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Abstract

Gauge-based radar rainfall adjustment techniques have been widely used to improve
the applicability of radar rainfall estimates to large-scale hydrological modelling. How-
ever, their use for urban hydrological applications is limited as they were mostly devel-
oped based upon Gaussian approximations and therefore tend to smooth off so-called5

“singularities” (features of a non-Gaussian field) that can be observed in the fine-scale
rainfall structure. Overlooking the singularities could be critical, given that their dis-
tribution is highly consistent with that of local extreme magnitudes. This deficiency
may cause large errors in the subsequent urban hydrological modelling. To address
this limitation and improve the applicability of adjustment techniques at urban scales,10

a method is proposed herein which incorporates a local singularity analysis into ex-
isting adjustment techniques and allows the preservation of the singularity structures
throughout the adjustment process. In this paper the proposed singularity analysis is
incorporated into the Bayesian merging technique and the performance of the result-
ing singularity-sensitive method is compared with that of the original Bayesian (non15

singularity-sensitive) technique and the commonly-used mean field bias adjustment.
This test is conducted using as case study four storm events observed in the Portobello
catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense
rain gauge and sewer flow records, as well as a recently-calibrated urban drainage
model were available. The results suggest that, in general, the proposed singularity-20

sensitive method can effectively preserve the non-normality in local rainfall structure,
while retaining the ability of the original adjustment techniques to generate nearly unbi-
ased estimates. Moreover, the ability of the singularity-sensitive technique to preserve
the non-normality in rainfall estimates often leads to better reproduction of the urban
drainage system’s dynamics, particularly of peak runoff flows.25
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1 Introduction

Traditionally, urban hydrological applications have relied mainly upon rain gauge data
as input. While rain gauges generally provide accurate point rainfall estimates near the
ground surface, they cannot properly capture the spatial variability of rainfall, which
has a significant impact on the urban hydrological system and thus on the modelling of5

urban runoff (Gires et al., 2012; Schellart et al., 2012). Thanks to the development of
radar technology, weather radar data have been playing an increasingly important role
in urban hydrology (Krämer et al., 2007; Liguori et al., 2011). Radars can survey large
areas and better capture the spatial variability of the rainfall, thus improving the short-
term predictability of rainfall and flooding. However, the accuracy of radar measure-10

ments is in general insufficient, particularly in the case of extreme rainfall magnitudes
(Einfalt et al., 2004, 2005). This is due to the fact that, instead of being a direct mea-
surement, radar rainfall intensity is derived indirectly from measured radar reflectivity.
As a result, both radar reflectivity measurements and the reflectivity-intensity conver-
sion process are subject to multiple sources of error.15

First, errors in radar reflectivity measurements may arise from blockage of the radar
beam, attenuation, ground clutter, anomalous propagation of the signal, among other
sources (Collier, 1996; Einfalt et al., 2004; Harrison et al., 2000). Although the radar
reflectivity measurements undergo a number of corrections before they are converted
into rainfall intensity, it is virtually impossible to have error-free reflectivity measure-20

ments. Second, the conversion between radar reflectivity (Z) and rainfall rate (R) uses
the so-called Z −R relationship, Z = aRb (Marshall and Palmer, 1948), where a and
b are variables generally deduced by physical approximation or empirical calibration.
This can be theoretically linked to the rain drop size distribution, which varies for differ-
ent rainfall types. Operationally, a number of “static” Z −R relations are usually derived25

to generate radar rainfall rates for different rainfall types (e.g. stratiform, convective
and tropical storms), and the associated a and b variables are calibrated based upon
long-term comparisons (Collier, 1986; Krajewski and Smith, 2002). However, in real-
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ity, it is almost impossible to classify a single storm purely under a specific rainfall
type. Consequently, it is not entirely appropriate to use a static Z −R relation to derive
rainfall intensities, even for a single storm event. This has been confirmed by several
studies, which indicate that rain drop size distribution is a highly dynamic process and
may significantly or suddenly change within a storm event (Smith et al., 2009; Ulbrich,5

1983). Because of this, the Z −R derived rainfall intensity cannot effectively reflect
the short-term dynamics of true rainfall intensities and may statistically compromise to
intermediate rainfall intensities.

In order to overcome these drawbacks of radar rainfall estimates while preserving
their spatial description of rainfall fields, it is possible to dynamically adjust them using10

rain gauge measurements. Many studies on this subject have been carried out over the
last few years, though most of them focus on hydrological applications at large scales
(Anagnostou and Krajewski, 1999; Fulton et al., 1998; Germann et al., 2006; Gouden-
hoofdt and Delobbe, 2009; Harrison et al., 2000, 2009; Seo and Smith, 1991; Thorn-
dahl et al., 2014). Only few studies have examined the applicability of these adjustment15

techniques to urban-scale hydrological applications and concluded that they can effec-
tively reduce rainfall bias, thus leading to improvements in the reproduction of hydro-
logical outputs (Smith et al., 2007; Vieux and Bedient, 2004; Villarini et al., 2010; Wang
et al., 2013). However, despite the improvements achieved with the current adjustment
techniques, underestimation of storm peaks can still be seen after adjustment and this20

is particularly evident in the case of small drainage areas (such as those of urban catch-
ments) and extreme rainfall magnitudes (Wang et al., 2012; Ochoa-Rodríguez et al.,
2013). This may be due to the fact that the underlying adjustment techniques, mainly
based upon Gaussian (1st and/or 2nd statistical moments) approximations (Gouden-
hoofdt and Delobbe, 2009; Krajewski, 1987; Todini, 2001), cannot properly cope with25

the so-called “singularities” (which implies non-normality and often corresponds to local
extreme magnitudes) observed at small scales (Schertzer et al., 2013; Tchiguirinskaia
et al., 2012). In fact, it is often the case that the radar image captures the spatial struc-
ture of striking local extremes (albeit the actual rainfall depth/intensity may be inac-
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curate), but these structures are lost or smoothened throughout the merging process.
This deficiency may cause large errors in the subsequent urban hydrological modelling.

To address this limitation and improve the applicability of adjustment techniques at
urban scales, a method is proposed herein which incorporates a local singularity (iden-
tification) analysis (Cheng et al., 1994; Schertzer and Lovejoy, 1987; Wang et al., 2012)5

into existing adjustment techniques and enables the preservation of the singularity
structures throughout the adjustment process. The singularity-sensitive method is par-
ticularly intended to improve geostatistical-based merging techniques (e.g. Cokriging
(Krajewski, 1987), Bayesian merging (Todini, 2001), Kriging with External Drift (Wack-
ernagel, 2003) and conditional merging (Sinclair and Pegram, 2005)), which seek to10

represent the spatial covariance structure of the rainfall field or its errors by making
use of the semi-variogram (Goudenhoofdt and Delobbe, 2009). Being a 2nd-order tool,
the semi-variogram cannot adequately capture higher-order features of the rainfall field,
thus causing these to be lost in the merging process.

