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Chapter 1 - INTRODUCTION 

1. Stem cells 

1.1 Definition 

Stem cells are the most primitive, unspecialized cells present in the body. During early 

embryonic and fetal development they play a crucial role in tissue and organ generation, 

whereas during adult life they serve as a sort of internal repair system to replace damaged 

tissue after disease, injury or upon ageing. 

Stem cells can be defined by three important criteria: (1) long-term self-renewal ability, which 

means generating identical daughter cells for several symmetrical cell divisions to sustain the 

stem cell pool; (2) ability to differentiate at the single-cell level into numerous tissue- or 

organ-specific cells with specialized functions and (3) the ability to functionally reconstitute a 

given tissue when transplanted in vivo.
1,2

 Based on these characteristics of self-renewal and 

multi-lineage differentiation, stem cells are excellently suited as cell-based therapies in the 

context of regenerative medicine and tissue repair. 

 

1.2 Stem cell hierarchy 

Stem cells are being classified based on their differentiation potential (Fig. 1). The potency of 

a stem cell is defined based on the number of different specialized cell types that can be 

generated. On top of the stem cell hierarchy is the totipotent zygote which can give rise to 

both embryonic and extraembryonic tissues. These totipotent stem cells will further 

differentiate into the 3- to 5-day-old blastocyst, consisting of an outer layer (trophectoderm) 

from which the supportive extra-embryonic tissues (e.g. placenta) develop and the inner layer, 

called the inner cell mass (ICM). Cells isolated from the ICM are defined pluripotent since 

they can give rise to all three somatic germ layers (ectoderm, mesoderm and endoderm) and 

to the germ cells of a multicellular organism, but not to extra-embryonic tissue.
3,4

 During 

embryonic development, these pluripotent cells become increasingly restricted in their 

differentiation potential and generate multipotent stem cells, which are often named after the 

tissue from which they are derived. These cells will mature into finally differentiated cells 

from one specific tissue of one germ layer. 
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Figure 1: Hierarchy of stem cells based on their differentiation capacity. 

The totipotent zygote develops from a fertilized egg. Cells from the ICM of a blastocyst can be 

maintained in culture as pluripotent ESCs. During embryonic development, stem cells become 

increasingly restricted in their differentiation potential and generate tissue-specific, multipotent stem 

cells.
5 SCs, stem cells. 

 

1.3 Embryonic stem cells 

Embryonic stem cells (ESCs) are derived from the ICM of early mammalian blastocysts (Fig. 

1) and were first isolated from early pre-implantation-stage mouse embryos in 1981.
3,6

 These 

cells are the most extensively characterized pluripotent cell type, and can be maintained in 

vitro with specific culture conditions to allow unlimited undifferentiated proliferation, due to 

high telomerase activity.
7
 Remarkably, when murine ESCs (mESCs) are injected into 

blastocysts, they are able to contribute to competent chimeric mice and give rise to a wide 

range of tissues of all three somatic germ layers and to germ cells.
8,9

 Because they do not 

generate extra-embryonic tissues, they are considered pluripotent and not totipotent. When 

mESCs are transplanted in ectopic sites, they form benign tumors containing derivatives of all 

three germ layers (teratomas).
10

 Only a decade after the generation of mESCs, in 1998, 

Thomson et al. reported on the derivation and characterization of ESCs from human 

embryos.
4
 hESCs are positive for known pluripotency genes (transcription factors Oct4, 

Nanog and Sox2) and also form teratomas upon transplantation under the skin of nude mice, 

which make them highly similar to mESCs.
11

 However, due to ethical limitations, chimeric 
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contribution upon transfer in blastocysts cannot be tested.
12

 The clinical use of hESCs is 

limited not only due to their tumorigenicity in their undifferentiated state but also due to 

ethical constraints. On the other hand, adult stem cells, which we will discuss below, have 

more limited differentiation capacity and thus also less tumorigenic potential and are therefore 

being considered for clinical use. 

 

1.4 Adult stem cells 

Adult or somatic stem cells are considered multipotent since they can only give rise to 

differentiated specialized cell types of the tissue of origin. In contrast to ESCs which can be 

grown relatively easily in culture, these tissue-specific stem cells have less self-renewal 

ability ex vivo, in part because of lower levels of telomerase.
13

 Adult stem cells can be found 

in relatively low amounts in a specific tissue or organ in so-called ‘stem cell niches’, a 

complex microenvironment which is composed of differentiated somatic cells and 

extracellular matrix, as well as stem cells and their progeny.
14

 Here, the stem cells can renew 

themselves to maintain homeostasis in tissues where large numbers of differentiated cells are 

needed on a daily base (e.g. epithelium of skin and gut). As already mentioned before, adult 

stem cells can also serve as an internal reserve for cellular replacement or repair following 

injury in other tissues with a lower cell turnover.
15

 Nowadays, adult stem cells have been 

derived from a variety of post-natal tissues. 

 

One of the first characterized and best known adult stem cell is the hematopoietic stem cell 

(HSC).
16

 HSCs can be found in the bone marrow (BM) niche, in umbilical cord blood (UCB) 

and in peripheral blood (PB) after mobilization by growth factors or chemotherapy, where 

they undergo self-renewing cell divisions and eventually differentiate at the single-cell level 

to all mature blood cells.
17

 The fate of HSCs, being self-renewing versus differentiation, is 

controlled by intrinsic signals from the stem cell niche.
14,18

 Upon transplantation (HSCT), 

HSCs can functionally reconstitute the lymphohematopoietic system of a myeloablated 

individual, which led to the use of HSCs after high doses of chemo- and/or radiotherapy for 

the treatment of a variety of hematopoietic disorders and other malignancies.
17

 

 

Other tissue-specific stem cell populations have been identified more recently and are for 

instance neural stem cells (NSCs), epidermal stem cells and intestinal stem cells. NSCs 

differentiate into the three main types of neural cells in the adult brain (neurons, astrocytes 



Chapter 1 ‒ Introduction 

 

 4 

and oligodendrocytes) and can be found in the subventricular zone and the hippocampus of 

the post-natal brain.
19,20

 Epidermal and intestinal stem cells can be detected in tissues with 

high cell turnover being respectively the epidermis and the intestinal epithelium. Epidermal 

stem cells are able to maintain the different compartments of the skin, namely hair follicles, 

sebaceous glands and the interfollicular epidermis.
21

 Intestinal stem cells reside in the base of 

the crypts of Lieberkühn and as they mature, they migrate upwards to the villi and 

differentiate into the specialized cells from the intestinal epithelium.
22

 Both stem cell 

populations remain quiescent, until tissue homeostasis is disrupted, for example upon 

wounding, and will subsequently differentiate and replenish the damaged tissue-specific cells. 

 

1.4.1 Mesenchymal stem cells 

Mesenchymal stem cells (MSCs), also known as marrow stromal cells or mesenchymal 

stromal cells, were originally described in the early 1970s by Friedenstein and colleagues as a 

BM-derived plastic-adherent spindle-shaped fibroblast-like population and were named 

colony-forming unit fibroblasts (CFU-F).
23

 Later, it was found that these cells are a rare 

distinct non-hematopoietic population in the stromal compartment of the BM, coexisting with 

and supporting the growth and differentiation of HSCs, and they were renamed by Caplan as 

MSCs.
24,25

 Despite the low number of MSCs in the BM – approximately between 0.01 % and 

0.001 % of the total nucleated cells, and even declining by age – isolation and expansion is 

relatively easy.
26

 Although originally isolated from BM, MSCs have since been isolated from 

many other adult tissue sources, including adipose tissue (AT), umbilical cord tissue 

(Wharton’s jelly), periosteum, dental pulp, synovial fluid and several fetal tissues.
27-33

 These 

cells have the potential to differentiate in the presence of various factors towards 

mesenchymal cell lineages including bone, fat, cartilage, connective tissue, smooth muscle 

and hematopoietic supportive stroma.
34

 

Three minimal criteria were provided by the International Society for Cellular therapy (ISCT) 

and are since being used to define multipotent human MSCs: (1) expression of a specific 

pattern of surface antigens being CD73, CD90 and CD105 and lack of expression of 

hematopoietic markers (CD14, CD34 and CD45), endothelial markers (CD31) and major 

histocompatibility (MHC) class II surface molecules; (2) plastic-adherence when maintained 

in standard culture conditions and (3) ability to differentiate in vitro into osteoblasts, 

adipocytes and chondrocytes.
35

 Murine and human MSCs are somehow different regarding 

their expansion and functional properties. Murine MSCs grow much slower during ex vivo 
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expansion and are more prone to undergo malignant transformation.
36,37

 Moreover, they fail to 

express indoleamine 2,3-dioxygenase (IDO) 
38

 and seem to display a lower immune 

suppressive capacity in vitro, compared to hMSCs.
36

 

 

Although MSCs have been studied for some decades, the exact origin of the progenitor cells 

has only recently been discovered. When obtained by plastic-adherence, MSC populations are 

initially very heterogeneous and contain probably only a minor fraction of ‘true’ self-

renewing long-lived progenitor cells.
39,40

 Hence, the term mesenchymal ‘stem’ cells is being 

questioned and should theoretically be replaced by mesenchymal ‘stromal’ cells. MSCs may 

denote a mixture of diverse cell types with a large variability between MSC preparations due 

to the age and sex of the donor, the tissue source, the isolation technique used, variations in 

the expansion protocol and culture conditions (e.g. oxygen tension, temperature and medium 

composition), passage number and topographical specificities.
41

 Furthermore, it remains 

uncertain whether culture-expanded MSCs differ phenotypically and functionally from their 

in vivo progeny from which they are obtained, because relatively little is known about their 

biological properties in an unmanipulated state. Until now, little agreement has been reached 

on the use of a specific universal marker to unequivocally identify and prospectively isolate 

MSCs in vivo. Although the exact identity of MSCs in situ is not entirely clear, recently, 

reports have suggested they may have a fibroblastic or pericytic origin. MSCs closely 

resemble fibroblasts, as both cell types are plastic-adherent, share similar cell morphology, 

surface marker phenotype and gene expression, and display tripotency and comparable 

immunoregulatory function, although less potent in case of fibroblasts.
42,43

 Recently, it has 

been demonstrated that a CD146-positive
 
population of self-renewing osteoprogenitors in 

human BM, in contrast to muscle or skin fibroblasts, were able to generate bone and stroma 

and to organize a hematopoietic microenvironment in immunocompromised mice.
44

 These 

cells are located in the subendothelial layer of BM sinusoids and represent adventitial reticular 

cells, a subpopulation of pericytes. As pericytes are present in nearly every organ on the 

abluminal surface of endothelial cells in the microvasculature, it has been hypothesized that 

all MSCs found in different tissues could also be derived from this perivascular zone in blood 

vessels.
45,46

 This may reflect the in vivo niche of MSCs, from which they can be readily 

released upon tissue damage to secrete immunoregulatory and trophic bioactive factors. This 

close relationship between MSCs and perivascular cells was confirmed by Covas et al. who 

reported low CD146 expression of fibroblasts and consistent clustering of MSCs with 

pericytes, rather than with fibroblasts, by means of gene expression analysis.
47
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1.4.2 Multipotent Adult Progenitor Cells 

Only a decade ago, Verfaillie and her colleagues described the derivation of rare cells 

copurifying with MSCs from rat and mouse BM, termed Multipotent Adult Progenitor Cells 

(MAPCs).
48,49

 MAPCs have characteristics different from most adult stem cells. In contrast to 

other adult stem cell populations, these progenitor cells proliferate extensively without 

obvious senescence or loss of differentiation potential and can differentiate in vitro at the 

single-cell level into cells of all three germ layers.
48,50

 Comparable with mESCs, when 

injected into blastocysts, mMAPCs can (at a low level) contribute to most, if not all, somatic 

tissues. 

Since the initial description of the isolation methods, improvements have been made to the 

culture system: isolation and maintenance of the cultures is done at 5% O2, a different serum 

component is used and cells are maintained at higher densities for the first four weeks in 

culture.
51

 Rodent MAPCs are cultured at low cell density and in the presence of leukemia 

inhibitory factor (LIF), epidermal growth factor (EGF) and platelet-derived growth factor 

(PDGF). They are morphologically significantly smaller than their MSC counterpart, do not 

express CD45 or other mature hematopoietic markers and, in contrast to MSCs, do not 

express MHC class I and CD44 antigens.
52

 Similar to rodent MAPCs, human (h)MAPCs are 

isolated from BM or from bone fragments and can be long-term [more than 70 population 

doublings (PD)] expanded ex vivo. They do not require LIF in their culture procedure to 

maintain their self-renewal and differentiate not only towards mesenchymal cell types, but 

also towards endothelium, skeletal muscle and hepatocyte-like cells.
53,54

 In contrast to rodent 

MAPCs, hMAPCs do not express significant levels of Oct4, a transcription factor which is 

expressed during early mammalian development and which is essential to maintain 

pluripotency.
55

 

 

A recent comparative analysis (Table 1) has shown that hMAPCs and hMSCs are two clearly 

distinguishable cell populations.
56

 These stem cell populations differ in terms of their 

phenotype, expansion and differentiation capacity. MAPCs have substantial replication 

potential and can be expanded for a significantly longer time than MSCs (>70 PD versus 20-

25 PD), which was consistent with a higher and more sustained telomerase activity in 

hMAPCs. Their surface marker expression is quite similar to that of hMSCs, lacking 

hematopoietic (CD34, CD45 and c-kit) and endothelial markers (VEGFR-2 and CD34) and 

expressing CD13, CD44, CD73, CD90 and CD105. In contrast to hMSCs, hMAPCs are 
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negative for CD140a and b, ALP and, importantly, express MHC class I molecules at lower 

levels. In addition, CD56, CD271 and CD146 (dimly positive) are not present on their surface 

membrane. Unlike hMSCs, hMAPCs can differentiate into functional endothelium in vitro 

and in vivo, next to differentiation into typical mesenchymal cell types. These phenotypic and 

functional differences between human MSCs and MAPCs were confirmed at the 

transcriptome level by using microarrays. Furthermore, it has been shown that the phenotype, 

the functional properties and the expressed gene profile of these cell populations may not be 

solely determined by cell intrinsic characteristics, but are also influenced by culture-mediated 

changes.
57

 Therefore, until now, it is not known yet whether hMSCs and hMAPCs represent 

truly different cell types in vivo. 
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Table 1: Comparative analysis of hMSCs and hMAPCs. 

 

ALP, alkaline phosphatase; EGF, epidermal growth factor; hMAPC, human multipotent adult 

progenitor cell; hMSC, human mesenchymal stem cell; KDR, kinase insert domain receptor; MHC, 

major histocompatibility complex; PDGF, platelet-derived growth factor.
58
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1.4.3 MultiStem
®
 

Adult stem cells are being explored as allogeneic cell products in regenerative medicine and 

immune-related disorders, as they can exert their restorative and immunoregulatory functions 

independent of MHC compatibility (see Section 2). Before safe application in HLA-unrelated 

patients, stem cells need to be quality tested and expanded in order to reach a sufficient 

amount of cells with therapeutic activity. This hampers the use of autologous cells for 

applications where cells are needed immediately. Furthermore, one of the major drawbacks of 

MSCs is their limited proliferative capacity in vitro (20-30 PD). On the other hand, MAPCs 

have the capacity to undergo extensive expansion doublings (> 70 PD) and can reach a 

sufficient number of cells, so that one specific clinical trial with several patients can be 

performed with the same cell product derived from a single healthy donor. 

 

This extensive proliferation capacity and the specific MHC-independent and immune-

priviliged properties of MAPCs (see Section 2) have led to large-scale manufacturing and 

banking of these cells according to good manufacturing practice (GMP) conditions, allowing 

the production of uniform well-characterized doses without the use of multiple donors.
59

 This 

clinical-grade commercially available stem cell product (MultiStem
®
) is developed and 

patented by the biotech companies Athersys/ReGenesys (for more information: 

www.athersys.com - www.regenesys.eu).
60

 MultiStem behaves in a drug-like fashion by 

expressing proteins and other factors involved in tissue repair and immune system regulation, 

and acts through multiple mechanisms such as protecting damaged or injured cells, reducing 

inflammation and promoting new blood vessel formation in areas of ischemic injury.
61-63

 

Compared to other stem cell populations with only limited proliferative capacity, these 

clinical-grade MAPCs might be a potentially more advantageous adoptive cellular therapy 

with widespread applicability. During its large-scale propagation, MultiStem retains its 

genomic stability as evaluated by Boozer et al.
59

 Because of the fact that this proprietary stem 

cell product can be safely and stably cryopreserved for an extended period of time, MultiStem 

cells are being used as an allogeneic ‘off-the-shelf’ stem cell product at the time of need 

without patient matching for multiple disease indications in the areas of inflammatory or 

immune-related, neurological and cardiovascular diseases. 

  

http://www.athersys.com/
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2. Immune modulation by adult stem cells 

2.1 Mesenchymal stem cells 

During the last two decades, MSCs have found their way into the clinic for several 

therapeutic purposes. To be successful in transplantation, certain criteria have to be fulfilled: 

(1) differentiation into a specialized cell; (2) survival in the host after transplantation; (3) 

homing and integration into the microenvironment of the tissue that is in need for repair and 

(4) lack of a graft reaction against the host tissue and fulfillment of an adequate function in 

the host. 

Because of their potential to differentiate towards chondrocytes and osteocytes in vivo, MSCs 

are an important tool to create cartilage or bone tissue in cell replacement therapies.
64,65

 A 

second domain of interest is revascularization of ischemic tissues (myocardium, brain and 

peripheral limb) as MSCs have the capacity to differentiate into vascular smooth muscle cells 

and secrete angiogenesis-promoting trophic factors.
66

 Thirdly, undifferentiated MSCs produce 

several bioactive molecules like growth factors and cytokines that create a supportive and 

appropriate microenvironment for allogeneic grafts in the context of solid organ or HSC 

transplantation.
67

 One of the very first in vivo studies demonstrated a prolonged survival of 

allogeneic skin grafts in primates that were given a systemic infusion with BM-derived 

allogeneic MSCs.
68

 Another report showed that hematopoietic engraftment in 

immunodeficient mice could be ameliorated by cotransplanting MSCs.
69

 Since then, several 

clinical trials have been performed to test the efficacy of MSCs to prevent rejection and 

enhance engraftment of HSCs upon transplantation.
70,71

 Nowadays, as in vitro studies and 

preclinical animal models have demonstrated that MSCs display a remarkable set of immune 

regulatory, anti-inflammatory and trophic properties, MSCs gained interest in the context of 

autoimmune and autoinflammatory diseases [e.g. Crohn’s disease and multiple sclerosis 

(MS)] and for the prevention and treatment of graft-versus-host disease (GvHD) after HSCT, 

and graft rejection after solid organ transplantation. 

 

2.1.1 Immune regulatory properties in vitro 

2.1.1.1 Adaptive immune system (Fig. 2) 

T cells 

Human mesenchymal stem cells have been shown to interact with a wide variety of 

immune cells of the innate and adaptive immune system. The interplay between MSCs and 
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allogeneic T cells has already been studied by many different groups. First, regarding the 

immunogenicity, MSCs have been proven to be poor stimulators of an in vitro allogeneic T 

cell response. They fail to induce activation of allogeneic T cells, measured as proliferation, 

interferon (IFN)-γ production or upregulation of activation-associated markers.
72

 Two signals 

are required to adequately activate T cells: (1) the recognition of MHC molecules 

clustered with an antigen on the surface of an antigen-presenting cell (APC) by the T cell 

receptor (TCR) and (2) a co-stimulatory signal involving interaction of CD28 on the T cell 

with CD80 or CD86 (B7 superfamily) on the APC. It has been shown that MSCs express 

low levels of MHC class I molecules on its surface, and even lack MHC class II and co-

stimulatory molecule (CD80, CD86 or CD40) expression. The expression of both MHC class 

I and class II can be upregulated upon stimulation with IFN-γ, but this increase was not 

sufficient to enhance the immunogenicity of MSCs.
72

 In contrast, however, Stagg et al. 

reported that in case of syngeneic mMSCs, stimulation with low levels of IFN-γ rendered 

MSCs as conditional APCs which were able to activate antigen-specific immune responses.
73

 

Klyushnenkova et al. showed that the lack of T cell response was not due to a deficiency in 

co-stimulatory signals, since retroviral transduction of MSCs with B7-1 (CD80) or B7-2 

(CD86) did not result in T cell proliferation.
72 

Accordingly, Tse et al. described that IFN-

γ-pretreated MSCs, even in combination with direct co-stimulation via an anti-CD28 

antibody could not induce a T cell proliferative response.
74

 Aside from that, they showed that 

the lack of proliferation was not due to MSC-induced T cell apoptosis. 

 

Second, MSCs have been shown to suppress both naive and memory T lymphocyte 

proliferation and activation induced by alloantigens 
75-77

, mitogens 
75,77,78

, and anti-

CD3/CD28 monoclonal antibodies (mAb).
76,79

 This dose-dependent suppression is most 

marked if MSCs are added at the beginning of the activation period. MHC restriction is 

irrelevant as suppression can be mediated by both autologous and allogeneic stem cells.
76

 

Again, this reduced lymphocyte proliferation is not associated with the induction of tolerance, 

apoptosis or anergy and appears to be enhanced by IFN-γ pretreatment, suggesting the possible 

need for MSC licensing by proinflammatory cytokines.
72,80-83

 MSCs also influence the antigen-

presenting capacity of APCs, which will be discussed in detail below, and as a result, T cell 

responses skew away from a proinflammatory type I response [producing Th1 cytokines IFN-γ 

and tumor necrosis factor (TNF)-α] towards an anti-inflammatory type 2 response (Th2 

cytokines IL-4 and IL-13) in the presence of MSCs.
77

 Furthermore, MSCs also inhibit T cell 

responses by diminishing surface expression of early T cell activation markers CD25, CD38 
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and CD69.
78

 Di Nicola et al. demonstrated that the suppressive effect of hMSCs on mitogen-

induced allogeneic T cell proliferation is only transient, and disappears after MSC removal.
75 

This is in contrast to the findings on mMSCs which induce a condition of anergy due to 

divisional arrest of T cells in the G0/G1 phase of the cell cycle.
80

 

 

Most studies agree that a soluble factor is involved in MSC-mediated T cell proliferation 

suppression, as MSCs are still inhibitory ‒ albeit at a lower level ‒ when MSCs and T 

lymphocytes are separated by a permeable membrane. However, this suppressive factor is not 

constitutively secreted because supernatants from MSC cultures seemed not to have any 

inhibitory effect, implying that cross-talk between MSCs and target cells is mandatory. 

Several candidate mediators have been postulated, but the available data are often very 

contradictory, which could possibly be explained by the variable experimental designs. A role for 

transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF) has been 

suggested by Di Nicola et al., who found that antibodies against TGF-β and HGF partially 

restored proliferation of purified T cells stimulated with allogeneic peripheral blood 

lymphocytes.
75

 However,
 
TGF-β and HGF were not involved in the case that T cells were 

stimulated with mitogens or when peripheral blood mononuclear cells (PBMCs) were used as 

responder cells.
74,78,84

 Aggarwal et al. reported that inhibition of the synthesis of 

prostaglandin E2 (PGE2) mitigated MSC-mediated suppression.
77 

PGE2 was found to be 

constitutively produced by MSCs and the production was even enhanced upon coculture of 

MSCs with PBMCs.
74

 The attribution of PGE2  in the suppression by MSCs was confirmed 

by Rasmusson et al. who showed restoration of T cell proliferation suppressed by MSCs with 

indomethacin (an inhibitor of PGE2 synthesis), but only when T cells were stimulated with 

phytohaemagglutinin (PHA), and not in a mixed lymphocyte culture (MLC) with 

allogeneic APCs.
85 

Another possible mediator has been suggested by Meisel et al. who 

described a role for IDO.
86

 IDO is important in the catabolic intracellular pathway, which 

catalyzes the degradation of the essential amino acid tryptophan into kynurenine and has been 

identified as a major immunosuppressive effector pathway that inhibits T cell responses to 

autoantigens and fetal alloantigens in vivo.
87 

In MSCs, IDO is not constitutively being 

expressed, but can be induced by IFN-γ pretreatment. The group of Meisel et al. observed a 

restored T cell proliferation after tryptophan addition in the coculture of MSCs and T cells.
86 

However, tryptophan depletion was not responsible for the immunosuppressive effect of 

MSCs when unfractionated PBMCs were used as responder cells.
74

 It has become clear that 
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several factors in the experimental design contribute to all these discrepant results. The kind 

of responder population (unseparated mononuclear cells versus purified T cells), the exact 

stimulator used, as well as the origin of the MSCs might alter the mechanism of MSC-

mediated suppression. More recently, other mediators in MSC-mediated immunosuppression 

have been suggested. Upregulation of stress response pathways such as inducible nitric 

oxide synthetase (iNOS) and heme-oxygenase-1 (HO-1) contribute to MSC-induced 

immune suppression.
88,89

 The human leukocyte antigen HLA-G protein, which is a soluble 

non-classical HLA class I molecule, was also found to mediate the suppressive effect of 

MSCs through the induction of proliferation of regulatory T cells (Tregs).
90 

Recently, TNF-

stimulated gene-6 (TSG-6) was identified to play an important role in MSC-mediated 

cardioprotective effects in a mouse model of acute myocardial infarction (AMI).
91

 MSCs 

have also been reported to induce the production of anti-inflammatory IL-10 by 

plasmacytoid dendritic cells (pDCs), which in turn triggers the generation of Tregs.
92

 

Additional immune regulatory cells that are induced by MSCs include regulatory DCs, 

alternatively activated anti-inflammatory M2 macrophages and myeloid-derived suppressor 

cells (MDSCs).
93-95 

In addition, galectins are now emerging as a main regulator of MSC 

immunosuppressive function.
96

 

However, published data do not exclude the possibility that a part of the immune suppressive 

effect exerted by human MSCs on alloantigen-induced T cell activation may be dependent on 

cell-to-cell contact mechanisms. Examples of MSC-related contact-dependent suppressive 

mechanisms are the programmed death ligand-1 (PD-L1)/ programmed death-1 (PD-1) 

signaling pathway, the apoptosis-inducing FasL/FasR interaction, the induction of adhesion 

molecules (ICAM-1/VCAM-1) and Toll-like receptors (TLR).
97-100

 In summary, it is obvious 

that the mechanism(s) by which MSCs exert their immune suppressive function are 

pleiotropic and redundant. 

