
Minimizing the expected makespan of a
project with stochastic activity durations

under resource constraints

Stefan Creemers

IESEG School of Management
s.creemers@ieseg.fr

KU Leuven
stefan.creemers@kuleuven.be

Abstract

The resource-constrained project scheduling problem (RCPSP) has
been widely studied. A fundamental assumption of the basic type
of RCPSP is that activity durations are deterministic (i.e., they are
known in advance). In reality, however, this is almost never the case.
In this article we illustrate why it is important to incorporate ac-
tivity duration uncertainty, and develop an exact procedure to op-
timally solve the stochastic resource-constrained scheduling problem
(SRCPSP). A computational experiment shows that our approach
works best when solving small-to medium-sized problem instances
where activity durations have a moderate-to-high level of variability.
For this setting, our model outperforms the existing state-of-the-art.
In addition, we use our model to assess the optimality gap of existing
heuristic approaches, and investigate the impact of making scheduling
decisions also during the execution of an activity rather than only at
the end of an activity.

1

1 Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the
most widely studied scheduling problems. The basic type of RCPSP is to
find a precedence- and resource-feasible schedule (i.e., a vector of activity
starting times) that minimizes the makespan of a project. One of the funda-
mental assumptions of the basic type of RCPSP is that activity durations are
deterministic (i.e., they are known in advance). In reality, however, activity
durations are subject to considerable uncertainty. The stochastic RCPSP (or
SRCPSP) takes this uncertainty into account and observes the RCPSP when
activity durations are stochastic. In contrast to the basic type of RCPSP, the
SRCPSP has received only little attention in the literature (refer to Demeule-
meester and Herroelen (2002) and Neumann et al. (2003) for an overview
of the field of resource-constrained project scheduling, and to Herroelen and
Leus (2005) for a survey on project scheduling under uncertainty).

Because the SRCPSP is known to be N P-hard (Ballest̀ın, 2007), most
researchers have focussed their efforts on developing heuristic solution meth-
ods. Golenko-Ginzburg and Gonik (1997) propose two heuristics that both
rely on solving a series of multi-dimensional knapsack problems (the first
heuristic uses an exact procedure whereas the second procedure resorts to
a heuristic solution of the knapsack problems). Tsai and Gemmill (1998)
apply simulated annealing and tabu search procedures, whereas Ballest́ın
(2007) and Ballest́ın and Leus (2009) use a genetic algorithm and a GRASP
algorithm respectively. Ashtiani et al. (2001) adopt a two-phase local-search
procedure. Stork (2001), who builds on the work of Igelmund and Rader-
macher (1983) and Möhring (2000), is one of the few researchers that has
developed exact procedures to optimally solve the SRCPSP. In his PhD, he
compares the performance of five different branch-and-bound algorithms.

In this article, we extend the work of Creemers et al. (2010) and present
an exact model that uses a backward stochastic dynamic-programming
(SDP) recursion to determine the minimum expected-makespan of a resource-
constrained project with stochastic activity durations. We use acyclic phase-
type (PH) distributions to model activity durations and match the first two
moments of the activity duration distributions. The complexity increases
with the number of project activities and with decreasing levels of activity
duration variability. Therefore, the model is intended for solving small-to
medium-sized problem instances where activity durations have a moderate-
to-high level of variability.

2

The main contributions of this article are: (1) we develop an exact and an-
alytic solution method for optimally solving the SRCPSP, (2) our model dras-
tically improves computational performance when compared to the model of
Creemers et al. (2010), (3) our model outperforms the existing state-of-
the-art when it comes to optimally solving small- to medium-sized problem
instances where activities have a moderate-to-high level of duration variabil-
ity, (4) our model significantly improves solution quality when compared to
the heuristic approaches available in the literature, and (5) we investigate
the impact of making scheduling decisions also during the execution of an
activity rather than only at the end of an activity.

The remainder of this article is organized as follows. Sect. 2 presents the
basic definitions and outlines the problem statement. The model itself is
explained in Sect. 3. Sect. 4 provides a numerical example. The experiments
and the results are discussed in Sect. 5. Sect. 6 concludes.

2 Definitions and problem statement

A project is a network of activities that can be represented by a graph G =
(V,E), where V = {0, 1, . . . , n} is a set of nodes and E = {(i, j)|i, j ∈ V } is a
set of arcs. The nodes represent project activities whereas the arcs represent
precedence relationships. Activities 0 and n are dummy activities and repre-
sent the start and completion of the project respectively. The duration of an
activity i is a random variable p̃i and has expected value µi and variance σ2

i .
p̃ = {p̃0, p̃1, . . . , p̃n} denotes the vector of the activity duration random vari-
ables. pi is a realization (or random variate) of p̃i and p = {p0, p1, . . . , pn}
is a realization of p̃. An activity i can start when all of its predecessors
are finished and if sufficient resources are available. There are K renewable
resource types. The availability of each resource type k is denoted by Rk.
Each activity i requires ri,k units of resource k, where r0,k = rn,k = 0 for all
k ∈ R = {1, 2, . . . , K}.