The proposed singularity-sensitive method was initially developed and preliminarily15

tested in the reconstruction of a storm event which led to reported flooding in the Maida
Vale area, Central London, in June 2009 (Wang and Onof, 2013; Wang et al., 2014).
The radar rainfall product for this event showed strong and localised singularity struc-
tures, but the accuracy of the actual estimates was poor. A dynamic gauge-based ad-
justment was conducted using the Bayesian data merging method (Todini, 2001), which20

in previous studies had shown to outperform other adjustment methods (Mazzetti and
Todini, 2004; Wang et al., 2013). Nonetheless, for this particular event records from
only a few rain gauge sites were available and these were (unluckily) located away
from the area of interest and at points where less intense radar rainfall was observed.
Under these circumstances, the aforementioned shortcomings associated with existing25

adjustment techniques became evident. The Bayesian data merging method turned out
to be inadequate as it smoothened out the singularity structures, which had the effect
of considerably reducing the peak rainfall intensities. It was then that the singularity-
sensitive method was devised and effectively incorporated into the Bayesian merging
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technique. The resulting singularity-sensitive Bayesian merging method led to rainfall
fields which better preserved the spatial structure as captured by the radar and better
reproduced peak rainfall intensities.

In the present paper the formulation of the proposed singularity-sensitive method is
explained in detail and new numerical strategies aimed at improving the use of singu-5

larity information are introduced. Moreover, the method is further tested using as case
study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK)
during 2011 and for which radar estimates, a spatially dense network of rain and flow
gauges, as well as a recently-calibrated urban drainage model were available.

The paper is organised as follows. In Sect. 2 a detailed explanation is provided of10

the theoretical development of the singularity-sensitive method, including the newly im-
plemented numerical strategies. In Sect. 3 we present the case study, including a de-
scription of the study area and dataset, the performance criteria used to evaluate the
proposed methodology, and the results of the testing. Lastly, in Sect. 4 the main con-
clusions are presented and future work is discussed.15

2 Formulation of the singularity-sensitive bayesian data merging method

Firstly, a description is provided of the two key techniques used in this paper: the
Bayesian data merging method and the local singularity analysis. Afterwards, the pro-
posed method to integrate these two techniques is explained. Intermediate results of
each of the steps described in this section, which help illustrate the main features of20

the proposed methodology, can be found in the supplementary document “Formulation
and demonstration of the singularity-sensitive Bayesian data merging method”.

2.1 Bayesian radar-rain gauge data merging method

The Bayesian data merging method (BAY) is a dynamic adjustment method (applied
independently at each time step) intended for real-time applications (Todini, 2001).25
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The underlying idea of this method is to analyse and quantify the uncertainty of rainfall
estimates (in terms of error co-variance) from multiple data sources – in this case, radar
and rain gauge sensors – and then combine these estimates in such a way that the
overall (estimation) uncertainty is minimised. The BAY merging method consists of the
following steps (illustrated in Fig. 1a):5

a. For each time step t, the point rain gauge (RG) measurements are interpolated
into a synthetic rainfall field using the block kriging (BK) technique. The result
of this step is an interpolated rain gauge rainfall field, with areal estimates at
each radar grid location (yRG

t ) and which are accompanied by the associated

estimation error co-variance function (V RG
εt ), representing the uncertainty of rain10

gauge estimates.

b. The interpolated rain gauge rainfall field is compared against the radar field (yRD
t ),

based upon which a field of errors (estimated as the bias at each radar grid lo-
cation: εRD

t = yRD
t − y

RG
t ) is empirically obtained. Assuming that areal rain gauge

estimates are unbiased, the expectation value (µεRD
t

) and the co-variance function15

(V RD
εt ) of this radar-rain gauge error field at each time step is used to represent,

respectively, the mean bias and the uncertainty of radar estimates.

c. Using a Kalman filter (Kalman, 1960), the two rainfall fields are optimally com-
bined such that the overall estimation uncertainty is minimised. In the Kalman
filter the radar data and the interpolated rain gauge estimates act, respectively,20

as “a priori estimate” and “measurement”. The degree of “uncertainty” of each
type of estimate constitutes a gain value (the so-called Kalman gain, Kt) at each
radar grid location, and determines the proportion of each type of estimate that
is used to compute the merged output. The use of this gain value ensures the
minimisation of the overall estimation uncertainty and is expressed as:25

Kt = VεRD
t

(
VεRD

t
+ VεRG

t

)−1
, (1)
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and the optimally merged output, BAY (i.e. the a posteriori estimates y ′′t in the
Kalman filter) can be obtained from

y ′′t = y
′
t +Kt

(
yRG
t − y

′
t

)
. (2)

where y ′t , is the “unbiased” radar rainfall estimate (i.e. y ′t = y
RD
t −µεRD

t
), used as

the a priori estimate in the Kalman filter.5

It can be seen that the Kalman gain is a function of the co-variances of radar and
rain gauge estimation errors. When VεRD

t
� VεRG

t
(or Kt ≈ 1, i.e. radar estimates

have significantly higher uncertainty than the rain gauge ones), the radar esti-
mates are less trustworthy and the output estimates will be very similar to the
interpolated rain gauge field. In contrast, when VεRG

t
� VεRD

t
(or Kt ≈ 0), the output10

will be closer to the radar estimates.

It is in steps b and c where the problems associated with the Bayesian merging tech-
nique, and geostatistical techniques in general, arise. The (2nd-order) co-variance
function that these techniques employ to characterise radar-rain gauge errors can-
not well capture local singularity structures. Instead, in 2nd-order models singularities15

may be mistakenly regarded as errors in the radar data, thus leading to higher esti-
mated radar uncertainty, VεRD

t
. As a result, the radar data will be trusted less, leading to

smoother merged outputs, which are closer to the interpolated rain gauge field.

2.2 Local singularity analysis

Various types of hazardous geo-processes, including precipitation, often result in20

anomalous amounts of energy release or mass accumulation confined to narrow in-
tervals in time and/or space. The property of anomalous amounts of energy release
or mass accumulation is termed a singularity and it is often associated to struc-
tures depicting fractality or multifractality (Agterberg0701, Cheng9901, Lovejoy8501,
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Schertzer8701). Several mathematical models and methodologies have been devel-
oped to respectively characterise and treat singularities. In this work, the local singu-
larity analysis proposed by Cheng et al. (1994) has been adopted to identify and ex-
tract singularities form rainfall fields. Cheng’s method, which has been widely used for
estimation of geo-chemical concentrations (Agterberg, 2017; Cheng and Zhao, 2011;5

Cheng et al., 1994), employs the definition of coarse Hölder exponent to characterise
singularities. According to this model, singularities are defined by the fact that the areal
average measure (in this work, areal rainfall) centred on point x (taken as the centre of
a radar pixel) varies as a power function of the area (a square of side ε) (Evertsz and
Mandelbrot, 1992):10

ρ(x,ε) = c(x)εα(x)−E , (3)

where c(x) is a constant value (in the context of this paper, a constant intensity value)
at a specific location x, ρ(x,ε) represents the density of measure (e.g. concentration
of geo-data; in the context of this paper, rainfall intensity) over a squared area with
side-length ε centred at the location x, α(x) is the singularity index/exponent (or the15

coarse Hölder exponent), and E = 2 is the Euclidean dimension of the plane (Cheng
et al., 1994).