 

Thirdly, MSCs have been reported to inhibit the cytotoxic effects of antigen-primed cytotoxic 

T cells (CTLs), only when added at the beginning of the MLC, suggesting that MSCs 

probably rather suppress CTL proliferation and development than directly target cytolytic 

activity.
101-103

 At the same time, they were not susceptible to CTL-mediated lysis.
92,101,104

 And 

finally, MSCs increase the proportion of CD4
+
CD25

+
FoxP3

+
 Tregs in PBMC or T cell 

cultures.
77,92,105

 However, another study showed that depletion of Tregs had no effect on the 

inhibition of T cell proliferation by MSCs.
106
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B cells 

Studies on the effect of MSCs on B cell function have been performed, although less 

frequently and leading to conflicting results. In vitro experiments showed that B cell 

proliferation was inhibited by hMSCs through an arrest in the G0/G1 phase of the cell cycle. 

In addition, hMSCs inhibited B cell differentiation because antibody production (IgM, IgG, 

and IgA) was significantly impaired, as well as chemotaxis.
107,108

 
 
In contrast, however, 

others have reported stimulatory effects on in vitro activated B cells or plasma cells from 

healthy humans or patients with systemic lupus erythematosus (SLE).
109,110

 

 

 

Figure 2: Immunomodulatory properties of mesenchymal stem cells on adaptive immune cells. 

Mesenchymal stem cells (MSCs) suppress CD4
+
 T cell proliferation and polarization (in response to 

specific cytokine milieus) towards Th1 and Th17 cells, while enhancing differentiation towards Th2 and 

Treg effector populations. MSCs impair CD8
+
 T cell proliferation, cytokine production and 

cytotoxicity, and inhibit various aspects of B cell activity, including activation, proliferation, 

chemokine receptor expression and differentiation to antibody-secreting plasma cells. MSCs mediate 

these effects by producing a variety of soluble factors and by membrane-bound molecules.
111
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2.1.1.2 Innate immune system (Fig. 3) 

Natural killer cells 

Natural killer (NK) cells are important effector cells of innate immunity. These cells display 

spontaneous cytolytic activity against cells that lack the expression of MHC class I 

molecules.
 
The function of NK cells is regulated by the balance of the interaction between 

activating and inhibitory signals with their cell surface receptors.
112

 MSCs are known to 

express low levels of MHC class I molecules, which makes them vulnerable for NK cell-

mediated killing.
113

 Nevertheless, MSCs are immunoprivileged and are not lysed by freshly 

isolated resting NK cells, even despite killer-cell immunoglobulin-like receptor (KIR) 

mismatch between MSC and NK cell donors.
101

 On the other hand, both autologous and 

allogeneic MSCs can be successfully killed by activated NK cells.
114,115 

This indicates that 

interactions between MHC class I-specific inhibitory receptors on NK cells and MSCs are not 

sufficient to protect MSCs from lysis. It is in fact also known that MSCs express ligands for 

activating NK cell receptors on its surface, like MIC-A and ULBPs (both ligands of NKG2D) 

as well as PVR and Nectin-2 (both ligands of DNAM-1), which triggers NK cell 

alloreactivity. In line with previously mentioned upregulation of HLA-ABC on MSCs upon 

culture with IFN-γ, IFN-γ-treated MSCs were less susceptible to NK cell-mediated lysis.
114

 In 

addition, MSCs exert an inhibitory effect on NK cells affecting different aspects of NK cell 

function like proliferation, cytotoxic activity and cytokine production.
114,116

 MSCs inhibit 

the cytokine (IL-2 and IL-15) driven proliferation of purified NK cells in a dose-dependent 

way.
 
Even though MSCs did not inhibit the resting NK cell-mediated lysis of K562 cells, 

cytokine-stimulated NK cells cocultured with MSCs exhibit a reduced cytolytic function 

against K562 cells.
101

 Sotiropoulou et al. could only demonstrate an impaired cytolytic 

function against HLA class-I positive tumor targets.
113 

Together with the cytolytic activity, 

the IFN-γ production by NK cells is impaired after coculture with MSCs.
113,116 

As for the 

effect on T cells, the mechanism of inhibition of MSCs on NK cells is not yet completely 

unraveled. Different soluble mediators like PGE2, IDO, TGF-β and HLA-G have been 

proposed.
113,116,117

 

 

DCs 

DCs play a critical role in the induction of adaptive immunity and tolerance acting as the 

primary APCs to initiate a T cell response. This process is essential to initiate adaptive 

immunity against foreign antigens, but in case of allogeneic transplantation with a non-HLA-
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identical donor, DCs can promote T cell alloreactivity leading to graft rejection. Therefore, 

the interaction between DCs and MSCs has been subject of intensive research. In addition 

to direct suppression of T cell proliferation, MSCs have been demonstrated to interfere also 

with DC differentiation, maturation and function, implying an equally important indirect 

suppression of T cell proliferation. First, MSCs inhibit the differentiation of monocytes or 

CD34
+
 progenitors to immature dendritic cells (iDCs). This effect is reversible and 

mediated by PGE2.
118,119

 Second, consistent data have shown that MSCs interfere with the 

DC maturation. It has been shown that DCs cocultured with MSCs and exposed to maturation 

factors such as lipopolysaccharide (LPS) or TNF-α, did not express CD83 and failed to show 

upregulation of maturation markers like MHC class II, CD40 or CD86.
118,120 

In line with 

these findings, iDCs generated in the presence of MSCs were strongly hampered in their 

ability to induce activation of T cells. MSC cocultures induced an altered cytokine 

expression with reduced IL-12, IFN-γ and TNF-α production and increased IL-10 

generation.
77,120 

Additionally, DCs cultured with MSCs have been shown to induce indirect 

expansion of Tregs, as mentioned before. Collectively, MSCs impair DC differentiation, 

maturation, function and their migration to lymph nodes. Moreover, they promote the 

generation of tolerogenic iDCs that exhibit a suppressor or inhibitory anti-inflammatory 

phenotype, unable to maximally induce alloreactive T cell activation. Again, transwell 

experiments have shown that the suppressive effect of MSCs on DC differentiation is 

mediated by soluble factors, with possible roles for IL-6, M-CSF, PGE2 and IL-10.
118-120

 

 

Macrophages 

Macrophages are key players in the innate immune system and are important in initiating and 

controlling inflammation.
121

 In a proinflammatory context, MSCs may be activated to skew 

the differentiation of monocytes from classically activated proinflammatory M1 macrophages 

towards alternatively activated and IL-10-secreting anti-inflammatory M2 macrophages, 

possibly through PGE2 and IDO.
122,123

 Busch et al. showed similar findings for rat MAPCs.
124
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Figure 3: Immunomodulatory properties of mesenchymal stem cells on innate immune cells. 

Mesenchymal stem cells (MSCs) utilize diverse molecular mechanisms to suppress innate immune 

cells. MSCs inhibit NK cell and DC activation, differentiation and effector functions, while the 

generation of regulatory DCs is supported by MSCs. MSCs also favor macrophage polarization 

towards M2, impair neutrophil apoptosis and respiratory burst, and mast cell degranulation of 

histamine-containing granules. MSC-derived PGE2 and IL-6, amongst other factors, mediate most of 

these suppressive effects.
111

 

 

2.1.2 Clinical experience on immune modulation in vivo 

2.1.2.1 Safety assessment 

Some decades ago, the very first clinical studies were performed to investigate the safety 

profile of intravenous administration of autologous human MSCs.
125,126

 Back then, only 

patients with severe disorders like hematological malignancies and breast cancer were 

included, because of the fear for adverse effects and tumor formation. Autologous culture-

expanded MSC infusion at the time of HSCT was feasible, well-tolerated and safe. Many 

studies followed and so far no reports of any infusion-related toxicity, immediate adverse 

outcomes or ectopic tissue formation are described. 

 

2.1.2.2 HSC engraftment 

Several factors have limited the clinical impact of traditional BM or HSC transplants, such as 

the need to tissue-match donor and recipient, the need for coadministration of 

immunosuppressive drugs to reduce the risk of rejection or other immunological 
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complications (GvHD). Many research groups have analyzed the function of MSCs as an 

adjunctive treatment for stromal support on the engraftment of HSCs and subsequent 

hematopoietic recovery after BM transplantation in patients with hematological 

malignancies. For such patients, treatment typically involves radiation therapy or 

chemotherapy, alone or in combination. This can substantially deplete the cells of the blood 

and the immune system, by reducing the number of stem cells in the BM from which they 

arise. One strategy for treating the depletion of BM is to perform a peripheral blood stem cell 

transplant or a BM transplant. This approach may augment the patient’s ability to form new 

blood and immune cells and provides a significant survival advantage. However, finding a 

closely matched donor is frequently difficult or even impossible. Even when such a donor is 

found, in many cases there are immunological complications, such as GvHD, which may 

result in serious disability or death. 

 

Experimental animal models have already shown that MSCs promote hematopoietic cell 

engraftment.
127,128

 In 2000, Koç and co-workers were the first to report on infusion of 

autologous MSCs with a therapeutic intent.
125

 Twenty-eight advanced breast cancer patients 

received high-dose chemotherapy and autologous peripheral-blood derived progenitor cells 

together with culture-expanded MSCs. They showed rapid hematopoietic recovery, 

suggesting that coinfusion of autologous MSCs after myeloablative therapy has a positive 

impact on hematopoiesis. Two years later, Lee et al. were the first to use allogeneic MSCs 

(HLA-haploidentical donor) in a patient with high-risk acute myeloid leukemia (AML) who 

was transplanted with mobilized peripheral blood HSCs combined with BM-derived 

MSCs.
129

 Rapid engraftment was observed without acute or chronic GvHD and, at 31 

months after HSCT, no sign of relapse was noted. In a pilot study, the group of Katarina Le 

Blanc et al. cotransplanted seven patients together with HLA-identical (3 cases) or 

haploidentical (4 cases) MSCs to enhance engraftment.
130

 Despite notable differences in the 

patient population, sources of HSCs and MSCs and HLA compatibility, all patients 

experienced stable hematopoietic engraftment and full donor chimerism within 100 days 

after transplantation. However, mild GvHD was seen in 6 out of 7 patients. Baron et al. 

cotransplanted 20 patients undergoing reduced-intensity treatment with HLA-mismatched 

HSCs and third-party HLA-disparate MSCs.
131

 Compared to 16 historical controls, the HSC 

engraftment and incidence of relapse were similar in both groups, but the overall survival at 

one year was significantly higher in the MSC-treated patient population. Poloni and 

colleagues treated 26 patients with HLA-identical sibling BM or mobilized peripheral blood 
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cells after reduced intensity conditioning together with MSCs, and 23 patients (88%) achieved 

sustained engraftment.
132

 In a study performed by Ball et al., fourteen pediatric patients with 

hematological malignancies and immune deficiency or nonmalignant disorders received 

haploidentical HSCs together with donor-derived MSCs.
133

 Although graft failure in 47 

historical controls was 15%, all pediatric patients given MSCs showed sustained 

hematopoietic recovery without any adverse effect or increased number of infections. 

Furthermore, two case reports were described by Fouillard et al., involving one patient 

suffering from end-stage severe aplastic anemia and another patient with graft failure 

secondary to incomplete engraftment after autologous HSCT for AML.
134,135

 Despite back-up 

BM infusion, the graft failure persisted in the latter patient, and this patient was infused with 

MSCs three years after the initial HSCT. Hematopoietic recovery of polymorphonuclear cells 

and platelets was observed in the absence of any additional HSC support. After receiving 

haploidentical MSCs, the first patient showed histological improvement in the BM 

microenvironment without hematopoietic recovery after MSC administration. In a study by 

the group of Macmillan et al., 8 pediatric patients with acute leukemia were transplanted with 

allogeneic MSCs at the time of UCB transplantation.
136

 All patients showed neutrophil 

engraftment and probability of platelet engraftment was 75%. In a last exemplary study, 

Meuleman et al. transplanted 6 patients with graft failure secondary to allogeneic HSCT, with 

MSCs without HSC coinfusion.
137

 Two of the patients, both transplanted in first complete 

remission, showed rapid hematopoietic recovery within several weeks, whereas other patients 

transplanted at later stages of their disease were unresponsive. 

These observations imply an enhancement of HSC engraftment and thus a reduced risk of 

early HSC graft failure in case of HLA disparity after cotransplantation with MSCs in a 

majority of treated patients, but larger studies are still required. 

 

2.1.2.3 GvHD prophylaxis/treatment 

Based on the fact that MSCs also share important immune modulatory properties, clinical focus 

shifted to the prevention of GvHD in patients who had undergone HSCT. Until now, GvHD is 

the far most studied therapeutic application for MSCs.
138

 GvHD is a frequent and severe 

complication of allogeneic HSCT and prevalence ranges from 35 to 80% depending on the 

degree of HLA-matching, the patient’s age and the amount of donor T cells present in the 

graft. 
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Several animal studies have addressed the role of MSCs in the context of GvHD prevention 

after BM transplantation, but conflicting results were delivered.
36,139-141

 Clinical benefits were 

shown in some (but not all) GvHD models, predominantly in the studies when (preactivated) 

MSCs were repeatedly administered at the time of and after transplantation. These results 

indicate the variability of experimental outcome, depending on the origin of MSCs and on the 

timing, dose and frequency of MSC injections. Only recently, in 2005, Lazarus et al. 

conducted a large multicenter clinical trial including 46 patients diagnosed with 

hematological malignancies, who received a myeloablative regimen and a cotransplantation 

of HLA-identical sibling-derived HSCs and MSCs in escalating doses from 1 to 5 x 

10
6
/kg.

126
 Infusions were well tolerated, without any adverse reactions, but stromal cell 

chimerism could only be demonstrated in 2 out of 19 examined patients at 6 and 18 months 

after transplantation. Moderate to severe acute GvHD (aGvHD) was seen in 28% of the 

patients, and 61 percent developed chronic GvHD (cGvHD).  Next, in a similar set of 

patients, in a small open-label randomized clinical study, HLA-identical sibling HSCs were 

transplanted in the absence or presence of additional MSCs.
142

 Compared to HSC 

transplantation, additional infusion of MSCs prevented GvHD development (11% in MSC 

group versus 53% in non-MSC group grades II-IV GvHD). However, on the other hand, the 

early relapse rate was significantly higher in the MSC group than in the control group (60% 

versus 20%), resulting in discontinuation of the trial. More recently, the group of Liu et al. 

performed a randomized controlled phase II study.
143

 A total of 55 leukemic patients 

received MSCs at the same time of haploidentical HSCT. Platelet recovery within 100 days 

was faster in the treatment group than in the control group. A higher frequency of aGvHD 

was observed in the treatment group compared with the control group (respectively 

51.8% versus 38.9%), whereas less cGvHD developed in the treatment group (respectively 

51.4% versus 74.1%). The overall survival rate did not significantly differ. The authors claim 

that the heavily pretreated status of their patients together with the low dose of MSCs (10
5 

cells/kilo) were responsible for the absence of a beneficial effect of MSCs on the 

prevention of GvHD. In conclusion, these results are a promising base for adult stem cell 

therapy in GvHD prophylaxis, but the number of clinical studies and evaluated patients 

remains limited, and additional studies are necessary to determine timing and frequency of 

administration, and optimal cell dose. 

 

As it became clear that MSCs were able to suppress the proliferation of alloreactive T cells in 

vitro and could promote tissue repair in animal models, MSCs were not only used 
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prophylactically at the time of HSCT but were also tested in the treatment of acute GvHD. 

The most impressive results came from a landmark case report, in which Le Blanc and 

colleagues described the very successful therapy of a 9-year-old boy with steroid-resistant 

grade IV aGvHD using haploidentical third-party MSCs.
144 

Prompt reversal of severe gut and 

liver GvHD was reported and sustained complete response (CR) occurred after the second 

infusion of MSCs. A subsequent study included 8 additional patients with similar 

treatment-refractory aGvHD.
145

 Six of them showed CR after MSC infusion, and their survival 

rate was better compared to 16 controls. Some less impressive results were published by 

Muller et al. who saw amelioration of GvHD in only two out of seven pediatric patients 

receiving haploidentical parental MSCs.
146

 Other groups followed and tried to reproduce earlier 

beneficial results. Von Bonin and co-workers described improving effects of third-party 

MSCs expanded in platelet lysate-containing medium in 2 of 13 adult patients with 

aGvHD.
147

 Complete remission in five out of six steroid-refractory aGvHD patients was 

obtained by the group of Fang et al., who published promising results by using AT-derived 

third-party MSCs.
148

 All these reports indicate that the included patient population, the 

timing of MSC infusion, and even the origin, isolation and expansion methods of MSCs can 

largely influence clinical outcome. Therefore, the European Society for Blood and Marrow 

Transplantation (EBMT) MSC consortium initiated a large multicenter non-randomized 

phase II trial, using a standardized MSC expansion protocol and common reagents.
149

 Fifty-

five patients with steroid-resistant severe aGvHD were included, receiving one (n = 27) or 

more (n = 28) MSC infusions (HLA-identical, haploidentical or unrelated HLA-mismatched 

source) with a median dose of 1 x 10
6 

cells/kg. Results confirmed a beneficial effect: CR to 

MSC infusion was seen in 30 patients (55%), with 27 complete responders already after a 

single infusion. Complete responders had a higher overall survival 2 years after HSCT, 

compared to partial/non-responding patients. Responses were somewhat more frequent in 

children than in adults, although this difference was not statistically significant. Most 

interestingly, there was no difference in response rates with respect to the source of MSCs. 

These results were extended with a retrospective analysis of a cohort of 37 children treated 

with multiple MSC infusions for refractory grade III-IV aGvHD.
150

 CR was seen in 24 

patients (65%), especially when MSCs were employed early in the disease onset , and 

overall survival after a median follow-up of 2.9 years was larger in patients who achieved 

CR. This observation paved the way for the establishment of large uniform banks of MSCs 

enabling rapid availability of MSCs without the need for HLA typing. In 2010, the first 

randomized placebo-controlled multicenter phase III trial for the treatment of steroid-
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resistant aGvHD was conducted using large-scale expanded MSCs derived from a healthy 

third-party donor (Prochymal
®
; Osiris Therapeutics). A total number of 244 patients were 

enrolled, from which 163 patients received eight infusions of Prochymal (dose 2 x 10
6
/kg) 

over a period of 4 weeks versus 81 patients who received placebo. Unpublished unreviewed 

results showed similar sustained complete remission between both study groups, implying the 

failure to reach primary endpoints. However, according to the sponsoring company, a more 

in-depth subgroup analysis showed that pediatric patients experienced larger benefit and that 

gut and liver involvement had better response rates with Prochymal compared to patients 

with skin involvement, which would be in accordance with other published results by 

Ringden et al.
151

 Kebriaei et al. studied the use of this clinical-grade MSC product to treat 

de novo aGvHD (grade II-IV).
152

 Patients were randomized to receive 2 infusions of either 

low-dose (2 x 10
6 

cells/kg) or high-dose (8 x 10
6 

cells/kg) third-party MSCs in combination 

with corticosteroids. Combination therapy resulted in complete and partial response in 

respectively 77% and 16% of cases. There was no difference with respect to safety or 

efficacy between the low and high dose of MSCs. Recently, Prochymal was used to 

treat 12 children with steroid-refractory grade III-IV aGvHD.
153 

They received 2 or 8 x 10
6 

cells/kg twice a week for 4 weeks. Partial and mixed responders received subsequent 

therapy for 4 weeks. Clinical response, particularly in the gastro-intestinal system, was seen 

in the majority of children (58% complete response, 17% partial response). For the moment, 

conditional product approval of Prochymal – being the first approved stem cell drug 

worldwide – has been achieved for treatment of pediatric GvHD in Canada and New Zealand. 

Very recently, Zhao et al. enrolled 47 patients with refractory aGvHD in a study to evaluate 

the immune modulatory effects of third-party MSCs.
154

 Twenty-eight patients received MSCs 

(median dose 1 x 10
6 

cells/kg) weekly until patients got CR or they received eight doses. 

Overall response rate was 75% in the MSC-treated population compared with 42% in the 

untreated group. Occurrence and severity of cGvHD were lower in the MSC group, and no 

increase of infections or tumor relapse were observed. 

Taken together, complete or partial response was seen in a vast majority of patients in all 

these studies with varying numbers of patients treated for acute GvHD with MSC infusions. 

Pediatric patients tended to have a better response compared to adults.
149,151,153

 This might be 

explained by a better healing capacity, implying that children can better tolerate severe 

aGvHD. Importantly, HLA compatibility between MSC donor and recipient does not seem to 

be of major importance. Furthermore, there seemed to be no difference regarding the dose of 
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MSCs and the number of MSC infusions. Whether a particular source of stem cells is 

superior, and whether the number of MSC passages is of relevance remains to be answered. 

Interestingly in this part is that the number of MSC expansion passages correlated with the 

clinical outcomes in the studies performed by the group of Le Blanc et al.; patients given 

MSCs with passage number 1 or 2 experienced a higher response rate and overall survival 

after one year (50% versus 8%) than those given MSCs from passage 3 or 4.
155

 

 

As chronic GvHD still represents substantial morbidity and mortality after allogeneic HSCT, 

reports of MSCs to treat cGvHD are emerging.
145,156

 Weng et al. reported on 19 patients 

with steroid-refractory cGvHD treated with MSCs.
157

 Partial or complete response was 

seen in 74% of the patients. The question whether the established mechanism of graft-versus-

leukemia (GvL) will remain in patients with cGvHD who have been successfully treated 

needs to be further addressed. 

 

2.1.2.4 Autoimmune diseases 

At the moment, GvHD is by far the most studied therapeutic application for MSCs. However, 

MSCs are also being used to treat other diseases like AMI, neurological diseases, Crohn’s 

disease and other autoimmune diseases.
158-160

 Murine studies have demonstrated that MSCs 

are able to ameliorate the signs and symptoms of experimental autoimmune encephalomyelitis 

(EAE; a model of human MS), diabetes and SLE.
161-163

 Nowadays, preliminary results of 

clinical trials using MSCs in the context of autoimmune diseases are very promising. In the 

context of Crohn’s disease, the results of two phase I trials were recently published. 

Duijvestein et al. treated nine patients twice with systemically administered MSCs (1-2 x 10
6 

cells/kg), without observing a clinical response.
164

 In the second study, complete fistula closure 

was achieved in 7 out of 10 patients after local injection of MSCs (15-30 x 10
6 

cells) every four 

weeks.
160

 A phase III study with Prochymal is being initiated. Karussis et al. reported on the 

outcome of a phase I/II trial in patients with amyotrophic lateral sclerosis (ALS) or MS, who 

were injected intravenously and intrathecally with autologous MSCs.
165

 No unexpected 

pathology occurred and MSC treatment resulted in a significant improvement of the clinical 

score. 
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2.2 Multipotent Adult Progenitor Cells 

2.2.1 Immune regulatory properties in vitro 

Like hMSCs, hMAPCs lack expression of MHC class II and co-stimulatory molecules 

belonging to the B7-family (CD40, CD80 and CD86), and subsequently do not induce 

proliferation of allogeneic T cells in vitro.
166

 Despite upregulation of MHC class I, class II 

and ICAM-1 (CD54) expression after pretreatment with IFN-γ, hMAPCs still failed to evoke 

alloreactive T cell proliferation. Although low levels of activation markers on responder T 

cells were induced by hMAPCs, they did not induce production of Th1 or Th2 cytokines upon 

coculture with allogeneic T cells. hMAPCs significantly suppress proliferation of T cells, of 

memory T cells upon stimulation with recall antigens and of effector T cells during a 

secondary MLC. Even delayed addition of hMAPCs to a MLC showed inhibitory effects, 

meaning that hMAPCs can also reduce ongoing immune responses and can possibly be 

applied not only to prevent but also to treat immune-mediated diseases. Similar as with 

hMSCs, suppressive effects of hMAPCs were independent from MHC compatibility and not 

abrogated by IFN-γ pretreatment. Hence, hMAPCs might retain their immune suppressive 

capacity when injected into an inflammatory microenvironment in vivo. Furthermore, 

hMAPCs do not induce T cell anergy and allow priming of T cells. As it is the case for 

hMSCs, hMAPC-mediated suppression of T cell proliferation is, at least in part, mediated by 

a soluble factor. In the case of hMAPCs, Jacobs et al. found a partial role for IDO.
166

 

However, the degree of inhibition is stronger when cell-to-cell contact is present, which points 

to a parallel cell contact-dependent suppressive mechanism. Overall, the immunosuppressive 

properties of hMAPCs are similar as those of hMSCs, at least on T cell alloreactivity in vitro. 