A solution to the basic type of RCPSP is a schedule S = {S0, S1, . . . , Sn},
where Si is the starting time of an activity i, S0 = 0 (i.e., the project starts
at time 0), and Sn represents the completion time (or makespan) of the
project. In addition, define A (S, t) = {i ∈ V : Si ≤ t ∧ (Si + pi) ≥ t), the
set of activities in schedule S that are active at time t. A schedule S is

3

feasible if:

Si + pi ≤ Sj ∀(i, j) ∈ E, (1)∑
i∈A (S,t)

ri,k ≤ Rk ∀t ≥ 0,∀k ∈ R, (2)

Si ≥ 0 ∀i ∈ V. (3)

The optimal schedule S∗ minimizes Sn subject to Constraints 1–3.
Because activity durations are not known in advance, a solution to the

SRCPSP is a policy rather than a schedule. A policy Π is a set of decision
rules that defines actions at decision times. Decision times are typically the
start of the project and the completion times of activities. An action, on the
other hand, corresponds to the start of a precedence- and resource-feasible
set of activities. In addition, decisions have to respect the non-anticipativity
constraint (i.e., a decision at time t can only use information that has become
available before or at time t). As time progresses, activity duration realiza-
tions become known, and a schedule is generated (i.e., activities are assigned
a starting time). Consequently, a policy Π may be interpreted as a function
Rn+1
≥0 7→ Rn+1

≥0 that maps given realizations of activity durations p to vec-
tors of feasible starting times S (p; Π) = {S0 (p; Π) , S1 (p; Π) , . . . , Sn (p; Π)}
(see for instance Igelmund and Radermacher (1983), Möhring (2000), and
Stork (2001)). For a given realization p and policy Π, Sn (p; Π) denotes the
makespan of schedule S (p; Π). The objective of the SRCPSP is to minimize
E (Sn (p; Π)) over a given class of policies (where E (·) is the expectation
operator with respect to p). Optimization over the class of all policies is
computationally intractable. Therefore, most researchers focus their atten-
tion to the class of elementary policies P , and allow decisions to be made
only at the start of the project (i.e., at time 0) and at the completion times
of activities.

3 Markov Decision Chain

A project network with stochastic activity durations is often referred to as a
PERT network, and a PERT network with independent and exponentially-
distributed activity durations is also called a Markovian PERT network. For
Markovian PERT networks, Kulkarni and Adlakha (1986) have developed an
exact method for deriving the distribution of the earliest project completion

4

time using a continuous-time Markov chain (CTMC). Buss and Rosenblatt
(1997), Sobel et al. (2009), and Creemers et al. (2010) use the CTMC
of Kulkarni and Adlakha (1986) as a starting point to develop scheduling
procedures that maximize an expected-NPV (eNPV) objective. All afore-
mentioned studies, however, assume unlimited resources and exponentially
distributed activity durations. In this article, we extend the work of Creemers
et al. (2010) to accommodate: (1) resource constraints, (2) PH-distributed
activity durations, and (3) a minimum-makespan objective.

Below, we first study the special case of exponential activity durations
(Sect. 3.1), followed by an overview of the PH distributions that are used
in this article (Sect. 3.2). Next, we discuss how to incorporate PH distribu-
tions in the model (Sect. 3.3), and explain why they are a good choice for
approximating the activity duration distributions (Sect. 3.4).

3.1 Exponential activity durations

In this section, we assume that duration p̃i is exponentially distributed with
rate parameter λi = µ−1i for all i ∈ V \{0, n}. At any time instant t ≥ 0, the
status of an activity is either idle (not yet started), ongoing (being executed),
or finished (completed). Let I(t), O(t), and F (t) denote the activities in V
that are idle, ongoing, and finished at time t respectively. I(t), O(t), and
F (t) are mutually exclusive sets and I(t) ∪ O(t) ∪ F (t) = V for all t ≥ 0.
Without loss of generality, we omit index t when referring to sets I(t), O(t),
and F (t).

The state of the system is defined by the status of the individual activities
and can be represented by a pair (I, O) (set F can be obtained from sets V ,
I, and O). State transitions take place at the completion of an activity and
are determined by the policy at hand. The starting conditions of the project
are I = V \ {0} and O = {0}. Selecting the optimal scheduling policy
Π∗ corresponds to minimizing a value function G (·) in a continuous-time
Markov decision process (CTMDP) on the state space Q, with Q containing
all feasible states. The value function G (I, O) returns the expected time
until completion of the project upon entry of state (I, O), conditional on the
assumption that optimal decisions are made in all subsequent states (i.e., the
Bellman principle of optimality applies).

Upon entry of state (I, O), a decision needs to be made whether or not
to start a set of activities W ⊆ HI,O, with HI,O the set of activities that are
eligible to start. An activity i is eligible to start if:

5

1. i ∈ I,

2. j ∈ F for all j for which (j, i) ∈ E,

3. ri,k ≤

(
Rk −

∑
j∈O

rj,k

)
∀k ∈ R.

In addition, define D (I, O,W), the time until completion of the project if a
decision is made to start a set of activities W upon entry of state (I, O).

If no activities are started, a transition towards another state takes place
after the first completion of an activity in O. The probability that an activity
i ∈ O finishes first equals λi/

∑
j∈O λj. The time until the first completion is

exponentially distributed and has expected value
(∑

i∈O λi
)−1

. Therefore, if
no activities are started, the time until completion of the project upon entry
of state (I, O) equals:

D (I, O, ∅) =
1∑

i∈O
λi

+
∑
i∈O

λi∑
j∈O

λj
G (I, O \ {i}) . (4)

If, on the other hand, a set of activities W ⊆ HI,O is started, an immediate
transition towards another state is made and the time until completion of
the project upon entry of state (I, O) equals:

D (I, O,W) = G (I \W,O ∪W) . (5)

In order to determine the best set of activities to start, Creemers et al.

