The Geometric Matrix Mean: an Adaptation for Structured Matrices

D.A. Bini, B. Iannazzo, <u>B. Jeuris</u>, R. Vandebril University of Pisa, University of Perugia, and KU Leuven

GEOMETRIC MATRIX MEAN

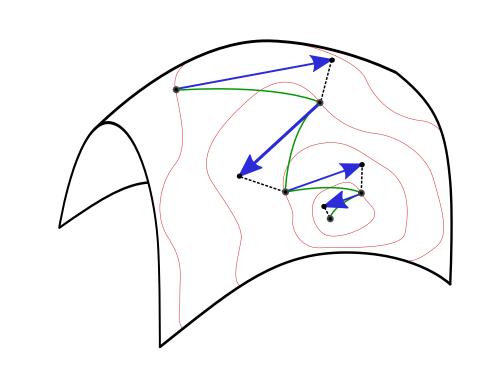
Barycenter for the following settings

- Domain: set of (symmetric) positive definite (PD) matrices \mathcal{P}_n ;
- Distance measure: based on natural PD metric:

$$d(A, B) = \left\| \log \left(A^{-1/2} B A^{-1/2} \right) \right\|_{F}.$$

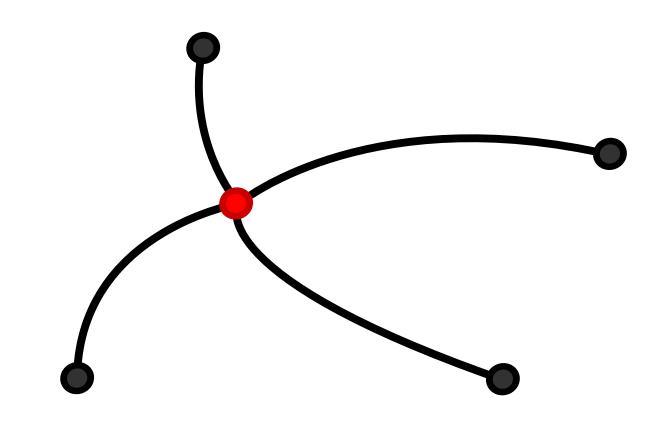
Computed using manifold optimization

- Gradient, Hessian, ... incorporate the Riemannian geometry of the set;
- Iterative steps are taken along the manifold.



BARYCENTER

Minimizer of the sum of squared distances to given elements A_i



Depends on

- Search space/Domain S: restriction to the desired matrix structure;
- ullet Distance measure d: influences additional properties of the barycenter.

$$\Rightarrow B_S(A_1, \dots, A_k) = \arg\min_{X \in S} \sum_{i=1}^k d^2(X, A_i)$$

KÄHLER METRIC MEAN

Barycenter for the following settings

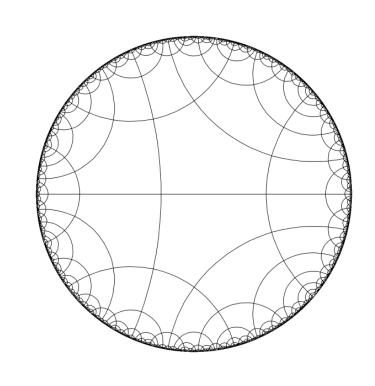
- Domain: set of (Hermitian) PD Toeplitz matrices \mathcal{T}_n ;
- Distance measure: Kähler metric.

The metric is defined using an application-inspired transformation of the elements of \mathcal{T}_n :

$$T \in \mathcal{T}_n \to (P, \mu_1, \dots, \mu_{n-1}) \in R_*^+ \times D^{n-1},$$

with D the open complex unit disk.

- R_*^+ : the geometry of positive numbers;
- ullet D: hyperbolic geometry (Poincaré disk).



STRUCTURED MATRIX ADAPTATIONS

Why?

- Many applications use a matrix structure which is an intersection of \mathcal{P}_n and an additional (vectorspace) structure;
- The geometric mean generally destroys additional structure.

How?

• Domain restriction: minimize over $S \subset \mathcal{P}_n$ instead of \mathcal{P}_n itself.

Properties?

Unstructured

- Permutation invariance:

 A permutation of the elements A_i does not change the result;
- Joint homogeneity: for $\alpha_1, \dots, \alpha_k > 0$, $A_i \to \alpha_i A_i$ $B_{\mathcal{P}_n} \to (\alpha_1 \cdots \alpha_k)^{1/k} B_{\mathcal{P}_n}$;
- Inversion invariance:

$$B_{\mathcal{P}_n}(A_1^{-1}, \dots, A_k^{-1})$$

= $B_{\mathcal{P}_n}(A_1, \dots, A_k)^{-1}$.

