0, yielding:

∂λr

∂θi
= φT

r

∂K

∂θi
φr (15)

∂2λr

∂θi∂θj
=

(
∂φr

∂θj

)T
∂K

∂θi
φr + φT

r

∂K

∂θi

∂φr

∂θj
(16)

for the common case where M(θM) = M. Second order eigenvalue derivatives for the case where the mass
matrix is dependent on the model parameters can be found e.g. in Ghosh et al. [46].

Several approaches exist to compute the first and second order derivatives of the modal vectors. The
most commonly used method is based on the work of Fox and Kapoor [47], where eigenvector sensitivities are
described as a linear combination of all eigenvectors. In order to obtain exact derivatives, this straightforward
approach requires the solution of the (Nd×Nd) FEM eigenproblem for each considered parameter set, which
can quickly become computationally prohibitive for large systems with many degrees of freedom Nd, as often
encountered in real (large-scale) applications. In practice the summation is therefore often truncated to the
N∗

d lowest modes, yielding an approximation of the derivatives. A suitable truncation base N∗

d is usually
determined by trial-and-error.

Nelson [48] developed an alternative, exact approach for computing the eigenvector derivatives which
only requires the computation of the modal data of the Nm modes of interest, and the solution of a (Nd×Nd)
linear system of equations for each set of parameter values. Further details on computing first and second
order mode shape derivatives using Nelson’s method can be retrieved e.g. in [49].

Results. From table 1, it is clear that the updated natural frequencies show a much better correspondence
with the experimental results compared to the initial predictions, especially for modes 2 and 4. The MAC-
values after updating confirm that a good fit is obtained for the mode shapes as well. The updated bending
stiffness values along the beam are shown in figure 5, where the damage induced by the static load at
about 4 m is clearly reflected by a decrease of the bending stiffness by about 50% at this location. This
application shows how a relatively limited amount of modal data and a simple FE prediction model can help
identifying, locating, and quantifying structural damage. The question that now arises is how measurement
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and modeling uncertainty affect the updating results.
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Figure 5: Updated bending stiffness
pattern of the RC beam.

Mode finit fexp ∆finit MACinit fupd ∆fupd MACupd

[Hz] [Hz] [%] [-] [Hz] [%] [-]
1 24.04 19.49 23.35 0.991 19.58 0.49 0.997
2 65.79 56.66 16.11 0.989 56.65 0.02 0.999
3 127.6 111.2 14.74 0.976 110.8 0.36 0.999
4 208.2 184.9 12.56 0.964 184.7 0.13 0.999

Table 1: Natural frequencies finit calculated with the initial FE model,
the experimental frequencies fexp and relative frequency differences ∆f =
|fexp − f |/fexp and MAC-values.

3. Uncertainty in model updating

The above discourse in section 2.3 regarding the ill-posedness of the inverse problem demonstrates that
model updating is affected by uniqueness and stability issues, and is therefore extremely susceptible to errors,
or, in more general terminology, to uncertainties. Effectively and comprehensively accounting for these
uncertainties to assess their influence is therefore an extremely valuable if not indispensable undertaking
in model updating. Moreover, uncertainty quantification is instrumental in exploring and improving the
robustness of the problem and derived applications.

Uncertainty is inherently present in all of reality, and is most generally defined by Walker et al. [50]
as “any departure from the unachievable ideal of complete determinism”. Over the last decades, a wide
array of different classification systems and analysis methods has been developed, originating in the field of
risk analysis and extending to practically all engineering and science fields, mainly in an effort to manage
uncertainty and its consequences in a comprehensive fashion. In this section, an overview is presented of
the different types and sources of uncertainties in model updating, classifying them first by context.

3.1. Uncertainty related to the prediction model

Every numerical prediction model is, by definition, an idealized representation of reality and therefore
inherently unable to perfectly represent the behavior of the true system. Many authors such as Mottershead
and Friswell [1], Der Kiureghian [51], Soize [52, 53], Kennedy and O’Hagan [54] and Walker [50] distinguish
several types or sources of model uncertainty, which can be summarized as follows:

� Model parameter uncertainty, also referred to as model input uncertainty or variable uncertainty.
This type of uncertainty is caused by uncertainty regarding the values of parameters or inputs of the
selected prediction model. The model parameters can be related to unknown or insufficiently known
material properties, load characteristics or geometric properties, but can also represent more “global”
parameters, that e.g. determine features of the structure of the model.

� Model structure uncertainty, also referred to as model framework or model form uncertainty. This kind
of uncertainty arises as a result of modeling assumptions and simplifications made by the designer in
answer to a lack of knowledge or understanding of the true system. Typical examples of model
uncertainty are uncertain model context (i.e. uncertain extent of the numerical model) and assumptions
of unknown validity regarding the selected model parameters, boundary conditions, governing physical
equations and model order. Legault et al. [55] make a distinction between deliberate simplifications
made by the modeler (e.g. based on the desired complexity and fidelity of the model) and unintended

simplifications, resulting from a lack of understanding of the system. Uncertainties related to the
mathematical algorithms used to compute the output, such as discretization error (e.g. for FE models)
and approximation error (e.g. when sampling or simulation methods are applied) can be interpreted
as model structure error as well.
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� Model code uncertainty, also referred to as numerical uncertainty or technical model uncertainty, is
usually ignored as it is typically assumed to only account for a negligible part of the modeling error. It
is described as the uncertainty that results from errors in the computer implementation (i.e. software or
hardware errors). Kennedy and O’Hagan [54] and O’Hagan and Oakley [56] argue that approximation
error should be categorized as model code uncertainty, as it results from an effort to numerically
approximate the model output after the model structure has been decided upon. Most often, however,
approximation error is classified under model structure uncertainty, and model code uncertainty is
assumed negligible.

Due to model uncertainty, a discrepancy arises between the model predictions GM(θM) and the true
system output d; this difference is defined as the modeling error ηG:

ηG = d−GM(θM) or d = GM(θM) + ηG (17)

The presence of modeling error implies that the structural model class never contains the true structural
system.

3.2. Uncertainty related to the experimental data

Since model updating makes use of observational data, the most obvious source of uncertainty relates
to measurement or experimental error. This error can be random measurement noise, or it can be a bias or
systematic error caused by imperfections in the measurement equipment or setup, or during the subsequent
signal processing. Measurement error forms a source of discrepancy between the observed structural behavior
d̄ and the real structure response d; in the following, this difference is defined as the measurement error ηD:

ηD = d̄− d or d̄ = d+ ηD (18)

In FE model updating, the experimental data (i.e. modal characteristics) are extracted from time-domain
vibration data using system identification methods [22]. In these methods, a linear time-invariant (LTI) sys-
tem is selected to approximate the true system, which is then employed to identify the modal characteristics.
Besides measurement noise, a number of factors can result in uncertainty on these extracted modal data,
e.g. the finite nature of the data, filtering of the data, the selected model order and the chosen LTI model
structure. It is clear that the measurement error is in this case partly caused by a form of model (structure)
uncertainty regarding the chosen LTI system. Typically these uncertainties give rise to a bias of the model
(resulting e.g. in identification of spurious modes), bias of the modes, and variance errors. In most situations,
making use of stabilization diagrams and careful selection of the model order can resolve the bias errors,
whereas the variance error on the modes cannot be reduced. It can, however, be estimated, e.g. using the
method developed by Reynders et al. [57].

