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Abstract 
The impact of mid-century climatic changes on crop productivity of winter wheat, maize, potato and sugar beet 

was assessed for a temperate maritime climate in the Flemish Region, Belgium. Climatic projections of multiple 

regional and global climate models (RCMs from the EU-ENSEMBLES project and GCMs from the Coupled 

Model Intercomparison Project phase 3) were stochastically downscaled by the LARS-WG weather generator for 

use in the crop models AquaCrop and Sirius. Primarily positive effects on mean yield were simulated. Crops 

benefitted from elevated CO2., and from more radiation interception if the cropping period was adapted in 

response to higher temperatures. However, increased productivity was linked with increased susceptibility to 

water stress and greater inter-annual yield variability, particularly with adapted management. Impacts differed 

among and within ensembles of climate models, and among crops and environments. Although RCMs may be 

more suitable for local impact assessments than GCMs, inter-ensemble differences and contingent wider ranges 

of impacts with GCM projections found in this study indicate that applying RCMs driven by a limited number of 

GCMs alone would not give the full range of possible impacts. Further, this study suggests that the simulated 

inter-model variation can be larger than spatial variation within the region. These findings advocate the use of 

both GCM and RCM ensembles in assessments where temperature and precipitation are central, such as for crop 

production.  
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Introduction 

Crop production is dependent on climate, hence sensitive to climatic changes. In Europe, benefits from climatic 

changes may subsist in northern latitudes, whereas at lower latitudes afflictions predominate (Ewert et al. 2005; 

Bindi and Olesen 2011; Himanen et al. 2013). Studies showed northward expansion of suitable growing areas 

with rising temperature (Maracchi et al. 2005; Fronzek and Carter 2007; Bindi and Olesen 2011). Yet, high 

temperatures also cause faster accumulation of growing degrees, hence fewer days before thermal requirements 

for crop development are met. This leads to lower biomass accumulation without cropping management 

adaptation (Guereña et al. 2001; Audsley et al. 2006). Heat during flowering poses additional threat (Semenov 

and Shewry 2011; Moriondo et al. 2011). Elevated atmospheric CO2 concentration ([CO2]) can increase 

assimilation rates and improves crop water use efficiency ( Vanuytrecht et al. 2012). Altered precipitation may 

cause water shortage or water-logging (Giannakopoulos et al. 2009). Besides changes in mean climate, altered 

climate variability also affects yield (Mearns et al. 1997; Porter and Semenov 2005; Moriondo et al. 2011). 

Because impacts are crop- and region-specific, local assessments provide useful information on upcoming 

challenges and possible adaptation. 

 Process-based crop models are appropriate to assess future yield. Projections from global or regional climate 

models (GCMs and RCMs) can serve as input for local studies after statistical downscaling and/or proper bias 

correction (Christensen et al. 2008; Ehret et al. 2012; Willems et al. 2012a). RCMs provide dynamically 

downscaled GCM output, hence represent processes at sub-GCM-grid scales better (Wang et al. 2004; Fowler et 

al. 2007; Feser et al. 2011). They are assumed more suitable for impact assessments at small scale. Studies for 

maize and wheat (Mearns et al. 2001) and for maize and soybean (Fronzek and Carter 2007) showed different 

simulated impacts with RCM versus GCM projections. Still, little is known on whether and how an ensemble of 

multiple RCMs would affect probabilistic impacts differently from an ensemble of GCMs. 

 The objective of this study is to assess impacts of downscaled projections of multi-model ensembles of 

GCMs and RCMs on crop productivity in a temperate climate, including shifted sowing dates and cultivar 

lengths as adaptation strategy. A case-study is made for key crops (winter wheat, maize, potato and sugar beet) 

in the Flemish Region, Belgium, being the first simulation study in this region that probabilistically quantifies 

crop productivity changes considering a multitude of climate projections from RCMs and GCMs, crop responses 

to elevated [CO2] and realistic adaptation practices.  

 

 

Methods 

Study area 

Climate impacts on crop productivity were assessed in the Flemish Region, Belgium (51.5°-51.7°N, 2.6°-5.9°E). 