(2010) enumerate all subsets of HI,O, resulting in 2|HI,O| decisions to be
evaluated. In this article, we propose a more efficient approach in which
only |HI,O| decisions have to be evaluated. Each decision corresponds to the
start of a single activity in HI,O, and evaluating all |HI,O| decisions suffices to
determine the optimal objective value upon entry of state (I, O). To see this,
one only has to consider that: (1) upon starting an activity, an instantaneous
transition is made towards a subsequent state and (2) due to the Bellman
principle of optimality, optimal decisions are made in subsequent states. In
other words, instead of starting multiple activities in a single instantaneous
transition, we make multiple instantaneous transitions, during each of which
a single activity is started. This modification results in a drastic reduction
of the number of decisions to be evaluated upon entry of a state (I, O).

6

The impact of the modification on the computational performance of the
backward SDP-recursion is verified in Sect. 5.1.

Upon entry of state (I, O), it is optimal to either not start activities or
to start activity i∗:

i∗ = argmin
i∈HI,O

{D (I, O, {i})} . (6)

Clearly, if HI,O = ∅, the optimal decision is to not start activities and
G (I, O) = D (I, O, ∅). Otherwise, G (I, O) equals:

G (I, O) = min {D (I, O, ∅) , D (I, O, {i∗})} . (7)

The backward SDP-recursion starts in (I, O) = ({n}, ∅) and stops if (I, O) =
(V \ {0}, {0}), and the optimal objective value equals minE (Sn (p; Π∗)) =
G(V \ {0}, {0}).

3.2 PH distributions

In this article, we model activity durations using acyclic, continuous-time
PH distributions. Continuous-time PH distributions use exponentially-
distributed building blocks to approximate any positive-valued continuous
distribution with arbitrary precision (see Neuts (1981), Latouche and Ra-
maswami (1999), and Osogami (2005) for further details on PH distribu-
tions). More formally, a PH distribution is the distribution of time un-
til absorption in a Markov chain with absorbing state 0 and state space
{0, 1, . . . , Z}. It is fully characterized by parameters τ and Z. τ is the
vector of probabilities to start the process in any of the Z transient states
(i.e., phases) and Z is the transient state transition matrix. The infinitesimal
generator of the Markov chain representing the PH distribution is:

Q =

(
0 0
t Z

)
,

where 0 is a zero matrix and t = −Ze (with e a vector of ones).
Various techniques exist to approximate a given distribution by means of a

PH distribution. In this article, we adopt a two-moment matching procedure
that minimizes the required number of phases. Let νi denote the squared
coefficient of variation (SCV) of the duration of activity i:

νi = σ2
i µ
−2
i . (8)

7

We define three cases: (1) νi = 1, (2) νi > 1, and (3) νi < 1. In the
first case, we approximate the activity duration distribution by means of an
exponential distribution with rate parameter λi = µ−1i . The parameters of
the corresponding PH distribution are:

τ i = 1,
Zi = (−λi) .

In the second case, we use a two-phase Coxian distribution where the rate
parameter of the first phase is determined by means of a scaling factor κ:

λi,1 =
1

µiκ
. (9)

The expected value of the two-phase Coxian distribution is:

µi = λ−1i,1 + πi,1,2λ
−1
i,2 , (10)

where λi,2 is the exponential rate parameter of the second phase and πi,1,2 is
the probability of visiting the second phase. The variance of the two-phase
Coxian distribution is:

σ2
i = λ−2i,1 + 2πi,1,2λ

−2
i,2 − π2

i,1,2λ
−2
i,2 . (11)

When deriving parameters λi,2 and πi,1,2 as a function of parameters µi, νi
and κ, we obtain:

λi,2 =
2 (κ− 1)

µi (2κ− 1− νi)
, (12)

πi,1,2 =
2 (κ− 1)2

1 + νi − 2κ
. (13)

The parameters of the corresponding PH distribution are:

τ i = e1,

Zi =

(
−λi,1 πi,1,2λi,1

0 −λi,2

)
,

where e1 is a single-entry vector that is populated with zeroes except for the
first entry, which equals one. In the third case, we use a hypo-exponential

8

distribution (a series of exponential distributions whose parameters are al-
lowed to differ; a generalization of the Erlang distribution). The number of
required phases equals:

Zi = dν−1i e. (14)

We assume that the first Zi−1 phases of the hypo-exponential distribution are
independent and identically exponentially distributed with rate parameter
λi,1 = λi,2 = . . . = λi,Zi−1. The last phase is exponentially distributed
with rate parameter λi,Zi

. The expected value and variance of the hypo-
exponential distribution are:

µi =

Zi∑
z=1

λ−1i,z , (15)

σ2
i =

Zi∑
z=1

λ−2i,z . (16)

When deriving the rate parameters of the hypo-exponential distribution as
a function of parameters µi, νi and Zi, we obtain:

λi,Zi
=

1 +
√

(Zi − 1) (Ziνi − 1)

µi (1− Ziνi + νi)
, (17)

λi,z =
(Zi − 1)−

√
(Zi − 1) (Ziνi − 1)

µi (1− νi)
, (18)

for all z ∈ {1, 2, . . . , Zi − 1}. The parameters of the corresponding PH dis-
tribution are:

τ i = e1,

Zi =


−λi,1 λi,1 0 · · · 0 0

0 −λi,2 λi,2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −λi,Zi−1 λi,Zi−1
0 0 0 · · · 0 −λi,Zi

 .

For the three cases, Zi equals 1, 2, and dν−1i e respectively. Figure 1 provides
an overview of the PH distributions that are used in this article. Note,
however, that our method works with all acyclic PH distributions.

