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Barycenter

Minimizer of the sum of squared distances
to given elements Ai

Depends on

• Search space/Domain S: restriction to
the desired matrix structure;

• Distance measure d: in�uences addi-
tional properties of the barycenter.

⇒ BS(A1, . . . , Ak) = arg min
X∈S

k∑
i=1

d2(X,Ai)

Geometric matrix mean

Barycenter for the following settings

• Domain: set of (symmetric) positive def-
inite (PD) matrices Pn;

• Distance measure: based on natural PD
metric:

d(A,B) =
∥∥∥log

(
A−1/2BA−1/2

)∥∥∥
F
.

Computed using manifold optimization

• Gradient, Hessian, . . . incorporate the
Riemannian geometry of the set;

• Iterative steps are taken along the mani-
fold.

Kähler metric mean

Barycenter for the following settings

• Domain: set of (Hermitian) PD Toeplitz
matrices Tn;
• Distance measure: Kähler metric.

The metric is de�ned using an application-
inspired transformation of the elements of Tn:

T ∈ Tn → (P, µ1, . . . , µn−1) ∈ R+
∗ ×Dn−1,

with D the open complex unit disk.

• R+
∗ : the geometry of positive numbers;

• D: hyperbolic geometry (Poincaré disk).

Two preconditioners

Suppose S is the intersection of a vectorspace V and Pn, then parametrize
V using σ : Rq → Rn×n, q = dim(V), such that vec(σ(t)) = Ut. Denote
by Γ(X) the Euclidean gradient of the unstructured barycenter cost func-
tion fBPn

at X ∈ Pn.
From this, the gradient for the structured barycenter cost function fBS

can be obtained in both the Euclidean and the Riemannian geometry.

• Euclidean geometry:(
UTU

)−1
UT vec(Γ(σ(t)));

• Riemannian geometry:(
UT

(
σ(t)−1 ⊗ σ(t)−1

)
U
)−1

UT vec(Γ(σ(t))).

The pre-multiplied terms in the expressions can be interpreted as precon-
ditioners to the Euclidean gradient. Using the geometric information of
Pn, a more e�ective gradient and more e�cient algorithms are obtained.
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TBBT matrices

Generalize the theory of the Kähler mean to the set of
PD Toeplitz-block Block-Toeplitz (TBBT) matrices Bp,n
(an n × n block structure of p × p matrix blocks):

• Adaptation of the transformation to the block
structure:

T ∈ Bp,n → (P,U1, . . . , Un−1) ∈ Pp ×Dn−1
p ,

where Dp is a generalization of D;

• The computational advantage of decoupling
the separate coe�cients can again be exploited
to average large matrices.

Computation and properties

Transformation to product space R+
∗ × Dn−1, optimization can be de-

coupled into n separate averaging operations.

• Barycenter of the coe�cients Pi in R
+
∗ : exactly the (scalar) geo-

metric mean (P1 · · ·Pk)1/k;

• Barycenter of the coe�cients µj,i (separate for each j) in D:

� Real matrices: C
(

(C(µj,1) · · · C(µj,k))
1/k
)
, where C is the

Cayley transform, C(z) = (1− z)/(1 + z);

� Complex matrices: no explicit formula, but fast scalar opti-
mization algorithms can be constructed.

Properties?

• Barycenter properties (permutation invariance, repetition invari-
ance, ...) hold by construction;

• Properties of the geometric mean which translate well through the
transformation are preserved, e.g., joint homogeneity:

T → αT

(P, µ1, . . . , µn−1)→ (αP, µ1, . . . , µn−1)

• Many other geometric mean properties do not hold or are not well-
de�ned because of the transformation, showing the clear distinction
between the means;

• Useful because of its decoupling property and its close relation to
the application via the transformation.

Structured matrix adaptations

Why?

• Many applications use a matrix structure which is an intersection
of Pn and an additional (vectorspace) structure;

• The geometric mean generally destroys additional structure.

How?

• Domain restriction: minimize over S ⊂ Pn instead of Pn itself.

Properties?

Unstructured

• Permutation invariance:

A permutation of the ele-
ments Ai does not change the
result;

• Joint homogeneity:

for α1, . . . , αk > 0,

Ai → αiAi

BPn → (α1 · · ·αk)1/kBPn ;

• Inversion invariance:

BPn(A−11 , . . . , A−1k )

= BPn
(A1, . . . , Ak)−1.

Structured

• Permutation invariance:

Still holds because of the def-
inition of the cost function;

• Joint homogeneity:

Remains valid if S is the in-
tersection of Pn with a vec-
torspace;

• Inversion invariance:

De�ne S−1 as the set of in-
verses of the nonsingular ele-
ments in S, then

BS−1(A−11 , . . . , A−1k )

= BS(A1, . . . , Ak)−1.