This equation constitutes a useful tool to decompose an areal rainfall intensity at
a given location x into two components (Wang et al., 2012): (1) the background (or non-
singular, NS) magnitude c(x), which is invariant as measuring scale ε changes and is20

more approximately normal than the original field; and (2) a local “scaling” multiplier, the
magnitude of which changes as the measuring scale ε changes, according to the local
singularity index α(x). It can be expected that, when α(x) < 2, the rainfall magnitude will
strikingly increase as the measuring scale ε decreases (namely local enrichment); this
corresponds to a “peak” singularity. In contrast, when α(x) > 2, the rainfall magnitude25

decreases as ε decreases (i.e. local depletion), and it is therefore a “trough” singularity.
When α(x) = 2, there is no singularity: the rainfall intensity ρ(x,ε) within a ε×ε area
remains the same as scale changes (i.e. ρ(x,ε) = c(x)).
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In practice however, there is a drawback to this local singularity analysis. Because
it carries out a “local” analysis, the singularity exponents are usually obtained from
a small number of data samples. This increases the uncertainty of the estimation of
α(x). The consequence of this drawback is that the singularity is incorrectly estimated
or incompletely extracted; therefore, c(x) is an unreliable or incomplete non-singular5

value. To circumvent this, two numerical strategies were employed in this paper. The
first one is to constrain the value of the estimated singularity exponents within a certain
range. This can avoid obtaining unreasonably large or small singularity exponents.
A number of ranges, symmetric to the non-singular condition (i.e. α(x) = 2), were
selected for testing. They are (from the widest to narrowest intervals): SIN1= [0, 4],10

SIN2= [0.5, 3.5], SIN3= [1, 3], SIN4= [1.5, 2.5] and SIN5= [1.75, 2.25]. These “trun-
cated” singularity ranges were empirically chosen according to the authors’ experience
and the fact that the distribution of α(x) is seldom largely skewed to a specific side of
α(x) = 2. It can be generally expected that, the wider the range is, the more singularity
information (both local enrichment and depletion) from the radar images is taken into15

account in the merging process. The impact of different singularity ranges in rainfall
estimation and hydraulic simulation is further discussed in Sect. 3.3.

The second numerical strategy is to decompose the rainfall field using an iterative
procedure (Agterberg, 2012b; Chen et al., 2007):

c(k−1)(x) = c(k)(x)εα
(k)(x)−E , (4)20

where the iterative index k = 0,1,2, . . .,n. As k = 0, c(−1)(x) = ρ(x,ε) (i.e. the original
value) and c(0)(x) is the “calculated” non-singular value from the first iteration, which is
equal to c(x) from the non-iterative calculation above (Eq. 3). This c(0)(x) is then used
as the left-hand-side value of Eq. (4) to calculate the non-singular value at the next
iteration, and so on. Substituting Eq. (4) into Eq. (3), one can obtain an iterative local25

singularity analysis equation:

ρ(x,ε) = c∗(x)εα
∗(x)−E , (5)
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where{
c∗(x) = c(n)(x)

α∗(x) = α(0)(x)+
∑n
k=1(α(k)(x)−E ).

(6)

The criterion to terminate the iteration procedure is when α(k)(x) ≈ E (which is equiv-
alent to c(k−1)(x) ≈ c(k)(x)). That means the singularity components have been clearly
removed from the data.5

In this work a spatial-scale range of 1–9 km was used in the singularity analysis.
This was chosen based upon the fact that a scaling break at approximately 8–16 km
has been reported in the literature, in research works in which 1 km radar rainfall data
were analysed (Gires et al., 2012; Tchiguirinskaia et al., 2012). This means that the
rainfall data at spatial-scale regimes ranging from 1 to 8–16 km comply with the same or10

similar statistical or physical behaviour. This scaling range has also been used in other
applications to represent relatively local characteristics of rainfall fields (Bowler et al.,
2006). In addition, a 10-iteration singularity analysis was applied in order to ensure
that most of the singularity exponents could be extracted. The downside of having
many iterations is the longer computational time, which may be an issue for real-time15

applications. Nonetheless, in practice, approximately 4–6 iterations are sufficient for
effectively removing most of the singularity.

2.3 Incorporation of the local singularity analysis into the Bayesian merging
method

The underlying idea of the proposed method is to use the local singularity analysis20

to decompose each radar image into a non-singular image and a singularity map be-
fore applying the Bayesian merging. The non-singular radar image (NS-RD), which has
a distribution closer to normality (thus being more suitable for Gaussian-based treat-
ments), is merged with the point rain gauge data following the Bayesian procedure.
This yields a non-singular Bayesian merged field (NS-BAY). Afterwards, the singular-25
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ity map is applied back and proportionally to the NS-BAY merged field, thus yielding
a singularity-sensitive merged field (SIN). A schematic of the proposed singularity sen-
sitive Bayesian merging method is provided in Fig. 1b.

It is worth noting that the proposed singularity-sensitive merging method does not
always increase the reliability of RD estimates. Such increase only happens when the5

RD estimates exhibit high singularity and thus cannot be well handled using Gaussian
approximations.

3 Case study

The proposed SIN merging method is tested using as case study four storm events
observed in the Portobello catchment (Edinburgh, UK) during 2011 and for which radar10

estimates, dense rain gauge and flow records, as well as a recently-calibrated urban
drainage model were available. Portobello is a coastal town located 5 km to the east of
the city centre of Edinburgh, along the coast of the Firth of Forth, in Scotland (Fig. 2a).
The catchment is predominantly urban, of residential character. It stretches over an
area of approximately 53 km2, of which 27 km2 are drained by the sewer system. Of the15

drained area, 46 % corresponds to impervious surfaces. This includes a small western
part of Edinburgh city centre and the surrounding south-western region. The storm
water drainage system is predominantly combined with some separate sewers and
drains from the south-west to the north-east (towards the sea).

3.1 Available models and datasets20

3.1.1 Urban storm-water drainage model

A semi-distributed model of the storm-water drainage system of the Portobello catch-
ment, including its sewer system (Fig. 2b), was setup in the commercial modelling
package InfoWorks CS v13.0. In this model the whole catchment surface is split into
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sub-catchment units through which rainfall is applied (within each sub-catchment rain-
fall is assumed to be uniform). Each sub-catchment comprises a mix of pervious and
impervious surfaces whose runoff drains to a common outlet point, which corresponds
to an inlet node of the sewer system (i.e. a gully or a manhole). Each sub-catchment
is characterised by a number of parameters, including total area, length, slope, pro-5

portion of each land use, amongst others. Based upon these parameters, the runoff
volume at each sub-catchment is estimated using the NewUK rainfall–runoff model
(Osborne, 2001). The estimated runoff is then routed to the sub-catchment outlet us-
ing the Wallingford (double linear reservoir) model (HR Wallingford, 1983). Sewers are
modelled as one-dimensional conduits and flows within them are simulated based on10

the full de Saint-Venant equations (i.e. fully-hydrodynamic model).
The Portobello model contains a total of 1116 sub-catchments, with areas ranging

between 0.02 and 24.42 ha and a mean area of 2.3 ha. Sub-catchment slopes range
from 0.0 to 0.63 mm−1, with a mean slope of 0.031 mm−1. The model of the sewer sys-
tem comprises 2917 nodes and 2907 conduits, in addition to 14 pumps. The total length15

of modelled sewers is 250 km. The sewer system ranges in height from 186.6 mAOD at
Comiston to 3.8 mAOD along the Firth of Forth. 2 % of the modelled pipes have a gra-
dient between 0.1 and 0.25 mm−1, 55 % have a gradient between 0.01 and 0.1 mm−1,
and 43 % have a gradient < 0.01 mm−1.

Following UK standards (WaPUG, 2002) and using solely rain gauge data as input,20

the model of the Portobello catchment was verified in 2011 based upon three storm
events recorded during the medium term flow survey described below.

3.1.2 Local monitoring data (medium term survey)

Local rainfall and flow data were collected in the Portobello catchment through
a medium term flow survey carried out between April and June 2011. The survey com-25

prised 12 tipping bucket rain gauges and 28 flow monitoring stations (each comprising
a depth and a velocity sensor, based upon which flow rates were estimated). Both rain
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gauge and flow records were available at a temporal resolution of 2 min. The location
of the sensors is shown in Fig. 2b.

