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Abstract

Life insurers, pension funds, health care providers and social security institutions face in-
creasing expenses due to continuing improvements of mortality rates. The actuarial and
demographic literature has introduced a myriad of (deterministic and stochastic) models
to forecast mortality rates of single populations. This paper presents a Bayesian analysis
of two related multi-population mortality models of log-bilinear type, designed for two or
more populations. Using a larger set of data, multi-population mortality models allow joint
modelling and projection of mortality rates by identifying characteristics shared by all sub-
populations as well as sub-population specific effects on mortality. This is important when
modeling and forecasting mortality of males and females, regions within a country and when
dealing with index-based longevity hedges. Our first model is inspired by the two factor Lee
& Carter model of Renshaw and Haberman (2003) and the common factor model of Carter
and Lee (1992). The second model is the augmented common factor model of Li and Lee
(2005). This paper approaches both models in a statistical way, using a Poisson distribution
for the number of deaths at a certain age and in a certain time period. Moreover, we use
Bayesian statistics to calibrate the models and to produce mortality forecasts. We develop
the technicalities necessary for Markov Chain Monte Carlo ([MCMC]) simulations and pro-
vide software implementation (in R) for the models discussed in the paper. Key benefits of
this approach are multiple. We jointly calibrate the Poisson likelihood for the number of
deaths and the times series models imposed on the time dependent parameters, we enable
full allowance for parameter uncertainty and we are able to handle missing data as well as
small sample populations. We compare and contrast results from both models to the results
obtained with a frequentist single population approach and a least squares estimation of the
augmented common factor model.

Keywords: projected life tables, multi-population stochastic mortality models, Bayesian
statistics, Poisson regression, one factor Lee & Carter model, two factor Lee & Carter model,
Li & Lee model, augmented common factor model.

*Corresponding author. E-mail address: anastasios.bardoutsos@kuleuven.be

1

mailto:anastasios.bardoutsos@kuleuven.be


1 Introduction

The quantification of longevity risk in a systematic way requires stochastic mortality projection
models, as Barrieu et al. (2012) indicate. The development of stochastic mortality models has
received wide coverage in the actuarial, demographic and statistical literature. Starting from
the seminal work by Lee & Carter ([LC]) (Lee and Carter (1992)), generalizations of their basic,
log-bilinear, single (time dependent) factor model have been proposed. For example, Renshaw
and Haberman (2003) propose a two factor version of the LC model and Renshaw and Haber-
man (2006) augment the one factor LC model with a cohort effect. Cairns et al. (2006) invent a
stochastic two factor mortality model for pensioner age mortality, with focus on actuarial appli-
cations. Generalizations of the original Cairns, Blake & Dowd ([CBD]) model have been studied
in Cairns et al. (2009) and Mavros et al. (2014). Combining ideas from the class of LC models
on the one hand and the class of CBD models on the other hand, Plat (2009) and Haberman
and Renshaw (2011) formulate multi-factor models which lead to an increased goodness-of-fit
in sample. All these models focus on mortality data for a single country or population. They
propose a structure for (a transformation of) the mortality or death rate at age x in period
t using a combination of age, period and cohort effects. Mortality forecasts then follow from
a two step approach. In a first step, unknown parameters are estimated, typically using Sin-
gular Value Decomposition ([SVD]) or Maximum Likelihood Estimation ([MLE]). For instance,
Brouhns et al. (2002) introduce the (nowadays widely used) Poisson likelihood assumption for
the number of deaths at a given age in a certain period. In a second step, the fitted values of
time dependent parameters are forecasted using the AutoRegressive Integrated Moving Average
([ARIMA]) toolbox for time series modelling.

Recently the study of multi-population mortality models has received increasing attention within
the literature on mortality forecasting. The strength of a multi-population model lies in the anal-
ysis of a bigger mortality data set, combining data from different sources (typically: genders,
regions or countries), which allows more robust mortality modeling by identifying characteristics
shared by all sub-populations as well as sub-population specific effects. The recent literature
exposes multiple viewpoints within the framework of multi-population models. For example,
Carter and Lee (1992) propose a common factor LC model where death rates of two populations
(males and females) are jointly driven by a shared time-varying factor. Li and Lee (2005) analyse
a collection of populations with similar socioeconomic characteristics using the augmented com-
mon factor model. This is a double log-bilinear mortality model which augments common age
and period effects with sub–population specific age and period effects. Cairns et al. (2011) focus
on the joint analysis of male and female mortality data, as well as the analysis of a reference
population data set and portfolio specific mortality data, using an Age-Period-Cohort ([APC])
model with a stochastic spread around an averaged (for the male/female case) or a dominant
(for the portfolio/population case) period effect. Dowd et al. (2011) introduce a gravity model
for the analysis of two related but different sized populations. The dominant population is mod-
elled using an APC model, whereas the subordinate population is expressed in terms of spread
or deviation from the larger population. Jarner and Kryger (2011) use the SAINT model for
joint modeling of Danish data with European-wide population data. Wan et al. (2013) model
the dominant population, constructed by grouping the data of thirteen countries1 into a ref-
erence population, using the Plat model (see Plat (2009)). The spread between the dominant
population and the subordinate population, namely Switzerland, is modelled with a three factor

1Austria, Denmark, England-Wales, Finland, France, West Germany, Japan, Netherlands, Norway, Spain,
Sweden, Switzerland and USA.
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LC model. Hatzopoulos and Haberman (2013) introduce a methodology based on generalized
linear models to analyse mortality dynamics for a pool of countries. Danesi (2014) formulates
and compares ten multi-population models using data from eighteen Italian regions. Apart from
being studied in academic literature, the multi-population approach recently found its way to
official census projections. For example in the Netherlands, the Central Bureau of Statistics
([CBS])2 uses the Li and Lee (2005) ([LL]) model for Dutch data, combined with data from ten
other European countries3, for its official 2012-2060 mortality projection (see Stoeldraijer et al.
(2013a) and Stoeldraijer et al. (2013b)). The 2014 projection of the Royal Dutch Actuarial
Association4 also uses the model of Li and Lee (2005) on a collection of European countries, as
described in Koninklijk Actuarieel Genootschap (2014).

The method used for calibrating parameters and projecting time dependent parameters is a
crucial aspect in the process of constructing carefully designed mortality forecasts. Within the
multi-population mortality literature, the original paper by Li and Lee (2005) uses a three step
approach. In the first and second step, age and time dependent parameters are calibrated by
applying twice the SVD technique. This is similar to the original Lee and Carter (1992) paper
where SVD is used for a single population log–bilinear model. The first application of SVD
estimates the common bilinear structure of age and period effects, and the second application
of SVD extracts the population specific bilinear effects. In a third step, using appropriate time
series models, the common period effect and the country specific period effect are projected
forward. This method is used, for instance, by the Dutch Central Bureau of Statistics for their
2012-2060 projection model (see Stoeldraijer et al. (2013b)). As an alternative for SVD, the
use of maximum likelihood estimation with Poisson likelihood is the widespread and preferred
approach for calibration of single population mortality models, since the paper of Brouhns et al.
(2002). Within the multi-population mortality literature, Li (2013) uses a conditional maximum
likelihood approach to calibrate the LL model for Australian male and female data. Li (2013)
first calibrates the common parameters of the LL model by maximizing the Poisson likelihood
corresponding to a LC model on the total population. While fixing the common parameters to
their estimates obtained in the first step, the population specific parameters are estimated by
optimizing the Poisson likelihood of a second, country specific LC model.

The contributions of our paper are as follows. We formulate two multi-population models of
LC type, inspired by Carter and Lee (1992), Renshaw and Haberman (2003) and Li and Lee
(2005) and calibrate these models in a Bayesian way, while assuming a Poisson likelihood.
To the best of our knowledge, this paper is the first attempt to calibrate multi-population
mortality models of log-bilinear LC type in a Bayesian way. We illustrate the methodology on
two empirical studies. The use of Bayesian statistics offers at least three advantages. Firstly,
the calibration and forecast steps are combined, which leads to more consistent estimates of the
period effects (see Cairns et al. (2011)). Secondly, the Bayesian approach provides a natural
framework for incorporating parameter uncertainty (or: risk) in mortality forecasts, which is
relevant - for example - in the new insurance regulatory framework of Solvency II. Lastly, the
Bayesian approach allows adequate handling of small populations and missing data, which is
relevant for instance when modelling portfolio data or data on regions of a country. Similar to
Czado et al. (2005) for a single population LC model with Poisson likelihood, our paper covers
all technical details of the MCMC steps necessary for the Bayesian calibration of the multi-
population mortality models under study. Our paper therefore directly extends Czado et al.

2See www.cbs.nl.
3Denmark, England-Wales, Finland, France, Italy, Norway, Spain, Sweden, Switzerland, and West Germany.
4See www.ag-ai.nl.
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(2005) to the multi-population setting.