 

2.2.2 Clinical experience on immune modulation in vivo 

Tolar and colleagues were the first to study the immunological behavior of
 
murine MAPCs 

(mMAPCs).
167

 These cells were unable to stimulate allogeneic CD4
+
 and CD8

+
 T cells in 

vitro, and were susceptible to NK cell-mediated lysis. Luyckx et al. confirmed these findings 

and demonstrated a bimodal modulatory effect of mMAPCs on alloreactive T cell 

proliferation with immune stimulatory effect at low ratios and suppressive effect at high 

ratios.
168

 Moreover, mMAPCs suppressed in vivo alloreactive T cell expansion in a local 

GvHD model, but failed to inhibit systemic GvHD. Similarly to these findings, Highfill et 

al. proved that mMAPCs had a prophylactic effect on GvHD and were able to prevent 

activation and proliferation of alloreactive CD4
+
 and CD8

+ 
T cells, only when delivered 
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locally at the site of initial T cell priming.
169

 Furthermore, a dose-dependent suppressive 

effect was observed in vitro, which was mediated by PGE2. Kovacsovics-Bankowski et al. 

reported on the immunological behavior of clinical scale-expanded rat MAPCs.
170,171

 Similar 

to their murine counterparts, rat MAPCs lacked in vivo immunogenicity and did not induce 

alloreactive T cell responses. Furthermore, rat MAPCs were not susceptible to NK cell-

mediated lysis and they dose-dependently suppressed alloreactive T cell proliferation, which 

was mediated by IDO-associated tryptophan depletion. In addition, the authors 

demonstrated the safety of administering rat MAPCs in a myeloablative HSCT setting, during 

which they could even modulate GvHD. 

 

2.3 MultiStem 

Preclinical studies with MultiStem cells have been conducted in a range of animal models 

including cardiovascular and neurological diseases, and BM transplantation-associated 

GvHD.
170-174

 Administration of repeated dosing regimens in these models was considered safe 

and well-tolerated. MultiStem has shown potent immunomodulatory properties, including the 

ability to reduce active inflammation through various modes of action, to stimulate tissue 

repair and to restore immune system balance. MultiStem infusion ‒ even one week after onset 

of injury in the stroke model ‒ corresponded with an inflammation reduction in the ischemic 

injury regions and with cytoprotective benefits, as well as vasculogenic and proangiogenic 

effects. Furthermore, MultiStem can play a role in reducing the incidence and severity of 

GvHD in BM transplant recipients.
175 

 

MultiStem is currently being evaluated in the clinic in multiple disease areas in the context of 

inflammatory and immune-related disorders, next to their regenerative role in cardiovascular 

and neurological diseases. Third-party MultiStem has been proven safe and well-tolerated in 

phase I studies in patients with AMI and as an adjuvant cell therapy to enhance engraftment 

of HSCs and as GvHD prophylaxis after allogeneic HSCT.
61,176

 Moreover, a partial beneficial 

effect of MultiStem was seen in the AMI study, because of its ability to induce 

neovascularization through secretion of trophic factors such as VEGF, IL-8 and CXCL5.
62

 

MultiStem was delivered directly into the region of ischemic damage in the heart, and 

improved cardiovascular performance including left ventricular ejection fraction, left 

ventricular end systolic volume and wall motion.
61

 The open-label, phase I, multicenter 

GvHD prevention trial by Maziarz et al. showed that single and repeated-dose intravenous 
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administrations were well-tolerated, and a reduced incidence and severity of aGvHD was 

observed.
176

 The overall cumulative incidences of grade II-IV and grade III-IV aGvHD in 36 

patients were 37% and 14%, respectively. The group that received the highest MAPC dose 

(10 x 10
6 

cells/kg) had an incidence of 11.1% (1 out of 9) of grade II-IV, with no reported 

cases of grade III-IV aGvHD. A phase II and phase II/III study for respectively AMI and 

HSCT support/GvHD prophylaxis are planned to initiate later in 2014. Moreover, phase I 

studies are started in the context of immune modulation after liver transplantation and phase II 

studies are recruiting patients with refractory ulcerative colitis or ischemic stroke.
177,178

 

Preliminary results of the colitis study demonstrated a favorable safety and tolerability profile 

for MultiStem through 8 weeks following treatment, but failed to show significant 

improvement compared to placebo in the primary efficacy endpoints. 

 

2.4 In vivo mechanism 

Despite the obtained results from in vitro immunoassays, the exact mechanism(s) by which 

adult stem cells and more specific MSCs display their immunosuppressive effects in vivo 

remains topic of further research. Initially, infused donor MSCs were thought to differentiate 

in situ and substitute damaged cells in injured tissues of the recipient. However, it has become 

increasingly clear that persistent MSC engraftment is not mandatory. Preclinical research in 

different animal models has demonstrated that MSCs distribute to a wide range of tissues 

(mainly lung, liver, kidney, spleen and bones) and are able to home and migrate to peripheral 

sites of injury and inflammation after systemic infusion in MHC-mismatched recipients.
179-181

 

Interestingly, MSCs could even exert their protective effects without long-term engraftment 

and with only limited levels of engraftment and transdifferentiation in situ, indicating that the 

multipotentiality of MSCs is not required for their therapeutic effect.
182

 The complex 

coordinated multistep process of MSC migration into specific tissues is highly similar with 

the well-known leukocyte adhesion cascade, including selectin-mediated rolling on the blood 

vessel wall, cell activation by chemokines and cytokines, integrin-mediated adhesion on the 

endothelium and transendothelial migration into the extracellular matrix involving integrin-

dependent interactions and matrix-degrading proteases.
183

 It has been demonstrated that 

MSCs have chemotactic ability due to a restricted pattern of chemokine receptors (like 

CXCR4) allowing them to invade injured tissue, which expresses a chemokine density 

gradient and specific molecules to facilitate trafficking, adhesion and infiltration of 

MSCs.
184,185

 Most of the favorable effects of MSCs could be explained by secretion of 
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therapeutic paracrine or endocrine factors – in response to the inflammatory 

microenvironment – that have multiple effects, including modulation of inflammatory and 

immune reactions, protection from cell death and stimulation of endogenous progenitor cells 

in productive tissue repair.
67

 These findings suggest that even transient MSC engraftment 

(‘touch-and-go effect’) may exert beneficial effects. 

 

2.5 Safety issues 

Stem cell-based immunotherapy seems one of the most fascinating and promising areas of 

contemporary biology and can possibly fulfill major unmet needs, but it is important not to 

overestimate the potential therapeutic effects as it also raises important scientific questions. 

Some main concerns about the in vivo use of adult stem cells in general ‒ hMSCs, hMAPCs 

and MultiStem among others ‒ need to be further addressed. 

 

Although a vast majority of in vitro studies has shown that adult stem cell-mediated immune 

suppression is MHC-independent, these observations are not directly translatable to the in 

vivo setting. In contrast to a number of preclinical studies, no toxicities or ectopic tissue 

formation have been noticed in the performed clinical trials with hMSC therapy, probably 

because of the potential alloimmune response directed against third-party MSCs resulting in 

their limited survival in vivo. A systematic review and meta-analysis of clinical trials 

examining the safety of systemic MSC administration only revealed a higher occurrence of 

transient fever and described no associations between MSC treatment and the development of 

acute infusional toxicity, organ system complications, infection, malignancy or death.
186

 

According to Moermans et al., who examined the impact of MSC administration on human 

lung function for the first time, MSC coinfusion had no detrimental effect on pulmonary 

function over a period of one year after unrelated HSCT with nonmyeloablative 

conditioning.
187

 Cumulative incidence of fungal infections appeared to be higher in the MSC-

treated group. Collectively, these observations indicate that clinical MSC therapy appears to 

be safe overall. However, the clear requirement for strict and long-term follow-up in larger-

scale controlled clinical trials with large cohorts of patients should not be neglected to exclude 

late complications and rare adverse events. 

 

Because of their immune suppressive properties, adult stem cells might interfere with the 

normal protective immune system against foreign pathogens. For instance, hMSCs are able to 
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suppress T cell proliferation induced by recall antigens, implying that the adoptive treatment 

might render the host more vulnerable to infections.
166

 However, several different data 

derived from clinical studies to prevent GvHD after allogeneic HSCT showed that anti-viral 

immune responses may still normally occur following systemic administration of hMSCs.
133

 

Furthermore, caution needs to be taken into account as there are no indications that 

administration of stem cells will selectively impair GvHD but not the desired GvL effect, 

resulting in a possibly increased risk of relapse.
142,188

 In immunocompetent mice, local and 

systemic infusion of MSCs suppressed the host antitumor immune response and favored the 

allogeneic tumor formation.
189

 In a randomized clinical trial in patients with hematological 

malignancies, Ning et al. observed that MSC therapy had a beneficial effect on the incidence 

of GvHD but was associated with a higher relapse rate.
142

 On the other hand, Baron et al. 

showed that MSC coinfusion did not abrogate GvL effects in patients receiving HLA-

mismatched HSCT following nonmyeloablative conditioning.
131

 This highlights the relatively 

unknown influence of adult stem cells on the balance between GvHD and GvL in allogeneic 

HSCT. Another issue to remark is that MSCs and MAPCs are considered to be hypo-

immunogenic, although evidence indicates that MSCs can act as APCs under appropriate 

conditions.
73

 Nauta et al. described MSCs as immunogenic as they were able to induce 

memory T cell responses in naive immunocompetent mice.
190

 These observations suggest the 

requirement of further studies regarding the immunogenicity of stem cells. 

 

Thirdly, the interaction of adult stem cells with other immunosuppressive drugs should be 

investigated further. Standard immune suppressive therapy following allogeneic HSCT or 

organ transplantation includes the administration of calcineurin inhibitors [cyclosporine A 

(CsA), tacrolimus or mycophenolate mofetil (MMF)]. The group of Le Blanc et al. was the 

first to prove an in vitro synergistic effect of CsA on the hMSC-mediated immune 

suppression of T cell reactivity.
78

 However, in contrast, Buron et al. observed that CsA, 

tacrolimus and rapamycin antagonized the inhibitory effects of hMSCs, whereas MMF 

promoted them.
191

 Moreover, Eggenhofer et al. demonstrated in a rat model of heart 

transplantation that MSCs and MMF synergistically prevented the infiltration of antigen-

presenting cells and T cells into the graft.
192

 By contrast, calcineurin inhibitors have been 

shown to abrogate the immunosuppressive effect of rat MSC therapy.
193

 These observations 

emphasize the need to study the appropriate drugs in combination with the adoptive stem cell-

mediated immunotherapy. 
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Finally, some concerns have originated regarding ex vivo expansion of adult stem cells. First, 

cell culture is mainly performed in the presence of fetal bovine serum (FBS), which might be 

associated with the risk of transmitting zoonoses and eliciting potential immune responses in 

the host. Therefore, alternative animal-free media components or serum-free isolation and 

expansion procedure of adult stem cells should be taken into consideration. Second, the 

expanded stem cells should be subjected to extensive quality control testing before 

administration into patients, because culture expansion may alter the functional in vivo 

characteristics. During the ex vivo culture of MSCs, required for obtaining sufficient numbers 

of cells, it has been suggested that MSCs could undergo malignant transformation and 

accumulate chromosomal aberrations and epigenetic changes.
194

 Murine MSCs seem to be 

more prone to this spontaneous maldifferentiation and immortalization in culture, compared 

to their less susceptible human counterpart.
37,195

 Nevertheless, it has been described that 

human AT-derived MSCs may undergo spontaneous transformation into neoplastic cells upon 

prolonged expansion under stressful conditions.
196

 Important to note is that MSCs used in the 

clinical setting are mostly cultured less extensively prolonged (number of passages ≤ 4-5), 

reducing the potential risk of malignant cell transformation. Given their proangiogenic, anti-

apoptotic and immunomodulatory properties, MSCs may also promote and sustain tumor 

formation and growth. However, and even after long-term follow-up, no clinical reports have 

been described in patients with hematologic tumors or non-neoplastic disease, exposed to 

MSC therapy, about de novo neoplasias.
194
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Chapter 2 – RESEARCH OBJECTIVES 

Within our research unit, an appropriate methodology for the study of the induction and 

modulation of T cell proliferative responses by human MSCs, MAPCs and MultiStem
®
 has 

been established in a former PhD project (Immunological properties of Human Multipotent 

Adult Progenitor Cells - Sandra Jacobs, 2012). Current project started as a continuation of 

this research line, and the data presented in Chapter 3 (Mutual interaction between human 

multipotent adult progenitor cells and NK cells) were gathered by collaboration and led to a 

publication with co-first authorship. 

 

The overall objective of this research line is to study the immunological properties of 

hMAPCs and its clinical-grade counterpart MultiStem in the context of their widespread 

therapeutic applicability, which has the advantage over MSCs of having a significantly more 

extensive replication potential and a broader differentiation potential. While it is difficult in 

the case of MSCs to generate sufficient amounts from a single donor to treat several 

allogeneic patients, the proliferative properties of MAPCs allow banking and prompt 

availability in case of acute illness. 

 

Despite its ongoing preclinical testing and comprehensive clinical evaluation as an off-the-

shelf product for stem cell-based therapy in various allogeneic patients suffering from 

immune-related, cardiovascular and neurological diseases, data regarding the exact 

immunological behavior of MAPCs and its clinical-grade counterpart MultiStem
 
are still 

limited. A detailed knowledge of the immunogenic and immune modulatory capacities and 

the accompanying mechanism of immune regulation in vitro of this clinical-grade MAPC-

derived stem cell product is indispensable for designing, understanding and optimizing future 

clinical trials. 

 

1. To explore the bidirectional interactions of MultiStem
 
with a functional human immune 

system 

 

As has been described for MSCs, the influence of MultiStem on the phenotype and 

functionality of various immune effector cells in vitro will be evaluated. While the role of 

MAPCs has already been investigated in the regulation of proliferative responses of 

immune cells in the former PhD project, this work will focus on the induction and 
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modulation by (clinical-grade) MAPCs of cytotoxic immune responses, initiated by 

immune cells of the adaptive and innate immune system, being respectively cytotoxic T 

lymphocytes (CTLs) and natural killer (NK) cells. This extensive immunological 

characterization will be achieved by studying the interaction between (clinical-grade) 

hMAPCs and the specified immune cells during direct coculture, or upon addition as 

modulating cells during the activation or functioning of the two immune cell populations. 

Moreover, we will investigate whether the stem cells can persist and maintain their 

immune regulatory function in an inflammatory environment in vitro, long enough to 

modulate the inflammation. 

 

2. To further elaborate the mechanism by which immune modulation by MultiStem is 

established and to identify essential immune regulatory factors and pathways 

 

Stem cell-associated immune regulation is mediated by a coordinated action of contact-

dependent signaling pathways in combination with a multitude of constitutively or 

contact-induced soluble factors. The exact immunomodulatory mechanism depends on 

the studied immune cell population, the specific experimental design and on the origin 

and expansion procedure of the stem cell product. This project will search for the 

responsible mechanism in case of cytotoxicity modulation by (clinical-grade) hMAPCs of 

CTLs and NK cells. 
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Chapter 3 – Mutual interaction between human multipotent adult 

progenitor cells and NK cells 

 

Results described in this chapter have been adopted from: 

Jacobs SA*, Plessers J*, Pinxteren J, Roobrouck VD, Verfaillie CM, Van Gool SW. 

Mutual interaction between human multipotent adult progenitor cells and NK cells. 

Cell Transplant. 2014;23(9):1099-1110. 

* equal contribution 

 

 

Sandra Jacobs performed the MTT experiments (section 4.2 and 4.3; Figure 1A and 3A) and 

wrote the first version of the manuscript. 

 

Jeroen Plessers performed the flow cytometry experiments on NK cell receptor ligand 

expression of hMAPCs (section 4.1; Table 1 and 2) and on the expansion of NK cells 

(section 4.4; Figure 5B); the [
3
H]thymidine incorporation experiments to analyze the 

influence of soluble mediators (section 4.4; Figure 6); and the 
51

Cr-release experiments to 

investigate hMAPC-mediated modulation of resting/activated NK cell function (section 4.2 

and 4.3; Figure 2A-B and Figure 4), to analyze the influence of IFN-γ pretreatment on 

hMAPC susceptibility to NK cell-mediated lysis (section 4.3; Figure 3C) and to test the 

influence of hMAPCs during the stimulation phase of PBMCs/NK cells (section 4.4; Figure 

7A-B). He also wrote the revision of the manuscript. 

 

Results obtained by collaboration: 
51

Cr-release experiments on hMAPC susceptibility to NK 

cell-mediated lysis (section 4.2 and 4.3; Figure 1B and 3B) and [
3
H]thymidine incorporation 

experiments to analyze NK cell proliferation suppression by hMAPCs (section 4.4; Figure 

5A). 
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1. Abstract 

Human multipotent adult progenitor cells (hMAPCs) are isolated from bone marrow with a 

more extensive expansion capacity compared to human mesenchymal stem cells (hMSCs) and 

with the ability to differentiate into endothelium. Like hMSCs, hMAPCs inhibit T cell 

proliferation induced by alloantigens. In this study, we tested the interaction between 

hMAPCs and natural killer (NK) cells. We assessed the susceptibility of hMAPCs to NK cell-

mediated lysis and the immunomodulation of hMAPCs on NK cell function during the IL-2-

driven stimulation and the cytolytic effector phase. Human MAPCs express the ligands PVR 

and ULBP-2/5/6, which are recognized by activating NK cell receptors. However, they also 

express MHC class I molecules, which induce inhibitory signals in NK cells. Freshly isolated 

NK cells at different effector:target ratios did not kill hMAPCs as assessed by an MTT and 

51
Cr-release assay, while hMAPCs impaired the cytotoxic activity of resting NK cells against 

the NK-sensitive K562 leukemia cell line. By contrast, IL-2-stimulated NK cells were capable 

of killing hMAPCs, and preactivated NK cells were not influenced during their cytotoxic 

effector function against K562 cells by hMAPCs. When added during the 6-day preactivation 

phase with IL-2, hMAPCs dose-dependently reduced NK cell proliferation in an IDO-

dependent manner, but they did not influence the induction of cytotoxic capacity by IL-2. 

This study indicates that human MAPCs mutually interact with NK cells. 

  



Chapter 3 ‒ Interaction between hMAPCs and NK cells 

 

 34 

2. Introduction 

Stem cell-based therapy has become a promising tool to control immune responses. In the past 

decade, human mesenchymal stem cells (hMSCs) have been studied for their role as a cellular 

immunosuppressive cell population.
41,197

 MSCs are bone marrow (BM)-derived cells, which 

are capable of differentiating into chondrocytes, osteoblasts and adipocytes.
23,198

 Clinical 

trials wherein hMSCs are infused intravenously are currently under way to evaluate their 

ability to prevent or suppress graft-versus-host disease (GvHD) in patients who underwent 

HSCT or to treat autoimmune diseases.
144,149

 The results of phase I and II clinical trials have 

demonstrated the feasibility and safety of in vivo use of these cells. The rationale for the use 

of hMSCs as an immunosuppressive cell population is based on a large number of studies that 

have shown that hMSCs inhibit T cell responses in vitro 
72,75,77,86

, aside from affecting B cells 

107
, dendritic cells 

118,120
, and natural killer (NK) cells in vitro.

113,114,116
 

NK cells are part of the innate immune system and play a key role in the immune defense 

against viral infections and in anti-tumor immune responses, based on their cytolytic function 

and production of proinflammatory cytokines. NK cell function is regulated by the balance 

between activating and inhibitory signals transduced by multiple cell surface receptors on NK 

cells.
199

 NK cell-mediated killing of a target cell requires the presence of activating ligands on 

the target cell interacting with activating receptors on the NK cells in combination with low or 

absent levels of major histocompatibility complex (MHC) class I molecules on the target cell, 

as the latter stimulate inhibitory receptors.
200,201

 MSCs are known to express high levels of 

MHC class I molecules.
56

 Both autologous and allogeneic MSCs can be lysed by activated 

NK cells. On the other hand, MSCs themselves can inhibit the cytotoxic activity and 

proliferation of NK cells.
113,114,116

 

Human multipotent adult progenitor cells (hMAPCs) are also BM-derived stem cells.
56

 

Compared with human MSCs, hMAPCs can be expanded more extensively than hMSCs. In 

addition, hMAPCs express lower levels of MHC class I molecules and differentiate robustly 

into endothelium both in vitro and in vivo in Matrigel plug assays. Like hMSCs, hMAPCs 

suppress allogeneic T cell responses in vitro and block ongoing and secondary allogeneic T 

cell responses and responses of memory T cells.
166

 Their immunosuppressive potency, 

combined with their extensive proliferation potential, means that hMAPCs are a preferable 

alternative source for cell-based immunotherapy because a large cohort of patients can be 

treated with one single and well-defined batch of cells. Clinical trials with MultiStem
®
, the 

clinical-grade product of MAPCs, are being performed to test their ability to prevent acute 
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GvHD, treat inflammatory bowel disease (IBD), and prevent rejection of liver grafts, aside 

from evaluating their ability to improve cardiac and neural function, when administered in the 

setting of acute myocardial infarction and stroke (www.ClinicalTrials.gov).  

No systematic studies have been performed to address the interaction between hMAPCs and 

NK cells, so we here describe the NK cell function in the presence of hMAPCs and the 

hMAPC-mediated modulation of NK cell function during the interleukin (IL)-2-driven 

stimulation and cytolytic effector phase of NK cells. 
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3. Materials and methods 

Isolation and culture of stem cells 

hMAPC (n = 6) isolations were done by the Stem Cell Institute Leuven (SCIL, Leuven, 

Belgium) from bone fragments of four children (two male and two female between 5 and 15 

years old; donors 1-4) undergoing orthopedic surgery or by ReGenesys (www.regenesys.eu; 

Heverlee, Belgium) from the bone marrow of two healthy volunteers [a 45-year-old male 

(donor 5) and a 30-year-old female (donor 6)], after obtaining informed consent in 

accordance with the guidelines of the Medical Ethics Committee of the University Hospitals 

Leuven. Isolation and culture of the cells were performed as previously described.
53

 Briefly, 

hMAPCs were generated by plating the total cell fraction at 0.5 x 10
6
 cells/cm

2
 in medium 

consisting of 60% Dulbecco’s modified Eagle’s medium (DMEM) low-glucose (Gibco, 

Invitrogen, Carlsbad, CA, USA), 40% MCDB-201 (Sigma-Aldrich, St. Louis, MO, USA), 

supplemented with 50 nM dexamethasone, 10
-4 

M L-Ascorbic Acid, 1x insulin-transferrin-

selenium (ITS), 0.5× linoleic acid-bovine serum albumin (LA-BSA) (all from Sigma-

Aldrich), 1% penicillin/streptomycin (Gibco, Invitrogen), along with 2% Serum Supreme 

(Lonza BioWhittaker, Basel, Switzerland) and 10 ng/ml human platelet-derived growth factor 

(PDGF)-BB (R&D Systems, Minneapolis, MN, USA) and epidermal growth factor (EGF; 

Sigma-Aldrich). MAPC cultures were maintained under hypoxic conditions (5% O2) at a 

density of 400 cells/cm
2
 and were split every 2 to 3 days. Clonal populations of hMAPCs 

isolated by SCIL were obtained through limiting dilution by plating five cells/well in a 96-

well or 48-well plate (Corning, NY, USA) between passages 5 to 10. Cells were used at PD 

25-30. In some experiments, hMAPCs were treated with 100 U/ml interferon (IFN)-γ (Roche 

Diagnostics, Vilvoorde, Belgium) for 48 h. 

 

hMSCs were generated by ReGenesys from the bone marrow of the two adult hMAPC donors 

(donors 5 and 6) by plating the mononuclear fraction, obtained after Lymphoprep
TM

 (Axis-

Shield, Oslo, Norway) density gradient centrifugation, at 0.5 x 10
6
 cells/cm² in MSC growth 

medium containing DMEM high-glucose, 10% fetal calf serum (FCS), 100 IU/ml penicillin 

and 100 µg/ml streptomycin (all from Lonza). MSC cultures were maintained at 5,000 

cells/cm², at normal oxygen level (20% O2), were split every 4 to 7 days, were not clonally 

derived and were used at PD 20-25. 
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Isolation and culture of peripheral blood mononuclear cells and NK cells 

All subjects donating blood for these experiments were healthy volunteers of both sexes, aged 

20 to 50 years. Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll-

Hypaque (Axis-Shield) density gradient centrifugation (specific gravity, 1.077 g/ml). 

Untouched NK cells were negatively selected from PBMCs using the human NK cell isolation 

kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s 

instructions. Purity ranged from 88% to 98%.  

To obtain activated NK cells, PBMCs or purified NK cells were cultured for 6 days in 

Roswell Park Memorial Institute (RPMI) 1640 with 2 mmol/l L-glutamine, 100 U/ml 

penicillin, 100 µg/ml streptomycin (all Lonza), and 10% autologous serum supplemented with 

100 U/ml recombinant human IL-2 (TECIN; Hoffmann-La Roche, Nutley, NJ, USA) in T25 

culture flasks (Greiner Bio-One, Wemmel, Belgium). PBMCs were cultured at 10 x 10
6
 cells 

in 10 ml, while purified NK cells were cultured at 1 to 3 x 10
6
 cells in 10 ml. To these 

cultures, nonirradiated hMAPCs were added in a ratio of 1:3 PBMCs or purified NK cells.  