Structured

- Permutation invariance:
 Still holds because of the definition of the cost function;
- Joint homogeneity:
 Remains valid if S is the intersection of \mathcal{P}_n with a vectorspace;
- Inversion invariance: Define S^{-1} as the set of inverses of the nonsingular elements in S, then

$$B_{S^{-1}}(A_1^{-1}, \dots, A_k^{-1})$$

= $B_S(A_1, \dots, A_k)^{-1}$.

COMPUTATION AND PROPERTIES

Transformation to product space $R_*^+ \times D^{n-1}$, optimization can be decoupled into n separate averaging operations.

- Barycenter of the coefficients P_i in R_*^+ : exactly the (scalar) geometric mean $(P_1 \cdots P_k)^{1/k}$;
- Barycenter of the coefficients $\mu_{j,i}$ (separate for each j) in D:
 - Real matrices: $\mathcal{C}\left(\left(\mathcal{C}(\mu_{j,1})\cdots\mathcal{C}(\mu_{j,k})\right)^{1/k}\right)$, where \mathcal{C} is the Cayley transform, $\mathcal{C}(z) = (1-z)/(1+z)$;
 - Complex matrices: no explicit formula, but fast scalar optimization algorithms can be constructed.

Properties?

- Barycenter properties (permutation invariance, repetition invariance, ...) hold by construction;
- Properties of the geometric mean which translate well through the transformation are preserved, e.g., joint homogeneity:

$$T \to \alpha T$$

$$(P, \mu_1, \dots, \mu_{n-1}) \to (\alpha P, \mu_1, \dots, \mu_{n-1})$$

- Many other geometric mean properties do not hold or are not well-defined because of the transformation, showing the clear distinction between the means;
- Useful because of its decoupling property and its close relation to the application via the transformation.

Two preconditioners

Suppose S is the intersection of a vectorspace \mathcal{V} and \mathcal{P}_n , then parametrize \mathcal{V} using $\sigma: \mathbb{R}^q \to \mathbb{R}^{n \times n}$, $q = \dim(\mathcal{V})$, such that $\operatorname{vec}(\sigma(t)) = Ut$. Denote by $\Gamma(X)$ the Euclidean gradient of the unstructured barycenter cost function $f_{B_{\mathcal{P}_n}}$ at $X \in \mathcal{P}_n$.

From this, the gradient for the structured barycenter cost function f_{B_S} can be obtained in both the Euclidean and the Riemannian geometry.

• Euclidean geometry:

$$(U^T U)^{-1} U^T \operatorname{vec}(\Gamma(\sigma(t)));$$

• Riemannian geometry:

$$(U^T (\sigma(t)^{-1} \otimes \sigma(t)^{-1}) U)^{-1} U^T \operatorname{vec}(\Gamma(\sigma(t))).$$

The pre-multiplied terms in the expressions can be interpreted as preconditioners to the Euclidean gradient. Using the geometric information of \mathcal{P}_n , a more effective gradient and more efficient algorithms are obtained.

TBBT MATRICES

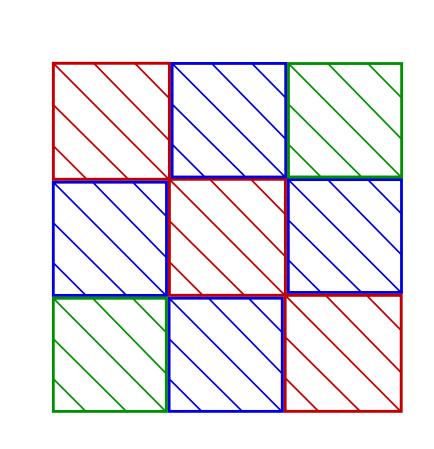
Generalize the theory of the Kähler mean to the set of PD Toeplitz-block Block-Toeplitz (TBBT) matrices $\mathcal{B}_{p,n}$ (an $n \times n$ block structure of $p \times p$ matrix blocks):

• Adaptation of the transformation to the block structure:

$$T \in \mathcal{B}_{p,n} \to (P, U_1, \dots, U_{n-1}) \in \mathcal{P}_p \times \mathcal{D}_p^{n-1},$$

where \mathcal{D}_p is a generalization of D;

• The computational advantage of decoupling the separate coefficients can again be exploited to average large matrices.



CONTACT

Email: ben.jeuris@cs.kuleuven.be; Tel: +32 16 327087.