3.3. Combining measurement and model uncertainty

Eliminating the (unknown) true system output d from equations (17) and (18) results in:

GM(θM) + ηG = d̄− ηD (19)

This equation illustrates that the model prediction corrected by the modeling error ηG is equal to the
numerical observations corrected by the measurement error ηD. Therefore, each side of the equation forms
an expression for the true unknown output of the system. When both errors are collected on the right hand
side of this equation, the total observed prediction error η is obtained as the difference between the model
predictions and the observed quantities:

d̄−GM(θM) = ηG + ηD = η (20)

Due to the presence of measurement and modeling error, the true system behavior and predictions made
by the model are uncertain, meaning that the results of a model updating procedure are by definition also
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uncertain. In order to quantify and account for these uncertainties, a number of different approaches may
be applied; the above expression (20) serves as a starting point for all uncertainty quantification approaches
for model updating.

3.4. Modeling of uncertainties

Methods aimed at uncertainty quantification can generally be classified into two main categories: proba-
bilistic and non-probabilistic approaches. The first category represents the classical approach for uncertainty
modeling, set on the firm foundations of probability theory, where uncertainty is modeled by appointing
probability density functions (PDFs) to uncertain quantities; these PDFs are then propagated to proba-
bilistic descriptions of the outputs of interest. These so-called parametric approaches are well-established
in structural and mechanical engineering; comprehensive reviews on stochastic mechanics can be found in
the works of Schuëller et al. [58–61] and special issues of Computer Methods in Applied Mechanics and
Engineering [62], Computers and Structures [63] and Probabilistic Engineering Mechanics [64]. One of the
most widely used approaches in mechanics is the stochastic finite element method (SFEM) [65, 66]. More
recently, the so-called non-parametric approach was developed by Soize [67, 68]. This methods makes use
of random matrix theory [69] to construct a probabilistic model of the prediction model operator GM. Al-
though Legault et al. [55] describe some reservations regarding the physical implications of the method, the
nonparametric approach has a wide application domain [70].

Specifically for uncertainty quantification in inverse problems, many alternative probabilistic strategies
are available. Here, a distinction can be made between classical methods and Bayesian methods. The clas-
sical methods are based on estimating some statistics of the parameters (e.g. mean values and/or covariance
matrices) so that the statistics of the output of the model correspond in some optimal way to the statistics of
the observed data. This can be done analytically (i.e. classical statistical inference methods [71, 72], recent
applications in [73, 74]) or numerically (i.e. stochastic model inversion, applications in [75–78]). Methods
characterizing the parameter uncertainty by the mean values and covariance matrices have as advantage
that these low-order statistics can generally be computed more easily and at a lower computational cost
than in the case where a full probabilistic model is considered. An alternative classical approach consists in
the deterministic inversion of a large number of data points, and constructing a suitable probabilistic model
of the parameters (recent applications in e.g. [81–84]). It is clear that this approach requires a large amount
of repeated measurements, and in most cases only allows incorporating variability in the observations.

The Bayesian inference approach was introduced in structural dynamics by Beck et al. [85], and comple-
ments the probabilistic model description with a probabilistic model for the prediction error η; this model
then represents both the measurement and modeling uncertainty. Using the well-known Bayes’ theorem,
prior probabilistic models, which are constructed based on the a priori available information, can be trans-
formed into posterior models, using the available experimental data and the probabilistic prediction error
model. The Bayesian approach is particularly suited for inverse problems, and will constitute the main topic
of section 4.

The last decades saw a surge in non-probabilistic methods for uncertainty modeling, in response to some
apparent drawbacks/limitations of the probabilistic method related to the construction of the PDFs and
modeling of epistemic uncertainty. Most well-known are the interval analysis approach, convex modeling
and fuzzy set theory; this latter approach is discussed in detail in section 5. Interesting applications of
the interval approach in structural mechanics and dynamics can be found in Rao and Berke [86], Muhanna
and Mullen [87] and Moens et al. [88]. In recent years, the interval approach has also been applied for FE
model updating, see e.g. Gabriele and Valente [89], Garćıa et al. [90] and Khodaparast et al. [91, 92]. The
interval method can be seen as a specific case of the more general convex modeling approach, coined by
Ben-Haim and Elishakoff [93], where it is assumed that the uncertain quantities lie within a convex region.
Applications of this approach in structural engineering can be found e.g. in[94, 95].

Besides pure non-probabilistic methods, a class of mixed or hybrid approaches evolved as well. The most
commonly used methods include probability bound analysis [96] (also referred to as p-box approach, method
of lower and upper previsions [97] or interval probabilities [98]), random set theory [99, 100] (also referred to
as evidence theory), and fuzzy randomness [101–104]. Mixed methods are not treated in the present work.
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4. Bayesian FE model updating

Bayesian methods are founded on the well-known Bayes’ theorem, introduced in the 18th century by
Thomas Bayes [105] and generalized later by Pierre-Simon Laplace [106] into its currently known form.
The theorem expresses conditional probability, or, very generally, the probability of statement A given
statement B. Depending on the employed interpretation of probability, the meaning of Bayes’ theorem
differs significantly. In the so-called frequentist interpretation pertained in classical statistics, probability is
interpreted as a measure for the (long-term) frequency of the occurrence of a certain event. Then, Bayes’
theorem expresses the proportion of events A that occur, given the occurrence of another event B. In
Bayesian statistics, on the other hand, probability is assumed to reflect the relative plausibility or degree of

belief attributed to a certain event, hypothesis or proposition, given the current state of information. In this
interpretation, the Bayes’ theorem forms a mathematical basis for adjusting or updating the probability of
a certain hypothesis (A) as more evidence or data (B) on the hypothesis becomes available – this form of
statistical inference is referred to as Bayesian inference. It is clear that only this Bayesian interpretation
– often also termed the Cox-Jaynes interpretation [107, 108] – is meaningful in the interest of forming
inferences regarding e.g. model parameters based on observed data. Moreover, the Bayesian interpretation
automatically provides a rigorous framework for uncertainty quantification: the degree of belief attributed
to a certain quantity in effect reflects the uncertainty that is believed to be associated with that quantity.
Note that this interpretation also avoids the need for the classical distinction between aleatory and epistemic
uncertainty [51]; in fact, all uncertainties are presumed as epistemic [56].

Due to the method’s extensive application field and long history, a vast amount of literature is available on
Bayesian inference; in the last few decades, important reference works in the context of model updating were
developed by Beck and Katafygiotis [85, 109], Katafygiotis et al. [110], Beck [111], Jaynes [108], Mosegaard
and Tarantola [112, 113], Box and Tiao [114], Peterka [115] and Kennedy and O’Hagan [54].

One of the most popular uses of Bayesian inference in civil and mechanical engineering is structural
health monitoring (SHM), where Beck and co-workers may form the most well-represented group in terms
of reference publications. Vanik et al. [116] applied the method set out by Beck and Katafygiotis [85] for
SHM purposes in 2000, and showed that the Bayesian approach allows to obtain updated probabilities of
model parameters as well as probabilistic damage measures, based on observations of structural behavior.
In the following years, Beck et al. [117], Yuen et al. [118–120], Ching et al. [121–123] and Cheung et al. [124]
employed this approach in many applications, demonstrating and extending the method’s applicability and
efficiency for many types of structural (finite element) models. Papadimitriou et al. [125] and Choi et al. [126]
used Bayesian inference to obtain structural reliability updates; Sohn and Law [127, 128] used the approach
to compute probabilities of different damage scenarios.

The present work will elaborate the specifics of the application of Bayesian inference for uncertainty
quantification in finite element model updating.