This paper contributes to the literature on Bayesian estimation of mortality models. Within
this literature Bray (2002) provides a discussion and comparison of Bayesian univariate APC
models, used in medical statistics. Pedroza (2006) implements the Kalman Filter in the LC model
assuming Gaussian likelihood. De Waegenaere et al. (2013) use the Kalman Filter not only to
calibrate the models of LC and CBD, but also to choose the optimal calibration period. Kogure
and Yoshiyuki (2010) use a Bayesian LC model with Gaussian likelihood to price longevity
risk. Fushimi and Kogure (2014) extend the original approach of Kogure and Yoshiyuki (2010)
by using a two factor LC model for pricing under stochastic interest rate. Reichmuth and
Sarferaz (2008) apply the Bayesian methodology to a Renshaw and Haberman (2006) type of
mortality model. Mavros et al. (2014) present a new approach for the CBD model that is
able to capture local interdependencies among ages and periods. They use Bayesian statistics
to calibrate the model, while assuming Poisson likelihood for the number of deaths. Also in
the field of demography the use of Bayesian statistics recently became more popular. Abel
et al. (2010) consider a Bayesian autoregressive model with stochastic volatility to forecast
population growth rates and point out the attractive properties of the Bayesian methodology.
Girosi and King (2008) present a Bayesian framework for mortality forecasting with smoothing
priors and covariate information such as income and smoking behavior. Raftery et al. (2013)
propose a Bayesian hierarchical model producing probabilistic forecasts of period life expectancy
at birth for all the countries of the world to 2100. In the field of parametric mortality laws
Dellaportas et al. (2001) and Njenga and Sherris (2011) apply Bayesian estimation techniques
to calibrate the Heligman and Pollard mortality law. With respect to Bayesian mortality models
for multiple populations, Cairns et al. (2011) present a two-population APC model for the joint
analysis of male and female mortality data, as well as the analysis of a reference population and
portfolio specific mortality data. Riebler and Held (2010) and Riebler et al. (2012) focus on
the Bayesian multivariate APC model with smoothing priors for age, period and cohort effects.
More specifically, Riebler and Held (2010) assume no correlation between the population specific
period effects, whereas Riebler et al. (2012) use a correlated, multivariate version of the same
smoothing prior.

This paper is structured as follows: Section 2 introduces the multi-population mortality models
of interest, discusses the likelihood assumptions and imposed parameter constraints. We formu-
late in Section 3 the prior assumptions for all the parameters and hyperparameters. Section 4
derives the MCMC steps leading to simulations from the posterior distribution of the parameters.
Numerical illustrations are presented in Section 5. Section 6 concludes.

2 Poisson log-bilinear models for mortality projections with mul-
tiple populations

2.1 Literature overview

Lee and Carter (1992) introduce the pioneering model for mortality modelling and forecasting.
They propose the following bilinear structure

logµx,t = αx + βxκt, (1)

where µx,t denotes the force of mortality for a person exactly aged x at time t. Hereby, x ∈
{xmin, . . . , xmax} denote the ages available in the data, and t ∈ {tmin, . . . , tmax} are the observed
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periods. Under the assumption,
µx+ξ1,t+ξ2 = µx,t,

for 0 ≤ ξ1, ξ2 < 1, the maximum likelihood estimator for µx,t is the unsmoothed death rate
mx,t := dx,t/Ex,t, where dx,t is the observed number of deaths aged x at time t and Ex,t the
corresponding observed exposure at risk. We refer to Pitacco et al. (2009) for more details.
Assuming the following set of widely used identifiability constraints∑

x

βx = 1 and
∑
t

κt = 0, (2)

an estimate for αx is given by

α̂x =
1

tmax − tmin + 1

tmax∑
t=tmin

logmx,t. (3)

For an overview of extensions and variations of the basic LC model in (1), designed for single
populations, we refer to Cairns et al. (2009) and Haberman and Renshaw (2011). We specifically
mention the extension of Renshaw and Haberman (2003), who propose a two factor, log-bilinear
version of the LC model

logµx,t = αx + βx,1κt,1 + βx,2κt,2, (4)

which they calibrate using a Gaussian as well as a Poisson likelihood. This two factor model –
say [LC-2] – avoids the trivial correlation structure of the original LC model (see Cairns et al.
(2009) for a discussion) through the inclusion of an extra time dependent effect. Moreover,
by including an extra bilinear component (i.e. βx,2κt,2) the LC-2 model is able to capture age
and time dynamics in a better way. This is confirmed by the work of Hyndman and Ullah
(2007) who allow for multiple components in their functional Principal Components Analysis
([PCA]) approach for modelling smoothed log mortality rates. In contrast to the single principal
component approach of Lee and Carter (1992), Hyndman et al. (2013) mention ‘we use up to
six (principal components) (Hyndman and Ullah (2007)) although in practice, only the first two
have much effect for mortality’ (see page 281).

In their search for a stochastic model incorporating dependence between the population under-
lying a hedging instrument and the population that is hedged, Li and Hardy (2011) consider

four solutions, starting from the Lee and Carter (1992) model. With µ
(i)
x,t denoting the force of

mortality at age x during year t for population i = 1, 2, the four scenarios are:

(1) independent modeling of both populations by two unrelated LC models

logµ
(i)
x,t = α(i)

x + β(i)x κ
(i)
t . (5)

Implementation of this model is straightforward, but dependence between the mortality
rates of the populations is completely ignored;

(2) the joint κ model, as proposed in Carter and Lee (1992)

logµ
(i)
x,t = α(i)

x + β(i)x κt, (6)

with κt a common trend, driving the time dynamics of both populations. As Li and Hardy
(2011) (page 183) mention, this is a parsimonious way of linking the two populations
and avoiding them to evolve in completely different ways. However, it creates perfect
correlation between the mortality rates of the two populations and does not allow for
population specific time dynamics;
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(3) a co-integrated Lee–Carter model, i.e. the model in (5) where κt = (κ
(1)
t , κ

(2)
t )

′
is modelled

with a bivariate random walk with drift and the presence of co-integration is verified.
In the Li and Hardy (2011) example of female data from Canada and the United States
co-integration is detected;

(4) the augmented common factor model of Li and Lee (2005) for two populations

logµ
(i)
x,t = α(i)

x +BxKt + β(i)x κ
(i)
t . (7)

This model uses age and period effects shared by all populations in the sample (denoted

Bx and Kt), next to population i’s specific deviation driven by β
(i)
x and κ

(i)
t . We can

rewrite equation (7) as follows:

logµ
(i)
x,t = α̃(i)

x + β(i)x κ
(i)
t +Ax +BxKt, (8)

where α̃
(i)
x := α

(i)
x −Ax.

For the calibration of (7), Li and Lee (2005) (as well as Li and Hardy (2011) and Stoeldraijer
et al. (2013a)) use a two step approach. Firstly, they estimate Bx and Kt by calibrating the LC
model, using SVD, to the global, overall population created by aggregating the observed deaths
and exposures over all populations in the study. This corresponds to the following minimization
problem

min
Bx,Kt

(
logµ

(•)
x,t −Ax −BxKt

)2
, (9)

where Ax = 1
tmax−tmin+1

∑tmax
tmin

logµ
(•)
x,t , µ

(•)
x,t =

∑p
i=1 d

(i)
x,t/

∑p
i=1E

(i)
x,t and p is the number of

populations. Hereby, d
(i)
x,t is the observed number of deaths for population i, aged x in period t

and E
(i)
x,t is the corresponding exposure measure. Secondly, SVD is used again for each population

separately, namely on the matrix z
(i)
x,t = logµ

(i)
x,t − α

(i)
x − BxKt, with α

(i)
x estimated as in (3).

As such, the population specific parameters β
(i)
x and κ

(i)
t are estimated. Finally, the Li and Lee

(2005) approach identifies time series models for Kt and κ
(i)
t for i = 1, 2, . . . , p and projects

them independently. In the set–up of Li and Lee (2005), the product BxKt models the long
term trend and age specific fluctuations shared by all populations. Inspired by the LC model
for a single population, an appropriate time series model for Kt is the random walk with drift

([RWD]). The product β
(i)
x κ

(i)
t describes short term deviations from the common trend, specific

to population i. Hereby κ
(i)
t tends to a constant level in the long run. As a result, Li and Lee

(2005) propose modeling κ
(i)
t as a mean reverting process, for example AR(1).

2.2 Model formulations, likelihoods, parameter constraints and coherence

Model formulations and likelihood assumptions. The goal of this paper is the techni-
cal development and empirical illustration of Bayesian log-bilinear multi-population mortality
models. We propose and study two specific multi-population mortality models which meet the
following goals. Firstly, the models allow joint modeling of multiple (say p, where p > 2) popu-
lations by identifying a common as well as a population specific time trend. The common trend
captures the downward, typically rather linear trend that would be identified with a LC model
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on the whole group. Secondly, the models avoid the ad hoc, inefficient three step approach to
mortality calibration and forecasting, as used by Li and Lee (2005). Instead, we properly define
the random variables of interest and specify reasonable distributional assumptions, similar to
Brouhns et al. (2002). We identify the time dependent effects as dynamic latent factors and
specify an appropriate time series structure for them. Bayesian inference then allows a joint
approach to calibration and forecasting. Thirdly, the models have good in sample performance,
with enough flexibility to capture age and time effects.

For the first model the LC-2 specification from Renshaw and Haberman (2003) is the starting
point. For example, Fushimi and Kogure (2014) use this LC-2 model when calibrating longevity

hedges. Let D
(i)
x,t be the random variable representing the number of deaths at age x in year t of

population i, and E
(i)
x,t is the corresponding exposure. We propose the following multi-population

mortality model:

D
(i)
x,t|µ

(i)
x,t ∼ Poisson

(
E

(i)
x,t · µ

(i)
x,t

)
,

with µ
(i)
x,t|Kt, κ

(i)
t = exp

(
α(i)
x + β

(i)
x,1Kt + β

(i)
x,2κ

(i)
t

)
. (10)

Kt is a dynamic latent factor, shared by all populations, and κ
(i)
t a population specific, dynamic

latent factor. Kt and κ
(i)
t are assumed mutually independent for each i. Moreover, we assume

that, given Kt and κ
(i)
t , the D

(i)
x,t random variables are mutually independent. The structure

imposed on the logarithm of the force of mortality is the two factor LC-2 model of Renshaw and
Haberman (2003), where the populations under study are linked by a common period effect,

Kt, as in Carter and Lee (1992). Population specific time dynamics are governed by κ
(i)
t . We

introduce the acronym LC-2,t for this particular model, where the subscript ‘2’ refers to the
two factor structure and ‘t’ denotes the common period effect. The second model under study
is the augmented common factor LL model. Similar to Li (2013) and Koninklijk Actuarieel
Genootschap (2014) we study this model under the Poisson likelihood assumption, namely

D
(i)
x,t|µ

(i)
x,t ∼ Poisson

(
E

(i)
x,t · µ

(i)
x,t

)
,

with µ
(i)
x,t|Kt, κ

(i)
t = exp

(
Ax +BxKt + α(i)

x + β(i)x κ
(i)
t

)
. (11)

Again, we assume that the D
(i)
x,t random variables, given Kt and κ

(i)
t , are mutually independent

for all x, t and i combinations.