9

Exponential distribution

Hypo-exponential distribution

Two-phase Coxian distribution

1
(λi)

PHASE
(RATE OUT)

0

2
(λi,2)

0
1

(λi,1)

πi,1,2

1-πi,1,2

2
(λi,2)

1
(λi,1)

Zi

(λi,Z)
0

Zi -1

TRANSITION
PROBABILITY

i(λi,Z -1)i

Figure 1: Overview of PH distributions

10

3.3 PH-distributed activity durations

In this section, we describe how to obtain the minimum expected-makespan
of a resource-constrained project when activity durations are PH distributed.
The duration of an activity i ∈ V \ {0, n} can be seen as a sequence of Zi
phases where each phase θi,z: (1) has an exponential duration with rate pa-
rameter λi,z, (2) has a probability τi,z to be the initial phase when starting
activity i, and (3) is visited with probability πi,y,z when departing from an-
other phase θi,y. Also note that, due to the acyclic nature of the adopted PH
distributions, a phase can never be visited more than once.

The use of PH-distributed activity durations makes it possible to trans-
form any project network into a Markovian PERT network. Therefore, given
a few adaptations, the SDP recursion described in Sect. 3.1 can easily be ex-
tended to accommodate PH distributions. The most important adaptation
concerns the status of the ongoing activities. If activity durations are PH
distributed, we not only have to keep track of the ongoing activities them-
selves, but we also need to keep track of their ongoing phase. Let (I,O)
denote the state of the system, where O is the set of ongoing phases. Upon
completion of a phase θi,y ∈ O:

1. Activity i completes with probability πi,y,0 (i.e., the probability of being
absorbed when departing from phase θi,y), and a transition is made
towards state (I,O \ {θi,y}).

2. Activity i does not complete, phase θi,z is started with probability πi,y,z,
and a transition is made towards state (I,O ∪ {θi,z} \ {θi,y}).

Note that F = V \ (I ∪O), and O can be obtained from O as follows:

O = {i|Zi ∪ O 6= ∅} , (19)

where Zi = {θi,1, θi,2, . . . , θi,Zi
}.

let HI,O denote the set of activities that are eligible to start upon entry of
state (I,O) (its definition is analogous to that of HI,O). If no activities are
started, the time until completion of the project upon entry of state (I,O)
equals:

D (I,O, ∅) =
1

λO
+
∑
θi,y∈O

λi,y
λO

πi,y,0G (I,O \ {θi,y}) +

∑
θi,y∈O

λi,y
λO

Zi∑
z=y+1

πi,y,zG (I,O ∪ {θi,z} \ {θi,y}) ,
(20)

11

where λO =
∑

θj,z∈O λj,z.

If HI,O 6= ∅, the best activity to start is:

i? = argmin
i∈HI,O

{
Zi∑
z=1

τi,zG (I \ {i},O ∪ {θi,z})

}
. (21)

The optimal objective value upon entry of state (I,O) equals:

G (I,O) = min {D (I,O, ∅) , D (I,O, {i?})} . (22)

Note that, after the completion of a phase, it is possible to interrupt
the execution of an activity and/or to make scheduling decisions. Therefore,
using PH-distributed activity durations, it becomes possible to optimize over
a class of policies that is far more general than P . Let N denote the class of
policies where decisions can be made: (1) at the start of the project, (2) at
the completion times of activities, and (3) at the completion times of activity
phases. It is clear that N dominates P . In Sect. 5.5, we evaluate the gain in
solution quality when we optimize over N rather than over P .

3.4 Why PH distributions?

In most cases, the “true” distribution of the duration of an activity is un-
known. Often, it is assumed that the duration of an activity follows a
beta, uniform, or Gaussian distribution (see for instance Herroelen and Leus
(2005), Bidot et al. (2009), Fu et al. (2012), and Creemers et al. (2014)).
These distributions, however, only allow to match the first two moments
of the true duration distribution. PH distributions, on the other hand, can
match almost any distribution with arbitrary precision. Therefore, one could
argue that PH distributions are a better choice as an approximation of the
true duration distribution.

The size of a Markovian PERT network is determined by the number of
phases that is required to model the project activities. Therefore, PH distri-
butions are especially suited to approximate activity durations that have a
moderate-to-high level of variability. In fact, any activity duration distribu-
tion that has a SCV in [0.5,∞) can be modeled using a PH distribution of
up to two phases. For SCV smaller than 0.5, the number of required phases
increases rapidly, making PH distributions less applicable for settings where
activity duration variability is small. It mainly makes sense, however, to

12

solve the SRCPSP if activity durations exhibit a sufficient degree of variabil-
ity. If activity durations have a low level of variability, solving the SRCPSP
has limited added value, and the RCPSP may serve as an approximation of
the SRCPSP.

As is explained in Sect. 3.2, PH distributions are a mixture of exponential
distributions. Due to the memoryless property of the exponential distribu-
tion, there is no need to keep track of the remaining duration of the ongoing
activities (i.e., the remaining duration of a phase θi,z is exponentially dis-
tributed with rate parameter λi,z for every moment in time at which phase
θi,z is ongoing). As a result, the state of the system is fully defined by the
set of idle activities and the set of ongoing activity phases. This compact
representation of the state space allows us to solve problem instances which
are beyond reach for other optimal solution methods.

If activity durations are PH distributed, it becomes possible to interrupt
the execution of an activity and/or to make scheduling decisions at the com-
pletion of a phase rather than only at the completion of an activity. This
enables the study of more complex scheduling problems and also allows to
optimize over a class of policies that is more general than the class of ele-
mentary policies P .