3.1.3 Radar rainfall data

The Portobello catchment is within the coverage of C-band radars operated by the UK
Met Office (Fig. 2b). Radar rainfall estimates for the same period as the local flow sur-5

vey (i.e. April–June 2011) were obtained through the British Atmospheric Data Centre
(BADC). These estimates were available at spatial and temporal resolutions of 1 km
and 5 min, respectively, and correspond to a quality controlled multi-radar composite
product generated with the UK Met Office Nimrod system (Golding, 1998), which in-
cludes corrections for the different errors inherent to radar rainfall measurements (Har-10

rison et al., 2000, 2009).

3.1.4 Storm events selected for analysis

During the monitoring period (April–June 2011), four relevant storm events were cap-
tured which comply with UK standards for calibration and verification of urban drainage
models (i.e. these events have instantaneous rainfall rates > 5 mmh−1 and accumu-15

lation > 5 mm) (Gooch, 2009). Three of these events (referred to as Storms 1, 2 and
3) were used for calibration of the urban drainage model of the Portobello catchment
(following UK standards, as mentioned above). In this study, all four storm events, in-
cluding one not used in the calibration of the model (Storm 4), were used to test the
proposed singularity-sensitive merging method. The dates and main statistics of the20

four selected events are summarised in Table 1. It is worth mentioning that, given the
response time of the catchment, as well as inter-event time definition thresholds (IETD)
recommended in the literature (Guo and Adams, 1998), a minimum IETD of 6 h was
used as criteria to differentiate rainfall events.

As can be seen in Table 1, Storms 1, 2 and 4 are of relatively short duration, whilst25

Storm 3 is of much longer duration. Moreover, well-structured storm cell clusters cross-
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ing the catchment area can be found in Storms 1, 3 and 4, but not in Storm 2. This is
reflected in the lower RG peak intensity observed in Storm 2.

3.2 Evaluation methodology

The performance of the proposed singularity-sensitive Bayesian method (SIN here-
after) is assessed by inter-comparison against radar (RD), rain gauge (RG) and block-5

kriged (BK) interpolated RG estimates, as well against adjusted estimates result-
ing from the original Bayesian (non singularity-sensitive) technique (BAY) and the
commonly-used mean field bias (MFB) adjustment method. It is important to note
that, in this work, the MFB was implemented in a relatively dynamic way by computing
a sample cumulative bias (Bt) at each time step as Bt =

∑
RGcatchment/

∑
RDco-located,10

where RGcatchment and RDco-located represent the rain gauge and the co-located radar
grid rainfall estimates over the experimental catchment during the last hour. The MFB
adjusted estimates are obtained by multiplying the bias (Bt) at each particular time step
by the original rainfall field; that is, MFB = Bt ·RD.

Two evaluation strategies were applied:15

1. Through analysis of the different rainfall estimates.

2. Through analysis of the hydraulic outputs obtained by feeding the different rainfall
estimates as input to the hydraulic model of the Portobello catchment and com-
parison of these with available flow records. Note that the RG estimates were
applied to the model using Thiessen polygons.20

Both evaluation strategies have advantages and disadvantages. The first strategy is
a natural and widespread way of assessing the performance of rainfall products. How-
ever, the fact that all precipitation estimates entail errors and that the true rainfall field
is unknown, in addition to the differences in the spatial and temporal resolutions of
RG and RD estimates (and the resulting merged rainfall products) renders any direct25

comparison of rainfall estimates imperfect (Brandes et al., 2001). The second strategy
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allows some of these limitations to be overcome, and is particularly useful when dense
flow records are available, as is the case in the Portobello catchment. However, it has
two main deficiencies: the fact that flow records (obtained based upon depth and veloc-
ity measurements) used in the evaluation contain errors, and the fact that the hydraulic
modelling results encompass uncertainties from different sources in addition to rain-5

fall input uncertainty (Deletic, 2012; Kavetski et al., 2006). In spite of these limitations,
both strategies provide useful and complementary insights into the performance of the
proposed SIN merging method.

3.2.1 Methodology for analysis of rainfall estimates

The performance of the SIN rainfall products in relation to other rainfall estimates (in-10

cluding RD, RG, BAY and MFB) is evaluated in terms of accumulations and rainfall rates
at the areal level (i.e. at a scale corresponding to the area over which the Portobello
catchment stretches) and at individual point gauge locations. In addition, a qualitative
assessment of the spatial structure of the different (gridded) rainfall products is carried
out based upon visual inspection of images of the rainfall fields at the time of areal15

average peak intensity.
In view of the high density and coverage of the RG network over the Portobello

catchment, the areal average RG estimates in the areal level analysis, are assumed
to be a good approximation of the “true” areal (average) rainfall over the experimen-
tal catchment (i.e. the areal reduction effect is expected to be minor (Bell, 1976)) and20

are therefore used as reference to evaluate the performance of the different areal grid-
ded rainfall estimates. The areal analysis includes comparison of event areal average
accumulations and peak intensities, as well as comparison of intensities throughout
the duration of each event (through scatterplots using RG areal average intensities as
reference).25

In the analysis of rainfall estimates at rain gauge point locations three performance
statistics are used. Firstly, a sample bias ratio (B) is used to quantify the cumulative bias
between gridded rainfall estimates (i.e. RD, BK, MFB, BAY and SIN) and RG estimates
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at each RG location over the event period under consideration. B = 1 means no cumu-
lative bias between the RG and the given gridded rainfall estimates (i.e. equal rainfall
accumulation recorded by RG and the gridded product at the given gauge location);
B > 1 means that the accumulations of the gridded estimates at the point locations are
greater than those recorded by RG, and B < 1 means the opposite. In addition to the5

comparison of rainfall accumulations, a simple linear regression analysis is applied to
each pair of “instantaneous” (rain rate) point RG records and the co-located gridded
estimates. The results of the regression analysis are presented in terms of R2 (coeffi-
cient of determination) and β (regression coefficient, i.e., the slope or gradient of the
linear regression). These two measures provide an indication of how well RG rates are10

replicated by the different rainfall estimates at each gauging location, both in terms of
pattern and accuracy. The R2 measure ranges from 0 to 1 and describes how much of
the “observed” (RG) variability is explained by the “modelled” (RD/BK/adjusted) one.
In practical terms, R2 provides a measurement of the similarity between the patterns
of the observed (i.e. RG) and “modelled” (i.e. gridded estimates) rainfall time series at15

a given gauging location. However, systematic bias (under- or over-estimation) of the
modelled estimates cannot be detected from this measure (Krause et al., 2005). The
regression coefficient, β, is therefore employed to provide this supplementary informa-
tion to the R2. β ≈ 1 represents good agreement in the magnitude of the rainfall rates
recorded by RG and those of the gridded estimates; β > 1 means that the rain rates20

associated to the gridded estimate are higher in the mean (by a factor of β) than those
recorded by RG; and β < 1 means the opposite (i.e. rain rates of gridded estimates are
lower in the mean than RG ones).