Parameter constraints. It is well known (see Lee and Carter (1992)) that the LC model
requires constraints to identify the parameters used in the model. For the model in (1) the
most commonly used constraints are

∑tmax
t=tmin

κt = 0 and
∑xmax

x=xmin
βx = 1. We calibrate the new

LC-2,t model, as specified in (10), while imposing the following set of 2 + 3× p constraints. As
in the LC model we center the time dependent parameters, thus

tmax∑
t=tmin

Kt = 0, (12)

tmax∑
t=tmin

κ
(i)
t = 0, for i = 1, 2, . . . , p. (13)
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Since the β
(i)
x,1 and β

(i)
x,2 can only be identified up to a multiplicative constant, we impose

xmax∑
x=xmin

β
(i)
x,2 = 1, for i = 1, 2, . . . , p, (14)

1

p

p∑
i=1

xmax∑
x=xmin

β
(i)
x,1 = 1. (15)

The first set of constraints is well known from the LC framework, see (2). However, we avoid

using the constraint
∑

x β
(i)
x,1 = 1 since its implementation requires multiplying the common Kt

with a constant that is population i dependent. The alternative constraint proposed in (15)
circumvents this issue.

As in factor analysis (see Mardia et al. (2008), Chapter 9) we want the latent factors Kt and

κ
(i)
t (i = 1, . . . , p) to be uncorrelated. Since they both have mean zero (due to (12) and (13)),

we impose orthogonality of Kt and κ
(i)
t . We define

r(i)κ =

∑
tKt · κ(i)t∑

tK
2
t

. (16)

The vector κ̃(i) = κ(i)−r(i)κ K is then orthogonal to K, with K = (Ktmin , . . . ,Ktmax) and κ(i) =

(κ
(i)
tmin

, . . . , κ
(i)
tmax

). The implementation of the orthogonality constraint is then straightforward

and does not change the specification of µ
(i)
x,t (and therefore the likelihood assumption). Indeed,

logµ
(i)
x,t = α(i)

x + β
(i)
x,1 ·Kt + β

(i)
x,2 · κ

(i)
t

= α(i)
x +

(
β
(i)
x,1 + r(i)κ β

(i)
x,2

)
·Kt + β

(i)
x,2 ·

(
κ
(i)
t − r(i)κ Kt

)
= α(i)

x + β̃
(i)
x,1 ·Kt + β

(i)
x,2 · κ̃

(i)
t = log µ̃

(i)
x,t . (17)

Niu and Melenberg (2014) apply a similar orthogonality constraint when analyzing a LC type of
model with an observable time dependent covariate, next to the κt effect.

We apply the constraints in a specific order. Firstly, we apply (12) and (13). Then we implement

the orthogonality constraint. Note that if we have latent factors Kt and κ
(i)
t satisfying (12)

and (13), then also the transformed κ̃
(i)
t (using (16)) will satisfy (13). Finally, we apply the

constraints in (15) and (14). In Section 4 we use this particular order when updating the
parameters using Gibbs sampling.

In the augmented common factor model (11) we can not impose the orthogonality of the latent
effects in a straightforward way, since Bx is not depending on (i) and can therefore not be
manipulated with a constant depending on (i). We circumvent this issue by calibrating the LL
model under the assumption of Poisson likelihood in two steps. In the first step we fit a LC

model to D
(•)
x,t :=

∑p
i=1D

(i)
x,t and E

(•)
x,t :=

∑p
i=1E

(i)
x,t:

D
(•)
x,t |µx,t ∼ Poisson

(
E

(•)
x,t · µx,t

)
,

with µx,t|Kt = exp (Ax +BxKt) , (18)

under the constraints (12) and
∑xmax

x=xmin
Bx = 1 . In the second step we fit a LC model for each

population separately, namely

D
(i)
x,t|µ

(i)
x,t, µx,t ∼ Poisson

(
E

(i)
x,t · µx,t · µ

(i)
x,t

)
,

with µ
(i)
x,t|κ

(i)
t = exp

(
α(i)
x + β(i)x κ

(i)
t

)
, (19)
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while imposing the constraints (13) and
∑xmax

x=xmin
β
(i)
x = 1 for i = 1, 2, . . . , p . Li (2013) and

Koninklijk Actuarieel Genootschap (2014) apply this strategy to calibrate the LL model in
a frequentist way, assuming Poisson likelihood. Using conditional maximum likelihood these
authors fix the common parameters obtained in the first step and then calibrate the LC model
in the second step. When calibrating the LL model without the two step strategy, Li (2013)
acknowledges (page 125) ‘to ensure convergence, further constraints may need to be imposed; for
example, the parameters in the common factor and the additional factors are all orthogonal to
one another.’ Regarding the two step (or: conditional maximum likelihood) approach, Li (2013)
(page 126) mentions ‘This fitting strategy provides a convenient way of refining modelling. There
are basically no convergence problems encountered during our estimation process.’.

Coherence. When studying mortality models for multiple countries the notion of coherence
is important. Li and Lee (2005) derive a necessary and sufficient condition to avoid long run

divergence of mortality forecasts, namely the limit, limt→+∞

(
logµ

(i)
x,t − logµ

(j)
x,t

)
, will not diverge

for i 6= j. Because of its specific model formulation (with a common Bx and Kt) and the AR(1)
time series model for the country specific time effects, the LL model leads to coherent forecasts.
Due to the inclusion of population specific dynamic effects, a population’s age specific death
rate may differ from the others in the short run, but this effect will taper off in the long
term. Hyndman et al. (2013) formalize the notion of ‘non-divergent’ or coherent forecasts as
follows: ‘[coherence is] the convergence of the ratios of the forecast age-specific death rates from
any two subpopulations to appropriate constants’ (see page 276). In this study of log-bilinear
multi-population mortality models the LL model is a coherent model according to definition of
Hyndman et al. (2013). On the other hand, the LC-2,t model is not (necessarily) a coherent
model. Despite being a more flexible model with computational advantages (see the discussion

on parameter constraints), the inclusion of the country specific parameter β
(i)
x,1 for i = 1, 2, . . . , p

may create divergence of the projections for countries i and j (with i 6= j) in the long run. In
the empirical studies of Section 4 we illustrate the performance of both log-bilinear mortality
models under study.

3 Prior distributions

Below we present the priors for the LC-2,t model. We only explicitly mention priors for the LL
model when these are different from the LC-2,t specifications.

3.1 Prior distributions for the time parameters

In contrast to the frequentist approach, a remarkable feature of the Bayesian methodology is
the integration of the calibration and projection steps, by specifying a time series prior for the
time dependent parameters. We choose the common, time dependent, latent effects Kt to follow
an autoregressive process of order one (AR(1)) around a linear trend. As such we follow the
trend stationary approach proposed in the Bayesian LC model of Czado et al. (2005), and we
leave the difference stationary model for Kt for further research, see Van Berkum et al. (2014)
for a discussion of both approaches. Following Li and Lee (2005) all population specific latent

effects κ
(i)
t follow an AR(1) process without intercept. This ensures that in the long run κ

(i)
t

9



converges to zero, which implies that the country specific time trends fade out. Kt and κ
(i)
t are

independent and so are κ
(i)
t and κ

(j)
t for i 6= j, see the original paper of Li and Lee (2005).

We approach the prior distributions of the latent, dynamic effects K := (Ktmin , . . . , Ktmax)

and κ(i) :=
(
κ
(i)
tmin

, . . . , κ
(i)
tmax

)
(with i = 1, . . . , p) within the theoretical framework of Gaussian

Markov Random Fields ([GMRFs])5. GMRFs offer a convenient setting for dealing with condi-
tional (in)dependencies, e.g. in the context of time series analysis (see Rue and Held (2005) and
Congdon (2006)). We proceed as follows

Kt = γ1 + γ2t+ ρ (Kt−1 − γ1 − γ2(t− 1)) + σKZt, (20)

κ
(i)
t = ρ(i)κ

(i)
t−1 + σκ(i)Z

(i)
t , (21)

for i = 1, 2, . . . , p and t = tmin + 1, . . . , tmax, where6

Zt ∼ N (0, 1) and Z
(i)
t ∼ N (0, 1).