4.1. Probabilistic uncertainty modeling

As mentioned above, the basic principle behind the Bayesian method is that, besides the uncertain
model parameters θM ∈ R

NM , the measurement and modeling errors are modeled as random variables as
well. PDFs are appointed to ηG and ηD, which are parameterized by parameters θG ∈ R

NG and θD ∈ R
ND .

These parameters are added to the structural model parameters θM to form the general model parameter
set θ = {θM; θG; θD} ∈ D ⊆ R

Nθ . This in fact corresponds to adding two probabilistic model classes to the
structural model class MM to form a joint model class M = MM ×MG ×MD, parameterized by θ. This
procedure of probabilistic modeling is commonly referred to as stochastic embedding [111, 129].

4.2. Bayes’ theorem for model updating

Bayesian inference allows for the updating of the probabilities of the unknown parameters θ characterizing
a certain joint model class M when some observations d̄ become available. This is done through the well-
known Bayes’ theorem of conditional probability:

p(θ | d̄,M) = c p(d̄ | θ,M) p(θ | M) (21)
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In this equation, p(θ|d̄,M) is the updated or posterior PDF of the model parameters given the measured
data d̄ and the assumed model class M; p(d̄|θ,M) is the PDF of the observed data given the parameters
θ; and p(θ|M) is the initial or prior PDF of the parameters. In the following, the explicit dependence on
the model class M is omitted in order to simplify the notations. The normalizing constant c ensures that
the posterior PDF integrates to one, so that:

c−1 =

∫

D

p(d̄ | θ) p(θ)dθ (22)

This integral is equal to p(d̄|M), which is often referred to as the evidence for model class M and plays a
determining role in Bayesian model class selection [130, 131].

4.3. The prior PDF

The prior PDF p(θ) reflects the probability of model parameters θ in the absence of observed information;
it is obtained independently of current measurement results. In many cases, this PDF is chosen based on
engineering judgment. A common criticism that arises in this context is the problem of arbitrariness or
subjectivity, i.e. there is no guarantee that two observers with the same prior information will conclude to
the same prior PDF. This is very relevant since the prior PDF can have a significant influence on the results
of the Bayesian scheme, especially in applications where the data set is small or not very informative. In
situations where a large amount of informative observations is at hand, the choice of the prior PDF is not
extremely determinative, since almost any prior which is smooth in the region of high likelihood (see below)
will lead to similar final conclusions.

Over the last few decades, a multitude of methods aimed at obtaining theoretically consistent prior PDFs
was developed; interesting review papers can be found in the works of Jaynes [132], Bernardo [133] and Berger
[134]. A well-established approach is that of conjugate priors [135], where the prior PDF is chosen (based on
the likelihood function) in such a way that the posterior PDF belongs to the same family of distributions. For
instance, adopting a Gaussian prior when the likelihood is Gaussian will result in a Gaussian posterior PDF;
it is said that the family of Gaussian distributions is self-conjugate. The main advantage of this approach is
that it facilitates the exact computation of complete posterior distributions substantially, a non-negligible
issue in the pre-computer era. The conjugate prior approach remains relevant, however, as it allows for
improved insight into how exactly the data alter or update the prior PDF. Other approaches start from the
premise that the prior PDF should add as little information as possible to the available prior information.
Early methods were mainly based on invariance requirements, which led e.g. to the commonly used Jeffreys’
prior [136], that assigns a uniform prior distribution to the logarithm of continuous positive variables. The
last few decades saw a rise in more formal definitions of avoiding adding information through the prior,
mainly based on information-theoretical criteria. For instance, Bernardo [133, 134] introduced the concept
of reference priors, which aim to maximize the expected Kullback-Leibler divergence of the posterior PDF
with respect to the prior.

The most widely used method, however, chooses the prior PDF based on the principle of maximum
entropy, introduced for Bayesian inference by Jaynes in 1957 [137, 138] and elaborated in recent years
by Gull [139] and Soize [140, 141]. The maximum entropy (ME) principle expresses that the probability
distribution which best represents the current state of knowledge on some parameters θ is the distribution
which results in the largest information entropy hpr. It can be shown that a certain state of information
will correspond to a single maximum entropy distribution. The ME procedure leads e.g. to a uniform prior
PDF when it is known that a parameter is non-zero over a finite range of values in a certain interval. When
the a priori available information consists of a finite mean value and finite variance of (log) θ, it can be
shown that the ME principle leads to a (log-)normal distribution. For multivariate cases, the maximum
entropy principle always leads to independent prior variables, which means the joint prior PDF of θ is
constructed as the product of the marginal prior PDFs of the individual parameters θj . In structural
dynamics applications, the parameters θj often concern stiffness values, which are a priori known to have
a positive support; furthermore, in order to ensure that the response attains finite variance, θj and 1/θj
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should in this case be second order variables [142]. It can be shown that given this prior information, the
ME principle yields a gamma distribution.

4.4. The likelihood function

The PDF of the experimental data p(d̄|θ) can be interpreted as a measure of how good a model succeeds
in explaining the observations d̄. As this PDF reflects the likelihood of observing the data d̄ when the
model is parameterized by θ, it is also referred to as the likelihood function L(θ|d̄). Since the data set d̄ is
fixed, this function in fact no longer represents a conditional PDF, and can be denoted as L(θ; d̄); in the
following, however, the common notation of L(θ|d̄) is retained. The likelihood function can be determined
according to the law of total probability and equations (17) and (18) using the probabilistic models of the
measurement and modeling errors:

p(d̄ | θ) ≡ L(θ | d̄) =
∫

RN

pd̄(d̄ | θ,d) pd(d | θ) dd (23)

=

∫

RN

pηD
(d̄− d | θD) pd(d | θ) dd (24)

=

∫

RN

pηD
(d̄− d | θD) pηG

(d−GM(θM) | θG) dd (25)

where pηD
(d̄−d|θD) corresponds to the probability of obtaining a measurement error ηD, given the PDF of

ηD parameterized by θD, and where pηG
(d−GM(θM)|θG) represents the probability of obtaining a modeling

error ηG when the PDF of ηG is known and parameterized by θG. In this derivation, it is implicitly assumed
that the modeling error and measurement error are independent variables.

The above equation (24) shows that the likelihood function can be computed as the convolution of the
PDFs of the measurement and modeling error. When no information is available on the individual errors,
the likelihood function can be constructed using the probabilistic model of the total prediction error η,
parameterized by θη:

p(d̄ | θ) ≡ L(θ | d̄) = p(d̄−GM(θM) | θ) = p(η | θη) (26)

Contrary to the prior PDF, the construction of the likelihood function has received much less attention
in recent research, even though it has a significant influence on the Bayesian updating results. This is
mainly due to the fact that most often very little or no information is at hand regarding the characteristics
of the error(s); only in selected cases, a realistic estimate can be made concerning the probabilistic model
representing the prediction error, for instance based on the analysis of measurement results. Usually, it
is simply assumed that the probabilistic model of the prediction error is known and fixed, so that the
parameter set reduces to θ = {θM} ∈ R

NM . In structural dynamics applications, an uncorrelated zero-mean
Gaussian model (i.e. “white noise”) is typically selected to represent the prediction error. This model has
the advantage of improving tractability of expressions and computations considerably; furthermore, it is
supported by the ME principle: it maximizes the entropy with respect to the prediction error η (and not

with respect to the model parameters θ). However, in some applications this white noise model may not
be appropriate, for instance when the errors show correlations (e.g. when densely populated sensor grids
are used) or a systematic component (e.g. due to modeling error or faulty measurement equipment/setup).
Moreover, the magnitude of the errors is often unknown.