3.2.2 Methodology for analysis of hydraulic outputs

A qualitative analysis of the hydraulic outputs is carried out based upon visual inspec-25

tion of recorded vs. simulated flow hydrographs (for the different rainfall inputs) at dif-
ferent points of the catchment. Furthermore, similar to the rainfall analysis, a simple
linear regression analysis is applied to each pair of recorded and simulated flow time
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series (at each flow gauging location). The performance of the associated hydraulic
simulations is evaluated using the R2 and β statistics obtained from the linear regres-
sion analysis. In addition, the “weighted” coefficient of determination (R2

w) is employed
to quantify the joint performance of hydrological efficiency. This measure is defined as
(Krause et al., 2005):5

R2
w =

{
|β| ·R2 for β ≤ 1

|β|−1 ·R2 for β > 1
(7)

where higher R2
w values correspond to better hydraulic performance.

In order to minimise the influence of the errors in the flow measurements, the avail-
able flow records were quality-controlled (QC) before carrying out the statistical anal-
ysis of hydraulic outputs. The QC was carried out following UK guidelines (WaPUG,10

2002). It included analysis of depth vs. flow scatterplots at each monitoring location
(the shape and spread of the resulting scatterplots provides insights into the quality
and consistency of depth and velocity records at each site), as well as visual inspection
of the observed hydrographs at each location. Whenever a flow monitor was deemed
unreliable, it was manually removed from the analysis. Likewise, with the purpose of15

preventing systematic hydraulic modelling errors from affecting results, whenever the
model was found to be unable to replicate the recorded flows at a given location, the
given flow monitor was also manually removed from the analysis. This left us with a total
of 16 flow monitors for analysis. Moreover, all records associated with depth measure-
ments below 0.1 m were left out when estimating performance statistics; this is due20

to the fact that at low depths, both velocity and depth records become unreliable (the
0.1 m threshold was adopted based upon UK guidelines and recommendations from
studies focusing on the performance of flow gauges (Marshall and McIntyre, 2008)).
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3.3 Results and discussion

3.3.1 Rainfall estimates

Areal rainfall estimates

Table 2 shows the areal average (AVG) accumulations and peak intensities for the dif-
ferent rainfall products for the four storm events under consideration. As can be seen,5

the difference between RD and RG event areal average accumulations is generally
small, yet it is event-varying. For Storms 1 and 2, the areal average RG totals are
slightly overestimated by the RD estimates, while for Storms 3 and 4 they are under-
estimated, with the underestimation being largest in Storm 3. In terms of areal average
peak intensities, RD estimates appear to consistently underestimate the areal average10

peak intensities recorded by RG. The relative difference between RG and RD areal
average peak intensities is approximately 20–30 % for Storms 1 and 2, and it is as high
as 60 % for Storms 3 and 4. This indicates that the RD estimates could not satisfac-
torily capture the short-term dynamics of rainfall intensities and corroborates the need
for dynamic adjustment of RD estimates using local RG measurements.15

As would be expected, the BK estimates exhibit areal average accumulations and
peak intensities similar to those of the RG. Small differences are observed (in general
BK values are slightly lower than RG ones) which can be generally attributed to the
area-point rainfall differences (Anagnostou and Krajewski, 1999)). These differences
become more evident when analysing results at individual gauge locations (in next20

section).
When looking at the adjusted rainfall products (i.e. MFB, BAY and SIN), it can be

seen that all of them can improve the original RD estimates, but the degree of im-
provement is different for each method. As expected, the MFB successfully reduces
the difference in event areal average accumulations (i.e. bias), leading to areal average25

accumulations close to those recorded by RG. In terms of peak intensities, the MFB
method leads to some improvement, but the resulting peak intensities are still signif-
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icantly lower than the RG ones. Although the MFB was applied dynamically with an
hourly frequency of bias correction, these results suggest that more dynamic and spa-
tially varying (higher order) methods than the MFB are required in order to successfully
adjust radar rainfall estimates for urban hydrological applications.

The BAY estimates show the least improvement in terms of event bias, with a gen-5

eral tendency to underestimate RG areal accumulations, which is even more marked
than for BK estimates. This is particularly the case in Storms 3 and 4, in which strong
singularity structures, as represented by the high frequency of α values different from
2 (Fig. 3), were observed. This tendency to underestimate can be attributed to a com-
bined effect of the BAY method “over-trusting” the BK estimates (which show a slight10

underestimation tendency at the areal level), in addition to smoothing off the singularity
structures (often associated to strong intensities) originally present in the RD image.
With regard to peak intensities, the BAY estimates display a larger improvement than
the MFB ones, which demonstrates the benefits of more dynamic and spatially-varying
adjustment methods. However, the areal average peak intensities of the BAY estimates15

still underestimate the “true” (RG) areal peak intensities. Lastly, the SIN estimates, par-
ticularly SIN ranges 1–4, exhibit very good performance: both areal average accumula-
tions and peak intensities of SIN estimates are close to those of RG, and no systematic
over- or underestimation is observed in SIN estimates. The better performance of SIN
estimates suggests that the singularity analysis can in fact improve the original BAY20

merging method. With regard to the impact of the singularity range, it can be seen that,
as the range becomes narrower (from SIN1 to SIN5), the areal accumulations and peak
intensities tend to be higher. A particular steep increment is observed in the areal accu-
mulations and peak intensities of SIN5, in relation to the other singularity ranges, which
results in a slight overestimation of accumulations and peak intensities, as compared25

to the RG estimates. This is especially apparent in Storms 3 and 4. The increment in
rainfall accumulation and peak intensities as the singularity range becomes narrower
can be explained by the fact that at narrower ranges, only part of the singularity struc-
tures are removed before merging, and a big proportion of them remains in the radar
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image. This is evident from Fig. 3, where it can be seen that for Storms 3 and 4 a signif-
icant number of singularity exponents spread beyond the narrowest singularity range
(i.e. SIN5: α ∈ [1.75, 2.25]). The problem arises because some singularity features re-
main in the radar image before the BAY merging is applied, and these may be partially
preserved throughout the merging process. Afterwards, when the extracted singular-5

ity component is applied back and proportionally to the merged rainfall field, it may
interact (in a non-linear fashion) with the singularity structures preserved throughout
the BAY merging, thus leading to an overestimation of extremes (whether these are
enrichments or depletions). These results suggest that a better approach is to be sure
to remove most of the singularity structures before carrying out the merging. There-10

fore, very narrow ranges such as SIN5 should be avoided. In fact, it can be seen that
the intermediate range of SIN3 (i.e. α ∈ [1, 3]) covers most singularity exponents (see
Fig. 3). Indeed, using wider singularity ranges leads to very similar results as those ob-
tained when using the SIN3 range (notice the similarity between SIN1, SIN2 and SIN3
estimates in Table 2). This suggests that the singularity range of [1, 3] is appropriate.15

Figure 4 shows a further comparison of instantaneous areal average RG intensi-
ties vs. areal average BK, RD, BAY and SIN intensities throughout each of the storm
events under consideration. As expected and in line with the analysis above, the areal
BK estimates are generally in good agreement with areal RG estimates. Some un-
derestimations can be observed at high RG rainfall intensities; nonetheless, most of20

them are fairly minor and are still within a reasonable range which can be attributed to
areal-point differences. With regard to the RD estimates, it can be seen that they tend
to overestimate small rainfall intensities and underestimate the peak intensities, with
underestimation being more evident in the events with relatively high intensities (i.e.
Storms 1, 3 and 4). Unlike BK estimates, the difference between areal RD and RG peak25

intensities is too large to be entirely explained by areal-point differences. The fact that
the RD estimates display relatively good performance in (long-duration) accumulations
but not in (short-duration) instantaneous intensities corroborates the claim that RD es-
timates fail to capture the short-term dynamics of small-scale rainfall. As mentioned in
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Sect. 1, the main reason for this lies in the use of a static Z −R conversion function,
which represents a statistical compromise for the range of rainfall rates that frequently
occur (whereas the occurrence of very small and large intensities is relatively rare).
Concerning the MFB method, from Fig. 4 it can be seen that it fails to satisfactorily
improve RD instantaneous rainfall rates; this is particularly evident at high intensities,5

at which, similarly to RD estimates, MFB estimates perform poorly. An accurate repre-
sentation of peak intensities is of outmost importance in the modelling and forecasting
of urban pluvial flooding. This confirms that, being a 1st-order technique, the MFB ad-
justment method may be insufficient for urban-scale applications. In contrast, it can
be seen that over- and underestimation errors in RD estimates can be improved by10