Equivalently, we write

Kt|Ktmin , Ktmin+1, . . . , Kt−1 ∼ N
(
γ1 + γ2t+ ρ (Kt−1 − γ1 − γ2(t− 1)) , σ2K

)
, (22)

κ
(i)
t |κ

(i)
tmin

, κ
(i)
tmin

, . . . , κ
(i)
t−1 ∼ N

(
ρ(i)κ

(i)
t−1, σ

2
κ(i)

)
, (23)

for i = 1, 2, . . . , p and t = tmin + 1, . . . , tmax. In addition, we assume the following marginal

distributions for Ktmin and κ
(i)
tmin

for i = 1, . . . , p, following Rue and Held (2005)

Ktmin ∼ N
(
γ1 + γ2 · tmin,

σ2K
1− ρ2

)
and κ

(i)
tmin
∼ N

(
0,

σ2
κ(i)

1− ρ2(i)

)
. (24)

Combining (20), (21) and (24) the joint densities of K and κ(i) are

f (K) = f(Ktmin) · f(Ktmin+1|Ktmin)· . . . ·f(Ktmax |Ktmax−1)

=
1

(2πσ2K)
T
2

|Q|
1
2 exp

(
− 1

2σ2K
(K − γV )Q (K − γV )

′
)
, (25)

f
(
κ(i)
)

= f
(
κ
(i)
tmin

)
· f
(
κ
(i)
tmin+1

∣∣∣κ(i)tmin

)
· . . . ·f

(
κ
(i)
tmax

∣∣∣κ(i)tmax−1

)
=

1

(2πσ2
κ(i))

T
2

|Q(i)|
1
2 exp

(
− 1

2σ2
κ(i)

κ(i)Q(i)κ(i)
′
)
, (26)

5A random vector x := (x1, . . . , xn) ∈ Rn is called a GMRF with mean µ and symmetric positive-definite
precision matrix Q̃, iff its density has the form,

f(x) = (2π)−
n
2 |Q̃|

1
2 exp

(
−1

2
(x− µ) Q̃ (x− µ)

′
)
.

6N (µ, σ2) denotes the univariate normal distribution with mean equal to µ and variance equal to σ2.
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where γ := (γ1 γ2), V :=

(
1T
XT

)
, with 1T := (1, 1, . . . , 1), XT := (1, 2, . . . , T ), and

Q =


1 −ρ 0 · · · 0
−ρ 1 + ρ2 −ρ · · · 0

0 −ρ . . .
. . . 0

...
...

. . . 1 + ρ2 −ρ
0 0 · · · −ρ 1

 ,Q(i) =



1 −ρ(i) 0 · · · 0

−ρ(i) 1 + ρ2(i) −ρ(i) · · · 0

0 −ρ(i)
. . .

. . . 0
...

...
. . . 1 + ρ2(i) −ρ(i)

0 0 · · · −ρ(i) 1

 .

(27)

The representations in (25) and (26) are examples of GMRFs. The matrix Q is very similar to
the precision matrix obtained in Czado et al. (2005). However, due to our assumption (24), we
use a different element (1, 1) in the precision matrix, namely Q(1,1) = 1 versus 1 + ρ2 in Czado
et al. (2005). We prefer the specification implied by (25) and (27) because the precision matrices
of the common and the population specific effects then have exactly the same structure.

We calculate the corresponding full conditionals, denoted by7 f
(
Kt

∣∣K−t) and f
(
κ
(i)
t

∣∣κ(i)
−t

)
.

� For t = tmin: f
(
Ktmin

∣∣K−tmin

)
∝ f(K) ∝ f(Ktmin) · f(Ktmin+1|Ktmin),(

Ktmin

∣∣K−tmin

)
∼ N

(
γ1 + γ2 · tmin + ρ (K2 − γ1 − γ2 · (tmin + 1)) , σ2K

)
;

� For t ∈ (tmin, tmax): f
(
Kt

∣∣K−t) ∝ f(K) ∝ f(Kt+1|Kt) · f(Kt|Kt−1),(
Kt

∣∣K−t) ∼ N (γ1 + γ2 · t+
ρ

1 + ρ2
(Kt−1 +Kt+1 − 2(γ1 + γ2 · t)) ,

σ2K
1 + ρ2

)
;

� For t = tmax: f
(
Ktmax

∣∣K−tmax

)
∝ f(Ktmax |Ktmax−1),(

Ktmax

∣∣K−tmax

)
∼ N

(
γ1 + γ2 · tmax + ρ (Ktmax−1 − γ1 − γ2 · (tmax − 1)) , σ2K

)
.

The corresponding expressions for f
(
κ
(i)
t

∣∣κ(i)
−t

)
then follow immediately. We specify a prior

distribution for the parameters used in the time series specifications, namely8,9

γ ∼ N2 (γ0,Σ0) , (28)

logit(ρ) ∼ N
(
µρ, σ

2
ρ

)
, (29)

logit
(
ρ(i)
)
∼ N

(
µρ(i)

, σ2ρ(i)

)
, (30)

where γ0 is 1× 2 vector and Σ0 is a 2× 2 matrix of constants. The logit transformation ensures
that the hyperparameters ρ and ρ(i) are positive and less than one, see Cairns et al. (2011). We
follow the standard practice, see Gelman et al. (2013), and choose an Inverse Gamma ([IG])
prior for σ2K and σ2

κ(i) . This implies10

σ−2K ∼ G (aK , bK) and σ−2
κ(i) ∼ G

(
a(i)κ , b

(i)
κ

)
.

7K−t := (Ktmin , K2, . . . , Kt−1, Kt+1, . . . , Ktmax) and κ
(i)
−t := (κ

(i)
tmin

, κ
(i)
2 , . . . , κ

(i)
t−1, κ

(i)
t+1, . . . , κ

(i)
tmax

). To
save space we do not mention the parameters used in the distribution of Kt, see Section 4 for full details.

8Nm (µ,Σ) denotes the m-dimensional normal distribution with mean µ and covariance matrix Σ

9The density of a logit normal distribution is f(x;µ, σ) =
1

σ
√

2π

1

x(1− x)
exp

(
− (logit(x)− µ)2

2σ2

)
, x ∈ (0, 1).

10G denotes the Gamma distribution, with density f(x; a, b) := 1
Γ(a)

baxa−1e−xb, x ∈ (0,+∞), mean equal to

a · b−1 and variance equal to a · b−2.
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3.2 Prior distributions for the age parameters

Following Czado et al. (2005) we use the following prior for the β
(i)
x,j ’s (with j = 1, 2) in the

LC-2,t model

β
(i)
j ∼ NM

(
1

M
1M , σ

2

β
(i)
j

IM

)
. (31)

Hereby M = xmax−xmin+1 is the number of ages in the sample, β
(i)
j :=

(
β
(i)
xmin,j

, . . . , β
(i)
xmax,j

)
for j = 1, 2, 1M is the 1×M unit vector and IM the M ×M identity matrix. For the variance
hyperparameters we have

σ−2
β

(i)
j

∼ G
(
a
(i)
βj
, b

(i)
βj

)
. (32)

For the LL model we use (31) as the prior for β
(i)
x and the common age-dependent parameter

Bx has prior

B ∼ NM
(

1

M
1M , σ

2
BIM

)
, (33)

with B := (Bxmin , . . . , Bxmax). The prior distribution for the variance parameter is,

σ−2B ∼ G (aB, bB) . (34)

We adopt the prior distribution of Czado et al. (2005) for exp
(
α
(i)
x

)
, namely

e(i)x := exp
(
α(i)
x

)
∼ G

(
a(i)x , b

(i)
x

)
, (35)

where a
(i)
x and b

(i)
x are prespecified constants, with i = 1, 2, . . . , p and x = xmin, . . . , xmax. For

the LL model we use (35) as the prior for α
(i)
x and for the common parameter Ax we have

Ex := exp (Ax) ∼ G (ax, bx) . (36)

4 Posterior distributions

We include a detailed outline of the posterior distributions used in the LC-2,t model and refer
to an online appendix for the posterior distributions of the LL model. Inference about the
parameters used in the model, given the observed deaths and exposures, follows from Bayes’
theorem11

f (K,κ,β1,β2,α|D,E) ∝ f (D,E|K,κ,β1,β2,α) · f (K,κ,β1,β2,α) .

We specify the technical details of the MCMC algorithm. In particular, we combine Gibbs
sampling and, if necessary, Metropolis-Hastings steps. We introduce the following notation for
the set of data, latent effects and (hyper)parameters

θ :=
{
D,E,K,κ,β1,β2,α,γ,ρ, σ

2
K ,σ

2
κ,σ

2
β1
,σ2

β2

}
,

where ρ :=
(
ρ, ρ(1), . . . , ρ(p)

)
, σ2

κ :=
(
σ2
κ(1) , . . . , σ

2
κ(p)

)
and σ2

βj
:=

(
σ2
β

(1)
j

, . . . , σ2
β

(p)
j

)
.

11Notation used and not introduced before: α(i) :=
(
α

(i)
xmin , . . . , α

(i)
xmax

)
, α :=

(
α(1), . . . , α(p)

)
,βj :=(

β
(1)
j , . . . , β

(p)
j

)
and κ :=

(
κ(1), . . . , κ(p)

)
,D(i) respectivelyE(i) are the M×T matrices of deaths and exposures

respectively, for the i-th population. Hereby, M = xmax − xmin + 1 the number of ages in the sample, and
T = tmax − tmin + 1 is the number of years in the calibration period. We denote the partitioned matrices

D :=
(
D(1), . . . ,D(p)

)
and E :=

(
E(1), . . . ,E(p)

)
.
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4.1 Metropolis-Hastings sampling for κ’s and K

For the period effect Kt the proportional full conditional density function is

f (Kt|θ \ {Kt}) = f
(
Kt|D,E,K−t,κ,β1,β2,α,γ, ρ, σ

2
K

)
∝ f (D.,t,E.,t|Kt,κt,β1,β2,α) · f

(
Kt|K−t,γ, ρ, σ2K

)
, (37)

where κt :=
(
κ
(1)
t , . . . , κ

(p)
t

)
. For the random vectors D.,t :=

(
D

(1)
.,t , . . . ,D

(p)
.,t

)
, with D

(i)
.,t :=(

D
(i)
xmin,t

, . . . , D
(i)
xmax,t

)
12, we have

f
(
D.,t,E.,t

∣∣∣Kt,κt,β1,β2,α
)

=

p∏
i=1

f
(
D

(i)
.,t

∣∣∣Kt, κ
(i)
t ,β

(i)
1 ,β

(i)
2 ,α(i)

)
∝

p∏
i=1

xmax∏
x=xmin

exp
(
−E(i)

x,t exp
(
α(i)
x + β

(i)
x,1Kt + β

(i)
x,2κ

(i)
t

))
× exp

([
β
(i)
x,1Kt + β

(i)
x,2κ

(i)
t

]
D

(i)
x,t

)
. (38)

In a similar way we obtain for κ
(i)
t

f
(
κ
(i)
t |θ \

{
κ
(i)
t

})
∝ f

(
D

(i)
.,t ,E

(i)
.,t |Kt, κ

(i)
t ,β

(i)
1 ,β

(i)
2 ,α(i)

)
· f
(
κ
(i)
t |κ

(i)
−t, ρ(i), σ

2
κ(i)

)
. (39)

The MH steps for updating the Kt’s are listed in Appendix A.1. Updating the κ
(i)
t ’s for each

population i goes in a similar way.