In order to avoid incorrect or unsuitable assumptions, and thereby unfairly influencing the Bayesian
updating results, one can alternatively make use of the available observed data to try and identify (charac-
teristics of) the prediction error. Several levels of identification are possible; for instance, it can be opted to
make a reasonable assumption regarding the model class, and include the error parameters in the Bayesian
scheme. Most often, variance parameters of uncorrelated zero-mean Gaussian models are included, see for
instance works by Christodoulou and Papadimitriou [35, 143, 144] and Zhang et al. [145], but correlation
parameters such as correlation lengths can be included as well [146]. Other similar identification approaches
try to estimate (parameters of) a systematic error, see e.g. methods suggested by Kennedy and O’Hagan
[54] and Gardoni et al. [147].
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A second category of identification approaches makes use of Bayesian model class selection (MCS) [130,
131], where the Bayesian inference scheme is applied at model class level to determine, among several
alternative model classes, the model class that is most suitable based on the available information. Within
this second category of methods, two routes can be followed. Firstly, it could be decided to use MCS to
differentiate between several alternative prediction model classes MM, in an effort to eliminate – or at least
reduce – the model (structure) error. This is a very popular approach (see e.g. [148–150]), but still requires
the selection of a suitable probabilistic model for the remaining model parameter error. A second alternative
approach consists of applying Bayesian model class selection to determine the most suitable probabilistic
model class to represent the prediction error based on the information at hand. For further details and
applications, the reader is referred to [146, 151].

4.5. The posterior PDF

When the prior PDF and likelihood function are determined, equation (21) allows for the updating of
the PDFs of the model parameters based on experimental observations of the system. For most practical
applications where multiple parameters are involved, computing the joint and marginal PDFs requires
solving high-dimensional integrals, therefore use is often made of approximate measures (section 4.5.3) or
sampling methods such as Markov chain Monte Carlo (MCMC) methods (section 4.5.4). In selected cases,
the posterior PDF can be determined analytically, for instance when conjugate priors are used (as e.g. in
section 4.5.2), or numerically, for instance when the number of parameters remains limited to a few.

Once the posterior PDF is computed, estimated or approximated, it can be used to obtain information
on the so-called resolution of the parameters through the Bayesian scheme, i.e. how much the uncertainty
on the parameters is reduced by the observed data and prior information. A resolution analysis typically
includes comparing standard posterior statistics (mean values, standard deviations, covariance matrices),
and can be complemented by performing an eigenvalue analysis to help identify well-resolved features or
parameter combinations [152].

4.5.1. Relation to deterministic model updating

The Bayesian model updating approach also provides important insight into the often ill-posed determin-
istic model updating problem (section 2.3). This is most easily demonstrated by considering the maximum
a posteriori (MAP) estimate, i.e. the peak or mode of the posterior PDF. The MAP estimate is defined as
the parameter set that maximizes the posterior PDF, or, equivalently, minimizes the negative log posterior
PDF:

θ̂MAP = argmin
θ

FMAP where FMAP = − logL(θ | d̄)− log p(θ) = FML + FMAPr (27)

Assuming a zero-mean Gaussian prediction error characterized by a covariance matrix Ση, the maximum
likelihood (ML) objective function FML in the MAP objective function equals:

FML = − logL(θ | d̄) = 1

2
ηTΣ−1

η η (28)

It is clear that solving a least squares problem as stated in equation (28) in fact corresponds to solving a
classical deterministic model updating problem as defined in equation (5), as the objective function aims
to minimize the discrepancy between model predictions and measured data. The weights given to the
discrepancies are inversely proportional to the appointed error variances, which corresponds to giving more
weight to more accurate data.

Furthermore, it is easy to see that the second term FMAPr in objective function FMAP in fact corresponds
to a regularization term, based on the prior information available. As such, the deterministic counterpart
of the Bayesian inference scheme incorporates regularization in a natural way, without having to revert to
re-parameterization or other standard regularization methods that require additional decision-making and
may appear heuristic. Moreover, information contained in the prior PDF (e.g. positivity of the parameters)
is automatically enforced in the deterministic optimization scheme.
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4.5.2. Linear model with a Gaussian prior and prediction error

Suppose the prediction model GM is a linear model (in terms of θM), so that its output can be written as
JθM. It is assumed that the probabilistic model of the prediction error η = d̄−JθM is a zero-mean Gaussian
model, characterized by Ση, which reduces the total parameter set to θ = θM. A priori, the parameter set
θ is assumed to be a Gaussian random variable characterized by a mean value θpr and a prior covariance
matrix Σθ,pr. As both the prior PDF and the likelihood function are Gaussian, the posterior PDF will also
have a Gaussian distribution, characterized by a mean value θpo and a covariance matrix Σθ,po, which can
easily be verified to be equal to:

θpo =
(
JTΣ−1

η J+Σ−1
θ,pr

)−1 (
JTΣ−1

η d̄+Σ−1
θ,prθpr

)
(29)

Σθ,po =
(
JTΣ−1

η J+Σ−1
θ,pr

)−1

(30)

It is interesting to observe that the posterior mean value is obtained as a weighted average of the data set
d̄ and the prior mean value θpr, where the relative weights are determined by the prediction model and
error covariance, and by the prior covariance, respectively. Moreover, it can be noted that the posterior
covariance matrix is in this case independent of the posterior mean value θpo and the data d̄.

The expressions for the posterior mean value and covariance matrix in this particular case are equivalent
to the Kalman filter equations with optimal Kalman gain [153]. Therefore, this Gaussian linear Bayesian
inference scheme can in fact be interpreted as a single-step Kalman filtering procedure. Vice versa, the
standard Kalman filter can be seen as a special case of the Bayes filter [154] commonly used in robotics.

4.5.3. Asymptotic approximations

Papadimitriou et al. [155] and Beck and Katafygiotis [85] show that, when a large amount of data
is available, the posterior PDF can be approximated asymptotically by a Gaussian PDF centered at the
maximum a posteriori or MAP point and characterized by covariance matrix Σ̂θ,po, i.e.:

p(θ | d̄) ≈ N (θ̂MAP, Σ̂θ,po) (31)

The MAP estimate was defined above in equation (27); the approximate covariance matrix Σ̂θ,po is computed
as the inverse Hessian of the MAP objective function FMAP, evaluated at the MAP point:

Σ̂−1
θ,po = ∇2

θFMAP

∣∣
θ=θ̂MAP (32)

In many optimization algorithms, the Hessian of the objective function FMAP is computed as a by-product
in the solution of the optimization problem defined in equation (27), see section 2.3. As the data set grows,
the posterior PDF eventually becomes independent of the prior PDF: the information contained in the prior
PDF becomes irrelevant as it ultimately gets overwhelmed by the data. This is a well-known phenomenon
in Bayesian inference, described in the Bernstein-von Mises theorem and forming the basis for the original
formulation of the asymptotic expressions in [155].

For a linear prediction model and a Gaussian prior and prediction error model, the asymptotic moments
in equations (27) and (32) are exact and identical to the expressions (29) and (30). In other cases, the ap-
proximations can be used as a cost-effective alternative to computationally demanding methods (e.g. MCMC
sampling), for validation of results obtained by other approaches or as a way to perform an initial recon-
naissance of the posterior updating results.