2nd- or higher-order adjustment techniques, such as BAY and SIN. In fact, in terms
of instantaneous rainfall rates the BAY estimates display a significantly better perfor-
mance than the MFB ones. However, the BAY estimates still fail to properly reproduce
the highest intensities. These shortcomings of the BAY method seem to be overcome
by the incorporation of the singularity analysis: indeed, the SIN estimates exhibit the15

best overall performance, particularly at peak intensities. In agreement with the results
displayed in Table 2, in Fig. 4 it can be seen that as the singularity range becomes nar-
rower, rainfall estimates with slightly higher intensities are generated. Moreover, it can
be noticed that wider singularity ranges lead to more conservative results and appear
to be a good choice.20

Rainfall estimates at gauging locations

The aforementioned features of the different rainfall estimates are further highlighted
through analysis at each rain gauge location; the associated statistics, including sam-
ple bias (B), regression coefficient (β) and coefficient of determination (R2), are sum-
marised in Fig. 5.25

As expected, the RD estimates (before adjustment) display the largest differences
from point RG estimates: in general, they possess the largest cumulative bias (B) and
the lowest R2, and their statistics show great variability. Moreover, the distribution of the
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β values indicates that RD estimates tend to largely underestimate RG instantaneous
rainfall rates. This is the case for all storm events, except for Storm 2, for which rainfall
intensities were low on average.

Similarly to the results of the areal (average) analysis, the individual-site BK esti-
mates display the closest behaviour to the RG ones. This is of course expected given5

that the BK estimates are obtained by simple interpolation of point RG data. It can
be seen that the BK estimates are nearly unbiased (B is very close to 1) and pos-
sess the highest R2 medians (i.e. closest to 1), as well as the narrowest R2 boxes and
whiskers. However, when looking at the distribution of β values of the BK estimates,
it can be seen that most of the time the whole boxes and whiskers are below 1. This10

reflects a systematic underestimation of rainfall rates at point gauging locations, which
is discussed below.

With regards to the adjusted rainfall estimates, the MFB method is found to bring
original radar estimates slightly closer to RG ones, but the improvement seems insuf-
ficient. As expected, the main improvement of MFB estimates is found in the bias (B),15

which is significantly reduced (thus becoming closer to 1). In terms of instantaneous
rainfall rates, the improvement provided by MFB is very limited. This is reflected in the
low R2 values and in the poor β scores, which remain remarkably close to those of the
original RD estimates. Similar to the results of the areal analysis, these results suggest
that the MFB adjustment method is insufficient for urban-scale applications, in which20

small scale rainfall dynamics are critical.
When looking at the statistics of the BAY estimates, it can be noticed that these be-

have very similarly to the BK ones: their bias is also small, the R2 is generally high
and the β values are systematically below 1. The similarity in the behaviour of BK and
BAY estimates suggests that for the selected events, the BAY method tends to trust25

the (smooth interpolated) BK estimates more than the RD estimates. As explained
in Sects. 1 and 2, this is the main shortcoming of the BAY method. The systematic
underestimation of rainfall rates observed in BK and BAY estimates (reflected by β
values systematically below 1) can be partially explained by the areal reduction effect.
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However, considering that the individual-site comparison was conducted using instan-
taneous rainfall estimates for very short time intervals (i.e. 5 min), one would expect
the tendency of the areal-point differences to be of higher randomness, rather than of
a systematic nature. This suggests that the systematic underestimation may be a joint
consequence of the areal reduction effect and of the underlying 2nd-order approxima-5

tion (which smooths off some local extreme magnitudes).
With regards to the SIN estimates, it can be seen that their bias is small (close to

1) and that the distribution of their R2 values is somewhere between that of the BAY
and RD estimates. This indicates that, as compared to the original BAY estimates, the
SIN method incorporates more spatial features from the RD estimates throughout the10

merging process, while retaining the accuracy of the RG estimates. In terms of β, it
can be seen that although the median values are usually below one (except for those
of Storm 1), their distribution is more variable than that associated to BK and BAY
estimates (which display a systematic underestimation). In line with the results of the
areal analysis, this serves to further highlight two important features of the proposed15

SIN method: it generally respects the commonly-observed areal reduction effect, and
it integrates more small scale randomness from RD data in the data merging process.
Regarding the singularity ranges, a similar behaviour can be observed for all of them,
although a slight tendency can be observed for the bias (B) and β values to increase
as the singularity range becomes narrower. This is in agreement with the results of the20

areal analysis and suggests that working with intermediate ranges, as opposed to very
narrow ones which can truncate the singular structures is advisable.

Spatial structure of rainfall fields

Snapshot images of the different gridded rainfall products at the time of peak areal
intensity for the 4 storm events under consideration are shown in Fig. 6. Due to space25

constraints, images of only one of the SIN ranges (the intermediate one, SIN3: α ∈
[1, 3]) are shown in this figure. As mentioned in the previous sections, the SIN3 range
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covers most of the singularity indices and consistently led to good results for the storms
under consideration.

It can be seen that the spatial structure of the BK rainfall field (fully based upon rain
gauge data) is highly symmetric and smooth, and is rather unrealistic. With regards to
the adjusted rainfall products (MFB, BAY and SIN), it can be noticed that the propor-5

tion of radar (RD) and BK interpolated rain gauge features that are preserved varies
according to the method. The MFB fields fully inherit the spatial structure of the RD
fields; the only change is that the actual intensity values are scaled up or down by an
areal ratio derived from the sample bias between mean rain gauge and radar rainfall
estimates. In agreement with the quantitative results presented above, it can be seen10

that the structure of the BAY peak rainfall fields is in general very similar to that of
the BK ones and is smoother than the original RD image. Singularity structures are
often present in rainfall fields during peak intensity periods (such as the ones shown
in Fig. 6). As explained in Sect. 2, the presence of these structures causes the RD
fields to be considered highly uncertain and therefore these are less trusted in the BAY15

merging process. This results in BAY peak intensity merged fields closer to the BK
ones, instead of to RD ones. Some spatial features from RD can be still observed in
the BAY fields, for example, in the top-left corner of the BAY image of Storm 1 (see
Fig. 6, top). However, these features appear to be much smoother and spreading over
a larger area, as compared to their structure in the original RD image. As compared20

to the BAY peak rainfall fields, the SIN fields display less smooth and more realistic
structures which preserve more features of the original RD fields. Some spatial fea-
tures of the BK fields can be still seen in the SIN fields, particularly in areas with fewer
singularity structures (in the RD images) and with a more Gaussian behaviour (e.g. top
right corner of the SIN image of Storm 4 – Fig. 6, bottom). In general, the inspection of25

the snapshot images of the different rainfall products confirms the findings of the areal
and point gauge analyses regarding the ability of the SIN method to better preserve
the singularity structures present in rainfall fields (and captured by RD) throughout the
merging process, as compared to the original BAY merging method.
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3.3.2 Hydraulic model results