 

Flow cytometry 

hMAPCs, cultured PBMCs, or NK cells (1 x 10
5
 for each) per sample were suspended in 100 

µl phosphate-buffered saline (PBS; Lonza) supplemented with 10% heat-inactivated human 

serum (Lonza) to block nonspecific staining. Cells were subsequently surface stained with 5 

µl fluorescence-conjugated specific monoclonal antibodies. The specifications of the 

antibodies used for flow cytometry are described in Table 1. Isotype control staining was 

performed. Acquisition was done using a FACSort or FACSCanto (BD Biosciences, 

Erembodegem, Belgium). For analysis of the samples, CellQuest Pro or BD FACSDiva 

software was used.  
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Table 1: List of monoclonal antibodies used for flow cytometry 

Monoclonal Ab  Supplier (catalog No.)  Label Isotype 

CD3  
BD Pharmingen (Erembodegem, Belgium; 

555332)  
FITC IgG1 

CD56  
BD Biosciences (Erembodegem, Belgium; 

345810)  
PE IgG1 

CD3/CD16+CD56  BD Simultest (342403)  FITC/PE IgG1 

HLA-ABC  BD Pharmingen (555552)  FITC IgG1 

HLA-E  eBioscience (Vienna, Austria; 12-9953)  PE IgG1 

Nectin-2 (CD112)  BD Pharmingen (551057)  PE IgG1 

PVR (CD155)  eBioscience (12-1550)  PE IgG1 

MICA/B  BD Pharmingen (558352)  PE IgG2a 

ULBP-1  R&D Systems (Abingdon, UK; FAB1380P)  PE IgG2a 

ULBP-2/5/6  R&D Systems (FAB1298P)  PE IgG2a 

ULBP-3  R&D Systems (FAB1517P)  PE IgG2a 

IgG1  BD Biosciences (345815)  FITC  

IgG1  BD Biosciences (345816)  PE  

IgG2a BD Pharmingen (555574)  PE  

CD, cluster of differentiation; HLA, human leukocyte antigen; PVR, poliovirus receptor; MICA/B, 

major histocompatibility complex (MHC) class I chain-related genes A and B; ULBP, UL-16 binding 

protein; Ig, immunoglobulin; FITC, fluorescein isothiocyanate; PE, phycoerythrin. 
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Cytotoxicity assays 

The viability of hMAPC target cells was tested with the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT, Sigma, Bornem, Belgium) assay as previously described 

with some modifications.
202

 Briefly, target cells were seeded in a flat-bottomed 96-well cell 

culture plate (TPP, St. Louis, MO, USA) at a density of 5 x 10
4 

cells/well and cultured 

overnight to become adherent to the plate. The next day, NK cells were added at different 

effector:target (E:T) ratios and cocultured for 24 h, after which the medium, together with the 

nonadherent cells, was removed. Subsequently, the target cells were rinsed with PBS at room 

temperature, and 100 µl of a 0.5 mg/ml MTT solution was added to the residual adherent 

cells. After 2 h of incubation, the MTT solution was removed, and 100 µl dimethyl sulfoxide 

(Merck, Darmstadt, Germany) per well was added to resolve the formazan produced in the 

viable cells. After stirring the plate for 5 min, optical density was measured at 570 and 620 

nm using an ELISA reader (Thermo Labsystems, Franklin, MA, USA). The OD570-620 nm value 

was used as a measure for cell viability.  

Cytotoxicity assays were also performed using a 4 h 
51

Cr-release method. Target cells were 

labeled with 100 µCi 
51

Cr/10
6
 cells (

51
Cr, Perkin Elmer Life Sciences, Inc., Zaventem, 

Belgium) and seeded at 10
4
 cells/well in round-bottomed 96-well plates (Greiner Bio-One). 

As control target cells, the human NK-sensitive and MHC class I-deficient K562 leukemia 

cell line was used (ATCC, Manassas, VA, USA). The lytic potential of NK cells was tested 

by coculturing cells at different E:T ratios. Saponin (Merck) was added to the target cells to 

measure the maximum release of 
51

Cr. Release of 
51

Cr was measured by a Topcount gamma 

counter (Packard Instrument Company, Meriden, CT, USA). The percentage cytotoxicity was 

calculated as [(experimental release – spontaneous release)/(maximal release – spontaneous 

release)] x 100. 

To test the influence of hMAPCs during the lytic functioning of NK cells against K562 cells, 

nonirradiated hMAPCs were added at 1:2 ratio MAPC:NK at the beginning of the 4 h assay. 

We used the NK-resistant cell line KM-H2 (Hodgkin disease-derived cell line; kindly 

provided by Dr. S. Fukuhara , Kyoto University, Kyoto, Japan) as control cells for hMAPCs 

in this assay.  

 

Proliferation assay 

Responder purified NK cells (1 x 10
5
) were stimulated with 100 U/ml exogenous recombinant 

IL-2 (TECIN; Hoffmann-La Roche). Irradiated (30 Gy) allogeneic hMAPCs were added at 
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different suppressor:responder (S:R) ratios. NK cell proliferation was measured at day 6 by 

means of an 8 h pulse with 1µCi/well [
3
H]thymidine (MP Biomedicals Europe, Illkirch, 

France). [
3
H]Thymidine incorporation was measured by using a liquid scintillation counter 

(Tri-Carb
®
 2100TR Liquid Scintillation Counter, PerkinElmer). The data were analyzed as 

mean counts per minute (cpm) of quadruplicate wells. The results are expressed as percent 

response related to the control response in the absence of hMAPCs. 

To analyze the involvement of indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), 

transforming growth factor (TGF)-β and IL-10 as immunosuppressive mediators, we used 

their respective inhibitors: 200 µM/ml 1-methyl-trypthophan (1-MT; Sigma-Aldrich), 2 µg/ml 

indomethacin (Cayman Chemical Company, Ann Arbor, MI, USA), 50 µg/ml anti-TGF-β 

neutralizing mAb (R&D Systems, Abingdon, UK), and 2.5 µg/ml anti-IL-10 plus 2.5 µg/ml 

anti-IL-10 receptor mAb (both from R&D Systems). 

 

Statistical analysis  

Statistics were calculated with Prism software 5.0 (GraphPad Software, Inc., San Diego, CA, 

USA). Statistical significance was calculated by paired or unpaired t tests for comparisons 

between two groups and by one-way ANOVA with Dunnett’s post hoc test for comparisons 

between three or more groups. Values of p < 0.05 were considered significant. 
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4. Results 

4.1 Human MAPCs express ligands of activating NK receptors 

To assess whether hMAPCs might be susceptible for NK cell-mediated lysis, we first 

analyzed hMAPCs for the expression of ligands recognized by activating and inhibitory NK 

cell receptors. Table 2 shows the expression level of ligands of NK cell receptor D (NKG2D) 

[UL16-binding proteins (ULBPs) and MHC class I chain-related genes A and B (MICA/B)] 

and DNAX accessory molecule-1 [DNAM-1; cluster of differentiation 226 (CD226)] [Nectin-

2 and poliovirus receptor (PVR; CD155)] triggering receptors and of inhibitory MHC class I 

molecules (HLA-ABC and nonclassic HLA-E) in five hMAPC populations (donors 1-5). 

Flow cytometric analysis showed that all hMAPC populations are dimly positive for HLA-

ABC [mean fluorescence intensity (MFI) ± SEM for the five hMAPC populations: 1,992 ± 

246] and negative for HLA-E. hMAPCs expressed PVR (8,540 ± 150) and low levels of 

ULBP-2/5/6 (1,173 ± 123), but generally did not express MICA/B, Nectin-2, ULBP-1, and 

ULBP-3. Upon stimulation with IFN-γ, expression of MHC class I molecules was 

upregulated, whereas the expression of the activating ligands remained unchanged. 
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Table 2: NK cell receptor ligand expression by hMAPCs 

 Donor 

 
1 2 3 4 5 

Marker - + - + - + - + - + 

bare cells FITC 336 266 276 309 443 506 245 301 391 416 

bare cells PE 212 189 170 187 270 311 154 188 241 265 

isotype IgG1 FITC 368 402 330 333 534 560 251 325 439 473 

isotype IgG1 PE 455 481 403 474 537 615 348 413 555 594 

isotype IgG2a PE 238 233 194 200 264 307 246 266 346 358 

HLA-ABC FITC 1,826 12,737 3,470 13,363 1,843 7,469 1,440 8,488 1,381 10,134 

HLA-E PE 619 2189 900 2450 640 1569 486 1850 708 2230 

MICA/B PE 250 262 583 760 329 344 461 423 346 544 

Nectin-2 PE 175 229 368 380 656 598 309 411 208 243 

PVR PE 8114 8580 8137 8074 9269 9736 8907 10428 8275 8497 

ULBP-1 PE 381 370 1023 982 399 369 423 468 616 666 

ULBP-2/5/6 PE 756 710 1263 1093 867 890 1137 1114 1844 1831 

ULBP-3 PE 247 239 305 325 238 292 258 275 404 330 

Flow cytometric analysis of five human multipotent adult progenitor cell (hMAPC) donors (donors 1-

5) for ligands of inhibitory (HLA-ABC and HLA-E) and activating natural killer (NK) cell receptors 

(MICA/B, Nectin-2, PVR, ULBP-1, ULBP-2/5/6 and ULBP-3) before and after treatment with 100 

U/ml interferon (IFN)-γ for 48 h. Results are expressed as mean fluorescence intensity (MFI). Positive 

values are highlighted. -, without IFN-γ pretreatment; +, with IFN-γ pretreatment. 

 

 

4.2 Resting NK cells do not kill hMAPCs but are blocked in their cytolytic function by 

hMAPCs 

The combination of expression of ligands of activating NK cell receptors together with low 

levels of MHC class I molecules on hMAPCs suggests that hMAPC target cells might be 

killed by allogeneic NK cells. To investigate whether hMAPCs are susceptible to NK cell-
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mediated lysis, freshly isolated NK cells were cocultured with allogeneic hMAPCs at E:T 

ratios of 1:1 to 8:1 during 24 h. Coculture was followed by an assessment of hMAPC viability 

using the MTT assay. Human MAPCs were not killed by resting allogeneic NK cells (Fig. 

1A). We confirmed these findings using a chromium release assay. This revealed that 

hMAPCs were only minimally lysed by resting allogeneic NK cells even at higher E:T ratios 

(Fig. 1B).  

 

 
 

Figure 1. Human MAPCs are not killed by resting NK cells.  

(A) Freshly isolated natural killer (NK) cells (n = 3) were cocultured with allogeneic human 

multipotent adult progenitor cell (hMAPC) target cells (n = 2 ; donors 5 and 6) at effector:target (E:T) 

ratios of 1:1 to 8:1 during 24 h. Coculture was followed by an assessment of hMAPC viability using 

the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data are expressed as 

percentage (mean ± SEM) of target cell viability (optical density) with respect to target cell viability 

without coincubation of NK cells (100%). Statistical significance was tested when compared with 

control condition without NK cells. One-way ANOVA with Dunnett’s post hoc test was used, ns = not 

significant. 

(B) Freshly isolated NK cells were cocultured in a standard 
51

Cr-release assay with K562 cells or 

allogeneic hMAPCs at different E:T ratios of 50:1 to 25:1. Data are expressed as mean ± SEM 

percentage 
51

Cr-release of four different experiments with four different NK cell donors and three 

different hMAPC donors (donors 1, 5, 6).  

 

 

Subsequently, to investigate whether hMAPCs could interfere with the effector function of 

resting NK cells, we added hMAPCs at the beginning of a 
51

Cr-release assay of freshly 

isolated NK cells against K562 target cells. As shown in Figure 2A, hMAPCs impaired the 

cytotoxic activity of resting NK cells (mean ± SEM % 
51

Cr-release: 44.81 ± 4.97 % versus 

60.32 ± 3.40 %). To exclude the possibility of “cold target inhibition” by hMAPCs [i.e. lysis 

inhibition of 
51

Cr-labeled (hot) target cells by addition of unlabeled (cold) target cells], the 

NK-resistant cell line KM-H2 was used as a modulating cell line instead of hMAPCs. The 
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resistance of KM-H2 cells to NK cell-mediated killing was verified (data not shown). 

Addition of KM-H2 cells at the beginning of a 
51

Cr-release assay of freshly isolated NK cells 

against K562 target cells did not significantly influence the cytotoxic activity of the NK cells, 

in contrast to hMAPCs (Fig. 2B). 

 

 
 

Figure 2. Impaired cytotoxic activity of resting NK cells in the presence of hMAPCs.  

(A) Results of cytotoxic activity of freshly isolated NK cells against K562 target cells (E:T 25:1) in 

the absence (control) or presence (+ hMAPCs) of allogeneic hMAPCs at suppressor:responder (S:R) 

ratio of 1:2. Results are expressed as mean ± SEM percentage 
51

Cr-release of 10 experiments, in which 

six different NK cell donors and two different hMAPC donors (donors 5 and 6) were used. Statistical 

significance was calculated with the paired t test. **p < 0.01.  

(B) Results of cytotoxic activity of freshly isolated NK cells against K562 target cells (E:T 25:1) in the 

absence (control) or presence of allogeneic hMAPCs (+ hMAPCs) or NK-resistant KM-H2 cells (+ 

KM-H2) at S:R ratio of 1:2. Results are expressed as mean ± SEM percentage 
51

Cr-release of four 

experiments, in which four different NK cell donors and two different hMAPC donors (donors 5 and 

6) were used. Statistical significance was calculated with ANOVA and Dunnett’s post hoc test. ns = 

not significant, *p < 0.05. 

 

 

4.3 Activated NK cells lyse allogeneic hMAPCs 

The adoptive transfer of hMAPCs is aimed at controlling immune responses. The local 

inflammatory environment wherein hMAPCs reside upon injection will probably lead to 

activation of the regional NK cell population. To address the interaction between activated 

NK cells and allogeneic hMAPCs, we activated NK cells with rIL-2 for 6 days and tested 

their ability to kill allogeneic hMAPC target cells. The MTT viability assay revealed that 

preactivated NK cells were capable of killing allogeneic hMAPCs (Fig. 3A). We confirmed 

these findings using a chromium release assay, showing that the chromium release of 

hMAPCs as target cells for activated NK cells was similar to the control condition using K562 
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cells (Fig. 3B), indicating that hMAPCs can be killed by activated NK cells. However, 

pretreatment of hMAPCs with 100 U/ml IFN-γ for 48 h, leading to an upregulation of HLA-

ABC and HLA-E expression (Table 2), rendered those IFN-γ-pretreated hMAPCs resistant to 

cytotoxic lysis by activated NK cells (6.59 ± 2.80 % 
51

Cr-release versus 21.29 ± 5.55 % 
51

Cr-

release; Fig. 3C). 

 

 
 

Figure 3. Human MAPCs are killed by activated NK cells.  

(A) NK cell populations (n = 2) that were exposed to 100 U/ml recombinant interleukin (IL)-2 for 6 

days were cocultured with allogeneic hMAPC (n = 2 ; donors 5 and 6) target cells at E:T ratios of 1:1 

to 8:1. Coculture for 24 h was followed by an assessment of hMAPC viability using the MTT assay. 

Data are expressed as percentage (mean ± SEM) of target cell viability (optical density) with respect to 

target cell viability without coincubation of NK cells (100%). Statistical significance was tested when 

compared with control condition without NK cells. One-way ANOVA with Dunnett’s post hoc test 

was used, ***p < 0.001, **p < 0.01.  

(B) Cytotoxic activity measured by 
51

Cr-release assay of freshly isolated NK cells (resting NK cells) 

and NK cell populations cultured for 6 days with rIL-2 (activated NK cells) against K562 or allogeneic 

hMAPC target cells at an E:T ratio of 25:1. Data are expressed as mean ± SEM percentage 
51

Cr-

release of five different experiments with three different NK cell donors and three different hMAPC 

donors (donors 1, 5, 6).  

(C) Cytotoxic activity measured by 
51

Cr-release assay of activated NK cell populations cultured for 6 

days with rIL-2, coincubated with allogeneic hMAPCs or interferon (IFN)-γ pretreated hMAPCs at an 
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E:T ratio of 25:1. Data are expressed as mean ± SEM percentage 
51

Cr-release of five different 

experiments with three different NK cell donors and three different hMAPC donors (donors 1, 5, 6). 

Statistical significance was calculated with the unpaired t test, *p < 0.05. 

 

 

In addition, we tested the ability of hMAPCs to influence the cytotoxic function of activated 

NK cells during their effector phase. Therefore, a standard 
51

Cr-release assay was performed 

using NK cells that were cultured for 6 days in the presence of 100 U/ml rIL-2, and cytotoxic 

activity against K562 target cells was tested at an E:T ratio of 25:1 in the presence or absence 

of allogeneic hMAPCs (ratio hMAPC:NK cell 1:2). We noticed that the presence of hMAPCs 

reduced the percentage of 
51

Cr-release (41.60 ± 3.12 %) compared to the conditions cultured 

in the absence of hMAPCs (64.80 ± 4.17 %) (Fig. 4). However, because activated NK cells 

have been shown to kill hMAPCs as well, we could not exclude that the reduction in 
51

Cr-

release was due to competition between hMAPCs and K562 cells as both cell populations are 

known target cells for the activated NK cells. To test this hypothesis, a 
51

Cr-release assay was 

performed using rIL-2-activated NK cells against K562 cells (E:T 25:1) in the presence or 

absence of extra unlabeled (cold) or 
51

Cr-labeled (hot) K562 cells or hMAPCs (both 1:2 ratio 

to NK cells). In comparison to the control condition, the percentage 
51

Cr-release decreased 

with extra addition of unlabeled K562 cells or hMAPCs, while the percentage clearly 

increased with extra addition of labeled K562 cells or hMAPCs (data not shown). Addition of 

supernatant of cultured hMAPCs did not influence the cytotoxic function of rIL-2-activated 

NK cells. These observations imply a cold target inhibition effect. 

 

 
 

Figure 4. Impaired cytotoxic activity of activated NK cells in the presence of hMAPCs. 

Results of cytotoxic activity of rIL-2-activated NK cells against K562 target cells (E:T 25:1) in the 

absence (control) or presence (+ hMAPCs) of allogeneic hMAPCs at S:R of 1:2. Results are expressed 

as mean ± SEM percentage 
51

Cr-release of four experiments, in which two different NK cell donors 
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and two different hMAPC donors (donors 5 and 6) were used. Statistical significance was calculated 

with the paired t test. ***p < 0.001. 

 

 

4.4 Human MAPCs inhibit IL-2-induced proliferation of allogeneic NK cells in an 

IDO-dependent manner 

We finally assessed whether hMAPCs have a similar suppressive effect on NK cell 

proliferation as they have on T cell proliferation. NK cells were stimulated with rIL-2 (100 

U/ml) in the presence or absence of irradiated allogeneic hMAPCs at different S:R ratios and 

evaluated with [
3
H]thymidine incorporation after 6 days. As shown in Figure 5A, human 

MAPCs dose-dependently suppressed IL-2-induced proliferation of highly purified NK cells. 

The expansion of NK cells (defined as % CD3
-
CD56

+
 cells) was also blocked when total 

PBMC fractions were cultured in medium supplemented with exogenous rIL-2 for 6 days in 

the presence of hMAPCs (10.64 ± 2.77 % CD3
-
CD56

+
 cells) as compared to similar cultures 

of PBMCs in the absence of hMAPCs (37.57 ± 3.59 % CD3
-
CD56

+
 cells) (Fig. 5B). Of note, 

in this set of experiments, hMSCs from the same donor as the hMAPCs were available. The 

decrease in the expansion of NK cells was less pronounced when PBMCs were activated with 

rIL-2 in the presence of hMSCs (22.70 ± 8.76 % CD3
-
CD56

+
 cells), compared to the 

condition with hMAPCs. 
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Figure 5. hMAPCs dose-dependently suppress IL-2-induced NK cell proliferation.  

(A) Freshly isolated NK cells were cultured during 6 days in medium supplemented with 100 U/ml 

rIL-2 in the absence or presence of allogeneic irradiated (30 Gy) hMAPCs at different S:R ratios. The 

proliferative response was measured on day 6 by [
3
H]thymidine incorporation. Results are expressed 

as mean ± SEM percentage proliferation relative to control cultures in the absence of hMAPCs of six 

experiments in which five different NK cell donors and three different hMAPC donors (donors 1, 5, 6) 

were used. Statistical significance was calculated with one-way ANOVA with Dunnett’s post hoc test, 

**p < 0.01, *p < 0.05.  

(B) Total peripheral blood mononuclear cell (PBMC) fractions were cultured in medium supplemented 

with exogenous rIL-2 for 6 days in the absence (upper left) or presence of human mesenchymal stem 

cells (hMSCs; upper right) or hMAPCs (lower left) from the same donor at S:R ratio of 1:3. The 
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expansion of NK cells [percentage cluster of differentiation 3 negative cluster of differentiation 56 

positive (CD3
-
CD56

+
) cells] in the total PBMC fraction was afterwards analyzed by flow cytometry. 

One out of three representative experiments is shown in the flow cytometry plots. In the bar graph 

(lower right), results from three different experiments with three different PBMC donors and two 

hMSC/hMAPC donors (donors 5 and 6) were pooled and expressed as mean ± SEM percentage CD3
-

CD56
+
 cells. Statistical significance was calculated with one-way ANOVA with Dunnett’s post hoc 

test, ns = not significant, *p < 0.05. 

 

 

The immune modulatory mechanism of hMAPCs is mediated at least in part via a soluble 

factor 
166

, so we performed some functional tests to identify the responsible mediator. 

Blocking IDO with 1-MT completely neutralized the inhibitory activity of hMAPCs on IL-2-

induced NK cell proliferation, suggesting IDO as a mediator of the immune modulation by 

hMAPCs (Fig. 6). Addition of monoclonal antibodies neutralizing IL-10 plus IL-10R, or 

monoclonal antibodies to neutralize TGF-β, or addition of indomethacin to neutralize PGE2 

synthesis did not change the immunomodulatory properties of hMAPCs on IL-2-induced NK 

cell proliferation. None of these molecules mediated the immune modulatory role of hMAPCs 

on the cytotoxic activity of resting NK cells against K562 cells (data not shown). 

 

 
 

Figure 6. The suppressive effect of hMAPCs on NK cell proliferation is dependent on IDO 

activity. 

Freshly isolated NK cells were cultured during 6 days in medium supplemented with 100 U/ml rIL-2 

in the absence or presence of irradiated hMAPCs at S:R ratio of 1:2 without (control) or with addition 

of 2 µg/ml indomethacin, 200 µM/ml 1-methyl tryptophan (1-MT), 2.5 µg/ml anti-IL-10 plus 2.5 

µg/ml anti-IL-10 receptor (R) mAb, or 50 µg/ml anti-transforming growth factor (TGF)-β neutralizing 

mAb. The proliferative response was measured on day 6 by [
3
H]thymidine incorporation. Data are 

expressed as mean ± SEM percentage proliferation relative to control cultures in the absence of 

hMAPCs (100 %) of three experiments in which two NK cell donors and two hMAPC donors (donors 

5 and 6) were used. The average counts per minute (cpm) of the cultures without hMAPCs for all 
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conditions were all similar to the control condition without hMAPCs (control: 13855; indomethacin: 

13949; 1-MT: 14258; anti-IL-10(R): 16161; anti-TGF-β: 14317). IDO, indoleamine 2,3-dioxygenase. 
 

 

In the next set of experiments, total PBMC fractions were cultured for 6 days with rIL-2 in the 

presence or absence of nonirradiated hMAPCs, and the cytolytic function of the NK cells was 

subsequently measured against K562 cells. As shown in Figure 7A, the lytic activity was 

strongly diminished when the whole PBMC population was stimulated with rIL-2 in the 

presence of hMAPCs compared to the control condition without hMAPCs. We did not see any 

influence on the cytotoxic activity of the NK cells when PBMCs were activated with rIL-2 in 

the presence of hMSCs from the same hMAPC donors. The cytolytic activity in these 

experiments was influenced by the inhibition of NK cell proliferation, thereby influencing the 

net E:T ratio during the subsequent effector phase, so similar experiments were performed 

with purified NK cells as responder and effector cells. After stimulation of purified NK cells 

with rIL-2 in the presence of nonirradiated hMAPCs, the cells were adjusted prior to the 

cytotoxicity assay. In this condition, we could demonstrate that the cytolytic function of NK 

cells was retained after rIL-2 activation in the presence of hMAPCs, in spite of the blocked 

proliferative response (Fig. 7B). Of note, addition of irradiated hMAPCs in this experimental 

condition yielded similar results (data not shown). 
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Figure 7. Suppression of NK cells by hMAPCs during activation with rIL-2.  

(A) After 6-day culture with rIL-2 in the presence or absence of hMAPCs or hMSCs (S:R ratio of 1:3) 

during the activation phase, the total PBMC fraction was subsequently cocultured with K562 leukemia 

cell line at E:T ratios of 50:1 and 25:1 during the effector phase. Specific K562 lysis was measured 

with 
51

Cr-release. Data are expressed as mean percentage 
51

Cr-release of three independent 

experiments using three different PBMC donors and two different hMAPC/hMSC donors (donors 5 

and 6). 