4.5.4. Sampling methods

Markov chain Monte Carlo (MCMC) sampling methods [156–158] probably form the most popular sam-
pling techniques in Bayesian inference; most often the Metropolis-Hastings (MH) algorithm [159] is em-
ployed to sample the posterior PDF p(θ|d̄). In recent years, a number of methods was developed in order
to improve the convergence speed of the classical MH sampling routine. The most commonly implemented
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include adaptive MH MCMC or AM-MCMC [160], delayed rejection or DR-MCMC [161–163], and the hy-
brid DRAM-MCMC [164]. Another class of improved MCMC approaches involves a gradual or sequential
sampling strategy, where the method developed by Au et al. [165] and Beck and Au [166], and the transi-
tional MCMC (or TMCMC) method [167] belong to the most popular. Finally, it should be mentioned that
the parallelization of MCMC routines can greatly accelerate the sampling procedure. Interesting methods
aimed at Bayesian inference include parallel TMCMC [168], and MCMC approaches based on evolutionary
algorithms such as DE-MC [169] and DREAM [170].

4.6. Example application: UQ in the damage assessment of a reinforced concrete beam

In this section, Bayesian FE model updating is applied to the reinforced concrete beam example intro-
duced in section 1.3 in order to quantify the uncertainty on the FE model updating results. A prior parameter
PDF is updated to a posterior parameter PDF through the likelihood function, which is constructed based
on the observed data d̄ (section 2.4) and the prediction error specifications.

4.6.1. Prior PDF

The physical model parameter vector θM corresponds to the set of 10 substructure stiffness parameters
of the beam (figure 4). The joint prior PDF is determined using the maximum entropy principle (section
4.3); this leads to a priori independent gamma-distributed variables [142], meaning that the prior PDF is
given as:

p(θM) =

NM∏

j=1

p(θMj) =

NM∏

j=1

θ
αj−1
Mj

β
αj

j Γ(αj)
exp

(
−θMj

βj

)
(33)

Shape factors αj and scale factors βj are chosen equal for all parameters; their values are computed based
on an assumed prior mean value µ = 37.5 GPa and standard deviation σ = 20 GPa.

4.6.2. Likelihood function and prediction error model

The likelihood function is constructed using the probabilistic models of the measurement error and the
modeling error. In this particular case, some information is available regarding the measurement error
ηD: the SSI technique applied to extract the modal characteristic from the time-domain vibration data
also allows for the estimation of uncertainty bounds on the measurement results. A covariance matrix
ΣD characterizing a zero-mean Gaussian measurement error can be estimated from a single set of time-
domain data [57]. This measurement error predominantly comprises the estimation error due to the signal
processing. For the RC beam, it is found that these signal processing error variances are relatively small: the
maximum coefficient of variation σ/µ reaches about 2% for the frequencies, and the mode shape variances
are 4 to 5 orders of magnitude smaller than the mode shape components. The estimated covariances are not
taken into consideration, due to the setup-based data acquisition: the data were constructed by combining
experimental data obtained in 6 different setups, where 12 sensors were used in each setup. Therefore, the
estimated covariances between mode shape components do not cover the whole range of DOFs along the
beam, and prove not very informative.

For the modeling error ηG, it is known that it is indubitably present, but no information is available
regarding its nature or magnitude. It is therefore assumed that the modeling error ηG is a fixed zero-mean
Gaussian variable characterized by covariance matrix ΣG. The modeling errors of all data components are
assumed to be statistically independent, so that the ΣG is a diagonal matrix with variances σ2

i as diagonal
elements. The variances are taken proportional to the measured values: for an eigenvalue λr, the standard
deviation σλ,r is assumed to be proportional to the measured value λ̄r, i.e. σλ,r = σλλ̄r.

For the mode shapes, all No mode shape components in the vector φr are appointed the same standard
deviation σφ,r proportional to the norm of the measured mode shape vector: σφ,r = σφ ‖ φ̄r ‖. This is done
to avoid appointing very small standard deviations (i.e. large weights) to mode shape components close to
zero. Moreover, this assumption automatically compensates for the number of mode shape components.
The standard deviation can be rewritten as σφ,r = σφ

√
Noφ̄

RMS
r with φ̄RMS

r the root mean square (RMS)
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or quadratic mean value of the mode shape vector which can be interpreted as a measure of the magnitude
of the mode shape. As more components are added for the same mode, the standard deviation increases
(and weight given to the components therefore decreases), which avoids that the mode shape content would
eventually dominate the frequency content as more mode components are added to the data set. Many
authors explicitly compensate for this effect (e.g. by multiplying standard deviations by No).

In the current application, the dimensionless parameters σλ and σφ are both taken equal to 0.01. In
other words, the modeling error is assumed to cause up to one percent deviation on the nominal model
prediction values; this can be interpreted as an adopted model confidence measure.

Using these assumptions, the likelihood function is constructed as:

L(θM | d̄) ∝ (det(ΣD +ΣG))
−1/2

exp

[
−1

2
FML

]
(34)

where the maximum likelihood function FML is equal to:

FML = (ηD + ηG)
T (ΣD +ΣG)

−1 (ηD + ηG) (35)

=
(
G(θM)− d̄

)T
(ΣD +ΣG)

−1 (
G(θM)− d̄

)
(36)

4.6.3. Results of the Bayesian updating scheme

The joint posterior PDF is sampled using a Markov chain Monte Carlo method, where the Metropolis-
Hastings algorithm is implemented (section 4.5.4). Convergence is reached after about 300 000 samples;
these are used to estimate the posterior marginal densities of all model parameters using kernel density
estimation.

In figure 6a, a contour plot of the resulting normalized marginal posterior PDFs of the 10 model param-
eters (multiplied with the moment of inertia I to correspond to the bending stiffness EI) is shown; figure
6b shows the PDFs of the second and eighth substructure stiffnesses. The Bayesian scheme clearly succeeds
in identifying and localizing the damage at about 4 m; the extent of the maximum a posteriori stiffness
reduction corresponds quite well to the deterministic results. The stiffness parameters towards the outer
ends of the beam are quite poorly resolved for both damage states, which means in these areas very little
information is gained from the experimental data. A slightly higher resolution is found in the damaged
areas; this can be explained by the fact that the damage induces higher modal curvatures in these zones.
Therefore, the experimental data are more sensitive to stiffness changes in these areas and provide more
information for the model calibration scheme.
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Figure 6: (a) Contour plots of the normalized marginal posterior PDFs, within their 99% confidence intervals, of the bending
stiffness along the beam, and (b) prior (dashed line) and posterior PDF of substructure stiffnesses θM2 (thin solid line) and
θM8 (thick solid line).
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5. Fuzzy FE model updating

Even though the probabilistic approach is generally seen as the most comprehensive technique to effec-
tively deal with uncertainties, it is often stated that it is not particularly appropriate for modeling epistemic
uncertainty [171, 172]. The argumentation behind this relates to the specification of the (joint) PDFs de-
scribing the uncertain quantities: it is argued that sufficient qualitative information for composing a truthful
and representative probabilistic model is seldom available. For instance, parameter values are often uncer-
tain in the sense that they are known to be “about” a certain value or within a certain interval, and often
even less is known regarding possible interactions or dependencies between quantities. Several methods such
as bootstrap or jackknife resampling [173] and the principle of maximum entropy (section 4.3) have been
suggested as effective means to deal with insufficient information, but it is often argued that in many cases
the selection of PDFs remains quite arbitrary. This reasoning has stimulated the development of a wide
array of non-probabilistic (and mixed) uncertainty modeling approaches.