4.2 Metropolis-Hastings sampling for β’s

The proportional conditional probability density function of the first age effect β
(i)
x,1 is

f
(
β
(i)
x,1|θ \

{
β
(i)
x,1

})
∝ f

(
D(i)
x,.,E

(i)
x,.|K,κ(i), β

(i)
x,1, β

(i)
x,2, α

(i)
x

)
· f
(
β
(i)
x,1|σ

2

β
(i)
1

)
. (40)

For the vector13 D
(i)
x,. :=

(
D

(i)
x,tmin

, . . . , D
(i)
x,tmax

)
we have

f
(
D(i)
x,.,E

(i)
x,.|K,κ(i), β

(i)
x,1, β

(i)
x,2, α

(i)
x

)
∝

tmax∏
t=tmin

exp
(
−E(i)

x,t exp
(
α(i)
x + β

(i)
x,1Kt + β

(i)
x,2κ

(i)
t

))
× exp

([
β
(i)
x,1Kt + β

(i)
x,2κ

(i)
t

]
D

(i)
x,t

)
.

The corresponding MH steps are given in Appendix A.2. The updating scheme for β
(i)
x,2 follows

immediately.

12We use the notation E.,t :=
(
E

(1)
.,t , . . . ,E

(p)
.,t

)
and E

(i)
.,t :=

(
E

(i)
xmin,t, . . . , E

(i)
xmax,t

)
13Similarly we denote E

(i)
x,. :=

(
E

(i)
x,tmin

, . . . , E
(i)
x,tmax

)
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4.3 Gibbs sampling for α’s

We simulate directly from the posterior distribution of the α(i) parameters because the Gamma
distribution in (35) is a conjugate prior for the Poisson likelihood function. With e(i) :=(
e
(i)
xmin , e

(i)
xmin+1, . . . , e

(i)
xmax

)
and e

(i)
x = exp

(
α
(i)
x

)
we have

f
(
D(i),E(i)|K,κ(i),β

(i)
1 ,β

(i)
2 , e(i)x

)
∝

tmax∏
t=tmin

exp
(
−c(i)x e(i)x

)(
e(i)x

)D(i)
x,•
, (41)

where c
(i)
x :=

∑tmax
t=tmin

E
(i)
x,t exp

(
β
(i)
x,1Kt + β

(i)
x,2κ

(i)
t

)
and D

(i)
x,• :=

∑tmax
t=tmin

D
(i)
x,t. As a result the

posterior distribution of e
(i)
x is again Gamma distributed, as follows

f
(
e(i)x

∣∣∣θ \ {e(i)x }) ∝ f (D(i),E(i)|K,κ(i),β
(i)
1 ,β

(i)
2 , e(i)x

)
· f
(
e(i)x

)
∝ exp

(
−
(
b(i)x + c(i)x

)
e(i)x

)(
e(i)x

)a(i)
x +D

(i)
x,•−1

∼ G
(
a(i)x +D

(i)
x,•, b

(i)
x + c(i)x

)
. (42)

4.4 Metropolis-Hastings sampling for ρ and ρ(i)

Czado et al. (2005) derive an explicit expression for the posterior distribution of ρ in their
trend stationary LC model. However, in our setting the posterior distributions for ρ and ρ(i)

do not follow a standard distribution and we update these parameters using MH steps. Denote
K̃t := Kt − γ1 − γ2t and Q̃ := σ−2K Q, with determinant |Q̃| = σ−2TK

(
1− ρ2

)
, then

f (ρ|θ \ {ρ}) = f
(
ρ|K,γ, σ2K

)
∝ f

(
K|γ, ρ, σ2K

)
· f(ρ)

∝ |Q̃|
1
2 exp

(
−1

2
(K − γV ) Q̃ (K − γV )

′
)

1

ρ(1− ρ)
exp

(
−(logit(ρ)− µρ)2

2σ2ρ

)

∝ exp

− 1

2σ2K

ρ2 tmax−1∑
t=tmin+1

K̃2
t − 2ρ

tmax∑
t=tmin+1

K̃tK̃t−1

 (1− ρ2) 1
2

ρ(1− ρ)
exp

(
−(logit(ρ)− µρ)2

2σ2ρ

)

∝ exp

(
− 1

2σ2Ka
−1
ρ

(
ρ− bρ

aρ

)2
)

1

ρ

(
1 + ρ

1− ρ

) 1
2

exp

(
−(logit(ρ)− µρ)2

2σ2ρ

)
,

where aρ :=
∑tmax−1

t=tmin+1
K̃2
t and bρ :=

∑tmax
t=tmin+1

K̃tK̃t−1. Full details of the MH steps to update
this parameter are presented in Appendix A.3. The MH steps for the population specific ρ(i)
follow immediately, using

f
(
ρ(i)|θ \

{
ρ(i)
})

∝ exp

− 1

2σ2
κ(i)a

−1
ρ(i)

(
ρ(i) −

bρ(i)

aρ(i)

)2
 1

ρ(i)

(
1 + ρ(i)

1− ρ(i)

) 1
2

exp

−
(

logit(ρ(i))− µρ(i)

)2
2σ2ρ(i)

 ,

where aρ(i)
=
∑tmax−1

t=tmin+1

(
κ
(i)
t

)2
and bρ(i)

=
∑tmax

t=tmin+1
κ
(i)
t κ

(i)
t−1.
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4.5 Gibbs sampling for γ1 and γ2

The posterior distribution of γ becomes

f(γ
∣∣θ \ {γ}) ∝ f(K|γ, ρ, σ2K) · f(γ)

∝ exp

(
−1

2
(K − γV ) Q̃ (K − γV )

′
)

exp

(
−1

2
(γ − γ0) Σ−10 (γ − γ0)

′
)

∝ exp

(
−1

2

(
γ
[
V Q̃V

′
+ Σ−10

]
γ
′ − 2γ

[
V Q̃K + Σ−10 γ

′
0

]))
.

Thus,
(γ|θ \ {γ}) ∼ N2 (µ?,Σ?) ,

where Σ? :=
(
V Q̃V

′
+ Σ−10

)−1
and µ? := Σ?

(
V Q̃K + Σ−10 γ

′
0

)
.

4.6 Gibbs sampling for σ’s

The posterior distribution of the variance parameter σ2K is

f
(
σ2K |θ \

{
σ2K
})
∝ f

(
K|γ, ρ, σ2K

)
· f
(
σ2K
)

∝ σ−TK exp

(
−1

2
(K − γV )Q (K − γV )

′
)
σ
−2(aK−1)
K exp

(
−σ−2K bK

)
∝ σ−2(aK+T

2
−1)

K exp

(
−σ−2K

(
bK +

1

2
(K − γV )Q (K − γV )

′
))

.

Consequently, the posterior distribution is

(
σ2K |θ \

{
σ2K
})
∼ IG

(
aK +

T

2
, bK +

1

2
(K − γV )Q (K − γV )

′
)
. (43)

Analogously, we obtain(
σ2κ(i)
|θ \

{
σ2κ(i)

})
∼ IG

(
a(i)κ +

T

2
, b(i)κ +

1

2
κ(i)Q(i)κ(i)

′
)
,(

σ2
β

(i)
j

|θ \
{
σ2
β

(i)
j

})
∼ IG

(
a
(i)
βj

+
M

2
, b

(i)
βj

+
1

2
β
(i)
j β

(i)
j

′)
.

5 Empirical studies

We illustrate the multi-population LC-2,t and LL models in two applications. In the first ap-
plication we model Swedish mortality data for males and females (as in Li and Lee (2005) and
Hyndman et al. (2013)) and the second illustration analyzes gender specific mortality data for
a collection of 14 European countries (as in Koninklijk Actuarieel Genootschap (2014)).
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5.1 Swedish male and female mortality

Data. We use Swedish mortality data for males and females, available from the Human Mor-
tality Database ([HMD])14,15. We calibrate the model on data from 1950-2009, for ages 0-89. Li
and Lee (2005) and Hyndman et al. (2013) analyze the same data set with the augmented com-
mon factor model and the product-ratio functional time series analysis approach, respectively.
Figures 1 and 2 in Hyndman et al. (2013) (pages 268-269) visualize the evolution of Swedish
mortality data over age and time using rainbow plots16.

Initializing the prior distributions. To initialize the prior distributions proposed in Section
3 we have to fix the constants used in these specifications. We show results calculated with the
following set of constants. Hereby i refers to females (‘F’) or males (‘M’).