(B) After culture of 6 days with rIL-2 in the presence or absence of hMAPCs (S:R ratio of 1:3) during 

the activation phase, purified NK cells were cocultured with K562 leukemia cell line at E:T ratios of 

50:1 and 25:1 during the effector phase of NK cells. Specific K562 lysis was measured with 
51

Cr-

release. Data are expressed as mean ± SEM percentage 
51

Cr-release of eight experiments using five 

different NK cell donors and three different hMAPC donors (donors 1, 5, 6).  
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5. Discussion 

In the present study, we report on the interaction between hMAPCs and NK cells. Resting NK 

cells do not kill hMAPCs and are blocked in their cytolytic function by hMAPCs. hMAPCs 

block IL-2-induced NK cell proliferation but not their subsequent effector function. On the 

other hand, activated NK cells kill hMAPCs, unless the latter were preincubated with IFN-γ, 

and are no longer blocked by hMAPCs during their cytotoxic functioning. Hence, there is a 

balance in the mutual interaction between hMAPCs and NK cells depending on the activation 

state of the NK cells and the priming of hMAPCs.  

Our data on the NK cell susceptibility of allogeneic hMAPCs are in accordance with 

published reports on hMSCs.
101,113,114

 hMAPCs express lower levels of MHC class I 

molecules as compared to hMSCs 
56,166

, and also express ligands for activating NK cell 

receptors on its surface. To trigger a NK cell, failure to recognize appropriate inhibitory 

ligands on a target cell is mandatory. MSCs express high levels of MHC class I molecules, so 

it was hypothesized that MSCs would escape NK cell-mediated lysis. Indeed, published data 

showed that MSCs resist lysis of alloreactive resting NK cells. However, activated NK cells 

are capable of killing allogeneic and autologous MSCs.
113,114,203

 The data suggest that the 

interaction between MHC class I-specific inhibitory receptors on NK cells and the MHC class 

I molecules on the MSCs is not sufficient to protect MSCs from lysis. The susceptibility of 

hMAPCs for activated NK cells may hamper their survival in vivo. hMAPCs will be used as 

an off-the-shelf stem cell product and will be consequently of third-party origin; it can 

therefore be hypothesized that in an inflammatory environment, which is the situation in the 

case of GvHD or ischemia, nearly all hMAPCs will be killed. This however might, at least in 

part, be counteracted by the inflammation-induced upregulation of MHC class I molecules on 

hMAPCs. Indeed, for hMSCs, Spaggiari et al. reported that the upregulation of MHC class I 

molecules on hMSCs due to stimulation with IFN-γ rendered these cells resistant to NK cell-

mediated lysis.
114

 We were able to document similar results for hMAPCs. Based on these 

findings, we can hypothesize that the final outcome of the interaction between hMAPCs and 

NK cells in vivo will depend on the local inflammatory environment.   

The presence of hMAPCs impaired the cytolytic potential of resting NK cells in vitro. 

hMAPCs were not killed by resting NK cells, so the reduced cytotoxic effect of resting NK 

cells in the presence of hMAPCs was not due to competition of target cells. We confirmed 

this hypothesis by using NK-resistant KM-H2 cells instead of hMAPCs as modulating cells in 

some experiments. The question whether hMAPCs were able to block the cytotoxic function 
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of rIL-2-activated NK cells could not be answered in our experiments, as activated NK cells 

were killing both the K562 target cells and hMAPCs.  

hMAPCs suppressed rIL-2-induced proliferation of NK cells during stimulation with rIL-2 for 

6 days but not their cytotoxic function. The mechanism responsible for the 

immunosuppression of hMAPCs is not yet completely understood. Several candidate 

molecules have been proposed as the soluble immunosuppressive factor produced by hMSCs, 

although data are contradictory because of different experimental designs to study 

immunosuppression.
75,77,85,86

 In our hands, blockage of TGF-β, IL-10, or PGE2 synthesis did 

not influence the suppressive effect of human MAPCs on rIL-2-induced NK cell proliferation. 

Addition of 1-MT to cocultures of freshly isolated NK cells with hMAPCs resulted in a loss 

of the hMAPC-mediated suppressive effect on IL-2-mediated NK cell proliferation, 

confirming the role of IDO as one of the responsible mediators. None of these mediators was 

responsible for the modulation during the cytotoxic effector phase of resting NK cells. Our 

data are in accordance with previously published results on T cell alloreactivity.
166

 

The present study was primarily aimed to study the mutual interaction between hMAPCs and 

NK cells. Related to sensitivity to NK cell-mediated killing, modulation of NK cell 

proliferation, and mechanism of immunomodulation, hMAPCs did not differ in function from 

hMSCs as described in literature. Nevertheless, some differences in immunomodulatory 

action between hMAPCs and hMSCs were found compared to literature and from own 

experiments. First of all, the modulatory effects of hMAPCs during the rIL-2-induced 

stimulation phase of NK cells in our study were different compared to hMSCs in the study by 

Spaggiari et al.
116

 In the latter study, coculture of purified NK cells with irradiated hMSCs for 

6 days in the presence of rIL-2 did not only strongly reduce the rIL-2-induced proliferation 

but also inhibited the cytotoxic activity of the purified NK cells. Next, in our hands, hMSCs 

became available from the same donor as hMAPCs only for the experiments on rIL-2-induced 

stimulation of PBMC populations. Enrichment of NK cells upon rIL-2 stimulation in the 

PBMC cultures was blocked more by hMAPCs than by hMSCs. As a consequence, the 

subsequent NK potency of these stimulated PBMCs was also reduced in the cultures in the 

presence of hMAPCs but less in the presence of hMSCs. Thirdly, Rasmusson et al. 

demonstrated that hMSCs did not influence the specific K562 lysis of resting NK cells 
101

, 

whereas hMAPCs in our study reduced the cytotoxic function of resting NK cells when 

cocultured during the effector phase.   

The fate of hMAPCs after injection into patients is not yet understood. In this study, we 

demonstrated that hMAPCs interact with NK cells in vitro. The final outcome of this 
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interaction in vivo will depend on the inflammatory microenvironment both affecting the 

activation state of the NK cells but also the MHC expression on hMAPCs. Our data add to the 

understanding of clinical results of currently running trials using adoptive transfer of 

hMAPCs. Further in vivo studies with patients treated with hMAPCs should be done to better 

understand the fate and function of hMAPCs as an immune-modulating stem cell population.
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Chapter 4 – Influence of clinical-grade human multipotent adult 

progenitor cells on CD8
+
 cytotoxic T lymphocytes 

 

1. Abstract 

MultiStem
®
 (MS) cells are clinical-grade multipotent adult progenitor cells (MAPCs), which 

are bone marrow-derived progenitor cells with extensive replication potential and broader 

differentiation capacity compared to mesenchymal stem cells (MSCs). Human (h)MAPCs 

suppress T cell proliferative responses induced by alloantigens and mutually interact with 

allogeneic natural killer (NK) cells. In this study, we addressed the interaction between 

MultiStem and CD8
+
 cytotoxic T lymphocytes (CTLs). In an in vitro setting, we investigated 

the immunogenicity of MultiStem, the susceptibility of these clinical-grade MAPCs towards 

CTL-mediated lysis and the effects of MultiStem on CTL function. MultiStem was 

nonimmunogenic for alloreactive CTL induction and was – even after MHC class I 

upregulation by IFN-γ pretreatment – insensitive to alloantigen-specific CTL-mediated lysis. 

Furthermore, MultiStem reduced CTL proliferation and significantly decreased the 

intracellular expression of perforin during the T cell activation phase. As a consequence, 

MultiStem dose-dependently impaired the induction of CTL function. These effects of 

MultiStem were mediated predominantly through contact-dependent mechanisms. MultiStem 

cells had a considerable influence on the expression pattern of T cell activation markers. 

Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector 

phase was also diminished in the presence of MultiStem. This study confirms that these 

clinical-grade MAPCs are an immune privileged population, which inhibits CTL activation 

and effector responses and are consequently a highly valuable cell population for adoptive 

immunosuppressive therapy in diseases where damage is induced by CTLs. 
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2. Introduction 

During the last decade stem cell-based therapy has made an enormous progress in the 

treatment of various diseases. Stem cells are unspecialized self-renewing cells that can 

undergo multi-lineage differentiation and are classified according to their differentiation 

potential.
1
 Besides their capacity to regenerate damaged or diseased tissues, multipotent or 

tissue-specific adult stem cells also possess a remarkably diverse array of immune modulatory 

characteristics. Mesenchymal stem cells (MSCs) are a prototype of adult nonhematopoietic 

stem cells, which can be isolated from various post-natal tissues and are able to differentiate 

into several cell types of the mesenchymal lineage.
23,25,33,34,204

 Human (h)MSCs have been 

proven to be a non-major histocompatibility complex (MHC)-restricted immunosuppressive 

cell population in vitro as they suppress allogeneic T cell responses and impair differentiation 

and maturation of dendritic cells (DCs).
41,72,75,77,120

 hMSCs also interfere with natural killer 

(NK) cell and B cell proliferation and function.
107,116

 Clinical trials are ongoing to investigate 

the therapeutic use of hMSCs in several immune-related diseases [e.g. graft-versus-host 

disease (GvHD) and autoimmune diseases]. Several phase I and II studies have already shown 

the feasibility and safety of in vivo use of hMSCs, and phase III studies are initiated to explore 

the efficacy of hMSC therapy (www.ClinicalTrials.gov). 

Cytotoxic T lymphocytes (CTLs) become capable of killing cancer cells or virus-infected 

cells after activation through the CD8-mediated recognition of specific antigens presented in a 

MHC class I-dependent way by professional antigen-presenting cells (APCs). This interaction 

between the MHC complex and the T cell receptor (TCR) leads to the activation and clonal 

expansion of antigen-specific CTLs, which – upon second encounter of infected cells – exert 

their killer effector function. Target cell death by activated CTLs is induced by the targeted 

release of granules containing the cytotoxins perforin and granzyme or via proapoptotic Fas 

ligand-receptor (FasL-FasR) clustering on the respective cell surfaces.
205

 Both pathways 

eventually trigger apoptosis in the target cells via the caspase cascade. Despite the high 

expression of MHC class I molecules on their surface, MSCs escape CTL-mediated lysis.
104

 

On the other hand, MSCs inhibit CTL formation and prevent CTL-mediated lysis of target 

cells when added during the primary activation phase.
101

 

Multipotent adult progenitor cells (MAPCs) are another population of adherent progenitor 

cells derived from adult bone marrow.
48,52

 In contrast to hMSCs, hMAPCs can also 

differentiate into functional endothelium in vitro and in vivo and can be expanded ex vivo for 

a significantly longer time.
53,56

 This extensive proliferation capacity has led to large-scale 
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manufacturing and banking of MAPCs on an industrial scale, allowing the production of 

uniform well-characterized clinical doses without the use of multiple donors.
59

 Nowadays, 

such clinical-grade MAPCs are infused as an allogeneic off-the-shelf adoptive cell product 

(MultiStem
®
) resulting in a potentially more advantageous cellular therapy in the context of 

tissue regeneration, and cardiovascular, neurological and immune-related diseases. Third-

party MultiStem has been proven safe and well-tolerated in phase I studies in patients with 

acute myocardial infarction (AMI) 
61

 and as an adjuvant cell therapy to enhance engraftment 

of HSCs and to reduce GvHD incidence after hematological stem cell transplantation (HSCT) 

in patients with hematological malignancies.
176

 Partial beneficial effects were seen in these 

studies. Phase II and phase II/III trials are planned to be started soon. Moreover, phase I safety 

testing is also started in the context of immune modulation after liver transplantation 
178

 and 

phase II studies are recruiting patients with ischemic stroke 
177

 or refractory ulcerative colitis 

(www.ClinicalTrials.gov). 

However, despite their ongoing clinical evaluation, data regarding the immune modulatory 

capacities of these clinical-grade MAPCs are still limited. A detailed knowledge of the exact 

immunological behavior and mechanism of immune regulation of this stem cell product is 

indispensable for designing and understanding the observations of future clinical trials. In our 

hands, hMAPCs are nonimmunogenic for alloreactive T cell proliferation, they impair 

allogeneic proliferative T cell responses and they mutually interact with allogeneic NK cells 

in vitro.
166,206

 In this study, we assessed the influence of MultiStem cells on the cytotoxic 

function of CD8
+
 T cells by evaluating the immunogenicity of MultiStem and the 

susceptibility of the stem cell population towards CTL-mediated lysis and by analyzing the 

MultiStem-mediated modulation of CTL functioning. 
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3. Materials and methods 

Isolation and culture of MultiStem 

Research-grade human MAPCs (MultiStem) were isolated by Athersys/ReGenesys 

(www.athersys.com - www.regenesys.eu) from bone marrow (BM) of five different healthy 

volunteers (donors 1-5; Table 1). Informed consent for BM collection was obtained in 

accordance with the guidelines of the Medical Ethics Committee of the University Hospitals 

Leuven. Isolation and culture of the MultiStem clinical product were based on MAPC 

isolation and expansion protocols as previously described.
53,59

 Briefly, MultiStem cells were 

generated by plating the total cell fraction of the isolated BM sample at 0.5 x 10
6
 cells/cm

2
 in 

medium consisting of 60% DMEM low-glucose (Lonza, Verviers, Belgium), 40% MCDB-

201 (Sigma-Aldrich, St. Louis, MO, USA), supplemented with 50 nM dexamethasone, 10
-4 

M 

L-ascorbic acid, 0.5x linoleic acid-bovine serum albumin (LA-BSA) (all from Sigma-

Aldrich), 1x insulin-transferrin-selenium (ITS), 100 U/ml penicillin/streptomycin, along with 

18% fetal bovine serum (FBS; Serum Supreme) (all from Lonza), 10 ng/ml human platelet-

derived growth factor (PDGF) and 10 ng/ml human epidermal growth factor (EGF) (both 

from R&D Systems, Minneapolis, MN, USA). MultiStem cultures were maintained under 

hypoxic conditions (5% O2) at a density of 2000 cells/cm
2
 per 1x fibronectin (FN)-coated 

(Sigma-Aldrich) T75 culture flask (Corning, NY, USA). The cells were split every two to 

three days, were not clonally derived and were used at PD 25-35. In some experiments, 

MultiStem cells were pretreated with 100 U/ml interferon (IFN)-γ (Roche Diagnostics, 

Vilvoorde, Belgium) for 48 h to upregulate MHC class I expression. 

For all five stem cell donors, the MultiStem cellular product was also generated on an 

alternative larger-scale cell culture platform by means of an automated closed Quantum Cell 

Expansion System (CES; Terumo BCT, Lakewood, CO, USA). This system consists of a 

disposable synthetic hollow-fiber bioreactor of 2.1 m
2
 surface area connected to a sterile 

closed-loop, computer-controlled media perfusion platform and gas exchangers.
207

 Extensive 

characterization and quality control [expansion properties (growth, morphology and viability) 

by using the Cellavista image-based platform (Roche), characterization (flow cytometry, 

qPCR and ELISA), differentiation capacity (osteo-, adipo- and chondrogenic), karyotype 

analysis (SNP arrays and CNV analysis), telomerase activity, in vitro tube formation assay 
62

, 

high-throughput screening (transcriptome and epigenetic analysis) and immunosuppressive 

activity] confirmed phenotypic and functional equivalency of these cells. 
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Table 1: List of MultiStem donors 

Donor Sex Age Cell line 

1 female 30 SJA 

2 male 45 SVG/2 

3 male 45 OG2 

4 male 28 L08 

5 male 25 BMC134 

 

 

Epstein-Barr virus (EBV)-mediated transformation of B lymphocytes 

Peripheral blood mononuclear cells (PBMCs) were obtained from three MultiStem donors 

(donors 1 to 3) and from one healthy volunteer by density gradient centrifugation 

(ACCUSPIN
TM

 System-Histopaque
®
-1077, Sigma-Aldrich). After washing, mononuclear 

cells were cultured in suspension in T25 culture flasks (Greiner Bio-One, Wemmel, Belgium) 

in 4 ml medium consisting of DMEM-F12 w/o Tes & Hepes supplemented with 2.5 mM L-

glutamine, 10% FBS (all from Lonza), 2 µg/ml cyclosporin (Sigma-Aldrich) and infected 

with EBV supernatant [obtained from the growth of monkey B95-8 cell lines; American Type 

Culture Collection (ATCC), Manassas, VA, USA]. After one and two weeks, 2 ml medium 

was added and clump forming was regularly checked. The virally infected B cells were 

transferred to T75 culture flasks (Greiner Bio-One) and after 6 to 8 weeks, lymphoblastoid 

cell lines were obtained. These cell lines can be indefinitely grown in culture medium 

consisting of RPMI 1640 (Lonza) supplemented with 10% heat-inactivated FBS, 1 mM/ml 

sodium pyruvate, 1x nonessential amino acids (NEAA), 50 µg/ml gentamicin, 2 mM/ml L-

glutamine (all from Lonza), 8 µg/ml levofloxacin (Tavanic; Sanofi-Aventis, Diegem, 

Belgium) and 100 µM 2-mercapto-ethanol (2-ME; Sigma-Aldrich). These immortalized B 

lymphocytes were used as a long-term continuous source of allogeneic stimulatory cells in 

mixed-lymphocyte cultures (MLC) to generate clonal expansion of antigen-specific T cells 

and as alloantigen-specific target cells during killing assays. 
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Isolation and activation of (CD8
+
 cytotoxic) T lymphocytes 

All subjects donating blood for these experiments were healthy volunteers of both sexes, aged 

20 to 60 years. PBMCs were isolated from fresh blood samples by Ficoll-Hypaque (Axis-

Shield, Oslo, Norway) density gradient centrifugation (specific gravity, 1.077 g/ml). T cells 

were further purified using two rounds of a complement-mediated depletion of all non-T cells 

with lympho-KWIK-T reagent (One Lambda, Los Angeles, CA, USA) as previously 

described.
166

 Briefly, the reagent was added to the mononuclear cells (0.8 ml per 20 - 30 x 10
6
 

PBMCs) and the mixture was incubated for 1 h at 800 rpm at 37°C. Cells were centrifuged at 

1845 g for two minutes and washed once. A mixture of complement-fixing anti-NK cell 

monoclonal antibody (anti-CD16) of the IgM subclass (BD Biosciences, Erembodegem, 

Belgium) was then added to the cells. The cells were incubated for 30 minutes at 4°C and 

again washed once. Afterwards, incubation with lympho-KWIK-T reagent was repeated. Cells 

were again centrifuged at 1845 g for two minutes, washed once, and resuspended in complete 

culture medium consisting of RPMI 1640 supplemented with 2 mmol/l L-glutamine, 100 

U/ml penicillin, 100 µg/ml streptomycin (all from Lonza) and 10% autologous heat-

inactivated plasma. The purified T cell populations contained at least 95% CD3
+
CD56

-
 cells 

as determined by flow cytometry. In some experiments, CD8
+
 CTLs were negatively selected 

from T cell fractions using the human CD8
+
 T cell isolation kit (Miltenyi Biotec, Leiden, The 

Netherlands) according to the manufacturer’s instructions. Purity of enriched CD3
+
CD8

+
 T 

cell fractions ranged from 87% to 97%. 

To obtain alloantigen-specific T cells, freshly isolated T cells or purified CD8
+
 CTL fractions 

(both 1 x 10
6
 cells) were cocultured with either allogeneic irradiated (40 Gy) EBV-

transformed B cells or allogeneic irradiated (30 Gy) PBMCs for 7 days in complete culture 

medium in flat-bottomed 24-well plates (Greiner Bio-One) at a stimulator:responder (S:R) 

ratio ranging from 1:2 to 1:20. For polyclonal activation of T cells, culture plates were coated 

with immobilized anti-CD3 mAb (5 µg/ml UCHT-1; obtained from hybridoma cultures, 

ATCC) in 300 µl phosphate-buffered saline (PBS) for 4 h at 37°C and washed three times. 

Together with the T cells, 1 µg/ml soluble anti-CD28 (Sanquin, Amsterdam, The 

Netherlands) was added to the culture plates.
208

 After four days of culture, cells were 

harvested, washed and resuspended in complete medium to test CTL activity. 
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Cytotoxicity assays 

The viability of (IFN-γ-pretreated) MultiStem in the presence of activated T cells was tested 

with the standard 4 h 
51

Cr-release method. Therefore, MultiStem cells were labeled with 100 

µCi 
51

Cr (Perkin Elmer, Zaventem, Belgium) per 10
6
 cells for 90 minutes and seeded at 5 x 

10
3
 cells/well in V-bottomed 96-well plates (Greiner Bio-One). As a control target cell, EBV

+
 

B cells from the corresponding MultiStem donor, which were also used to prime the naive T 

cells, were labeled with 200 µCi 
51

Cr per 10
6
 cells for 60 minutes. The lytic potential of 

alloantigen-specific effector CTLs was tested by coculturing cells at effector:target (E:T) ratio 

10:1 in a total volume of 200 µl complete medium. Spontaneous 
51

Cr-release of the target 

cells was verified, and saponin (Merck, Darmstadt, Germany) was added to measure the 

maximal 
51

Cr-release. Release of 
51

Cr from the target cells into the supernatant was measured 

by a Topcount gamma counter (Packard Instrument Company, Meriden, CT, USA). Results 

are expressed as percentage 
51

Cr-release, calculated as [(experimental release – spontaneous 

release) / (maximal release – spontaneous release)] x 100. 

CTL activity was also checked regardless of antigen (Ag) specificity of the CTLs with an 

anti-CD3-redirected cytotoxicity system, as previously described.
208

 Briefly, P815 cells 

(obtained from ATCC) were used as labeled target cells (100 µCi 
51

Cr per 10
6
 cells for 90 

minutes) in a standard 
51

Cr-release assay in the presence of an anti-CD3 mAb, being 2 µg/ml 

OKT3 [orthoclone OKT3 (muromonab-CD3), Janssen-Cilag, Berchem, Belgium] or 10 µg/ml 

UCHT1. The P815 cell line is an NK-resistant DBA/2-derived murine mastocytoma cell line 

which expresses mouse FcγRII and FcγRIII. By bridging the effector CTL to the target cell 

FcγR with the anti-CD3 mAb, this cytotoxicity system permits detection of CTL activity 

regardless of antigen specificity of the CTLs. Results are expressed as anti-CD3-dependent 

specific 
51

Cr-release (% SR), calculated as the difference between total release (in the 

presence of anti-CD3) and background release (in the absence of anti-CD3) of the target cell. 

The following formula was used: [(total release – experimental background release) / 

(maximal release – spontaneous release)] x 100. 

 

Immune regulation by MultiStem 

To analyze the immunogenicity of MultiStem, we stimulated T cells with either allogeneic 

irradiated (30 Gy) MultiStem or with allogeneic irradiated (30 Gy) PBMCs from the same 

donor for 7 days at S:R ratio 1:2. Afterwards, CTL response was measured. 
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To test the influence of MultiStem as a modulating cell population during either the activation 

phase or during the lytic effector phase of T cells, MultiStem cells were added to these 

cocultures respectively at the beginning of the 7-day stimulation period or at the start of the 4 

h 
51

Cr-release assay at a suppressor:responder ratio ranging from 1:1 to 1:100. Afterwards, the 

proliferative and CTL responses were analyzed by 16 h [
3
H]thymidine incorporation 

[1µCi/well; Perkin Elmer; measured on a liquid scintillation counter (Tri-Carb
®
 2100TR 

Liquid Scintillation Counter, PerkinElmer)] and by standard 
51

Cr-release assay, respectively. 

Proliferation results were analyzed as mean counts per minute (cpm) of quadruplicate wells, 

and were expressed as percentage response related to the control response in the absence of 

MultiStem. Alternatively, as a negative control, human umbilical vein endothelial cells 

(HUVECs; Lonza) were used as modulating cells in the same ratios. 

In some experiments, 100 U/ml exogenous human recombinant (r)IL-2 (TECIN; Hoffmann-

La Roche, Nutley, NJ, USA) was added to the cocultures of immune cells and stem cells. To 

test the effect of MultiStem on the T cell priming for memory response, T cells were 

stimulated in a primary MLC with allogeneic EBV
+
 B cells in the presence or absence of 

MultiStem cells. After a 3-day resting period, these T cells were restimulated in the absence 

of MultiStem with the same alloantigens in a secondary MLC for 4 days. 

The involvement of soluble factors in the immune regulation by MultiStem was evaluated by 

using 24-well plate Thincert
TM

 inserts (Greiner Bio-One) with a semi-permeable polyethylene 

membrane (pore size 0.4 µm) to separate MultiStem cells from the MLC during the T cell 

activation phase (range 1:2 to 1:10 MultiStem:T cells). The MLC was performed in the 

bottom chamber of the transwell system, while MultiStem cells were placed in the upper 

chamber. After the T cell stimulation period, the inserts were removed and the T cells were 

tested for their cytotoxic activity. To address the specific role of indoleamine 2,3-dioxygenase 

(IDO) or prostaglandin E2 (PGE2) as immune suppressive mediators, respectively 200 µM/ml 

of the blocking molecules 1-methyl-trypthophan (1-MT; Sigma-Aldrich) or 2 µg/ml 

indomethacin (Cayman Chemical Company, Ann Arbor, MI, USA) were added to the 

coculture system. 