The literature regarding alternative strategies for modeling (epistemic) uncertainty is well-established,
see for instance reviews by Helton et al. [174], Oberguggenberger [175], Möller and Beer [171], Ross et
al. [176] and Bernardini and Tonon [177], comparative studies and discussions by Bae et al. [178], Ferson
[179], Oberkampf [180], Elishakoff [181–183] and Langley [184], and a special edition of the Journal for
Applied Mathematics and Mechanics (Zeitschrift für Angewandte Mathematik und Mechanik) [185].

Most non-probabilistic methods are based on interval analysis, where uncertainty on variables is repre-
sented by a certain value range, which is then propagated to (interval-valued) outputs of interest. One of
the most popular extensions of interval analysis is fuzzy set theory, originally attributed to Zadeh [186]. It
provides a method for uncertainty modeling in situations where besides interval bounds, confidence values
or degrees of belief regarding the uncertain quantities are available (or desired). In fuzzy set theory, the
classical binary concept of a set (i.e. an element either belongs to a set or not) is replaced by a more intuitive
description of sets, where membership is gradual and determined by a so-called membership function µx̃

(figure 7a). The power of the fuzzy method lies in the gradual description of membership, which can be
interpreted differently depending on the specific application. One of the most common interpretations of
membership is that of a measure of uncertainty or plausibility, since this provides a framework to apply
fuzzy set theory in the interest of uncertainty quantification (UQ). Therefore, in the present work, only this
interpretation of membership will be considered. For further discussions on fuzzy semantics the reader is
referred to the works by Dubois and Prade [187], Degrauwe [188] and Oberguggenberger [189].

Reference works on fuzzy set theory were developed by Kaufmann [190], Zadeh [191] and Zimmerman
[192]. In a structural engineering context, UQ in structural (FE) analysis and structural design form the
most prominent application areas of fuzzy set theory; reviews can be retrieved in Degrauwe [188] and Beer
[193, 194], respectively. Convex models of uncertainty were considered by Ben-Haim et al. [16] in a method
developed for evaluating the usability of models based on the robustness to uncertainties of decisions resulting
from the model predictions. In the same line of thought, a method was developed by Ben-Haim [195] that
allows assessing the value of information provided by model updating. Applications of fuzzy set theory in
structural analysis can be found e.g. in [196–198], applications in structural design are retrieved in [199–
201]. Fuzzy set theory was furthermore applied extensively for UQ in structural dynamics, e.g. by Moens
et al. [202], Degrauwe et al. [203], Adhikari et al. [204], Chowdhury and Adhikari [205] and Khodaparast et
al. [206]. Another popular application area is formed by fuzzy reliability analysis [207–211].

Only in recent years, fuzzy set theory was introduced for UQ in inverse modeling; for instance, Haag and
Hanss et al. [212–214] developed a method to estimate fuzzy model parameters based on fuzzy observations,
using predominantly forward calculations. In the present work, two different approaches are discussed: the
classical nested approach, where fuzzy set theory is applied directly to the inverse problem, and a direct
approach that only requires forward computations. The following section 5.1 forms a preamble to this,
briefly presenting the specifics of fuzzy set theory and fuzzy computations.

5.1. Fuzzy sets and fuzzy numbers

The fuzzy approach consists in modeling every uncertain quantity x as a fuzzy number x̃, characterized by
a (convex) membership function µx̃ (figure 7a), and propagating these fuzzy inputs to the output quantities
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of interest. This is usually done through discretization of the fuzzy numbers into a set of Nα intervals or
so-called α-cuts [x̃]α (figure 7b); as such, a fuzzy number in fact represents a set of nested intervals, each
reflecting a different plausibility level α. Typically, fuzzy numbers are normalized so that all membership
values α lie within the interval [0, 1].
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Figure 7: (a) An example of a membership function µx̃ and (b) an α-cut of a triangular fuzzy number x̃ at level α.

Solving a fuzzy problem now consists in solving the following set of interval expressions:

∀α ∈ [0, 1] : [ỹ]α = f ([x̃1]α, . . . , [x̃N ]α) (37)

where an interval expression is defined as:

[ỹ] = f ([x1], . . . , [xN ]) = {y = f(x1, . . . , xN ) | xi ∈ [xi], i = 1, . . . , N} (38)

The challenge associated with discretized fuzzy problems (or any interval-based problem in general) lies
primarily in solving the interval problem defined in equation (37), as the two most important solution
methods both deal with substantial limitations. The first approach makes use of interval arithmetic, which
acts directly on the mathematical operators by generalizing them to interval operators. Although this
approach is computationally efficient, it exhibits the well-known dependency problem, where variables that
occur multiple times are interpreted as independent from one another, resulting in gross overestimations
in the obtained uncertainty bounds [215]. Other disadvantages of interval arithmetic arise in the actual
implementation of the method: generalizing implicitly defined operators (e.g. solving a differential equation
or an optimization problem) to interval operators often poses major challenges, and furthermore prevents
the use of existing software packages.

The second approach for solving interval problems (with continuous objective functions) aims to deter-
mine upper and lower bounds of the output quantities by reformulating the interval problem in equation
(37) as a constrained optimization problem:

∀α ∈ [0, 1] :

{
y−α = min f(x1, . . . , xN )
y+α = max f(x1, . . . , xN )

subject to xi ∈ [x̃i]α (39)

or, in vector notation:

∀α ∈ [0, 1] :

{
y−α = min f(x)
y+α = max f(x)

subject to x ∈ [x̃]α (40)

Through this reformulation, all function evaluations become deterministic, meaning that all types of func-
tions can be tackled, and an exact solution is obtained. Another advantage of the method is that – contrary
to the interval arithmetic approach – it is a non-intrusive method, meaning that all existing software for
evaluating the objective function can be employed without adaptations. An important disadvantage of this
method lies in the associated computational cost: optimization algorithms usually require a large number
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of function evaluations.
The optimization approach is most often adopted as solution strategy for expression (37), as the ad-

vantages of this approach usually far outweigh the benefits of using interval arithmetic. Several methods
can be applied to solve the constrained optimization problem (40), where general purpose global or local
optimization algorithms [216, 217] and vertex methods belong to the most popular. Vertex methods [218]
such as the (general and reduced) transformation method [219, 220] aim to find the optima of equation (40)
based on evaluating vertices of the hypercube defined through the α-cut intervals. These methods require
a monotonic objective function in order to obtain correct results, in which case very efficient algorithms
(e.g. the short transformation method [221]) may be obtained.

In recent years, several improved vertex methods were developed to tackle nonmonotonic function be-
havior in fuzzy problems, such as the maximum possibility search method by Choi et al. [199], the Taylor’s
expansion with extrema management method by Massa et al. [201], the gradual number method by Untiedt
and Lodwick [222] and the gradual α-level decreasing (GαD) algorithm by Degrauwe et al. [223]. A substan-
tial limitation of practically all vertex methods (except for the short transformation method) is that they
are only applicable to problems with a relatively limited number of uncertain variables N , say N < 20, as
they usually require a minimum of 2N function evaluations.

In cases when problem-specific vertex methods cannot be applied (e.g. for a large amount of input
variables), and general optimization algorithms become too costly (e.g. when a large number of expensive
function evaluations are required), response surface methods [224] provide a means to obtain a cost-efficient
approximate solution of the fuzzy interval problem. This is done by replacing the expensive function operator
by an approximate response surface, which is usually constructed through interpolation (e.g. Kriging [225]).
The reader is referred to [206, 226–230] for details on the response surface methods for fuzzy problems and
further applications.