� In the LC-2,t model we use a
(i)
x = b

(i)
x · exp{α̂(i)

x } where b
(i)
x = 0.01 and

α̂(i)
x =

1

T

tmax∑
t=tmin

log

(
d
(i)
x,t

E
(i)
x,t

)
. (44)

Hence E
(

exp{α(i)
x }
)

= exp{α̂(i)
x }. For the LL model we use ax = bx · exp{Âx}, where

bx = 0.01 and

Âx =
1

T

tmax∑
t=tmin

log

(
d
(•)
x,t

E
(•)
x,t

)
, (45)

and for the population specific α
(i)
x parameters we use a

(i)
x = b

(i)
x · exp{α̂(i)

x }, where b
(i)
x = 1

and

α̂(i)
x =

1

T

tmax∑
t=tmin

log

(
d
(i)
x,t

E
(i)
x,t

)
− Âx . (46)

Consequently, E
(

exp{α(i)
x }
)

= exp{α̂(i)
x }. As such, we apply the strategy of Czado et al.

(2005) to initialize the priors of the age specific intercepts.

� To obtain meaningful values for γ0 we fit the LC model, using Maximum Likelihood Es-

timation with the Poisson likelihood assumption, to D
(•)
x,t and E

(•)
x,t . The resulting period

effects are denoted by K̂LC
t . We fit a least squares line through coordinates

(
t, K̂LC

t

)
(with

t = tmin, . . . , tmax) and use its intercept and slope as γ0 and γ1 respectively. The Σ0

matrix is a diagonal matrix with diagonal elements 1 and 1 respectively, which results in
a vague prior. We use these specifications for both multi-population mortality models in
the study.

� We follow Cairns et al. (2011) and set µρ = 3 and σ2ρ = 0.52. For the corresponding
country specific hyperparameters we use µρ(i) = 0.5 and σ2

ρ(i) = 0.52 for i = 1, 2, . . . , p.

14See www.mortality.org.
15More specifically, we use 1× 1 (Age interval × Year interval) tables of Deaths and Exposures-to-risk.
16See R package grDevices.
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� Inspired by Czado et al. (2005), we choose17 aK = a
(i)
κ = 2.1 and bK = b

(i)
κ = 1, thus

E(σ2K) = E(σ2κ(i)
) ≈ 0.9 and Var(σ2K) = Var(σ2κ(i)

) ≈ 8.3. For the β
(i)
x,1 parameters we

choose a
(i)
β1

= 2.1 and b
(i)
β1

= (a
(i)
β1
− 1) · Var(B̂LC

x ) for all i, where B̂LC
x is obtained from the

LC model estimated on the aggregated data. For β
(i)
x,2 we use a

(i)
β2

= 2.1 and b
(i)
β2

= 0.1, such

that E(σ2β2
) ≈ 0.09 and Var(σ2β2

) ≈ 0.83.

Convergence diagnostics. We run 20, 000 iterations of the MCMC algorithm for the LC-2,t
model. We remove an initial, burn-in period of 4,000 iterations, and collect information from the
remaining iterations, using a thinning factor of 10. We perform the usual convergence checks.
The trace plots show good mixing properties18. For the LL model we first update the common
parameters as described in the online appendix to this paper. After reaching convergence of
the MCMC updating scheme for the common parameters, we simulate the population specific
parameters from their posterior distributions, while replacing in each iteration the common
parameters in the likelihood with a value sampled from their posterior distributions. Our final
sample size is again 1,600.

Estimates and credibility intervals in the LC-2,t model. Figure 1 shows the parameter

estimates of α
(M)
x , α

(F )
x (top row), β

(M)
x,1 , β

(F )
x,1 (second row) and β

(M)
x,2 and β

(F )
x,2 (bottom row) as

well as their 95% credibility intervals. The Bayesian estimates of the αx parameters are very
similar to the age specific intercepts estimated with a single population LC model. The Bayesian

estimates of β
(M)
x,1 and β

(F )
x,1 have a similar course, though for ages around 25 and 75, β

(M)
x,1 and

β
(F )
x,1 show some clear differences.

The samples from the posterior distribution of the common period effect Kt, displayed in the
left panel of Figure 2, show mean reversion around a linear, downward trend with the posterior
median of ρ equal to 0.947. The intercept of the linear trend has posterior median equal to

48.83 and the posterior median of the slope is −1.583. The gender specific latent effects κ
(F )
t

and κ
(M)
t are in the right panel of Figure 2. These show mean reversion around 0 with the

posterior median of ρ(M) equal to 0.94 and the posterior median of ρ(F ) is 0.795. We compare

the Bayesian estimates of Kt to the trend obtained with MLE in the Poisson LC model on D
(•)
x,t

and E
(•)
x,t and with the common trend estimated using SVD in the LL model. The Bayesian

common trend in the LC-2,t model is very similar to, though visibly different from, these two
benchmark estimates.

Estimates and credibility intervals in the LL model. Figure 3 shows the parameter

estimates and the 95% credibility intervals of α
(M)
x , α

(F )
x , Ax and Figure 4 shows corresponding

results for β
(M)
x , β

(F )
x , Bx in the Bayesian LL model. As expected, Ax and Bx capture the

common pattern in the age specific intercepts and slopes shown in Figure 1.

Estimates and credibility intervals of the common latent effect, Kt, and the gender specific

period effects, κ
(F )
t and κ

(M)
t , are in Figure 5. The common trend shows a downward, rather

linear pattern, mean reverting around a linear trend with the posterior median of ρ equal to

17If σ2 ∼ IG(a, b) then E(σ2) = b
a−1

and Var(σ2) = b2

(a−1)2(a−2)
.

18Trace plots of the (hyper)parameters used in the model are available in a note accompanying this paper,
downloadable from www.econ.kuleuven.be/anastasios.bardoutsos.
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Figure 1: Model LC-2,t: parameters α
(M)
x , α

(F )
x (top row), β

(M)
x,1 , β

(F )
x,1 (second row), β

(M)
x,2 and β

(F )
x,2

(bottom row), calibrated on Swedish male and female mortality data, period 1950-2009 and
ages 0-89: 20,000 iterations, burn-in of 4,000 iterations and thinning factor 10. The blue line
represents the median of the 1,600 iterations kept after thinning and burn-in. The shaded
gray area is the corresponding 95% pointwise credibility interval.

0.958. The linear trend has an intercept with posterior median equal to 48.88 and the posterior
median of the slope is −1.659. The Bayesian estimate of the common trend is now very close

to the common trend estimated by MLE in the Poisson LC model calibrated on D
(•)
x,t and E

(•)
x,t .

The gender specific latent effects κ
(F )
t and κ

(M)
t are in the right panel of Figure 5. These show

mean reversion around 0, as specified in their time series prior, with the posterior median of
ρ(M) equal to 0.943 and the posterior median of ρ(F ) is 0.941.

Forecasting mortality rates. Figures 6 and 7 show the Bayesian multi-population estimates

and projections of the force of mortality, µ
(M)
x,t and µ

(F )
x,t , and their corresponding credibility

18
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Figure 2: Model LC-2,t: latent effects Kt, κ
(M)
t and κ

(F )
t , calibrated on Swedish male and female mor-

tality data, period 1950-2009 and ages 0-89: 20,000 iterations, burn-in of 4,000 iterations and
thinning factor 10. The blue line represents the median calculated from the 1,600 iterations
kept after thinning and burn-in. The shaded gray area is the corresponding 95% pointwise
credibility interval. The green reference line is K̂LC

t and the red reference line is the common
latent factor, obtained with SVD in the LL model.
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Figure 3: Model LL: parameters α
(M)
x , α

(F )
x and Ax, calibrated on Swedish mortality data, period 1950-

2009 and ages 0-89: results based on 1,600 iterations after burn-in and thinning. The blue line
represents the median of these 1,600 iterations. The shaded gray area is the 95% pointwise
credibility interval using these iterations.
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Figure 4: Model LL: parameters β
(M)
x , β

(F )
x and Bx, calibrated on Swedish mortality data, period 1950-

2009 and ages 0-89: results based on 1,600 iterations after burn-in and thinning. The blue
line represents the median of the 1,600 iterations. The shaded gray area is the 95% pointwise
credibility interval using these iterations.
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Figure 5: Model LL: latent effects Kt, κ
(M)
t and κ

(F )
t , calibrated on Swedish mortality data, period

1950-2009 and ages 0-89: results based on 1,600 iterations after burn-in and thinning. The
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t and the
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intervals for a selection of ages, namely the 20, 40, 60 and 80 years old. We benchmark these
results against the estimates obtained with a Poisson MLE implementation of a gender specific LC
model and the LL model calibrated using the Singular Value Decomposition. These benchmark
models use a random walk with drift for the period effect in the LC model and the common time

trend in the LL model, as well as an AR(1) model for the κ
(i)
t in the LL model. Parameters in

these time series models are estimated with MLE. The multi-population models reveal better in
sample fitting compared to the gender specific LC models, as illustrated by, for example, graph
(b) in Figure 6. Both Bayesian multi-population models follow the observed data closely for all
ages in the sample, whereas the SVD calibration of LL for some ages is not capturing well the
observed evolution. Graphs (d) in Figure 6 and 7 illustrate this. Graph (b) in Figure 6 and (c)
in Figure 7 illustrate that the LC-2,t model is following the observed data slightly more closely
than the LL model, due to the extra flexibility implied by using age and gender specific slopes

β
(
x,1i).

5.2 A set of European countries

Data. We select fourteen European countries, namely Austria, Belgium, Denmark, England-
Wales, France, West Germany, Luxembourg, Netherlands, Switzerland, Finland, Iceland, Ire-
land, Norway, and Sweden, and analyze mortality data for females as well as males from the
HMD database. The Royal Dutch Actuarial Association19 uses this set of countries in its most
recent stochastic projection model, see Koninklijk Actuarieel Genootschap (2014). This col-
lection of countries meets the requirements formulated by Li and Lee (2005) for the study of
mortality rates as a group, i.e. they have similar socio-economic conditions and close connections
which are expected to continue in the future. We use ages from 0 until 89, as in Pitacco et al.
(2009). Fitted values and forecasts for older ages can be obtained with a technique to close mor-
tality tables, see for example Denuit and Goderniaux (2005) and Pitacco et al. (2009) (Section
2.8). The calibration period in this illustration is the interval [1975, 2009], which is in line with
the optimal calibration period obtained for Belgian data in Pitacco et al. (2009) (Section 5.5.3)
using the technique of Denuit and Goderniaux (2005). We choose the calibration period such
that data for all countries in the considered group are available and the assumption of AR(1)
around a linear trend is a reasonable assumption for the common latent effect. Results obtained
with data on female mortality are discussed here; corresponding results for males are available
in the online appendix.