4 Example

Any project network with stochastic activity durations can be transformed
into a Markovian PERT network. In order to illustrate this transforma-
tion process, we consider a project that consists of five activities (i.e.,
V = {0, 1, 2, 3, 4}, where 0 and 4 are dummy activities). The data of the
project is summarized in Table 1. The project network and its transforma-
tion are presented in Figure 2. Activity 1 has duration SCV equal to 1/3
and can be modeled as a series of three phases that have exponentially dis-
tributed durations (i.e., a hypo-exponential distribution is used). Activity 2
has duration SCV equal to 1 and can be modeled as a single phase (i.e., the
duration of activity 2 is approximated by an exponential distribution). If
the activity duration SCV is larger than 1, a two-phase Coxian distribution
is used. Activity 3, for example, has a duration SCV equal to 2 and can
be modeled as a series of two phases, where the second phase is executed
with probability π3,1,2. Note that this implies that not all phases have to be
executed in order to complete the project (i.e., there is a probability π3,1,0 of

13

Table 1: Data for the example project

i pi νi ri,1 Zi λi,1 λi,2 πi,1,2

0 0 0 0
1 9 1/3 5 3 1/3 1/3
2 9 1 5 1 1/9
3 10 2 5 2 1/5 1/20 1/4
4 0 0 0

R1 10

1

2

3 θ3,1

0 4 0 4

π
 3,1,2

π 3,1,0

θ2,1

θ3,2

θ1,1 θ1,2 θ1,3

Figure 2: Example project network and its corresponding Markovian PERT
network

not having to execute the second phase of activity 3).
Next, we use the example project to illustrate the importance of stochastic

activity durations when solving the RCPSP. In the example, we assume that
there is a single resource (i.e., K = 1) that has an availability of 10 resource
units (i.e., R1 = 10). The non-dummy activities each consume 5 resources
(i.e., r1,1 = r2,1 = r3,1 = 5). If activity durations are deterministic, the
optimal policy is to start activities 2 and 3, and to start activity 1 after
completion of either activity 2 or 3. Refer to this policy as Π1. Adopting
policy Π1 results in a project makespan of 18 time units if activity durations
are deterministic. Policy Π2, on the other hand, starts activities 1 and 2, and
starts activity 3 after completion of either activity 1 or 2. If activity durations
are deterministic, policy Π2 corresponds to a makespan of 19 time units.
Figure 3 illustrates both policies. If activity durations are not deterministic,
however, policy Π2 may outperform policy Π1. This is illustrated in Figure 4,

14

Activity 1Activity 2 Activity 3

Activity 3

Activity 2

Activity 1

time

ri,1

10

8

6

4

2

0

0 2 4 6 8 10 12 14 16 18 20
time

ri,1

10

8

6

4

2

0

0 2 4 6 8 10 12 14 16 18 20

Policy Π1 Policy Π2

Figure 3: Illustration of policy Π1 and Π2 if activity durations are determin-
istic

1 2 3 4 5 6 7 8 9 10
17

17.5

18

18.5

19

19.5

20

Duration SCV of actvity 3

P
ro

je
c
t

m
a

k
e

s
p

a
n

Policy Π
1

Policy Π
2

Figure 4: Project makespan of policy Π1 and Π2 as a function of the SCV of
the duration of activity 3

which shows the makespan of the project as a function of the variability of
the duration of activity 3. It is clear that, as the variability of the duration
of activity 3 increases, policy Π2 becomes more effective when compared to
policy Π1. For a duration SCV larger than 4.87 (i.e., for ν3 > 4.87), the
makespan that corresponds to policy Π2 is smaller than the makespan that
is associated with policy Π1.

5 Results

In this section, we assess the difference in performance between our approach
and the approach of Creemers et al. (Sect. 5.1). Next, we discuss the different

15

problem sets that are used in the literature (Sect. 5.2), and we compare
the computational performance of our model and other optimal approaches
(Sect. 5.3). We also evaluate the optimality gap of the existing heuristic
procedures (Sect. 5.4), and investigate the impact of making decisions also
during the execution of an activity (Sect. 5.5).

All our experiments are performed on an AMD Phenom II 3.2 GHz com-
puter with 32,768 MB RAM.

5.1 Improving the model of Creemers et al. (2010)

Creemers et al. (2010) use a backward SDP-recursion to find the maximum
eNPV of a project where activity durations are exponentially distributed. In
this article, we modify this SDP recursion to accommodate: (1) resource con-
straints, (2) PH-distributed activity durations, and (3) a minimum-makespan
objective. Next to structural changes, however, we also suggest a modifica-
tion that drastically reduces the number of decisions that have to be eval-
uated upon entry of a state (see Sect. 3 for more details). In this section,
we assess the impact of this modification on the computational performance
of the backward SDP-recursion. For this purpose, we replicate the study of
Creemers et al. (2010).

In their study, Creemers et al. (2010) generate 30 scheduling instances for
each combination of order strength (OS) and network size. The OS is either
0.4, 0.6, or 0.8. The size of the network ranges from 10 to 120 activities. In
total, 1, 080 instances are generated. We analyze these instances using (1) the
SDP recursion of Creemers et al. (2010) and (2) the modified SDP recursion
that is introduced in Sect. 3.3. The results are presented in Table 2. For each
combination of parameters, Table 2 aggregates: (1) the number of instances
that were solved to optimality, (2) the CPU time of the “old” approach,
and (3) the CPU time of the “new” approach. It is clear that the modified
approach drastically improves computation times. In fact, on average, the
computational efficiency has been improved by a factor of 56.49.