The involvement in MultiStem-mediated immune modulation of the contact-dependent 

mechanisms programmed death ligand-1/2 (PD-L1/2) / programmed death-1 (PD-1) signaling 

pathway and apoptosis-inducing FasL/FasR interaction was investigated by adding their 

respective neutralizing mAbs: 5 µg/ml anti-PD-1, 2 µg/ml anti-PD-L1, 2 µg/ml anti-PD-L2 

(all from eBioscience, San Diego, CA, USA) and 5 µg/ml anti-FasL (BD Pharmingen, 

Erembodegem, Belgium). The production of galectin-1 (Gal-1) by MultiStem cells was 
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analyzed by fluorescence microscopy by labeling the cells with anti-human Gal-1 mAb (1 

µg/ml; Peprotech, London, UK), and by Western Blot (0.2 µg/ml). Secretion of soluble Gal-1 

was verified by means of ELISA on cell supernatant.
209

 

 

Flow cytometry 

MultiStem cells, EBV
+
 B cells or (CD8

+
 cytotoxic) T cells (1 x 10

5
 per sample) were 

suspended in 100 µL PBS supplemented with 10% autologous heat-inactivated human plasma 

to block nonspecific staining. Cells were subsequently surface stained with fluorescence-

conjugated specific mAbs anti-PD-1 (BD Pharmingen), anti-PD-L1 (BioLegend, San Diego, 

CA, USA), anti-PD-L2 (eBioscience), anti-FasL (BD Pharmingen), anti-CD45 (BD 

Biosciences), anti-CD3 (eBioscience), anti-CD8 (BD Pharmingen), anti-CD25 (BioLegend), 

anti-CD127 (BD Biosciences), anti-CD69 (BioLegend), anti-AnnexinV (BD Pharmingen), 

anti-CD54, anti-CD58, anti-CD80, anti-CD86, anti-HLA-ABC and anti-HLA-DR (all from 

BD Biosciences). In some experiments, the viability dyes propidium iodide (PI; BD 

Biosciences) or Zombie Yellow (BioLegend) were used. For intracellular perforin staining, 

cells were first fixed and permeabilized with Fix&Perm
®
 cell permeabilization kit (ADG 

Bioresearch, Vienna, Austria) and afterwards stained with anti-perforin (BD Pharmingen). 

Fluoresence compensation was set to correct for spectral overlap by using UltraComp eBeads 

(eBioscience) as compensation controls and fluorescence minus one (FMO) staining controls 

were included. Acquisition was done using a FACSort or BD LSRFortessa
TM

 (both BD 

Biosciences) and analysis was performed with respectively CellQuest Pro (BD Biosciences) 

or FlowJo software (Tree Star, Inc., Ashland, OR, USA). 

 

Statistical analysis 

Statistics were calculated with Prism software 5.0 (GraphPad Software, Inc., San Diego, CA, 

USA). Statistical significance was calculated with (un)paired t tests for comparisons between 

two groups. Values of p < 0.05 were considered significant. 
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4. Results 

4.1 Human MultiStem cells are nonstimulatory for allogeneic T cells in vitro 

In previous work, we already demonstrated that hMAPCs did not induce alloreactive T cell 

proliferation nor Th1/Th2 cytokine production when cocultured in vitro with allogeneic T 

cells.
166

 To assess whether MultiStem could possibly induce cytotoxic effector function in T 

cells, purified responder CD3
+
 T cells were stimulated with irradiated allogeneic MultiStem 

on the one hand, and irradiated allogeneic PBMCs of the MultiStem donor on the other hand 

as a control APC population. Standard 
51

Cr-release assay revealed that allogeneic PBMC-

stimulated T cells efficiently killed 
51

Cr-labeled P815 target cells in the presence of an anti-

CD3 mAb (mean ± SEM % 
51

Cr-release: 56.75 ± 4.63 %; n = 5; Fig. 1A). In contrast, 

MultiStem induced only a minimal anti-CD3-redirected cytotoxic response when cocultured 

for one week with allogeneic T cells (21.32 ± 4.91 %; n = 5). In the alloantigen-specific 

cytotoxicity assay, EBV
+
 target B cells were not lysed when T cells were prestimulated with 

allogeneic MultiStem (1.39 ± 1.11 %; n = 3; Fig. 1B) compared to prestimulation with 

allogeneic PBMCs (43.89 ± 4.34 %; n = 3). The MultiStem cells or PBMCs were from the 

same donor as the EBV
+
 target B cells used during the cytotoxicity assay. These results 

suggest the lack of immunogenicity of MultiStem cells in the in vitro setting. 

 

 
 

Figure 1. MultiStem (MS) does not induce cytotoxic activity in T cells. 

Freshly isolated responder CD3
+
 T cells were stimulated with either allogeneic irradiated (30 Gy) 

PBMCs or allogeneic irradiated (30 Gy) MultiStem (PBMCs and MS from the same donor) at S:R 

ratio of 1:2 for 7 days. Coculture was followed by an assessment of (A) anti-CD3-redirected cytotoxic 

activity against murine P815 mastocytoma target cells or (B) alloantigen-specific cytotoxic activity 
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against EBV
+
 B cells at E:T ratio 10:1 in a standard 

51
Cr-release assay. Data are expressed as (A) mean 

± SEM anti-CD3-dependent specific 
51

Cr-release (% SR) of five independent experiments with four 

different T cell donors and three different PBMC/MultiStem donors and (B) mean ± SEM percentage 
51

Cr-release of three independent experiments with two different T cell donors and two different 

PBMC/MultiStem/B cell donors. Statistical significance was calculated with the unpaired t test. ***p 

< 0.001. 

 

 

4.2 MultiStem is insensitive to alloantigen-specific CTL-mediated lysis 

To address the interaction between activated CD8
+
 CTLs and allogeneic MultiStem, we first 

investigated the susceptibility of the stem cell population to CTL-mediated killing. To achieve 

this, we stimulated purified CD3
+
CD8

+
 T cells with allogeneic irradiated EBV

+
 B cells for 7 

days. This was followed by an assessment of CTL activity against murine P815 cells in the 

presence of an anti-CD3 mAb (n = 6), against alloantigen-specific MultiStem (n = 6) and 

against EBV
+
 B cells (n = 3) as MHC-specific control target cells. As shown in Figure 2, 

activated T cells killed anti-CD3 coated P815 cells (36.30 ± 4.85 %), whereas MultiStem cells 

(from the same donor as the EBV
+
 B cells used for stimulation) were insensitive to an 

alloantigen-specific CTL attack (2.54 ± 1.72 %). When EBV
+
 B cells were used as target cells 

(n = 3), it was demonstrated that the T cell antigen-specific cytotoxic activity (13.50 ± 3.71 

%) was considerably higher than the specific lysis of MultiStem. In some experiments (n = 4), 

MultiStem cells were pretreated with IFN-γ (100 U/ml for 48 h) to increase MHC class I 

molecule expression.
166,206

 However, this MHC class I upregulation did not result in a higher 

sensitivity to CTL-mediated lysis compared to untreated MultiStem cells, confirming the 

immune privileged status of these clinical-grade hMAPCs (data not shown).  

 

 

 

Figure 2. Activated T cells do not lyse allogeneic MultiStem cells. 
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Results of anti-CD3-redirected and alloantigen-specific cytotoxic activity of irr adiated (40 Gy) EBV
+
 

B cell-stimulated CD8
+
 CTLs (S:R 1:10 for 7 days) against respectively anti-CD3 coated P815 target 

cells, MultiStem or EBV
+
 B cells at E:T ratio 10:1. MultiStem cells and EBV

+
 B target cells were from 

the same donor as the EBV
+
 B cells used for CTL activation. Target cell killing is expressed as mean ± 

SEM percentage 
51

Cr-release of n independent experiments (P815 targets: n = 6; MultiStem targets: n 

= 6; EBV
+
 B targets: n = 3). Four different CTL donors and three different MultiStem/B cell donors 

were used. Statistical significance was calculated with the paired t test. *p < 0.05, ***p < 0.001. 

 

 

4.3 MultiStem cells impair proliferation, perforin expression and cytotoxic function of 

CD8
+
 T cells 

In a next set of experiments, we studied whether MultiStem ‒ besides impairing the 

alloantigen-, mitogen- and recall antigen-induced T cell proliferation 
166

 ‒ could also interfere 

with the clonal expansion of antigen-specific CD8
+
 T cells or with the generation of CTL 

function. Therefore, freshly isolated CD3
+
CD8

+
 T cells were primed with allogeneic EBV

+
 B 

cells for 7 days. Proliferation was measured with thymidine incorporation. Lysis of P815 cells 

and EBV
+
 target B cells was analyzed by means of 

51
Cr-release assay. Irradiated third-party 

MultiStem cells were added to the MLC either at the beginning of the 7-day EBV
+
 B cell-

induced activation phase or at the beginning of the 4 h cytolytic effector phase. In the 

presence of MultiStem, CTLs had a lower proliferative response (Fig. 3A). MultiStem-

modulated CTLs demonstrated a slightly but significantly reduced lytic capacity in both 

cytotoxicity systems compared to CTLs that were not exposed to MultiStem during the 

activation phase (anti-CD3-redirected cytotoxicity: 36.86 ± 3.39 % versus 46.48 ± 2.55 %; n 

= 32; alloantigen-specific cytotoxicity: 13.47 ± 2.15 % versus 20.82 ± 1.74 %; n = 9; Fig. 

3B). The presence of MultiStem for 4 h during the cytotoxic effector phase also significantly 

diminished the killing of both target cell populations (P815 targets: 33.44 ± 4.27 % versus 

40.10 ± 3.50 %; n = 18; EBV
+
 B targets: 12.50 ± 1.33 % versus 21.18 ± 2.92 %; n = 15; Fig. 

3C). These data suggest that MultiStem impairs both the CD8
+
 T cell proliferation and the 

induction of CTL activity, and the lytic T cell effector function itself. 
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Figure 3. MultiStem impairs the proliferation and (the induction of) the killer activity of CD8
+
 T 

cells. 

(A) Purified CD8
+
 CTLs were stimulated with irradiated (40 Gy) allogeneic EBV-transformed B cells 

(S:R 1:10) during 6 days in the absence (control) or presence of third-party irradiated (30 Gy) 

MultiStem cells at suppressor:responder ratio 1:2. The proliferative CTL response was measured on 

day 6 by [
3
H]thymidine incorporation. Results are expressed as mean ± SEM percentage proliferation 

relative to the control culture in the absence of MultiStem [average cpm: 46801] of quadruplicates in 

five independent experiments with five different CTL donors and two different MultiStem donors. 

Statistical significance was calculated with the paired t test. ***p < 0.001. 
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(B) Results of anti-CD3-redirected cytotoxic activity of irradiated EBV
+
 B cell-stimulated CD8

+
 CTLs 

(S:R 1:10) against P815 target cells (E:T 10:1 ; left panel) or alloantigen-specific cytotoxic activity 

against EBV-transformed target B cells (E:T 10:1 ; right panel) in the absence (control) or presence of 

irradiated third-party MultiStem cells at MS:CTL ratio of 1:2 during the 7-day activation phase. Data 

are expressed as mean ± SEM anti-CD3-dependent specific 
51

Cr-release (% SR) of 32 independent 

experiments with 19 different CTL donors and four different MultiStem donors (left panel) or 

percentage 
51

Cr-release of nine independent experiments with six different CTL donors and three 

different MultiStem donors (right panel). Statistical significance was calculated with the paired t test. 

*p < 0.05, ***p < 0.001. 

(C) Results of anti-CD3-redirected cytotoxic activity of irradiated EBV
+
 B cell-stimulated CD8

+
 CTLs 

(S:R 1:10) against P815 target cells (E:T 10:1 ; left panel) or alloantigen-specific cytotoxic activity 

against EBV-transformed target B cells (E:T 10:1 ; right panel) in the absence (control) or presence of 

irradiated third-party MultiStem cells at MS:CTL ratio of 1:2 during the the 4 h cytotoxic effector 

phase. Data are expressed as mean ± SEM anti-CD3-dependent specific 
51

Cr-release (% SR) of 18 

independent experiments with ten different CTL donors and four different MultiStem donors (left 

panel) or percentage 
51

Cr-release of 15 independent experiments with eight different CTL donors and 

four different MultiStem donors (right panel). Statistical significance was tested with the paired t test. 

**p < 0.01. 

 

 

To verify if MultiStem had a similar suppressive effect on the cytotoxicity induction of the 

total CD3
+
 T cell fraction, we performed a similar experiment with total T cells. In fact, 

MultiStem addition led to comparable inhibition of cytotoxicity induction of CD3
+
 T cells. 

This effect was dose-dependent (Fig. 4) and characteristic for MultiStem, as we compared the 

effect of addition of MultiStem cells as a modulating population with the addition of an 

unrelated third-party endothelial cell line (HUVECs). The latter did not impair T cell 

cytotoxicity induction (data not shown). Again, the suppressive effect was not enhanced by 

IFN-γ-pretreatment of MultiStem (data not shown). 

 

 
 

Figure 4. The MultiStem-mediated cytotoxicity suppression is dose-dependent. 

Results of anti-CD3-redirected cytotoxic activity of irradiated EBV
+
 B cell-stimulated CD3

+
 T cells 

(S:R 1:20) against P815 target cells (E:T 10:1) in the absence (control) or presence (+ MS) of 
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irradiated third-party MultiStem cells at different suppressor:responder ratios during the 7-day 

activation phase. Data are expressed as mean specific 
51

Cr-release (% SR) of one representative 

experiment out of three. 

 

 

Next, we studied the influence of MultiStem addition during the T cell stimulation phase on 

the perforin expression. Flow cytometric analysis revealed that the amount of perforin-

positive CD8
+
 T cells was reduced when MultiStem was present as a modulating cell 

population during the T cell activation phase (% CD8
+
perforin

+
 cells of stimulated CD3

+ 

lymphocytes: 3.24 % and 3.46 % in the presence of respectively MS donor 2 and 4 versus 

7.07 % in the absence of MS; Fig. 5). MultiStem had variable effects on perforin expression 

in CD8
-
 T cells. Collectively, these observations could be a plausible explanation for the 

reduced cytotoxic activity of stimulated T cells when cocultured with allogeneic MultiStem. 

 

 
 

Figure 5. MultiStem impairs the expression of perforin in CD8
+
 T cells. 
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Flow cytometric analysis of irradiated EBV
+
 B cell-stimulated T cells (S:R 1:20) for intracellular 

perforin expression after a 7-day stimulation period in the absence (upper panels) or presence (lower 

panels) of irradiated third-party MultiStem cells (suppressor:responder 1:2). Results are expressed as 

% positive cells in the CD3
+
 lymphocyte gate of one representative experiment with one T cell donor 

and two different MultiStem donors (donors 2 and 4). 

 

 

We excluded the possibility that MultiStem could indirectly suppress the activation and 

functioning of T cells through interference with the allogeneic EBV
+
 B cells. Flow cytometric 

analysis revealed no change in surface marker expression – and hence the alloantigen-

presenting capacity – of the stimulator EBV
+
 B cells after exposure to MultiStem (data not 

shown).  

We confirmed this finding by exploring the suppressive effect of MultiStem on the cytolytic 

activity of T cells, when the latter were activated with polyclonal stimulation (anti-CD3/28). 

The presence of MultiStem during the activation phase resulted in a significantly reduced 

cytotoxic activity (Fig. 6). These data indicate that the inhibitory effect of MultiStem on CTL 

generation is at the level of the T cells. 

 

 
 

Figure 6. MultiStem impairs cytotoxicity of polyclonal activated T cells. 

Responder CD3
+
 T cells were stimulated with immobilized anti-CD3 and soluble anti-CD28 mAbs for 

4 days in the absence (control) or presence of irradiated third-party MultiStem cells at 

suppressor:responder ratio 1:2. Coculture was followed by an assessment of anti-CD3-redirected 

cytotoxic activity of activated T cells against P815 target cells (E:T 10:1) in a standard 
51

Cr-release 

assay. Data are expressed as mean ± SEM anti-CD3-dependent specific 
51

Cr-release (% SR) of three 

independent experiments with two different T cell donors and two different MultiStem donors. 

Statistical significance was tested with the paired t test. **p < 0.01. 
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4.4 CTLs have an altered pattern of activation marker expression in the presence of 

MultiStem 

To investigate the mechanism of the suppressive effect of MultiStem on the responder T cells, 

we first performed a set of experiments in which we verified whether addition of MultiStem 

resulted in T cell apoptosis, anergy or tolerance. As explained above, MultiStem blocked the 

induction of CD8
+
 CTL activity in the MLC. Addition of exogenous rIL-2 only partially 

restored cytotoxic activity of the alloantigen-primed T cells (Fig. 7A). To further explain the 

lack of rescued CTL activity in spite of IL-2 addition, we analyzed the MultiStem-mediated 

induction of CTL apoptosis by means of AnnexinV/PI staining. In the presence of MultiStem, 

no induction of T cell apoptosis could be detected (data not shown). Furthermore, we also 

restimulated CTLs, suppressed during a primary MLC by third-party MultiStem, with the 

same alloantigens in a secondary MLC in the absence of MultiStem and then analyzed their 

cytotoxic function. This showed that these CTLs still displayed a secondary memory immune 

response similar to control T cells that had been stimulated in the absence of MultiStem (Fig. 

7B). Taken together, these findings show that MultiStem cells do not induce apoptosis and do 

not render T cells anergic. 
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Figure 7. Alloantigen-stimulated CD8
+
 CTLs in the presence of MultiStem have a normal 

secondary cytotoxic response. 

(A) Purified CD8
+
 T cells were primed with irradiated (40 Gy) allogeneic EBV

+
 B cells (S:R 1:10) in 

the absence (w/o MS) or presence (w/ MS) of irradiated (30 Gy) allogeneic MultiStem cells 

(MultiStem:CTL ratio of 1:2), and with or without exogenous rIL-2 (100 U/ml) for 7 days. Data are 

expressed as mean ± SEM percentage anti-CD3-dependent specific 
51

Cr-release (% SR) of P815 target 

cells (E:T 10:1). Results are pooled from four independent experiments with three different CTL 

donors and two different MultiStem donors. Statistical significance was calculated with the paired t 

test. *p < 0.05, ns = not significant. 

(B) Left panel : Purified CTLs were stimulated for 7 days in a primary MLC with irradiated allogeneic 

EBV
+
 B cells (S:R 1:10) in the absence (control) or presence of irradiated third-party MultiStem cells 

at suppressor:responder ratio 1:2. Afterwards anti-CD3-redirected cytotoxic activity against P815 

target cells was tested with 
51

Cr-release (E:T 10:1). Right panel : After a 3-day resting period, T cells 

from the primary MLC cultured in the absence or presence of MultiStem, were restimulated during 4 

days with the same irradiated alloantigens (S:R 1:10) in the absence of MultiStem, and thereafter anti-

CD3-redirected cytotoxic activity against P815 target cells (E:T 10:1) was tested. Results are 

expressed as mean ± SEM anti-CD3-dependent specific 
51

Cr-release (% SR) of three independent 

experiments with two different CTL donors and two different MultiStem donors. Statistical 

significance was tested with the paired t test. *p < 0.05, ns = not significant. 
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Secondly, we examined the influence of MultiStem on T cell activation marker expression. T 

cells were stimulated with EBV
+
 B cells in the presence or absence of MultiStem cells. We 

observed an increased expression of the early activation marker CD69 on both CD8
-
 and 

CD8
+
 fractions, measured after 2 days of allogeneic T cell stimulation, and this expression 

was significantly higher in the presence of MultiStem (% CD8
-
CD69

+
 fraction of CD3

+
 

lymphocytes: 59.8 % and 53.0 % in the presence of respectively MS donor 2 and 4 versus 

23.3 % in the absence of MS; % CD8
+
CD69

+
 cells: 26.3 % and 21.8 % versus 9.32 % ; Table 

2A or Fig. 8A). Most of the CD69
+
 cells were CD25-negative and CD127-positive. While the 

level of CD69 expression decreased again after 6 days, CD69 expression remained high in the 

MultiStem-modulated conditions, especially in the CD8
-
 fraction (% CD8

-
CD69

+
 fraction of 

CD3
+
 lymphocytes: 30.0 % and 46.1 % in the presence of respectively MS donor 2 and 4 

versus 6.04 % in the absence of MS; % CD8
+
CD69

+
 cells: 9.13 % and 12.9 % versus 3.42 %). 

On the other hand, CD25 (IL-2Rα chain; Table 2B or Fig. 8B) upregulation was dramatically 

reduced after 6 days of coculture of T cells with MultiStem, compared to the control condition 

without MultiStem. This downregulation was most pronounced for CD8
+
 cells (% CD8

-

CD25
+
 fraction of CD3

+
 lymphocytes: 11.8 % and 15.3 % in the presence of respectively MS 

donor 2 and 4 versus 36.3 % in the absence of MS; % CD8
+
CD25

+
 cells: 1.69 % and 0.96 % 

versus 28.5 %). The remaining CD25
+
 cells in the CD8

-
 fraction of MultiStem-modulated T 

cells were CD69-positive and consisted of relatively more regulatory T cells (Tregs; 

CD4
+
CD25

+
CD127

dim
), compared to the control condition (% CD25

+
CD127

dim
 cells in the 

CD8
-
 gate: 38.2 % and 35.8 % in the presence of respectively MS donor 2 and 4 versus 17.3 

% in the control condition). Finally, HLA-DR (Table 2C or Fig. 8C) upregulation obviously 

declined after 6 days in MultiStem-modulated T cells, compared to the control condition (% 

CD8
-
HLA-DR

+
 fraction of CD3

+
 lymphocytes: 1.95 % and 0.84 % in the presence of 

respectively MS donor 2 and 4 versus 19.1 % in the absence of MS; % CD8
+
HLA-DR

+
 cells: 

0.52 % and 0.13 % versus 18.9 %). In summary, these observations indicate an important 

effect of MultiStem on the activation and differentiation of T cells. 
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Table 2: T cell activation marker expression 

A. 

 unstimulated stimulated + MS donor 2 + MS donor 4 

Population
 
 DAY 2 DAY 6 DAY 2 DAY 6 DAY 2 DAY 6 DAY 2 DAY 6 

CD8
-
CD69

+
 (%)

 
 2.43 1.32 23.3 6.04 59.8 30.0 53.0 46.1 

CD8
-
CD69

+
CD25

- 
(%)

 
 NA NA 71.2 NA 74.8 63.1 67.9 63.5 

CD127 (MFI)
 
 NA NA 1961 NA 2419 2568 2558 1649 

CD8
+
CD69

+
 (%)

 
 1.29 0.68 9.32 3.42 26.3 9.13 21.8 12.9 

CD8
+
CD69

+
CD25

- 
(%) NA NA 94.4 NA 96.7 78.5 95.7 91.5 

CD127 (MFI)  NA NA 2198 NA 2438 1957 2373 1456 

 

B. 

 unstimulated stimulated + MS donor 2 + MS donor 4 

Population
 
 DAY 2 DAY 6 DAY 2 DAY 6 DAY 2 DAY 6 DAY 2 DAY 6 

CD8
-
CD25

+
 (%)

 
 20.4 5.94 16.1 36.3 16.0 11.8 18.7 15.3 

CD8
-
CD25

+
CD127

dim 
(%)

 
 18.9 60.8 37.7 17.3 31.4 38.2 31.1 35.8 

CD69 (MFI) 226 402 500 1104 1426 1964 1119 2160 

CD8
+
CD25

+
 (%)

 
 1.22 0.20 0.94 28.5 0.87 1.69 1.12 0.96 

CD8
+
CD25

+
CD127

dim
 (%)

 
 NA NA NA 0.00 NA NA NA NA 

CD69 (MFI) NA NA NA NA NA NA NA NA 

 

C. 

 unstimulated stimulated + MS donor 2 + MS donor 4 

Population
 
 DAY 2 DAY 6 DAY 2 DAY 6 DAY 2 DAY 6 DAY 2 DAY 6 

CD8
-
HLA-DR

+
 (%)

 
 1.74 1.56 7.63 19.1 4.21 1.95 2.61 0.84 

CD8
+
HLA-DR

+
 (%)

 
 0.69 0.21 3.40 18.9 1.72 0.52 0.98 0.13 

Flow cytometric analysis of CD3
+
 T cells for expression of T cell activation markers (A) CD69, (B) 

CD25 and (C) HLA-DR on day 2 and day 6 of a 6-day stimulation period with irradiated (40 Gy) 

allogeneic EBV
+
 B cells (S:R 1:20) in the absence [(un)stimulated T cells] or presence (+ MultiStem 

donor 2/4) of irradiated (30 Gy) third-party MultiStem cells (suppressor:responder 1:1). Data are 

presented as % of cells within the CD3
+
 lymphocyte gate or within the parent population, or as median 
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fluorescence intensity (MFI) of the specific marker expressed on cells of the parent population. One 

representative experiment with one T cell donor and two different MultiStem donors (donors 2 and 4) 

is shown. Highlighted values are explained in the preceding text. NA = not applicable. 
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Figure 8. MultiStem modulates T cell activation marker expression. 

Flow cytometric analysis of CD3
+
 T cells for (A) early (CD69) and (B) – (C) late (CD25 and HLA-

DR) T cell activation marker expression after a 6-day stimulation period with irradiated allogeneic 

EBV
+
 B cells (S:R 1:20) in the absence [(un)stimulated T cells] or presence (+ MultiStem donor 2/4) 

of irradiated third-party MultiStem cells (suppressor:responder 1:1). One representative experiment 

with one T cell donor and two different MultiStem donors (donors 2 and 4) is shown. 

(A) CD69 expression after two days (left panel) or six days (right panel) of stimulation. Results are 

expressed as % positive cells in the CD3
+
 lymphocyte gate. CD8

-
CD69

+
 and CD8

+
CD69

+
 

subpopulations are selected (left) and tested for their expression of CD25 (middle). CD25
-
 

subpopulations are gated and tested for the presence of CD127 (right). Histograms represent CD127 

expression of corresponding subpopulations with MFI values. 

(B) CD25 expression after two days (left panel) or six days (right panel) of stimulation. Results are 

expressed as % positive cells in the CD3
+
 lymphocyte gate. CD8

-
CD25

+
 and CD8

+
CD25

+
 

subpopulations are selected (left) and tested for their expression of CD127 (middle). CD127
dim

 and 

CD127
high

 subpopulations are gated and tested for the presence of CD69 (right). Histograms represent 

CD69 expression of corresponding subpopulations with MFI values. 