Figure 7 shows example observed vs. simulated flow hydrographs (for the different
rainfall inputs) at four gauging locations (see locations in Fig. 2) during Storm 3. Note
that Storm 3 is an event with high rainfall accumulations, rainfall rates and strong sin-
gularity structures. Figure 8 summarises the performance statistics resulting from the5

simple linear regression analysis (i.e. β, R2 and R2
w) conducted at each flow gauging

station for each storm event.
From the hydrographs in Fig. 7 it can be seen that in terms of pattern and timing, all

simulated flows (resulting from the different rainfall inputs) are generally in good agree-
ment with observations. This indicates that all rainfall products, including the RD before10

adjustment, can well capture the general dynamics of rainfall fields. The main difference
between the simulated flows lies in their ability to reproduce flow peaks, which in turn is
a function of the ability of the different rainfall estimates to reproduce peak rainfall rates
in terms of magnitude, timing and spatial distribution. In line with the results of the rain-
fall analysis, the flow hydrographs associated with BK estimates are close to the ones15

associated with RG records; however, the former display a smoother behaviour and
generally lead to flow peaks that are lower than the recorded ones and the ones result-
ing from RG inputs. The RD outputs can well match some of the observed flow peaks,
but significantly underestimate others (e.g. flow peak at around 23 h in FM10); this can
be attributed to the underestimation of peak intensities observed in RD estimates. The20

MFB associated flows show little improvement over the RD ones and in many cases
they even lead to a worse performance (e.g. see overestimation of peak flows at around
02:00 UTC in FM14 and FM19). This is further confirmed by the statistics in Fig. 8 and
corroborates the claim that the application of a “blanket” MFB correction over the area
of interest is insufficient for urban applications. The BAY outputs, on the other hand,25

show a consistent improvement over the RD outputs. Nonetheless, in agreement with
the results of the rainfall analysis, the BAY estimates behave very similarly to the BK
ones and lead to smooth flow peaks which often underestimate observations. The SIN
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outputs also show a consistent improvement over RD estimates, but, unlike BAY out-
puts, the SIN outputs do not smooth off flow peaks and instead show a better ability
to reproduce these, sometimes leading to a better match of observed flow peaks than
RG associated outputs (which were used as input for the calibration of the model). With
regards to the singularity ranges, it can be seen that the differences observed in the5

SIN1–SIN5 rainfall estimates are mostly filtered out when converting rainfall to runoff.
As a result, the flow outputs of all SIN estimates are very similar and their hydrographs
can barely be differentiated.

The preliminary conclusions drawn from the visual inspection of the selected hy-
drographs are corroborated by the statistics in Fig. 8. As would be expected, the RG10

outputs generally show the best performance in all statistics (except for Storm 2). It
is nonetheless noteworthy that the β values for RG estimates (for which the model
was calibrated) are generally below 1. This reveals a slight bias of the model to under-
estimate flows and partially explains the fact that β values associated with all rainfall
inputs are mostly below 1. With regards to the BK (i.e. interpolated RG) associated15

outputs, the tendency to underestimate, which is observed in the rainfall analysis, be-
comes even more evident in the hydraulic outputs: BK’s β values are significantly lower
than 1 and lower than the β values associated with RG estimates. Different from the
results of the rainfall analysis, in which those products closest to RG estimates (in-
cluding BK) displayed the best performance in terms of R2, in the hydraulic analysis20

BK outputs generally lead to a deterioration in R2 values (see statistics of Storms 2,
3 and 4). This suggests that the smoothing caused in the BK interpolation affects the
small scale dynamics of rainfall fields, leading to poor representation of associated flow
dynamics. Contrary to RG associated outputs, RD flow estimates generally display the
worst performance. In agreement with the results of the rainfall analysis, RD outputs25

show a tendency to largely underestimate flows (as indicated by β values well below
one and much lower than those obtained for RG outputs). Moreover, they display rel-
atively low R2 and associated R2

w values. Nonetheless, a special case is observed in
Storm 2, when RD estimates, which in the rainfall analysis displayed the poorest per-
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formance, yielded the best flow simulations, thus emphasising the added value that
RD estimates can provide, as well as the complementary information provided by the
hydraulic evaluation strategy. In the cases in which RD outputs perform poorly (i.e. in
Storms 1, 3 and 4), all adjusted rainfall estimates lead to improvements over RD hy-
draulic results, with the degree of improvement varying according to the adjustment5

technique. In Storm 2, when RD outputs displayed the best performance, the different
merging methods showed to retain different degrees of RD features. Overall, it can be
seen that the MFB estimates provide little improvement over the original RD estimates.
In the cases in which RD led to systematic underestimation of flows, the MFB esti-
mates managed to slightly reduce this underestimation by bringing β values closer to10

1, as compared to those of the original RD estimates. However, in Storm 2, in which
RD outputs performed best, MFB caused a large deterioration of β values, whereas
the SIN estimates managed to keep β scores closer to 1. In terms of R2, the MFB esti-
mates do not provide much improvement and can actually lead to a deterioration of this
statistic (e.g. Storms 2 and 4), suggesting that the application of the MFB adjustment15

can alter the spatial–temporal structure of the original RD fields. The BAY outputs show
a greater improvement than MFB, particularly in terms of R2. Nonetheless, in agree-
ment with the rainfall analysis and with the visual inspection of hydrographs, the BAY
outputs behave remarkably similarly to BK ones. One of the main features of the BAY
outputs is that they lead to systematically lower flows than RG estimates (note β values20

consistently lower than those of RG outputs). This confirms the smoothing of rainfall
peaks that occurs when 2nd-order approximations are applied. Lastly, it can be seen
that the SIN outputs display the greatest improvement over original RD outputs, both
in terms of correcting systematic bias, as well as in terms of well reproducing rainfall
and associated flow patterns. As compared to MFB and BAY outputs, the SIN outputs25

generally display β values closer to 1, higher R2 values (sometimes even higher than
those of RG outputs) and consequently higher R2

w values. The better performance of
SIN hydraulic outputs over BAY ones, particularly in terms of β, provides an a posteriori
confirmation that it was right, in the SIN method, to view the singularities in the radar

1882

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/1855/2015/hessd-12-1855-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/1855/2015/hessd-12-1855-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 1855–1900, 2015

Singularity-sensitive
data merging

L.-P. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

field as actual features of the real rainfall. Same as was observed in the hydrographs
in Fig. 7, the performance of the different SIN ranges is very similar. In line with the re-
sults of the rainfall analysis, SIN5 shows a slight tendency towards higher flows, which
sometimes resulted in better hydraulic statistics. Nonetheless, the differences are small
and based upon the findings of the rainfall analysis, the adoption of a wider SIN range5

and removal of most singularities appears to be a more conservative option. However,
this aspect must be further investigated using a wider range of storm events and pilot
catchments.

4 Conclusions and future works

In this paper, a new gauge-based radar rainfall adjustment method was proposed,10

which aims at better merging rainfall estimates obtained from rain gauges and radars,
at the small spatial and temporal scales characteristic of urban catchments. The pro-
posed method incorporates a local singularity analysis into the Bayesian merging tech-
nique (Cheng et al., 1994; Todini, 2001). Through this incorporation, the merging pro-
cess preserves the fine-scale singularity (non-Gaussian) structures present in rainfall15

fields and captured by radar, which are often associated with local extremes and are
generally smoothed off by currently available radar-rain gauge merging techniques,
mainly based upon Gaussian approximations.