5.2 Data sets used in the literature on the SRCPSP

Various data sets are available in the literature. Tsai and Gemmill (1998),
Ballest́ın and Leus (2009), and Ashtiani et al. (2011) assess the performance
of their procedures using the instances of the Patterson data set (Patterson
1984). Stork (2001) evaluates his branch-and-bound algorithms on the J30

16

T
ab

le
2:

C
om

p
ar

is
on

of
th

e
co

m
p
u
ta

ti
on

al
re

su
lt

s
w

h
en

u
si

n
g

th
e

S
D

P
re

cu
rs

io
n

of
C

re
em

er
s

et
al

.
(2

01
0)

an
d

th
e

m
o
d
ifi

ed
S
D

P
re

cu
rs

io
n

S
ol

ve
d

su
cc

es
sf

u
ll

y
A

ve
ra

g
e

C
P

U
ti

m
e

(o
ld

)
A

v
er

a
g
e

C
P

U
ti

m
e

(n
ew

)
n

O
S

=
0
.8

O
S

=
0.

6
O

S
=

0.
4

O
S

=
0.

8
O

S
=

0.
6

O
S

=
0.

4
O

S
=

0
.8

O
S

=
0
.6

O
S

=
0.

4

10
30

30
30

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
20

30
30

30
0
.0

0
0
.0

1
0
.4

6
0
.0

0
0
.0

0
0
.0

3
30

30
30

30
0
.0

1
0
.3

3
2
6
.9

2
0
.0

0
0
.0

2
1
.4

9
40

30
30

29
0
.0

3
6
.6

2
2
,3

3
7
.9

6
0
.0

0
0
.4

9
7
2
.2

5
50

30
30

4
0
.1

5
1
0
0
.2

8
5
2
,2

6
7
.3

0
0
.0

1
4
.4

3
8
2
3
.7

1
60

30
30

0
0
.7

4
2
,2

1
0
.0

8
-

0
.0

6
6
7
.8

7
-

70
30

22
0

3
.1

9
1
7
,4

9
5
.4

9
-

0
.2

4
3
7
8
.6

4
-

80
30

9
0

1
0
.8

1
7
2
,4

7
3
.4

1
-

0
.7

9
1
,1

8
8
.0

1
-

90
30

0
0

5
0
.6

4
-

-
3
.1

5
-

-
10

0
30

0
0

1
7
1
.4

2
-

-
9
.6

0
-

-
11

0
30

0
0

1,
1
9
3
.8

8
-

-
4
0
.9

3
-

-
12

0
30

0
0

12
,7

8
9
.0

6
-

-
2
6
0
.6

6
-

-

17

and J60 instances of the well-known PSPLIB data set (Kolisch and Sprecher
1996). Ballest́ın and Leus (2009) and Ashtiani et al. (2011) use the J120
instances of the same data set. Golenko-Ginzburg and Gonik (1997) use a
single instance with 36 activities to evaluate their two heuristics. The same
problem instance is also used in Ballest́ın and Leus (2009) and Ashtiani et al.
(2011). In our experiments, we use the problem instances of the Patterson
data set and the J30 and J60 instances of the PSPLIB data set. We do
not use the J120 instances of the PSPLIB data set because they cannot
be solved to optimality. We also do not use the example project presented
in Golenko-Ginzburg and Gonik (1997) because its activities have a very
limited duration variability (e.g., when the uniform distribution is used to
model activity durations, the average duration SCV equals 0.014).

5.3 Computational performance and comparison with
optimal procedures

In this section, we discuss the computational performance of our model and
compare with other optimal approaches available in the literature. In a
first experiment, we assume that activity durations are exponentially dis-
tributed and solve the instances of the Patterson data set and the J30 and
J60 instances of the PSPLIB data set. Table 3 summarizes the results (the
state-space sizes are expressed in thousands of states) and Figure 5 presents
a box plot of the computation times. It is clear that project networks of up
to 32 activities are analyzed with ease. The results also show that networks
of 62 activities can often be solved (we solve 301 out of 480 networks), albeit
at a larger computational cost.

Next, we use the J30 instances of the PSPLIB data set to analyze the
impact of different levels of activity duration variability on the performance
of our model. Table 4 summarizes the results (the state-space sizes are ex-
pressed in thousands of states). The level of activity duration variability
determines the number of required phases. For values of SCV larger than
0.5, one or two phases suffice. If, however, the SCV of the activity durations
is smaller than 0.5, the number of required phases increases rapidly. As a
result, the size of the state space increases exponentially and computational
performance plummets. For moderate-to-high levels of activity duration vari-
ability, however, the computational effort is acceptable.

The main bottleneck of our approach is memory rather than CPU time.

18

Table 3: Computational results if activity durations are exponentially dis-
tributed (state-space sizes are expressed in thousands of states)

Data set Patterson J30 J60

Instances in set 110 480 480
Instances solved 110 480 301
Avg # of activities 26 32 62
Avg CPU time (s) 0.00 0.49 1, 564
Max CPU time (s) 0.05 13.1 31, 838
Min CPU time (s) 0.00 0.00 1.90
Avg state-space size 7.45 539 661, 315
Max state-space size 136 11, 378 4, 257, 393
Min state-space size 0.03 6.17 3, 762

Table 4: Computational results for different values of SCV when solving
the J30 instances of the PSPLIB data set (state-space sizes are expressed in
thousands of states)

Average Instances CPU time (s) State-space size
SCV solved min avg max min avg max

1/4 358 0.08 28.32 217.20 181 42,702 580,059
1/3 421 0.03 24.00 593.29 126 66,134 1,092,331
1/2 480 0.02 28.54 1453.03 79 89,863 3,000,505
1 480 0.00 0.49 14.02 6 539 11,378
2 480 0.03 34.83 1731.67 79 89,863 3,000,505

For large networks and/or low levels of activity duration variability, the state
space becomes too big to store in memory. As a result, our model is mainly
suited for small-to medium-sized projects where activity durations have a
moderate-to-high level of variability. For this setting, our approach outper-
forms the current state-of-the-art.