(C) HLA-DR expression after two days (left panel) or six days (right panel) of stimulation. Results 

are expressed as % positive cells in the CD3
+
 lymphocyte gate. 

 

 

4.5 MultiStem cells mediate T cell cytotoxicity suppression through contact-dependent 

mechanisms 

To further elaborate the exact mechanism of the MultiStem-mediated T cell cytotoxicity 

reduction, transwell inserts were used to separate the stem cells from the immune cells during 

the activation phase. As shown in Figure 9, an immune suppressive effect of MultiStem was 

found only in the condition in which both cell populations were in close proximity. Moreover, 

neither blocking IDO activity nor inhibiting PGE2 synthesis was able to restore cytotoxicity, 

indicating that these two molecules, although they are important in the context of MSC-based 

modulation of T cell proliferation, play no role in MultiStem-mediated T cell cytotoxicity 

suppression (data not shown). These findings indicate that suppression of the cytotoxic 

capacity of T cells occurs mainly via contact-dependent mechanisms or via contact-induced 

soluble factors. 
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Figure 9. MultiStem-mediated suppression of T cell cytotoxicity is contact-dependent. 

Freshly isolated CD3
+
 T cells were primed with irradiated (40 Gy) allogeneic EBV

+
 B cells (S:R 1:20) 

in the absence (control) or presence of irradiated (30 Gy) third-party MultiStem cells at MultiStem:T 

cell ratio of 1:2, either in direct contact (+ MS contact) or separated by means of a transwell system (+ 

MS non-contact). After 7 days, anti-CD3-redirected cytotoxicity was analyzed. Data are expressed as 

mean ± SEM percentage anti-CD3-dependent specific 
51

Cr-release (% SR) of P815 target cells (E:T 

10:1). Results are pooled from six independent experiments, in which five different T cell donors and 

two different MultiStem donors were used. Statistical significance was calculated with the paired t 

test. *p < 0.05, ns = not significant. 
 

 

To identify surface receptors or ligands that could be responsible for the contact-dependent 

immune modulating pathway, we analyzed MultiStem surface expression of the PD-L1/PD-

L2/PD-1 molecules and of FasL by means of flow cytometry. These molecules were all 

expressed in variable amounts on the surface of MultiStem cells, with the highest expression 

of PD-L1 and PD-L2 ligands upon IFN-γ pretreatment (Fig. 10A-B). They were not identified 

as mediators of the MultiStem-related cytotoxicity suppression on the basis of functional 

blocking experiments with mAbs (data not shown). Given the fact that galectin-1 (Gal-1), a β-

galactoside-binding immune suppressive protein, has recently been discovered as a ligand for 

CD69 on DCs 
210

, and that CD69 expression is in our hands prominently increased on T cells 

during coculture with MultiStem, we also studied the presence of Gal-1 on MultiStem cells. 

Fluorescence microscopy revealed Gal-1 expression on MultiStem (Fig. 10C), and this was 

confirmed by Western Blot analysis and ELISA on cell supernatant (data not shown). 
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Figure 10. MultiStem cells express PD-1/PD-L1/PD-L2, FasL and Gal-1. 

Flow cytometric analysis of MultiStem for the receptor (PD-1) and its ligands (PD-L1/2) of the PD-1 

signaling pathway (A) and for the ligand (FasL) of the apoptosis-inducing FasL/FasR pathway (B). 

Histograms in red represent unstained cells, the blue and brown histograms represent respectively 

MultiStem before and after treatment with 100 U/ml IFN-γ for 48 h. One representative experiment 

(MultiStem donor 2) out of three is shown. Average mean fluorescence intensity (MFI) values ± SD of 

three experiments (MultiStem donors 2, 4 and 5) are shown in the table. (C) Fluorescent microscopic 

analysis of MultiStem (donor 4) for Gal-1 (yellow). Nuclear control staining with DAPI (4’,6-

diamidino-2-phenylindole; blue) is included.  
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5. Discussion 

In the present study, we report for the first time on the effect of clinical-grade hMAPCs 

(MultiStem) on the cytotoxic function of T cells. MultiStem cells are immune privileged as 

they do not induce an alloreactive CTL response and as they are able to escape antigen-

specific immune recognition by activated T cells. MultiStem decreases alloantigen-induced 

CD8
+
 T cell proliferation and induction of CTL activity by significantly impairing the 

perforin expression after T cell priming, resulting in a diminished killer effect during the CTL 

effector phase. This modulatory effect is dose- and cell contact-dependent. In addition, 

MultiStem alters the T cell activation marker expression. When added to a total T cell 

population, MultiStem shifts activated CD8
-
 T cells towards a regulatory phenotype. When 

added only during the cytotoxic effector phase, MultiStem cells are still capable of slightly 

inhibiting the lytic activity of activated T cells. 

Our data on the immunogenicity and CTL susceptibility of MultiStem are similar with 

previously published reports on hMSCs. hMSCs do not induce T cell proliferation nor 

cytotoxic activity nor proinflammatory cytokine [IFN-γ and tumor necrosis factor (TNF)-α] 

production and induce little to no levels of activation markers (CD25, CD38 and 

CD69).
72,78,102,104

 Regarding the CTL sensitivity of adult stem cells, hMSCs were neither 

susceptible to alloantigen-specific T cell-mediated lysis, even despite (upregulation of) MHC 

class I expression.
92,101,104

 However, some studies show that MSCs are in fact sensitive to 

MHC-specific T cell-mediated lysis, which is even enhanced after IFN-γ 

pretreatment.
102,211,212

 These contradictory results could be explained by the different 

experimental designs used and the origin of MSCs and their culture procedure. Based on the 

data presented here and our published findings on the mutual interaction between hMAPCs 

and NK cells 
206

, we can hypothesize in general that MultiStem cells escape recognition and 

lysis by the adaptive (MHC-specific CTLs) and innate (KIR-mismatched resting NK cells) 

immune system in vitro. Whether this will be the same for the in vivo setting, which 

eventually will depend on the in situ inflammatory microenvironment as we have seen in case 

of NK-cell mediated lysis, has to be further explored. Moreover, MultiStem might be 

processed by antigen-presenting DCs of the host in an in vivo setting. This indirect manner of 

alloantigen presentation to T cells should be investigated further in an in vitro setting.  

CTL priming in the presence of MultiStem led to an impaired cytotoxic potential against 

target cells in vitro. Similar to other hMSC studies, they exert a dose-dependent inhibitory 

effect on the differentiation of CTL precursors into CTL effectors during the T cell priming 
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phase.
92,101,102

 This suppressive effect was characteristic for MultiStem and not simply due to 

sterical hindrance or an increased cell density during the MLC, as demonstrated by the 

absence of any modulatory effect of third-party HUVECs. Moreover, the reduced T cell 

cytotoxicity was due to a direct effect of MultiStem on the responder T cells, as the stem cells 

had no influence on the surface phenotype and functionality of the alloantigen-presenting B 

cells. In contrast to most previous reports, addition of adult stem cells to antigen-primed 

effector CTLs at the time of the cytotoxic reaction also diminished target cell killing. Our 

results were corroborated in the MSC setting by Potian et al., who neither observed any 

influence of BM-derived fibroblasts, confirming the absence of sterical cell hindrance.
213

 

However, the group of Rasmusson et al. saw no suppressive effect of MSCs added on a later 

time point during the T cell priming phase (day 3) or during the effector phase, suggesting 

that MSCs may predominantly inhibit the afferent phase of alloreactivity and prevent the 

development and proliferation of antigen-specific CTLs rather than their killer 

function.
92,101,103

 Our results imply that MultiStem reduce the total cytotoxic response of 

CD8
+
 T cells, not only by inhibiting clonal expansion of the antigen-specific CD8

+
 T cell 

population, but also by directly and dose-dependently impairing the acquirement of cytotoxic 

capacity of the cells during the activation phase. 

The mechanism for immune suppression by stem cells is not yet completely understood. No 

induction of tolerance, anergy or apoptosis could be demonstrated in our study, in accordance 

with previously published MSC studies.
72,75,81

 Angoulvant et al. showed that exogenous IL-2 

addition can partially restore target cell lysis after MSC-mediated suppression, while we 

observed only minimal improvement of cytotoxicity or proliferation in the presence of 

exogenous IL-2.
102,166

 The inhibitory effect was reversed after removal of the stem cells, as 

we have shown in restimulation experiments and as described for MSCs in case of T cell 

proliferation suppression.
72,75,79,103

 In our hands, third-party MultiStem addition led to a 

significant alteration in activation-associated surface marker expression of alloantigen-

stimulated T cells, involving a significant reduction of CD25 and HLA-DR upregulation on 

day 6 of the stimulation phase. On the other hand, CD69 expression was strongly upregulated 

during the priming phase. The group of Le Blanc et al. showed MSC-mediated decreased 

expression of CD25 and CD38 on PHA-stimulated T cells on day 3, while other groups could 

not demonstrate any influence on CD25 and CD69 expression of allostimulated or PHA-

stimulated T cells after 2 or 3 days respectively.
78,81,103

 Our results could indicate a somehow 

dysregulated T cell activation in the presence of MultiStem, which might be associated with 

an impaired acquirement of cytotoxic properties. Besides the crucial effect on the survival and 



Chapter 4 ‒ Influence of clinical-grade hMAPCs on CD8
+
 CTLs 

 

 87 

expansion of CD4
+
 and CD8

+
 T cell subsets, IL-2 exerts a direct and independent enhancing 

effect on perforin and granzyme expression by CD8
+
 T cells, as demonstrated by Janas et 

al.
214

 Accordingly, the observed MultiStem-mediated lack of CD25 (IL-2Rα chain) 

expression on CTLs and a consequently lower amount of high-affinity IL-2 receptors will lead 

to a disturbed autocrine IL-2 signaling cascade and lower perforin expression. The reduced 

CD25 upregulation on CTLs can also explain the lack of IL-2 effects to overcome the 

cytotoxicity suppression, while the priming of T cells remains unaffected. 

Another crucial point is the fact that, when the total CD3
+
 T cell population instead of the 

CD8
+
 cells is used as responding population, MultiStem cells have an additional influence on 

the CD8
-
 (or CD4

+
) fraction. MultiStem inhibits CD25 upregulation on both T cell subsets, 

but to a lower extent on CD8
-
 T cells. This remaining CD25

+
 fraction in the presence of 

MultiStem contains relatively more Tregs (CD127
dim

) and has a higher expression of CD69, 

compared to the control condition of stimulated T cells. Therefore, we suggest that, in the 

presence of MultiStem, the balance of regulatory T cells versus effector T cells (Treg/Teff) is 

altered in favor of Tregs, which have higher levels of CD69 as well. A remarkable and 

sustained increase in CD69 expression on activated T lymphocytes was already shown for 

hMSCs, and accordingly, was seen in all CD4
+
 and CD8

+
 T cell subsets, including distinct 

regulatory subsets.
215

 Recently, it has been shown that the previously known early activation 

marker CD69 also has an important regulatory role in the control of immune and 

inflammatory responses.
216,217

 Saldanha-Araujo et al. have demonstrated that the late and 

sustained expression of CD69 (as an immunoregulatory molecule) could be controlled by the 

non-canonical NF-κB pathway, while its early expression (as an activation marker) is 

regulated by the canonical pathway.
215

 However, we found also a CD8
-
CD69

+
 population 

which was CD25
-
 and CD127

+
. Several groups have demonstrated that a recently discovered 

subset of nontraditional regulatory T cells in tumor-bearing mice 
218

, in humans 
219

 and in 

patients with hepatocellular carcinoma are CD4
+
CD25

-
CD69

+
.
220

 Based on our findings and 

on the recent literature, we hypothesize that MultiStem addition is able to induce a similar 

suppressor T cell population, either by differentiation of CD8
-
CD69

+ 
T cells towards this 

regulatory phenotype or by an aberrant T cell activation (no upregulation of CD25 or HLA-

DR) in the presence of MultiStem. The exact immune suppressive mechanism of this 

population is not yet revealed, but in the murine setting, these cells suppress T cell 

proliferation through membrane-bound TGF-β.
218

 On the other hand, CD8
+
CD25

-
CD69

+
 T 

cells have been described in patients with chronic viral hepatitis 
221

 or rheumatoid arthritis.
222

 

Their exact function is yet unclear, but they are likely related to their CD4
+
 counterparts.

217
 In 
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summary, MultiStem appears to exert a direct inhibitory effect on the expansion and 

functional activity of CD8
+
 cytotoxic T cells, but they might as well have an indirect immune 

suppressive effect via CD4
+
 T cells through shifting the Treg/Teff balance and through the 

induction of a distinct CD8
-
CD69

+
 suppressor population. Further research is required on this 

effect, and functional tests should be performed to demonstrate the regulatory activity of these 

populations. 

Several candidate molecules [transforming growth factor (TGF)-β1, hepatocyte growth factor 

(HGF), PGE2, IDO, etc.] have been proposed as the responsible soluble immunosuppressive 

factor produced by hMSCs, although data are contradictory probably because of variable 

experimental designs. In our hands, no role for soluble factors could be demonstrated in the 

MultiStem-mediated suppression of T cell cytotoxicity. Transwell experiments showed 

contact-dependency of MultiStem to exert its suppressive effects. Furthermore, blockage of 

neither IDO activity nor PGE2 synthesis in the presence of MultiStem did restore cytotoxic T 

cell activity to its baseline levels. Although we reported for the first time on the expression of 

the ligands and receptor of the PD-1 pathway and of FasL on MultiStem cells, we were not 

able to identify one single responsible contact-dependent mechanism. Sotiropoulo et al. 

confirmed contact-dependency of hMSCs in case of suppression of NK cell cytotoxicity, 

while on the contrary proliferation and cytokine production suppression were mediated by 

soluble factors.
113

 Krampera and colleagues observed that, in the murine system, MSCs 

inhibit naive and memory T cell responses, only when the cell populations are in close 

proximity to each other.
79

 However, other MSC studies showed CTL cytotoxicity suppression 

by MSCs in transwell culture systems or via supernatant of cultured MSCs.
101,102

 Our data 

show that MultiStem modulates cytotoxic function of T cells mainly through (for the moment 

not further specified) contact-dependent mechanism(s), while soluble factors are also involved 

in proliferation modulation.
166

 This suggests that suppressive factor(s) of cytotoxicity are not 

constitutively secreted by MultiStem, but a dynamic cross-talk between MultiStem and 

immune cells is required. 

Based on the MultiStem-mediated elevated levels of CD69 on T cells and the presence of its 

ligand Gal-1 
210

 on MultiStem, Gal-1/CD69 binding could be an important mechanism of 

immune modulation by adult stem cells, independent of cytotoxicity suppression. De la 

Fuente et al. already proved inhibition of Th17 differentiation and function in mice and 

humans upon CD69 recruitment.
210

 Further research is mandatory. 
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According to our findings, we can conclude that MultiStem cells have broad immune 

suppressive properties, modulating both NK and T cell expansion and ‒ as shown here ‒ also 

cytotoxic functionality, validating their applicability in a range of immune-related diseases. 
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Chapter 5 – General conclusions and future perspectives 

The results presented in this manuscript provide further insights into the immunological 

effects of (clinical-grade) hMAPCs on NK cells and on CD8
+
 T cells, by a number of in vitro 

studies (Fig. 1). Given the fact that cytotoxic immune effector cells play a vital role in 

immune homeostasis (e.g. host protection and GvHD/GvL balance) and are important in the 

pathogenesis of some autoimmune diseases, our data on the mutual interaction between this 

stem cell population and NK cells on the one hand and the stem cell influence on CTLs on the 

other hand, are highly relevant. 

 

1. Immunogenicity 

First, we have studied the immunogenicity of hMAPCs towards a functional NK and T cell 

response. We have shown that hMAPCs are not able to induce an antigen-specific ‒ and only 

a minimal aspecific ‒ cytotoxic response of naive T cells towards target cells. In line with 

previously published findings by our group 
166

, we can assume that hMAPCs are non-

stimulatory for a T cell response, at least in vitro, including proliferation, Th1/Th2 cytokine 

secretion and cytotoxic activity. However, hMAPCs can be slightly immunogenic for 

alloreactive T cells since they induce a slight increase in activation marker expression [CD25, 

HLA-DR and inducible T cell costimulator (ICOS)].
166

 Furthermore, we have demonstrated 

that allogeneic hMAPCs are insensitive to antigen-specific CTL-mediated lysis and to killing 

by resting KIR-mismatched NK cells, despite expression of some ligands (PVR and ULBP-

2/5/6) for activating NK cell receptors (respectively DNAM-1 and NKG2D). On the other 

hand, when NK cells were preactivated with exogenous IL-2, efficient lysis of allogeneic 

hMAPCs was demonstrated. In contrast to hMSCs, hMAPCs express low levels of MHC 

class I molecules, which interact with inhibitory NK cell receptors and can be significantly 

upregulated upon IFN-γ-pretreatment.
56

 Pretreatment of hMAPCs did not result in higher 

MHC-I-dependent allorecognition by CTLs and resulted in a diminished susceptibility to 

preactivated NK cell-mediated killing by shifting the balance towards MHC-I-associated 

inhibitory NK cell signalling. Taken together, these results indicate low immunogenicity of 

clinical-grade hMAPCs in vitro.  

Upon administration in vivo, the survival and fate of hMAPCs will primarily be dictated by 

the inflammatory status and the cytokine balance in the local microenvironment. Thus, for 

example, while NK cells can lyse MAPCs in an inflammatory milieu in the presence of IL-2, 
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it is possible that the IFN-γ production by NK cells interacting with allogeneic MAPCs, in 

turn, will lead to protection of MAPCs from NK cell-mediated killing by upregulation of 

MHC I molecules. These findings underscore the complexity of the issue. With regard to 

MSCs, it has been shown that these cells are not intrinsically immunoprivileged. MSCs are 

also lysed by IL-2-activated NK cells in vitro 
114

, and immunocompetent MHC-mismatched 

mice were immune responsive to infusion of allogeneic MSCs, resulting in their rejection.
190

 

Most clinical reports on MSC therapy have confirmed low immunogenicity of MSCs in vivo. 

MSCs are capable of homing to inflamed tissues after systemic administration, regulate local 

inflammatory responses and promote endogenous tissue repair.
179

 Nonetheless, some studies 

report on the short longevity of functional MSCs located in the host, implying a quick 

clearance of the stem cells and supporting their so-called ‘touch-and-go’ mechanism through 

secreting various trophic factors.
204

  

 

2. Immune modulation 

Secondly, we have assessed the immune modulatory capacities of (clinical-grade) hMAPCs 

on the cytotoxic functioning of NK and CTL effectors in vitro. We have proved that hMAPCs 

are able to suppress alloreactive CTL proliferation, upon stimulation with allogeneic APCs 

(PBMCs or EBV
+
 B cells), and IL-2-induced expansion of allogeneic NK cells. In addition, 

we have shown a reduced cytotoxic function of resting NK cells and alloantigen- or anti-

CD3/CD28-stimulated CTLs against antigen-(a)specific targets in the presence of allogeneic 

third-party hMAPCs during the lytic effector phase. hMAPCs also directly and dose-

dependently impaired induction of CTL cytotoxicity during their priming phase by interfering 

with their perforin expression. On the other hand, in contrast to their inhibitory effect on NK 

cell proliferation, they had no influence on the intrinsic NK cell cytotoxic properties during 

the IL-2-mediated activation phase. Because of the cold target inhibition effect, we cannot 

conclude whether hMAPCs influence the killer function of IL-2-activated NK cells during 

their effector phase. Collectively, our observations imply that hMAPCs impair both 

proliferative and cytotoxic NK and T cell responses, resulting in a depressed immune 

response in vitro.  

Whether this will be the same in the more complicated in vivo setting has to be evaluated. It 

has become clear that the local environment has a crucial effect on the immune suppressive 

capacity of MSCs, making it even more difficult to translate in vitro results to in vivo effects. 

For instance, MSC functionality can be influenced by the cytokine milieu. High 
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concentrations of IFN-γ enhance the inhibitory MSC activity, while low concentrations render 

MSCs proinflammatory (see below).
81

 Furthermore, in the absence of IL-6, MSCs can switch 

macrophages to an anti-inflammatory M2 type.
223

 The detection of microbial molecules can 

also polarize MSCs into a pro- or anti-inflammatory state: TLR3-mediated signalling gives 

rise to anti-inflammatory MSCs (MSC1), while TLR4-signalling leads to proinflammatory 

MSCs (MSC2).
224

 Whether these factors can also act as a switch for hMAPCs has to be 

further examined. Considering the exact timing of stem cell addition, we could hypothesize 

that, based on results in this manuscript and on previous results 
166,206

, hMAPCs are somehow 

able to downregulate ongoing T cell responses in the in vitro setting, in contrast to NK cell 

responses. This hypothesis should be investigated more closely. 

 

3. Immune modulatory mechanism 

In our studies on the responsible mechanism and mediator(s) of the hMAPC-associated 

immunosuppressive effect, we have demonstrated that the mode of action is multifactorial, as 

is the case for hMSCs. Despite intensive research over the last decade, the exact mechanism 

behind the immune modulatory effect of hMSCs could not be fully elucidated so far. An 

overwhelming body of proof points out that both cell-to-cell contact-dependent pathways and 

a huge variety of (constitutively secreted or induced) soluble factors can play a major role in 

the suppression. Identification of these factors is apparently depending on the specific study 

design. In our hands, we observed that the mode of action depends on the immune effector 

response under study. In case of proliferation suppression, we could ascribe a partial role to 

IDO for hMAPC-mediated impairment of NK cell proliferation, in line with previous results 

obtained for T cell expansion inhibition.
166

 In contrast, we could not identify a single 

responsible soluble factor in NK cell cytotoxicity suppression after testing some well-known 

mediators (IDO, PGE2, IL-10 and TGF-β) of hMSC-mediated immune suppression. The same 

phenomenon was observed with T cells. Transwell experiments have shown contact-

dependency of hMAPCs to exert their suppressive function on T cell cytotoxicity, while we 

know from previous work that hMAPCs separated from T cells by transwell inserts still partly 

reduce their proliferation.
166

 As Sotiropoulo et al. described a similar phenomenon on NK 

cells 
113

, this difference in mode of action requires a more in-depth investigation. Until now, 

no single responsible contact-dependent mechanism could be identified to play a role in 

cytotoxicity suppression. Though, we described for the first time (clinical-grade) hMAPC 

expression of galectin-1 and ligands of the immune inhibitory PD-1 pathway and of the Fas-
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mediated apoptosis pathway, all previously reported as responsible contact-dependent 

mechanisms in hMSC-mediated immune suppression.
97,98

 Functional blocking studies 

however did not confirm the latter two pathways as candidates responsible for the suppressive 

activity. Based on the elevated expression of the immunoregulatory CD69 molecule on both 

CD8
-
 and CD8

+
 T cell subsets and on the fact that its recently discovered ligand, Gal-1 

210
, is 

present on (clinical-grade) hMAPCs, we could suggest a possible role for this pathway in 

MAPC-mediated suppression. Although this pathway has been shown to be involved in 

impairment of Th17 differentiation and function 
210

, this has to be examined further with 

regard to T cell cytotoxicity inhibition. 

 

With regard to the suppressed T cell phenotype, we have observed that the presence of 

hMAPCs does not result in apoptosis or anergy and that T cells retain their memory response. 

However, hMAPCs change their pattern of activation marker expression, induced upon 

stimulation. The decrease in CD25 (IL-2Rα) upregulation seen in hMAPC-modulated CTLs 

might be indirectly responsible for the reduced perforin expression and for the lack of IL-2 

effects to overcome cytotoxicity suppression.
214

 Hypothetically, the clear and sustained 

increase of the immunoregulatory molecule CD69 on T cells after coculture with hMAPCs – 

together with the increase in Treg/Teff ratio – might reflect an alternative inhibitory 

mechanism. Besides directly targeting immune effector cells and their function, clinical-grade 

hMAPCs may also act indirectly by inducing a relatively higher abundance of other 

immunoregulatory cell populations with suppressive functions 
217,220

, as has been shown for 

M2 macrophages.
123

 Alltogether, further investigation on this complex and pleiotropic 

mechanism of adult stem cell-mediated immune suppression is necessary for a better 

understanding. 
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Figure 1. Interplay between (clinical-grade) hMAPCs and NK cells or CTLs. 

Schematic representation of the influence of (clinical-grade) hMAPCs (± IFN-γ-pretreatment) on 

CTLs, and the interaction between hMAPCs and NK cells. hMAPCs do not induce alloreactive CTL 

function and are insensitive to lysis by antigen-specific CTLs, even after IFN-γ pretreatment of 

hMAPCs. hMAPCs are able to impair proliferation, perforin expression and cytotoxicity induction of 

CTLs during the T cell activation phase, next to suppressing the cytolytic function of activated CTLs 

during the effector phase. hMAPCs are not killed by allogeneic resting NK cells and are able to 

suppress the cytotoxic function of resting NK cells. IL-2-induced proliferation of NK cells is impaired 

in the presence of allogeneic hMAPCs in an IDO-dependent manner. IL-2-activated NK cells, on the 

other hand, are capable of killing allogeneic hMAPCs, unless latter cells are pretreated with IFN-γ. 

Because hMAPCs are targeted by IL-2-activated NK cells, it is unclear whether hMAPCs can 

influence the cytotoxic activity of activated NK cells. 