5.2. Application of fuzzy set theory for model updating

In this section, two different approaches are presented to employ fuzzy set theory for uncertainty quantifi-
cation purposes in model updating. The main difference between the two strategies lies in the interpretation
of the objective of the uncertainty quantification problem, which can consist in either (1) finding the un-
certainty range on the deterministic model updating results, given the uncertainty on the data and model
predictions, or (2) assessing the uncertainty on the model parameters, given the uncertainty on the data and
model predictions. To both these goals, a suitable fuzzy solution strategy is presented in this section [151].

In either case, the first and most determining step consists in translating the existing uncertainties
into fuzzy input variables in such a way that the available information is modeled in a representative and
comprehensive fashion. As mentioned previously in section 3.3, the uncertainties or errors occurring in
model updating can be categorized into the modeling error ηG and the measurement error ηD. Therefore,
uncertainty regarding the model predictions and measurements can be modeled by modeling the respective
errors, or the total prediction error, as fuzzy numbers:

η̃ = η̃G + η̃D (41)

In order to avoid modeling both errors as fuzzy numbers – which could be cumbersome as e.g. the modeling
error is dependent on the considered parameter set – it could be suggested to shift all uncertainty to the
data. As such only the experimental data set needs to be modeled as a fuzzy number:

η̃ = η̃G + η̃D = GM(θM)− ˜̄d (42)

In the interest of clarity, a fuzzy experimental data set will be denoted as d̃ in the following.
Although some generic method have been proposed (e.g. [231, 232]), in practice a wide variety of ap-

proaches is used to specify a suitable membership function. In some cases, a membership function is
constructed based on some probabilistic measures such as estimated means and standard deviations or con-
fidence intervals, or even based on a complete (estimated) probability density function. It should in any
case be clear that the resulting membership values cannot be interpreted as probabilities. In most practical
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applications, however, the membership function is appointed some functional (linear) form, based on the
available information, leading e.g. to triangular or trapezoidal fuzzy numbers.

5.2.1. Nested fuzzy model updating

Suppose the aim is to employ fuzzy set theory as presented above to quantify the effect of uncertainties
on the outcome of the deterministic updating process as defined in equation (7). For notational efficiency,
this updating problem will be denoted as θ∗

M = gM(η), or, assuming a fixed model class, θ∗

M = gM(d̄).
Introducing this expression directly into equation (37) yields:

∀α ∈ [0, 1] : [θ̃∗

M]α = gM

(
[d̃1]α, . . . , [d̃N ]α

)
(43)

As this problem entails a multidimensional output vector θ∗

M ∈ R
NM , it can be reformulated as the following

optimization problem:

∀j, k :





(θ̃∗Mk)
−

αj
= min

d̄

[gM(d̄)]k

(θ̃∗Mk)
+
αj

= max
d̄

[gM(d̄)]k
subject to d̄ ∈ [d̃]αj

(44)

where d̄ ∈ R
N , j = 1, . . . , Nα and k = 1, . . . , NM. This means 2NM regular optimizations are required

at each α-level, except at the top level where a single optimization suffices; the total number of required
optimization routines therefore equals NM(2Nα − 1). As each function evaluation gM(d̄) also involves an
optimization, equation (44) in fact corresponds to a nested optimization scheme, hence the name of this
approach. The inner optimization determines the optimal model parameters for a certain set of experimental
data; the outer optimization problem determines the optimal sets of experimental data, within the defined
α-level intervals, that result in the extreme values of the updated model parameters.

It should be noted that solving the outer fuzzy model updating problem is non-trivial. Due to the high
number of input variables (here: the number of observations N), most vertex methods are not applicable as
they require evaluating the objective function for 2N binary combinations of the lower and upper interval
bounds of the N fuzzy input variables. Application of the short transformation method would not yield
accurate results as the objective function gM is in general not a monotonic function, but exhibits non-
smooth behavior with many local optima. This means that in order to obtain an accurate solution, only
general-purpose optimization routines remain; however, in this case the required computational effort is
substantial. The computation time can be reduced drastically by taking advantage of the fact that the
fuzzy problem can be parallelized very easily, as all NM(2Nα−1) outer optimization routines are completely
independent from one another; the fuzzy problem is therefore said to be embarrassingly parallel. Additionally,
computational effort could be lessened further by exploiting the fact that most likely, many of the required
forward computations involve solving identical forward problems.

5.2.2. Direct fuzzy model updating

When the aim of the UQ problem is instead to determine the uncertainty on the model parameters, given
the uncertainty on the model predictions and experimental data, it is easy to see that the inverse problem
defined in equation (7) in fact does not need to be considered. The problem can be solved by searching, at
each α-level, the extremal model parameters that result in a model output y = GM(θM) within the bounds

determined by the α-cut interval [d̃]αj
. This yields the following optimization problem:

∀j, k :





(θ̃∗Mk)
−

αj
= min

θM

θMk

(θ̃∗Mk)
+
αj

= max
θM

θMk

subject to GM(θM) ∈ [d̃]αj
(45)

where GM(θM) ∈ R
N , j = 1, . . . , Nα and k = 1, . . . , NM. This expression clearly makes use of forward

computations only. Intuitively, it would be easy to presume that this strategy provides a cost-efficient
alternative to the previously elaborated nested approach, but the significant conceptual difference between
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both methods should be noted. The direct formulation in equation (45) only considers physically feasible

points in the parameter space that satisfy the prediction model exactly, meaning that a one-to-one mapping
from parameter space to data (or error) space is inherently pertained. In other words, the residual between
the measured and computed data is always exactly zero. In the nested approach, however, the mapping gM
from data set to model parameters is not exact; rather, the residual between the two quantities is minimized.
As such, both strategies solve fundamentally different problems; the most suitable method is dependent on
the objective of the uncertainty quantification procedure.

5.2.3. Dependency considerations

A substantial issue associated with standard fuzzy set theory is its intrinsic incapability to take depen-
dency or interaction between fuzzy input variables into account. This means that fuzzy modeling always
yields the maximal (worst case) range on the output variables at each α-level, as it is implicitly assumed that
any combination of input variable values is equally plausible. In other words, solving e.g. the problem in
(44) produces the extreme values of the objective function, regardless of the (known) feasibility of the input
variable set. In FE model updating, for instance, an optimum may be found for a data set that includes
very large differences between neighboring mode shape displacements, which is physically highly unlikely.

One possible approach to overcome this problem is to make use of so-called interactive fuzzy numbers
[188, 233, 234], where dependency between variables is taken into account by modifying the joint member-
ship function to exclude physically infeasible or unlikely input combinations at each α-level. This in fact
corresponds to altering the N -dimensional box bounds in optimization problem (44) (or, more generally, in
problem (40)) to general convex bounds.

An additional dependency issue that is often overlooked when applying fuzzy modeling to multiple-output
problems, such as model updating problems, is that possible dependencies or interactions between output

variables are also neglected: the result of the fuzzy calculation is a number of independent fuzzy outputs.
Take, for instance, the optimization problem (44) for model updating problems. It is clear that each model
parameter is optimized individually, while all other parameters can vary unrestrictedly, which may result
in non-physically feasible parameter combinations. This issue can be circumvented by enforcing additional
constraints on the updating parameters.