The literature on optimal solution methods for the SRCPSP is rather
scarce. With respect to the Patterson data set, Tsai and Gemmill (1998)
are able to solve 95 out of 110 instances to optimality if activity durations
are deterministic. If activity durations are stochastic, optimality cannot be
guaranteed. With respect to the J30 and J60 instances of the PSPLIB data
set, Stork (2001) is able to optimally solve 179 and 11 out of 480 instances
respectively. It is clear that our model performs better.

19

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Patterson data set

C
P

U
 t
im

e
 (

s
)

0

2

4

6

8

10

12

14

PSPLIB J30 data set

C
P

U
 t
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

3

x 10
4

PSPLIB J60 data set

C
P

U
 t
im

e
 (

s
)

Figure 5: Computational performance if activity durations are exponentially
distributed

5.4 Comparison with heuristic procedures

In this section, we assess the optimality gap of the heuristic approaches that
are available in the literature. The models of Ballest̀ın and Leus (2009)
and Ashtiani et al. (2001) are the current state-of-the-art when it comes to
heuristically solving the SRCPSP. Both authors report results on the J120
data set. Currently, however, it is impossible to optimally solve the instances
of that data set (i.e., the optimality gap cannot be evaluated). If activity
durations are exponentially distributed, our model can optimally solve 480
and 301 instances of the J30 and J60 data sets respectively (see Sect. 5.3
for more details). For these instances, we can measure the optimality gap
if we also have the solutions of the heuristic approaches. Unfortunately, the
solutions are not available from Ashtiani et al. (2001). We are able, however,
to compare with the solutions of Ballest̀ın and Leus (2009).

We assess the optimality gap of the GRASP method of Ballest̀ın and Leus
(2009) with a limit of 25,000 schedules. The results are reported in Table 5.
Table 5 presents the minimum, average, and maximum difference between
the optimal makespan and the the makespan produced by the GRASP pro-
cedure. In addition, Figure 6 presents a boxplot of the optimality gap. We

20

Table 5: Optimality gap of the GRASP method if 25,000 schedules are used
and activity durations are exponentially distributed

Instances Optimality gap
Data set solved min avg max

J30 480 1.07% 9.11% 20.20%
J60 301 9.61% 15.88% 24.80%

find that our model improves solution quality with 9.11% on average for the
J30 instances, and with 15.88% on average for the J60 instances. It is clear
that the optimality gap increases with increasing network size. Therefore,
we expect that the gap for the J120 instances is even larger. In addition, the
minimum optimality gap increases rather drastically, indicating that it be-
comes more difficult for the heuristic approaches to approximate the optimal
solution as the size of the network increases.

5.5 Value of non-elementary policies

All solution methods in the literature on the SRCPSP allow decisions to be
taken only at the start of the project and at the completion times of activities
(i.e., they optimize over the class of elementary policies P). In this section,
we investigate the difference in solution quality if we allow decisions to be
taken also at the completion of an activity phase (i.e., we observe the impact
of optimizing over the class of non-elementary policies N).

For this experiment, we use the 110 instances of the Patterson data set.
The average SCV of the activity durations ranges from 0.1 to 2.0. Depending
on the SCV, the number of phases differs, and hence, the number of deci-
sion moments during the execution of an activity differs as well. Table 5.5
presents the difference in solution quality when optimizing over N rather
than over P . It is clear that the difference is minimal (at most, the difference
amounts to 0.55 %). This, however, is not really surprising as it is often
optimal to start activities as soon as possible if makespan is to be minimized
(i.e., there is limited value in postponing the start of an activity). We do
observe, however, that the difference in solution quality grows larger if activ-
ity duration variability increases (for a constant number of phases/decision
moments). This indicates that it is more beneficial to have decision moments
during the execution of an activity if the duration of that activity is more

21

0

0.05

0.1

0.15

0.2

0.25

J30 J60

O
p

ti
m

a
lit

y
 g

a
p

Figure 6: Optimality gap of the GRASP method if 25,000 simulations are
used and activity durations are exponentially distributed

22

Table 6: Percentual difference in solution quality for policy classes P and N
for different values of SCV

Average Number Average Maximum
SCV of phases difference difference

0.1 10 0.0016% 0.015%
0.2 5 0.0015% 0.017%
0.3 4 0.0020% 0.015%
0.4 3 0.0018% 0.031%
0.5 2 0.0006% 0.006%
0.6 2 0.0014% 0.013%
0.7 2 0.0016% 0.018%
0.8 2 0.0014% 0.016%
0.9 2 0.0010% 0.010%
1.0 1 0.0000% 0.000%
1.1 2 0.0009% 0.029%
1.2 2 0.0024% 0.066%
1.3 2 0.0042% 0.103%
1.4 2 0.0071% 0.115%
1.5 2 0.0102% 0.215%
1.6 2 0.0130% 0.319%
1.7 2 0.0154% 0.399%
1.8 2 0.0174% 0.462%
1.9 2 0.0191% 0.511%
2.0 2 0.0205% 0.550%

variable.

6 Conclusions

In this article, we have presented an exact and analytic solution method
for optimally solving the SRCPSP. Our model extends the SDP recursion
of Creemers et al. (2010) and accommodates: (1) resource constraints, (2)
PH-distributed activity durations, and (3) a minimum-makespan objective.
Next to these structural improvements, we also improve the computational
efficiency of the SDP recursion by a factor of 56.49 on average.