Initializing prior distributions. We initialize the priors as discussed in the example with
Swedish data (see Section 5.1).

Estimates and credibility intervals in the LC-2,t model. Figure 8 shows the parameter

estimates for α
(i)
x in the LC-2,t model and corresponding credibility intervals. We present results

for Belgium, England-Wales and The Netherlands. These estimates are very close to the age
specific intercepts obtained with a single population, country specific LC model. The intervals
are narrow for all ages, similar to the findings of Czado et al. (2005).

Figures 9 and 10 show the estimates of β
(i)
x,1 and β

(i)
x,2 and their corresponding credibility inter-

vals. For β
(i)
x,1 as well as β

(i)
x,2 the estimates corresponding to ages in the range from 0 to 35

19See www.ag-ai.nl.
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(a) Death rate fan charts (µ
(M)
x,t ) for Swedish males, LC-2,t (left) and LL (right) at age 20.
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(b) Death rate fan charts (µ
(M)
x,t ) for Swedish males, LC-2,t (left) and LL (right) at age 40.
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(c) Death rate fan charts (µ
(M)
x,t ) for Swedish females, LC-2,t (left) and LL (right) at age 60.
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Figure 6: Death rate fan charts for Swedish males at age 20, 40, 60 and 80 for the LC,2-t (left) and LL
(right) models. 22
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(a) Death rate fan charts (µ
(F )
x,t ) for Swedish males, LC-2,t (left) and LL (right) at age 20.
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(b) Death rate fan charts (µ
(F )
x,t ) for Swedish males, LC-2,t (left) and LL (right) at age 40.
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(c) Death rate fan charts (µ
(F )
x,t ) for Swedish females, LC-2,t (left) and LL (right) at age 80.
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Figure 7: Death rate fan charts for Swedish females at age 20, 40, 60 and 80 for the LC,2-t (left) and
LL (right) models. 23
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Figure 8: Model LC-2,t: parameter α
(i)
x for Belgium, England-Wales and The Netherlands: female data,

period 1975-2009 and ages 0-89. 20,000 iterations, burn-in of 4,000 iterations and thinning
factor 10. The blue line represents the median of the 1,600 iterations kept after thinning and
burn-in. The shaded gray area is the 95% pointwise credibility interval using these iterations.

(approximately) show the largest uncertainty. Estimates corresponding to different countries
show similarities, though differences are clearly visible.
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Figure 9: Model LC-2,t: parameter β
(i)
x,1 for Belgium, England-Wales and The Netherlands: female data,

period 1975-2009 and ages 0-89. 20,000 iterations, burn-in of 4,000 iterations and thinning
factor 10. The blue line represents the median of the 1,600 iterations kept after thinning and
burn-in. The shaded gray area is the 95% pointwise credibility interval using these iterations.

Estimates and credibility intervals for the common latent effect, Kt, and the country specific

latent effects, κ
(i)
t , are in Figure 11. Again we add the time trend of a LC model on D

(•)
x,t and E

(•)
x,t ,

as well as the common trend obtained with SVD in the LL model, as reference lines. The posterior
median of the intercept used in the linear trend prior of Kt is equal to 35.72 and the posterior

median of the slope is−1.81. The posterior median of ρ is 0.96. Country specific latent effects κ
(i)
t

are shown in the right panel of Figure 11 for a selection of countries (namely Belgium, England-
Wales and The Netherlands). These country specific effects show mean reversion around 0, as
specified in their time series prior, with posterior median of ρ(BE) = 0.819, ρ(EW) = 0.876 and

ρ(NL) = 0.832. The uncertainty in the κ
(i)
t estimates of Belgium and the Netherlands is larger

than the corresponding uncertainty for England-Wales.

Estimates and credibility intervals in the LL model. Figure 12 shows the parameter

estimates of Ax, α
(i)
x and their corresponding credibility intervals. According to the intervals for
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Figure 10: Model LC-2,t: parameter β
(i)
x,2 for Belgium, England-Wales and The Netherlands: female

data, period 1975-2009 and ages 0-89. 20,000 iterations, burn-in of 4,000 iterations and
thinning factor 10. The blue line represents the median of the 1,600 iterations kept after
thinning and burn-in. The shaded gray area is the 95% pointwise credibility interval using
these iterations.
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Figure 11: Model LC-2,t: parameters Kt and κ
(i)
t for Belgium, England-Wales and The Netherlands:

female data, period 1975-2009 and ages 0-89. 20,000 iterations, burn-in of 4,000 iterations
and thinning factor 10. The blue line represents the median of the 1,600 iterations kept after
thinning and burn-in. The shaded gray area is the 95% pointwise credibility interval using
these iterations. The green reference line is K̂LC

t and the red reference line is the common
latent factor, obtained with SVD in the LL model.

the population specific α
(i)
x estimates corresponding to young ages are most uncertain.

Figure 13 shows the estimates of Bx and β
(i)
x and their corresponding credibility intervals. The

credibility intervals for the Belgian β
(i)
x parameters enclose zero up to age 50.

Estimates and credibility intervals of the common latent effect, Kt, and the country specific

latent effects, κ
(i)
t , are in Figure 14. The posterior median of the intercept in the linear trend

prior for Kt is equal to 35.79 and the posterior median of its slope is −2.01. The posterior

median of ρ = 0.953. Country specific latent effects κ
(i)
t for Belgium, England-Wales and The
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Figure 12: Model LL: parameters Ax and α
(i)
x for Belgium, England-Wales and The Netherlands: female

data, period 1975-2009 and ages 0-89. 20,000 iterations, burn-in of 4,000 iterations and
thinning factor 10. The blue line represents the median of the 1,600 iterations kept after
thinning and burn-in. The shaded gray area is the 95% pointwise credibility interval using
these iterations.
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26



Netherlands are shown in the right panel of Figure 11. These country specific effects have a

posterior median of ρ(BE) = 0.758, ρ(EW) = 0.878 and ρ(NL) = 0.919. The uncertainty of κ
(i)
t for

Belgium and The Netherlands is larger than the corresponding uncertainty for England-Wales.
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Figure 14: Model LL: parameters Kt and κ
(i)
t for Belgium, England-Wales and The Netherlands: female

data, period 1975-2009 and ages 0-89. 20,000 iterations, burn-in of 4,000 iterations and
thinning factor 10. The blue line represents the median of the 1,600 iterations kept after
thinning and burn-in. The shaded gray area is the 95% pointwise credibility interval using
these iterations. The green reference line is K̂LC

t and the red reference line is the common
latent factor, obtained with SVD in the LL model.

Forecasting mortality: Belgium, England-Wales, The Netherlands. Figures 15 and

16 show calibrated death rates, µ
(i)
x,t, their corresponding credibility intervals and forecasts for a

selection of ages, namely the 40 and 60 years old for both Bayesian multi-population models. As
in Section 5.1 we benchmark these results against the estimates obtained with a Poisson MLE
implementation of a country specific LC model and the LL model calibrated using the Singular
Value Decomposition. Both Bayesian multi-population models follow the observed data closely
for all ages in the sample, whereas the SVD calibration of LL for some ages is not capturing
well the observed evolution. This is clearly illustrated by the graphs of England-Wales and
The Netherlands. The age 40 forecasts for Belgium and The Netherlands as obtained with the
LC-2,t model are much more uncertain than the corresponding forecasts for England-Wales on
the one hand and the forecasts obtained with the LL model on the other hand. The increase in
uncertainty is due to the larger estimate and uncertainty of β

(i)
x,1 and β

(i)
x,2 in Figures 9 and 10.

Forecasting mortality: Austria versus West-Germany. A comparison between the death
rate estimates and forecasts of a very large country, i.e. West-Germany, and a very small country,
i.e. Austria, illustrates how uncertainty is reflected by the Bayesian multi-population models in
the study. For a selection of ages Figure 17 and Figure 18 show the estimated and forecasted
forces of mortality for Austria (top row) and West-Germany (bottom row). The results for Aus-
tria, with a population of approximately 8 million inhabitants, clearly reflect more uncertainty
than the corresponding results for West-Germany.
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(a) Model LC-2,t: Mortality fan charts for Belgium, England-Wales and The Netherlands at age 40.
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(b) Model LL: Mortality fan charts for Belgium, England-Wales and The Netherlands at age 40.

Figure 15: Mortality fan charts for Belgium, England-Wales and The Netherlands at age 40, using the
LC-2,t model (top) and the LL model (bottom).

6 Conclusion

This paper presents a Bayesian implementation of two log-bilinear multi-population mortality
models. The first model is the two factor version of the basic, single population Lee & Carter
model, which we extend to the multi-population setting by replacing the first period effect with
a common trend. This common period effect links the populations under study. The second
model is the augmented common factor model, also known as the Li & Lee model. Multi-
population mortality models recently have gained popularity at the expense of single population
mortality models, as their use in official forecasts, hedging strategies and research illustrates.
Multi-population mortality models use a larger data set to produce forecasts, allowing more
robust mortality modeling by accounting for evolutions in mortality of related populations. We
perform Bayesian estimation of both log-bilinear mortality models under the assumption of Pois-
son likelihood. We develop the complete technical details of the Markov Chain Monte Carlo
updating scheme and extend as such the literature on Bayesian estimation of Poisson single
population Lee & Carter type of models. Moreover this paper provides an alternative for the
least squares calibration of log-bilinear multi-population mortality models on the one hand and
the conditional Poisson maximum likelihood estimation on the other hand. Whereas maximum
likelihood estimation requires a stepwise approach to mortality forecasting, i.e. estimate param-
eters in a first step and then project the estimated time dependent parameters in a second step,
the use of a time series prior for the period effects enables a unified approach. Accounting for
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(a) Model LC-2,t: Mortality fan charts for Belgium, England-Wales and The Netherlands at age 60.
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(b) Model LL: Mortality fan charts for Belgium, England-Wales and The Netherlands at age 60.