5.3. Example application: UQ in the damage assessment of a reinforced concrete beam

In this section, the application introduced in section 1.3 is resumed in order to illustrate how fuzzy set
theory can be used to assess the effect of uncertainties on the results of a FE model updating scheme. In
order to take uncertainty into account, the experimental data d̄ are modeled as symmetric fuzzy numbers
d̃ with triangular membership functions, where the nominal values (i.e. with a membership value equal to
one) are taken to be the measured data d̄. The support intervals (at α = 0) are chosen based on the known
measurement error variance and an assumed value for the modeling error. The interval bounds at the other
α-levels are interpolated linearly, leading to the following α-cut expression for an observation d̃i:

[d̃i]α =
[
d̄i −∆D

α,i −∆G
α,i , d̄i +∆D

α,i +∆G
α,i

]
(46)

The respective contributions of the measurement error and modeling error, ∆D
α,i and ∆G

α,i, are defined as:

∆D
α,i = (1− α)zσ̄i (47)

{
∆G

α,i = (1− α)zσiλ̄i for d̄i = λ̄i

∆G
α,i = (1− α)zσi ‖ φ̄r ‖ for d̄i = φ̄r,k

(48)

In these expressions, σ̄i represents the estimated standard deviation of the measurement error associated
with d̄i; σi is a parameter that determines the magnitude of the modeling error, here all σi are taken equal
to 0.01. z = Φ−1(1 − β/2) = 2.58 is a factor to incorporate the 99% confidence interval of the errors into
the α-cut interval; Φ−1 denotes the normal inverse CDF, and β = 0.01.

In order to illustrate the above discourse regarding the two alternative strategies to fuzzy model updating,
both the nested and the direct formulation are applied for UQ in the particular case of the RC beam.
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Figure 8: Contour plots of the membership functions of the resulting bending stiffness parameters for (a) the nested approach
and (b) the direct approach. The black solid line represents α-level α = 0.75.
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Figure 9: Membership functions of the second and eighth stiffness value, both for the nested and the direct approach.

5.3.1. Nested formulation

In view of the comments above, some changes are made to the original deterministic FE model updating
routine as described in section 2.4. Firstly, lower and upper constraints are imposed on the values of the
model stiffness parameters, in this case θMk ∈ [0, 2θM0], where θM0 = 37.5 GPa. As such, it is avoided that
a single stiffness parameter for instance tends to a very high and unrealistic value due to the fact that it is
maximized individually without simultaneously considering the other stiffness values. Theoretically, a very
high stiffness value in a certain area of the structure could be compensated by unrealistically low stiffness
values in other areas, and vice versa.

Instead of the stiffness values themselves, correction factors are considered in order to improve the
stability of the deterministic updating routine. A correction factor aMk is defined from θMk = θM0(1−aMk).
The lower and upper constraints for the correction factors are now equal to −1 and 1, respectively. The
scaling to dimensionless parameters removes any effect of possible different orders of magnitude between the
individual updating variables, and ensures physically meaningful system matrices.

In the fuzzy FE model updating scheme, Nα = 5 α-levels are considered, resulting in a total number of
90 outer optimization routines, each requiring a number of calls to the objective function gM, each of which
in its turn requires a number of forward computations of the FE model. For the outer optimization routines,
the active set algorithm is selected. In order to solve expression (44) as expeditiously as possible, the
parallelization possibilities are maximally exploited. It is found that about 160 000 deterministic updating
schemes are needed, each of which in turn requires on average 15 forward FE computations, bringing the
total amount of required forward computations to about 2.5×106.

In figure 8a, contour plots of the resulting membership functions of the stiffness parameters (multiplied
by the moment of inertia) are shown; figures 9a and 9b show membership functions of the second and eighth
stiffness parameter (figure 4). It is immediately clear that at the lower α-levels, the upper constraints of the
stiffness parameters are reached for almost all parameters, which clearly shows the necessity of the bound
constraints on the stiffness values. Overall, a very similar stiffness pattern is found as in the deterministic
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case (figure 5). Further, larger uncertainties are found on the outer ends and in the center of the beam,
whereas smaller uncertainties are observed in the damaged zone around 4m (figure 8a). These findings are
consistent with the expectations and the previously obtained results.

5.3.2. Direct formulation

In expression (45), the constraints now depend on the values of the model parameters. It is important
to note that for the mode shape components a suitable scaling needs to be carried out: the computed
mode shapes are scaled so that a least squares fit is obtained with the corresponding upper or lower bound
of [d̃]αj

. Since triangular membership functions are adopted for the uncertain data d̃, the computations
are performed for the lowest four α-levels; for the top α-level no physically feasible solutions are found.
This means in total 80 parallel optimization routines are required, where the SQP algorithm with standard
tolerances is applied [45]. In total, the optimization only requires about 80 000 forward calculations of the
FE model, considerably less than the nested implementation.

Examining the results of the direct approach shown in figures 8b, 9c and 9d, it can be stated that the
trends found using the direct strategy are very similar to those obtained by means of the nested approach:
larger uncertainty at the outer ends of the beam and reduced uncertainty in damaged areas. However,
clearly less wide bounds are obtained compared to the nested implementation, due to fact that only feasible
points are considered in this approach, as discussed above. This difference in uncertainty bounds is found
to increase as the data intervals get narrower, that is, at higher α-levels.

6. Conclusions

This work addresses the treatment of uncertainties in model updating problems, with a specific focus
on vibration-based FE model updating in structural mechanics. The basic objective of model updating is
to calibrate parameters of numerical models based on experimentally observed data; in FE model updating
typically use is made of modal characteristics such as natural frequencies and mode shapes to update
stiffness parameters along a structure. As such, FE model updating allows for the detection, localization
and quantification of existing structural damage, and is therefore a popular methodology in a SHM context.
The inverse model updating problem is usually described as an optimization problem, where the goal is to
determine the set of model parameters that results in an optimal fit between the numerical model output
and the observational data. A detailed investigation of this optimization problem in section 2 revealed its
proneness to ill-posedness and ill-conditioning, indicating the sensitivity of the deterministic model updating
problem to ever-present measurement uncertainty and modeling uncertainty, as discussed in section 3.

Out of the multitude of available uncertainty quantification approaches, two of the most popular methods
are treated in detail: a probabilistic method based on Bayesian inference (section 4), and a non-probabilistic
interval-based method based on fuzzy set theory (section 5). Both approaches are fundamentally differ-
ent in nature, due to their contrasting interpretations of uncertainty; this implies their results cannot be
compared quantitatively, only qualitatively. However, both methods exhibit distinct merits and drawbacks
concerning their application for UQ in model updating. The fuzzy approach is in general not very com-
plex to implement and the results are often much more straightforward and intuitive to interpret than for
the Bayesian method. When the results obtained by this latter approach are properly processed, however,
they provide detailed information regarding the resulting uncertainty of the quantities of interest. Actu-
ally obtaining results of the probabilistic method can be quite challenging and computationally demanding,
e.g. when methods such as MCMC sampling are to be employed. The fuzzy approach, on the other hand,
only yields a worst-case scenario as dependencies between model parameters and/or experimental data can-
not be accounted for, contrary to the Bayesian approach, where interactions are automatically included.
The computational efficiency of both approaches is dependent on the adopted solution method and the
exploitation of parallelization possibilities.

In general, it can be concluded that the most suitable method is dependent on the nature and size of the
model updating problem, the available information, and – most importantly – the desired end purpose of
the uncertainty quantification procedure. When the objective is to study the worst-case effect of uncertainty
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on model updating results, e.g. for design or sizing purposes, the fuzzy approach seems a suitable means to
this end. In other cases, when detailed information is required regarding the resolution and interaction of
the parameters, the Bayesian approach is most suited.
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