Using as case study four storm events observed in the Portobello catchment
(53 km2) (Edinburgh, UK) in 2011, the performance of the proposed singularity sen-20

sitive Bayesian data merging (SIN) method, in terms of adjusted rainfall estimates and
the subsequent runoff estimates, was evaluated and compared against that of the orig-
inal Bayesian data merging (BAY) technique and the widely-used mean field bias cor-
rection (MFB) method. This analysis clearly brought out the benefits of introducing the
singularity-sensitive method. The results suggest that the proposed SIN method can25

effectively identify, extract and preserve the singular structures present in radar im-
ages while retaining the accuracy of rain gauge (RG) estimates. This is reflected in
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the better ability of the SIN method to reproduce instantaneous rainfall rates, rainfall
accumulations and associated runoff flows. This method clearly outperforms the com-
monly used MFB adjustment, which simply fails to reproduce the dynamics of rainfall in
urban areas, and the original BAY method, which shows an overall good performance
but smooths off peak rainfall magnitudes, thus leading to underestimation of runoff ex-5

tremes.
In this study the sensitivity of the SIN results to the “degree” of singularity that is

removed from the radar image and preserved throughout the merging process was also
tested. While the impact of it was found to be generally small, the results suggest that
partially removing singularities could have a negative impact on the results. Therefore,10

removing most singularity exponents from the original radar image is advisable.
Another aspect which must be further explored is a slight tendency of the singularity-

sensitive merged rainfall products to overestimate rainfall rates and accumulations.
This is likely to be due to the asymmetric distribution of singularity exponents and
the numerical stability of singularity extraction from a small set of data samples. This15

drawback could be improved by forcing the mean of non-singular components to remain
equal to the original radar estimates (Agterberg, 2012a). The alternative solution is to
seek other techniques of singularity identification and extraction; for example, the use
of wavelet transformation is widely recommended in the literature (Kumar and Foufoula-
Georgiou, 1993; Mallat and Hwang, 1992; Robertson et al., 2003; Struzik, 1999).20

In summary, the proposed singularity method has shown great potential to improve
the merging of radar and rain gauge data for urban hydrological applications. However,
further testing including more storm events and pilot catchments is still required in order
to ensure that the results are not case specific and to draw more robust conclusions
about the applicability of the proposed method.25

The Supplement related to this article is available online at
doi:10.5194/hessd-12-1855-2015-supplement.
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Table 1. Selected rainfall events over the Portobello catchment.

Duration RG Total RG Peak RD Total RD Peak
Event Date (h) (mm) Intensity (mm) Intensity

(mmh−1) (mmh−1)

Storm 1 6–7 May 2011 7 9.25 11.21 9.67 7.93
Storm 2 23 May 2011 7 7.70 5.03 11.02 4.10
Storm 3 21–22 Jun 2011 24 32.96 8.46 26.21 3.33
Storm 4 8 Jun 2011 11 5.03 7.11 4.69 2.41

Note: The accumulation and peak intensity values shown in this table correspond to areal mean values for
the entire domain under consideration (as shown in Fig. 2b).
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Table 2. Areal average rainfall accumulations and peak intensities for the different rainfall prod-
ucts.

Input Storm 1 Storm 2 Storm 3 Storm 4

AVG rainfall RG 9.25 7.70 32.96 5.03
accumulation RD 9.80 11.02 26.21 4.69
(mm) BK 8.87 7.77 31.41 4.08

MFB 8.64 7.25 31.87 4.55
BAY 8.76 7.79 27.24 3.81
SIN1 9.37 7.95 33.37 4.82
SIN2 9.37 7.95 33.38 4.83
SIN3 9.38 7.95 34.43 4.85
SIN4 9.41 7.96 33.73 4.94
SIN5 9.61 8.04 31.57 5.23

AVG rainfall peak RG 11.21 5.03 8.46 7.11
intensity over 5 min RD 7.93 4.10 3.33 2.41
(mmh−1) BK 10.66 4.54 7.59 5.09

MFB 9.06 4.68 4.05 3.34
BAY 10.47 3.80 6.82 4.92
SIN1 13.17 5.08 8.00 6.97
SIN2 13.17 5.08 8.00 6.97
SIN3 13.17 5.08 8.00 6.98
SIN4 13.19 5.08 8.01 7.03
SIN5 13.53 5.09 8.27 7.25
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Point rain gauge datat

Block-Kriged (BK) rain gauge fieldt

Radar rainfall imaget

Non-singular Radar – Rain gauge error fieldt

Non-singular BAY merged rainfall fieldt

a. Block-Kriging

b. Radar – rain gauge comparison

c. Kalman Filter

Non-singular (NS) 
radar imaget

Singularity Indicest

*Singularity extraction

Singularity-sensitive BAY merged rainfall fieldt

*Singularity recovery

Point rain gauge datat

Block-Kriged (BK) rain gauge fieldt

Radar rainfall imaget

Radar – Rain gauge error fieldt

BAY merged rainfall fieldt

a. Block-Kriging

b. Radar – rain gauge comparison

c. Kalman Filter

(a) ORIGINAL BAYESIAN MERGING METHOD (b) SINGULARITY-SENSITIVE BAYESIAN MERGING METHOD

Figure 1. Schematics of (a) Original Bayesian merging method (figure adapted from Fig. 2 in
Mazzetti, 2012) and (b) Singularity-Sensitive Bayesian merging method.
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Figure 2. Portobello catchment (a) general location; (b) sensor location, sewer network and
radar grid over the catchment. The flow gauges FM 1, 8 and 23 (the circled round markers in
(b), respectively located at the up-, mid- and downstream of the catchment) are particularly
selected for visual inspection in Section.
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Figure 3. Histogram of singularity exponents (α) at the time of areal peak intensity for the four
selected storm events.
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Figure 4. Scatterplots of instantaneous areal average RG vs. RD/BK/MFB/BAY/SIN rainfall
rates over the Portobello catchment for the four selected events, where SIN1–SIN5 represents
the SIN estimates with different “truncated” singularity ranges (from widest to narrowest).
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Figure 5. Boxplots displaying the distribution of B (left column), β (middle column) and R2

(right column) for regressions of the different gridded rainfall estimates at individual rain gauge
locations against the RG rainfall.
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Figure 6. Snapshot images of the different spatial rainfall products at the time of peak areal in-
tensity for Storms 1 (top) to 4 (bottom) over the Portobello catchment. From left to right: RD, BK,
MFB, BAY and SIN5 (with singularity range [1, 3]) estimates. The black polygon indicates the
boundary of the Portobello catchment, and the black and white markers respectively represent
the location of flow and rain gauges.
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Figure 7. Observed vs. simulated flow hydrographs at selected flow gauging sites of Portobello
catchment during Storm 3. Selected gauging sites: (a) FM3: upstream end of the catchment;
(b) FM10: mid-stream area; (c) FM14: upstream end of a small branch of the sewer system;
(d) FM19: downstream end of the catchment. The location of the selected monitoring sites is
shown in Fig. 2.
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Figure 8. Boxplots displaying the distribution of β (left column), R2 (middle column) and R2
w

(right column) statistics derived from the linear regression analysis conducted for each pair of
recorded and simulated flow time series at each gauging location.
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