 

 

4. Comparison immune modulation of hMAPCs versus hMSCs 

Based on literature and previously published findings of our group 
166

, we can assume that, in 

spite of being two phenotypically and functionally distinct cell populations, the 

immunological behavior of hMAPCs in vitro is quite similar to that of hMSCs. In the few 

comparative experiments we performed, we could only observe a slight difference between 

hMAPCs and hMSCs regarding the modulation of cytokine-induced NK cell activation. 
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Compared to hMSCs, hMAPCs are able to suppress IL-2-driven NK cell proliferation to a 

higher extent.
206

 Another remark is that the exposure of MSCs to proinflammatory cytokines 

(especially IFN-γ) enhances the immune suppressive capacity of MSCs, by inducing or 

upregulating inhibitory factors such as IDO and PD-L1.
81,225

 IFN-γ-pretreated MSCs are 

considered to be highly immunosuppressive and to have enhanced migration and tissue 

regeneration properties 
226

, which validate the current strategy to license MSCs with IFN-γ 

prior to their in vivo administration. However, the concentration of IFN-γ appears to be 

crucial, since low levels stimulate the antigen-presenting function and result in MSC-

mediated proinflammatory effects.
73

 Based on our work and on previously published material 

of our group 
166

, we conclude that ex vivo IFN-γ pretreatment clearly alters the phenotype of 

hMAPCs with increased expression of MHC class I, ICAM-1, PD-L1/2 and kynurenine, but 

does not result in an increase of the immune regulatory hMAPC-mediated effect. The latter 

includes both immunogenic and immune suppressive properties with regard to T cell 

proliferation and cytotoxicity. The different outcomes of our experiments compared to the 

hMSC literature might be explained by the variability in experimental study design, including 

the kind of responder immune cell population (unfractionated PBMCs versus purified cell 

fractions), the stimulation (antigen- versus mitogen-induced), the dose and timing of stem cell 

addition or to a true functional difference between hMSCs and hMAPCs (e.g. origin, culture 

procedure). In a recent study by Mora-Lee et al., murine intracranial injections of hMAPCs 

versus hMSCs after induction of stroke revealed that hMAPCs had stronger neuroprotective 

effects, more pronounced effects on the attenuation of inflammation, and more potency to 

promote endogenous tissue regeneration than hMSCs.
227

 This observation was recently 

confirmed by Sindberg et al., who have shown higher potency in vitro for hMAPCs.
43

 This 

highlights the fact that there are differences in activity, which should be further examined. 

 

5. Future perspectives and conclusions 

Future studies need to further elaborate on the effects of hMAPCs on other innate and 

adaptive immune cell populations (e.g. DCs, macrophages, MDSCs, B cells, etc.). As outlined 

in the introduction, hMSCs have been demonstrated to interfere with DC differentiation, 

maturation and function.
119,120

 Furthermore, hMSCs suppress B cell proliferation and 

differentiation.
107,108

 In addition, it will be interesting to study the role of hMAPCs on 

macrophages. Busch et al. demonstrated in an in vitro rat model of spinal cord injury that rat 

MAPCs induce a shift in macrophages from a proinflammatory M1 state to an anti-
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inflammatory M2 state.
124

 Thus far, no data are available on the effects of hMAPCs on all 

these important immune and inflammatory cell types, which will again lead to a better 

understanding of the immunological behavior of hMAPCs. 

 

Although the adoptive transfer of (clinical-grade) hMAPCs has already reached phase II 

testing in the clinical setting, some main concerns should not be neglected. As a first concern, 

the safety of the delivery of hMAPCs to the patients needs to be critically assessed. So far, 

several studies have been performed to evaluate the safety of the MultiStem product in 

vivo.
61,170,176

 The results from these studies are consistent with our in vitro findings on the low 

immunogenicity of (clinical-grade) hMAPCs without any reported infusional toxicities or 

adverse reactions, confirming the immune privileged status of these cells. However, the risk 

of immune sensitization following a repeated dose regimen of allogeneic cells should be taken 

in consideration. 

 

A second issue relates to the standardization and reproducibility of ex vivo generated stem cell 

cultures. MultiStem provides the advantage that cell expansion can be performed on an 

(automated) industrial scale in a well-validated and reproducible manner. Cells obtained from 

a single donor can be used to generate banks yielding a large amount of clinical doses, 

available at the time of need (‘off-the-shelf’) and usable without patient matching. Clinical 

trials can be performed with a single or only a few batches of cells, so that the results from 

these trials will not depend on the quality of the different isolations. Quality, product 

consistency and safety of the batches is ensured by an extensive characterization and a 

standard battery of biosafety tests (e.g. karyotyping and epigenetic analysis).
175

 However, a 

disadvantage that is shared between adherent stem cell cultures is the use of FBS in culture 

media. Immune responses against serum components of MSC cultures have been detected 
228

, 

but no significant alloantibody production against MSCs has been described.
229

 Nowadays, 

serum-free isolation, expansion and cryopreservation methods are being explored to 

circumvent the problem of batch-to-batch differences, the transmission of adventitious 

xenogeneic pathogens and to generate an optimized and functionally equivalent stem cell 

product. In addition, it remains crucial to validate a standardized immune assay to quantify 

the immunomodulatory potency of each batch prior to clinical use.  

 

Another main concern about the in vivo use of clinical-grade hMAPCs is that they might 

render the host more vulnerable for infections by interfering with the normal protective 
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immune response against pathogens. For instance, we observed that hMAPCs might suppress 

the killing of viruses as they interfere with the cytotoxic capacities of (resting) NK cells and 

CTLs. Similarly, the effect of hMAPCs on the desired GvL effect after HSCT is being 

questioned. In case of hMSCs, Ning et al. reported on a randomized clinical trial in which 

patients with hematological malignancies received HSCs with or without hMSCs.
142

 hMSC 

therapy had a beneficial effect on the occurrence of GvHD, but was associated with a higher 

relapse rate. In contrast, Baron et al. demonstrated that MSC coinfusion did not abrogate GvL 

effects in patients receiving allogeneic HLA-mismatched HSCT following nonmyeloablative 

conditioning.
131

 This underscores the importance to further study the influence of hMAPCs on 

the GvL effect in allogeneic HSCT. 

 

A last issue is the question as whether the immunosuppressive capacities of hMAPCs will be 

influenced by other immunosuppressive drugs (CsA, tacrolimus and MMF) and this has thus 

far not been studied for hMAPCs. As outlined in the introduction, Le Blanc et al. proved an in 

vitro synergistic effect of CsA on the hMSC-mediated immune suppression of T cell 

reactivity.
78

 In contrast, Buron et al. observed that CsA, tacrolimus and rapamycin 

antagonized the inhibitory effects of hMSCs, whereas MMF promoted them.
191

 Moreover, 

Eggenhofer et al. demonstrated in a rat model of heart transplantation that MSCs and MMF 

synergistically prevented the infiltration of antigen-presenting cells and T cells into the 

graft.
192

 By contrast, calcineurin inhibitors have been shown to abrogate the 

immunosuppressive effect of rat MSC therapy.
193

 These observations emphasize the need to 

study the appropriate drugs in combination with the adoptive stem cell-mediated 

immunotherapy. 

 

In conclusion, we can state that the rationale for therapeutic use of (clinical-grade) hMAPCs 

for immunological disorders is legitimate. Notwithstanding the encouraging preliminary 

safety results, the number of studies and evaluated patients is still fairly limited. Therefore, 

further studies are needed to determine optimal cell dose, next to timing, frequency and route 

of administration in various clinical settings. Randomized MultiStem trials should be 

performed with large cohorts of patients subjected to a strict and long-term follow-up to 

exclude late complications, immunogenicity risk, ectopic tissue formation and unwanted 

adverse events. Scrutiny is still required and the immunological mechanism should be further 

elucidated in vitro and in various animal models to acquire new knowledge about the complex 
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cross-talk between stem cells and the immune system, and to pave the way for a continuation 

of this research. 
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SUMMARY 

Because of their long-term self-renewal ability and functional multi-lineage differentiation 

capacity, stem cells are highly attractive candidates for many applications. Both embryonic 

and adult stem cells have been explored as therapeutic strategies in the context of tissue 

regeneration. Over the years, it has become clear that adult stem cells also possess a wide 

range of immune and inflammation modulating properties. Many research groups have 

studied the immunological behavior of mesenchymal stem cells (MSCs) in vitro and their role 

as an adoptive immune regulatory cell population in several immune-related disorders. 

Nowadays, other adult adherent stem cell populations have been characterized and are being 

considered to exhibit more potency compared to MSCs. Recently, human multipotent adult 

progenitor cells (hMAPCs) have thoroughly been studied and have been shown to be clearly 

distinct from hMSCs. In contrast to hMSCs, hMAPCs can be expanded for a significantly 

longer time and – besides mesenchymal cell types – also differentiate into functional 

endothelium in vitro and in vivo. Clinical-grade production of MAPCs has been achieved and, 

currently, this proprietary large-scale expanded stem cell product (MultiStem
®
) is being 

evaluated as an allogeneic ‘off-the-shelf’ stem cell product in the clinic in the fields of 

regenerative medicine for cardiovascular (acute myocardial infarction; AMI) and neurological 

diseases (ischemic stroke) and as immunotherapy in immune-associated disorders [graft-

versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HSCT), 

solid organ transplantation and autoimmunity).  

Even though administration of clinical-grade hMAPCs appears to be safe and well-tolerated, 

and leads to beneficial (preliminary) clinical results, data regarding their immunological 

behavior in vitro are scarce. A better understanding of the exact immune regulatory 

mechanism would be very valuable to optimize future clinical studies on the 

immunotherapeutic function of hMAPCs and of adult stem cells in general. In the presented 

manuscript, in continuation of a former project in this specific research line, we addressed the 

issue by investigating the reciprocal interaction between (clinical-grade) hMAPCs and 

immune cells of a functional human immune system in vitro. Given the fact that cytotoxic 

immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of 

some autoimmune diseases, we analyzed the influence of (clinical-grade) hMAPCs on the 

phenotype and functionality of natural killer (NK) cells and CD8
+
 cytotoxic T cells (CTLs). 
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The first specific objective of this research was to explore the immunogenic and immune 

modulatory properties of (clinical-grade) hMAPCs, with regard to functional cytotoxic 

responses of NK cells and T cells. More specific, it was questioned whether these stem cells 

of allogeneic origin could act as stimulators, as foreign target cells or as modulators of NK 

cells and CTLs. We showed that hMAPCs are not able to induce an antigen-specific ‒ and 

only a minimal anti-CD3-redirected ‒ CTL response in vitro. Furthermore, allogeneic 

hMAPCs were insensitive to antigen-specific CTL-mediated lysis and to killing by resting 

KIR-mismatched NK cells, despite expression of some ligands (PVR and ULBP-2/5/6) of 

activating NK cell receptors (respectively DNAM-1 and NKG2D). On the other hand, IL-2-

preactivated NK cells efficiently lysed allogeneic hMAPCs. However, increased MHC class I 

expression after IFN-γ-pretreatment of hMAPCs did not result in higher MHC-I-dependent 

allorecognition by CTLs and reduced hMAPC susceptibility to preactivated NK cell-mediated 

killing, by shifting the balance towards MHC-I-associated inhibitory NK cell signalling. 

These results indicate low immunogenicity of (clinical-grade) hMAPCs in vitro, and suggest 

that survival of hMAPCs in vivo will primarily be dictated by the inflammatory status and the 

cytokine balance in the local microenvironment. 

Secondly, we proved that hMAPCs exert strong immune suppressive effects, as they are able 

to suppress alloreactive CTL proliferation and IL-2-induced expansion of allogeneic NK cells. 

The suppressive effect on NK cell proliferation is dose- and IDO-dependent, and is more 

pronounced for hMAPCs than for hMSCs from the same donor. In addition, we observed a 

reduced cytotoxic function of resting NK cells and activated CTLs (in an antigen-specific and 

anti-CD3-redirected cytotoxicity system) in the presence of allogeneic third-party hMAPCs 

during the lytic effector phase. hMAPCs also directly and dose-dependently impaired 

induction of CTL cytotoxicity during their priming phase (alloantigen-induced or polyclonal 

activation) by interfering with their perforin expression. On the other hand, in contrast to their 

inhibitory effect on NK cell proliferation, hMAPCs had no influence on the intrinsic cytotoxic 

properties of NK cells during the IL-2-mediated activation phase. Because of competition 

between hMAPCs and K562 cells as target cells for IL-2-activated NK cell-mediated killing, 

we could not conclude if hMAPCs influence the killer function of IL-2-activated NK cells 

during their effector phase. Taken together, our observations imply that (clinical-grade) 

hMAPCs impair both proliferative and cytotoxic NK and T cell responses, resulting in a lower 

immune response in vitro. 
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The second specific goal of this thesis was to further elaborate the immune modulatory 

mechanism of (clinical-grade) hMAPCs and to identify responsible immune regulatory 

factors and pathways. We demonstrated that the mode of action is multifactorial and depends 

on the studied immune effector response. In case of proliferation suppression, we could 

ascribe a partial role to IDO for hMAPC-mediated impairment of NK cell proliferation, in line 

with previously obtained results for T cell expansion inhibition. In contrast, we could not 

identify a single responsible soluble factor (IDO, PGE2, IL-10 and TGF-β) in NK cell 

cytotoxicity suppression. Transwell experiments showed contact-dependency of hMAPCs to 

exert their suppressive function on T cell cytotoxicity. Until now, as is the case for NK cells, 

we did not detect a single responsible contact-dependent mechanism in hMAPC-mediated T 

cell cytotoxicity suppression. Though, we described for the first time hMAPC expression of 

galectin-1 and ligands of the immune inhibitory PD-1 pathway (PD-L1/2) and of the Fas-

mediated apoptosis pathway (FasL). Functional blocking studies however did not confirm the 

latter two pathways as suppressive candidates in CTL function inhibition by hMAPCs. With 

regard to the suppressed T cell phenotype, we observed that the presence of hMAPCs does 

not result in T cell apoptosis or anergy and that T cells retain their memory response during a 

secondary immune reaction after removal of hMAPCs. However, hMAPCs largely disturb the 

activation marker expression of T cells. In hMAPC-modulated T cells, CD69 expression was 

clearly and persistently increased, in both CD8
-
 and CD8

+
 T cell populations. Moreover, 

HLA-DR and CD25 (IL-2Rα) upregulation were significantly decreased in the presence of 

hMAPCs. hMAPCs downregulated CD25 expression to a lower extent on CD8
-
 T cells and 

shifted those cells possibly towards a regulatory phenotype. 

 

In conclusion, we have provided evidence that (clinical-grade) hMAPCs are low 

immunogenic and have potent immunosuppressive effects in vitro on NK cells and CTLs. In 

addition, we have contributed to a better understanding of the complex immunomodulatory 

mechanism. Based on these findings, we can state that the rationale for therapeutic use of 

hMAPCs or its clinical-grade counterpart MultiStem as an off-the-shelf adoptive cell 

population in the context of immune-related disorders is legitimate. These data may represent 

an extensive contribution to the current knowledge and, in combination with the results of 

future phase II/III trials using MultiStem, will lead to an intriguing continuation of stem cell-

based research for immunotherapy. 
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SAMENVATTING 

Stamcellen zijn veelbelovende kandidaten voor vele toepassingen, omwille van hun capaciteit 

om zichzelf gedurende lange tijd te regenereren en om uit te groeien tot verscheidene 

functionele celtypes. Zowel embryonale als volwassen stamcellen zijn reeds onderzocht als 

therapie voor weefselherstel. De laatste jaren is het duidelijk geworden dat adulte stamcellen 

ook een brede waaier aan immuun- en ontstekingsmodulerende eigenschappen bezitten. Vele 

onderzoeksgroepen hebben reeds het immunologisch gedrag van mesenchymale stamcellen 

(MSCs) in vitro onderzocht, en hun rol als immuunregulerende celpopulatie in verscheidene 

immuungemedieerde aandoeningen getest. Tegenwoordig zijn er andere adulte 

stamcelpopulaties beschreven die beschouwd worden meer potentieel te vertonen in 

vergelijking met MSCs. Humane multipotente adulte progenitorcellen (hMAPCs) zijn 

recentelijk grondig bestudeerd en zijn volgens onderzoek duidelijk verschillend van humane 

(h)MSCs. hMAPCs kunnen in tegenstelling tot hMSCs significant langer geëxpandeerd 

worden en kunnen, behalve tot mesenchymale celtypes, ook differentiëren tot functionele 

endotheelcellen in vitro en in vivo. Grootschalige klinische productie van MAPCs is 

bewerkstelligd en momenteel wordt dit gepatenteerde stamcelproduct (MultiStem
®
) 

geëvalueerd als een allogeen ‘off-the-shelf’ stamcelproduct in de klinische wereld op gebied 

van regeneratieve geneeskunde voor cardiovasculaire aandoeningen (acuut myocardinfarct; 

AMI) en voor neurologische ziektes (cerebrovasculair accident), en als immuuntherapie in 

immuungeassocieerde aandoeningen [‘graft-versus-host disease’ (GvHD) na allogene 

transplantatie van hematopoietische stamcellen, orgaantransplantatie en auto-immuunziekten]. 

Hoewel toediening van ‘clinical-grade’ hMAPCs veilig en goed verdraagbaar blijkt, en tot 

(voorlopige) voordelige klinische resultaten leidt, zijn gegevens omtrent hun immunologisch 

gedrag in vitro eerder schaars. Het zou zeer waardevol zijn om het precieze 

immuunregulerende mechanisme beter te leren kennen, met het oog om toekomstige klinische 

studies over de immuuntherapeutische functie van hMAPCs en van adulte stamcellen in het 

algemeen te optimaliseren. In het gepresenteerde onderzoek wordt dit probleem, in 

voortzetting van een voormalig project in dit specifieke onderzoeksveld, behandeld door de 

wederzijdse interactie tussen ‘clinical-grade’ hMAPCs en immuuncellen van een functioneel 

humaan immuunsysteem in vitro te onderzoeken. Omwille van het feit dat cytotoxische 

immunologische effectorcellen een cruciale rol spelen in de homeostase van het 

immuunsysteem en in de pathogenese van enkele auto-immuunziekten, hebben we de invloed 
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van ‘clinical-grade’ hMAPCs op het phenotype en de functionaliteit van natural killer (NK) 

cellen en CD8-positieve cytotoxische T lymphocyten (CTLs) geanalyseerd. 

 

De eerste specifieke doelstelling van dit onderzoek was het nagaan van de immunogene en 

immuunmodulerende eigenschappen van ‘clinical-grade’ hMAPCs met betrekking tot 

functioneel cytotoxische responsen van NK cellen en T cellen. Meer concreet is er onderzocht 

of deze allogene stamcellen zich kunnen gedragen als stimulerende cellen, als vreemde 

doelwitcellen of als modulerende cellen voor NK cellen en CTLs. We hebben aangetoond dat 

hMAPCs niet in staat zijn om een antigeenspecifieke ‒ en enkel een minimaal anti-CD3 

afhankelijke ‒ CTL respons in vitro te induceren. Bovendien werden allogene hMAPCs niet 

gedood door antigeenspecifieke CTLs en evenmin door rustende vreemde NK cellen, ondanks 

expressie van enkele liganden (PVR en ULBP-2/5/6) voor activerende NK celreceptoren 

(respectievelijk DNAM-1 en NKG2D). Anderzijds werden allogene hMAPCs efficiënt 

gelyseerd door IL-2-gepreactiveerde NK cellen. Een verhoogde MHC klasse I expressie van 

hMAPCs na pre-incubatie met IFN-γ resulteerde echter niet in een hogere MHC-I 

afhankelijke lyse door CTLs en reduceerde de gevoeligheid van hMAPCs voor lyse door 

gepreactiveerde NK cellen, door de balans te doen overhellen richting MHC-I geassocieerde 

inhiberende NK celsignalisatie. Deze resultaten wijzen op de lage immunogeniciteit van 

‘clinical-grade’ hMAPCs in vitro, en suggereren dat het voortbestaan van hMAPCs in vivo 

vooral afhankelijk zal zijn van de inflammatiestatus en de cytokinebalans in de lokale micro-

omgeving. 

Ten tweede hebben we bewezen dat hMAPCs sterke immuunsuppressieve effecten 

uitoefenen, aangezien zij in staat zijn alloreactieve CTL proliferatie en IL-2-geïnduceerde 

expansie van allogene NK cellen te onderdrukken. Het inhiberend effect op de NK 

celproliferatie is dosis- en IDO-afhankelijk, en is sterker voor hMAPCs dan voor hMSCs van 

dezelfde donor. Daarnaast hebben we, in de aanwezigheid van allogene ‘third-party’ hMAPCs 

tijdens de lytische effectorfase, een gereduceerde cytotoxische functie van rustende NK cellen 

en geactiveerde CTLs (in een antigeenspecifiek en anti-CD3-gemedieerd 

cytotoxiciteitssysteem) geobserveerd. hMAPCs verstoren ook op rechtstreekse en 

dosisafhankelijke wijze de inductie van CTL cytotoxiciteit tijdens de activatiefase 

(alloantigeengeïnduceerde of polyclonale activatie), door te interfereren met de expressie van 

perforine. Anderzijds, en in tegenstelling tot hun inhiberend effect op NK celproliferatie, 

hadden hMAPCs geen invloed op de intrinsieke cytotoxische eigenschappen van NK cellen 

tijdens de IL-2-gemedieerde activatiefase. Omwille van competitie tussen hMAPCs en K562 
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cellen als doelwitcellen voor lyse door IL-2-geactiveerde NK cellen, konden we niet besluiten 

of hMAPCs de lytische functie van IL-2-geactiveerde NK cellen beïnvloeden tijdens hun 

effectorfase. Samenvattend impliceren onze observaties dat ‘clinical-grade’ hMAPCs zowel 

de proliferatie- als de cytotoxiciteitsrespons van NK cellen en T cellen verstoren, wat 

uiteindelijk leidt tot een verminderde immuunreactie in vitro. 

 

Het tweede specifieke doel van deze thesis was om het immuunmodulerende mechanisme 

van ‘clinical-grade’ hMAPCs verder uit te werken en verantwoordelijke immuunregulerende 

factoren en pathways te identificeren. We hebben aangetoond dat het werkingsmechanisme 

multifactorieel is en afhankelijk is van de bestudeerde immuunrespons. Ingeval van 

suppressie van proliferatie konden we een gedeeltelijke rol toeschrijven aan IDO voor 

hMAPC-gemedieerde inhibitie van NK celproliferatie, in lijn met vorige resultaten met 

betrekking tot inhibitie van T celproliferatie. Daarentegen konden we geen verantwoordelijke 

solubele factor (IDO, PGE2, IL-10 en TGF-β) voor suppressie van NK celcytotoxiciteit 

identificeren. Experimenten met transwell systemen toonden de contactafhankelijkheid van 

hMAPCs aan om hun suppressieve functie op T cel cytotoxiciteit uit te oefenen. Totnogtoe 

hebben we geen enkel verantwoordelijk contactafhankelijk mechanisme gevonden voor 

hMAPC-gemedieerde suppressie van T celcytotoxiciteit, zoals het geval is voor NK cellen. 

We hebben echter wel voor de eerste keer beschreven dat hMAPCs galectine-1 en liganden 

voor de immuuninhiberende PD-1 pathway (PD-L1/2) en de Fas-gemedieerde 

apoptosepathway (FasL) tot expressie brengen. Studies waarin we de functie van deze 

moleculen hebben geblokkeerd, hebben echter geen bevestiging gebracht dat deze laatste twee 

pathways als suppressieve kandidaten hun rol spelen in de inhibitie van CTL functie door 

hMAPCs. Met betrekking tot het onderdrukte T celphenotype hebben we gezien dat de 

aanwezigheid van hMAPCs niet resulteert in T celapoptose of T celanergie, en dat T cellen 

hun geheugenrespons niet verliezen tijdens een secundaire immuunreactie na het verwijderen 

van de hMAPCs. Niettemin verstoren hMAPCs de expressie van T cel activatiemerkers 

grondig. In hMAPC gemoduleerde T cellen was de expressie van CD69 duidelijk en blijvend 

verhoogd, in zowel CD8-negatieve als -positieve T celpopulaties. Daarenboven was de 

stijging van HLA-DR en CD25 (IL-2Rα) significant afgenomen in de aanwezigheid van 

hMAPCs. hMAPCs verminderden de expressie van CD25 minder sterk bij CD8-negatieve T 

cellen en brachten mogelijks een verschuiving teweeg richting CD8-negatieve cellen met een 

regulerend phenotype. 
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We kunnen besluiten dat we het bewijs hebben geleverd dat ‘clinical-grade’ hMAPCs een 

lage immunogene capaciteit en sterke immuunsuppressieve effecten op NK cellen en CTLs in 

vitro hebben. Daarnaast hebben we bijgedragen tot een beter begrip van het gecompliceerde 

immuunmodulerend mechanisme. Gebaseerd op deze bevindingen kunnen we stellen dat de 

rationale voor het therapeutisch gebruik van hMAPCs of de ‘clinical-grade’ variant 

MultiStem als een off-the-shelf celpopulatie in de context van immuungerelateerde 

aandoeningen gerechtvaardigd is. Deze data kunnen mogelijks een reële bijdrage leveren voor 

de hedendaagse kennis en, samen met de resultaten van toekomstige fase II/III studies met 

MultiStem, leiden tot een intrigerende voortzetting van stamcelgerelateerd onderzoek voor 

immuuntherapie.
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