Experiments have shown that our model performs best when activity
durations have a moderate-to-high level of variability, and that it can be
used to optimally solve project instances that have up to 62 activities. For
this setting, our model outperforms the existing state-of-the-art.

23

We have also used our model to assess the optimality gap of the heuristic
approaches available in the literature. We show that our model improves the
solution quality of the GRASP procedure of Ballest̀ın and Leus (2009) with
9.11% and 15.88% on average for instances that have 32 and 62 activities
respectively. This indicates that it becomes more difficult for the heuristic
approaches to approximate the optimal solution as the size of the network
increases.

In addition, we have investigated the difference in solution quality if we
allow scheduling decisions to be made at the end of an activity phase rather
than only at the end of an activity. An experiment has shown that the differ-
ence in solution quality is minimal (i.e., there is limited value in postponing
the start of an activity). The experiment also shows that it is more beneficial
to have decision moments during the execution of an activity if the duration
of that activity is more variable.

Last, we have also illustrated that variability in activity durations is an
important factor when solving the RCPSP. As such, it might not be advisable
to assume that activity durations are deterministic when making project
scheduling decisions.

References

[1] Ashtiani, B., Leus R., & Aryanezhad, M.B. (2011). New competitive
results for the stochastic resource-constrained project scheduling problem:
Exploring the benefits of pre-processing. Journal of Scheduling, 14 (2), 157-
171.

[2] Ballest́ın, F. (2007). When it is worthwhile to work with the stochastic
RCPSP? Journal of Scheduling, 10 (3), 153–166.

[3] Ballest́ın, F., & Leus, R. (2009). Resource-constrained project scheduling
for timely project completion with stochastic activity durations. Produc-
tion and Operations Management, 18 (4), 459–474.

[4] Bidot, J., Vidal, T., Laborie, P., & Beck, J.C. (2009). A theoretic and
practical framework for scheduling in a stochastic environment. Journal of
Scheduling, 12 (3), 315–344.

[5] Buss, A.H., & Rosenblatt, M.J. (1997). Activity delay in stochastic
project networks. Operations Research, 45 (1), 126–139.

24

[6] Creemers, S., Leus, R., & Lambrecht, M. (2010). Scheduling Markovian
PERT networks to maximize the net present value. Operations Research
Letters, 38 (1), 51–56.

[7] Creemers, S., Demeulemeester, E., & Van de Vonder, S. (2014). A new
approach for quantitative risk analysis. Annals of Operations Research,
213 (1), 27–65.

[8] Debels, D., & Vanhoucke, M. (2007). A decomposition-based genetic algo-
rithm for the resource-constrained project-scheduling problem. Operations
Research, 55 (3), 457-469.

[9] Demeulemeester, E., & Herroelen, W. (2002). Project Scheduling: A Re-
search Handbook. AH Dordrecht: Kluwer Academic Publishers Group.

[10] Fernandez, A.A., Armacost, R.L., & Pet-Edwards, J. (1996). The role
of the non-anticipativity constraint in commercial software for stochastic
project scheduling. Computers and Industrial Engineering, 31 (1), 233-236.

[11] Fu, N., Lau, H.C., Varakantham, P., & Xiao, F. (2012). Robust local
search for solving RCPSP/max with durational uncertainty Journal of
Artificial Intelligence Research, 43, 43-86.

[12] Golenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project
scheduling with non-consumable limited resources. International Journal
of Production Economics, 48 (1), 29–37.

[13] Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty:
Survey and research potentials. European Journal of Operational Research,
165 (2), 289-306.

[14] Igelmund, G., & Radermacher, F.J. (1983). Preselective strategies for
the optimization of stochastic project networks under resource constraints.
Networks, 13 (1), 1–28.

[15] Kolisch, R., & Sprecher, A. (1996). PSPLIB - A project scheduling prob-
lem library. European Journal of Operational Research, 96 (1), 205-216.

[16] Kulkarni, V., & Adlakha, V. (1986). Markov and Markov-regenerative
PERT networks. Operations Research, 34 (5), 769–781.

25

[17] Latouche, G., & Ramaswami, V. (1999). Introduction to Matrix Ana-
lytic Methods in Stochastic Modeling. Philadelphia: American Statistical
Association and the Society for Industrial and Applied Mathematics.

[18] Möhring, R.H. (2000). Scheduling under uncertainty: Optimizing
against a randomizing adversary. Lecture Notes in Computer Science, 1913,
15–26.

[19] Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project Schedul-
ing with Time Windows and Scarce Resources. Berlin: Springer-Verlag.

[20] Neuts, M.F. (1981). Matrix-geometric solutions in stochastic models.
Baltimore: Johns Hopkins University Press.

[21] Osogami, T. (2005). Analysis of multiserver systems via dimensionality
reduction of Markov chains. PhD thesis, Carnegie Mellon University.

[22] Patterson, J.H. (1984). A comparison of exact approaches for solving the
multiple constrained resource, project scheduling problem. Management
Science, 30 (7), 854–867.

[23] Sobel, M.J., Szmerekovsky, J.G., & Tilson, V. (2009). Scheduling
projects with stochastic activity duration to maximize expected net present
value. European Journal of Operational Research, 198 (1), 697–705.

[24] Stork, F. (2001). Stochastic Resource-Constrained Project Scheduling.
PhD thesis, Technische Universität Berlin.

[25] Tsai, Y.-W., & Gemmill, D.D. (1998). Using tabu search to schedule
activities of stochastic resource-constrained projects. European Journal of
Operational Research, 111 (1), 129–141.

26