Figure 16: Mortality fan charts for Belgium, England-Wales and The Netherlands at age 60, using the
LC-2,t model (top) and the LL model (bottom).

all sources of uncertainty is another direct advantage of the Bayesian approach and allows to
present parameter estimates as well as their corresponding uncertainty. We demonstrate the use
of the Bayesian log-bilinear multi-population models with two empirical studies, the analysis
of Swedish male and female mortality during 1950-2009 and the analysis of a collection of 14
European countries during 1975-2009. The calibrated Poisson multi-population models follow
the observed data closely, whereas the least squares estimation of the augmented common factor
model for some calibration periods and specific ages does not capture well the observed mor-
tality data. In future work we plan on developing the technicalities involved in the Bayesian
estimation of other multi-population models. The extension of the present work to the joint
modeling of portfolio and population mortality data is another direction for future research.

29



●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

2e
−0

4

4e
−0

4

6e
−0

4

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(AU
S)

Mo
de

l LC LC
−2

,t

LL
 (S

VD
)

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
0.

00
05

0.
00

10

0.
00

15

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(AU
S)

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(AU
S)

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(AU
S)

(a
)

M
or

ta
li

ty
fa

n
ch

ar
ts

fo
r

A
u
st

ri
a
,

fe
m

a
le

s,
a
g
es

2
0
,

4
0
,

6
0

a
n

d
8
0

(f
ro

m
le

ft
to

ri
g
h
t)

.

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

2e
−0

4

4e
−0

4

6e
−0

4

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(DU
W

)

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

0.
00

05

0.
00

10

0.
00

15

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(DU
W

)

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(DU
W

)

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

0.
02

5

0.
05

0

0.
07

5

0.
10

0

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(DU
W

)

(b
)

M
or

ta
li

ty
fa

n
ch

ar
ts

fo
r

W
es

t-
G

er
m

a
n
y,

fe
m

a
le

s,
a
g
es

2
0
,

4
0
,

6
0

a
n

d
8
0

(f
ro

m
le

ft
to

ri
g
h
t)

.

F
ig

u
re

1
7
:

M
o
d

el
L
C
-2
,t

:
m

or
ta

li
ty

fa
n

ch
ar

ts
of

a
sm

a
ll

(A
u

st
ri

a
,

to
p

ro
w

)
ve

rs
u

s
a

la
rg

e
(W

es
t-

G
er

m
a
n
y,

b
o
tt

o
m

ro
w

)
co

u
n
tr

y
:

fe
m

a
le

s,
a
g
es

2
0
,

40
,

60
an

d
80

(f
ro

m
le

ft
to

ri
gh

t)
,

ca
li

b
ra

ti
on

p
er

io
d

1
9
7
5
-2

0
0
9
.

30



●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

2e
−0

4

4e
−0

4

6e
−0

4

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(AU
S)

Mo
de

l LC LL
 (B

ay
es

ian
)

LL
 (S

VD
)

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
0.

00
05

0.
00

10

0.
00

15

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(AU
S)

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(AU
S)

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(AU
S)

(a
)

M
or

ta
li

ty
fa

n
ch

ar
ts

fo
r

A
u
st

ri
a
,

fe
m

a
le

s,
a
g
es

2
0
,

4
0
,

6
0

a
n

d
8
0

(f
ro

m
le

ft
to

ri
g
h
t)

.

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

2e
−0

4

4e
−0

4

6e
−0

4

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(DU
W

)

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

0.
00

05

0.
00

10

0.
00

15

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(DU
W

)

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(DU
W

)

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

0.
02

5

0.
05

0

0.
07

5

0.
10

0

19
80

20
00

20
20

20
40

Ye
ar

(t)

µ x,t(DU
W

)

(b
)

M
or

ta
li

ty
fa

n
ch

ar
ts

fo
r

W
es

t-
G

er
m

a
n
y,

fe
m

a
le

s,
a
g
es

2
0
,

4
0
,

6
0

a
n

d
8
0

(f
ro

m
le

ft
to

ri
g
h
t)

.

F
ig

u
re

1
8
:

M
o
d

el
L
L
:

m
or

ta
li

ty
fa

n
ch

ar
ts

of
a

sm
al

l
(A

u
st

ri
a
,

to
p

ro
w

)
ve

rs
u

s
a

la
rg

e
(W

es
t-

G
er

m
a
n
y,

b
o
tt

o
m

ro
w

)
co

u
n
tr

y
:

fe
m

a
le

s,
a
g
es

2
0
,

4
0
,

6
0

an
d

80
(f

ro
m

le
ft

to
ri

gh
t)

,
ca

li
b

ra
ti

on
p

er
io

d
1
9
7
5
-2

0
0
9
.

31



A Metropolis-Hastings algorithm

A.1 Algorithm for Kt and κ
(i)
t

We use Metropolis-Hastings to update Kt. Assume that we have K
[l]
s for all s < t at iteration

[l]. Then we proceed as follows:

1. Generate a candidate K∗t from a normal distribution with mean K
[l]
t and variance s2Kt

.
We start with s2Kt

= 1 and we update this value every 100 simulations to ensure that the
acceptance probability is in the interval [20%, 50%]. For more details see Czado et al.
(2005).

2. We use (37) and (38) to calculate the acceptance probability as follows:

ψ(K
[l]
t ,K

∗
t ) = min

1,
f
(
K∗t

∣∣∣K [l]
−t,κ,α,β1,β2,D, σ

2
K , ρ,γ

)
f
(
K

[l]
t

∣∣∣K [l]
−t,κ,α,β1,β2,D, σ

2
K , ρ,γ

)
 (47)

3. Generate a realization u from the Uniform(0, 1) distribution. If u ≤ ψ(K
[l]
t ,K

∗
t ) we accept

the candidate, i.e. K
[l+1]
t = K∗t . If u > ψ(K

[l]
t ,K

∗
t ) we reject the candidate, so K

[l+1]
t =

K
[l]
t .

4. Apply the constraint
∑tmax

t=tmin
Kt = 0.

The MH steps are similar for the parameters κ
(i)
t .

A.2 Algorithm for β
(i)
x,1 and β

(i)
x,2

Assume that we have β
(i)[l]
x,1 at iteration [l]. The Metropolis-Hastings updating scheme for β

(i)
x,1

goes as follows:

1. Generate a candidate β
(i)∗
x,1 from a truncated normal distribution in the interval (−1, 1)

with mean β
(i)[l]
x,1 and variance equal to s2β1

= 1. The choice of the interval stems from

empirical results. We start with variance s2β1
and we update every 100 simulations to

ensure that the acceptance probability is in the interval [20%, 50%]. For more details see
Czado et al. (2005).

2. Calculate the acceptance probability as follows,

ψ
(
β
(i)[l]
x,1 , β

(i)∗
x,1

)
= min

1,
f
(
β
(i)∗
x,1 |β

(i)[l]
−x,1,α,κ,K, σ2β1

)
f
(
β
(i)[l]
x,1 |β

(i)[l]
−x,1,α,κ,K, σ2β1

)
 (48)

3. Generate a realization u from the Uniform(0, 1) distribution. If u ≤ ψ
(
β
(i)[l]
x,1 , β

(i)∗
x,1

)
we

accept the candidate, i.e. β
(i)[l+1]
x,1 = β

(i)∗
x,1 . If u > ψ

(
β
(i)[l]
x,1 , β

(i)∗
x,1

)
we reject the candidate,

so β
(i)[l+1]
x,1 = β

(i)[l]
x,1 .
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4. Apply constraint
1

p

∑p
i=1

∑xmax
x=xmin

β
(i)
x,1 = 1.

The MH steps are similar for the parameters β
(i)
x,2.

A.3 Algorithm for ρ and ρ(i)

Assume ρ[l] at iteration [l] is available, then the MH updating scheme for ρ goes as follows.

1. Generate a candidate logit (ρ∗) from a normal distribution with mean logit
(
ρ[l]
)

and vari-
ance s2ρ = 0.252. This distribution is no longer symmetric. We start with variance s2ρ
and we update every 100 simulations to ensure that the acceptance probability is in the
interval [20%, 50%]. For more details see Czado et al. (2005).

2. Calculate the acceptance probability as follows

ψ(ρ[l], ρ∗) = min

1,
f
(
ρ∗
∣∣∣K,γ, σ2K

)
f
(
ρ[l]
∣∣∣K,γ, σ2K

) g (ρ[l]|ρ∗)
g
(
ρ∗|ρ[l]

)
 , (49)

where g is the proposal distribution, namely the logit normal distribution and

g
(
ρ[l]|ρ∗

)
g
(
ρ∗|ρ[l]

) =
ρ[l]
(
1− ρ[l]

)
ρ∗ (1− ρ∗)

.

3. Generate a realization u from the Uniform(0, 1) distribution. If u ≤ ψ(ρ[l], ρ∗) we accept
the candidate, ρ[l+1] = ρ∗. If u > ψ(ρ[l], ρ∗) we reject the candidate, so ρ[l+1] = ρ[l].

The MH steps are similar for the hyperparameters ρ(i).
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