Precipitation is nearly uniformly distributed over the year. In the baseline period, annual rainfall varied between 

750 and 850 mm; maximum and minimum monthly temperatures were 23.2 and 1.0°C, respectively. Daily 

precipitation is typically spatially variable. Yet, with its mostly flat topography and limited size (13 521 km²), 

the area is considered nearly homogeneous in temperature and reference evapotranspiration (ETo) except for a 

30 km-wide strip along the coastline that is influenced by the sea (Baguis et al. 2010). To represent the Flemish 

Region, one locations in each zone (inland versus coast) was selected: Huldenberg (50.8°N, 4.6°E; 47 m.a.s.l.) 

and Veurne (51.1°N, 2.6°E; 0 m.a.s.l.).  

 Key crops in Belgium are winter wheat (Triticum aestivum L.), maize (Zea mays L.), potato (Solanum 

tuberosum L.) and sugar beet (Beta vulgaris L.). Winter wheat is traditionally grown between late October and 

July/August. Maize, potato and sugar beet are sown in spring (April) and harvested in September-November. 

Siltloam soils with a high total available water content (TAW, held between field capacity and wilting point) are 

common. Locally, soils with a lower TAW are present (loamsand inland and clayloam near the coast).  
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Climate data 

Climate data were generated for the baseline (1981-2010) and future (2031-2050) period with the LARS-WG 

weather generator (Semenov et al. 2010; Semenov and Stratonovitch 2010). LARS-WG was used to downscale 

GCM and RCM projections because the relatively low resolution of GCM (200-300 km) and even RCM (25-50 

km) output causes systematic errors when reproducing small-scale weather patterns for a local study, particularly 

for precipitation (Christensen et al. 2008; Ehret et al. 2012; Willems et al. 2012a). Various statistical methods 

exist that correlate coarse climate model output to local climate variables, including regression, weather-typing 

and stochastic downscaling (Wilby and Wigley 1997; Fowler et al. 2007; Willems et al. 2012b). Online Resource 

1 gives fundamentals and justification for use of the stochastic downscaling technique in general and LARS-WG 

specifically. Local data for the sites representative for distinct zones in the Flemish Region (Huldenberg inland 

versus Veurne near the coast) were generated based on site parameters characterizing local weather variable 

distributions. These parameters are available in LARS-WG at 25 km grids across Europe and have been 

validated for the Flemish Region (Vanuytrecht et al. 2014b). 

 Each dataset (including precipitation, minimum temperature, maximum temperature, solar radiation, and 

ETo) consisted of 240 years, a number high enough to ensure adequate risk assessment (Racsko et al. 1991; 

Semenov et al. 1998). These years are stochastic members of a distribution and thus one by one representative 

for the whole period (either baseline or future). 240 years of baseline data were generated to exclude potential 

bias from comparing unequal numbers of observed baseline and generated future data as protruded by the 

weather generator.  

 Baseline [CO2] was assumed 361 µmol·mol
-1 

(observed at Mauna Loa Observatory in 1995). Future [CO2] 

was assumed 491 µmol·mol
-1 

(projected for 2040-A1B; Nakicenovic et al. 2000).  

 

 

Future climate projections 

Multi-model ensembles allow to quantify uncertainty in projections resulting from structural differences in 

climate models, and facilitate probabilistic projection of climatic changes (Tebaldi and Knutti 2007; Knutti et al. 

2010). Two ensembles provided climate projections for 2031-2050: one with 15 GCMs from the Coupled Model 

Intercomparison Project phase 3 (CMIP3) with resolution 150-400 km (Meehl et al. 2007); one with nine RCMs 

from the EU-ENSEMBLES project (ENS) with resolution 25 km (van der Linden and Mitchell 2009) (Online 

Resource 2). As different emission scenarios towards 2050 have small differences in [CO2] and similar effects on 

crop yield (Audsley et al. 2006; Olesen et al. 2007), only the A1B forcing emission scenario was envisaged for 

all climate models. A1B is the global economic scenario that shapes the European Union's energy policy and the 

only scenario considered in the EU-ENSEMBLES project. The signals extracted from the climate models were 

the changes in monthly mean variables, except for daily precipitation changes for ENS (Calanca and Semenov 

2013). The climate signals were extracted for the grids where the study locations are situated and further 

downscaled with LARS-WG.  

 Simulations in this study were limited to the middle of the century for several reasons. The most important 

was the introduction of more uncertainty when moving further in the future. Also, RCM projections were not 

generally and readily available until 2100 in the ENSEMBLES project (van der Linden and Mitchell 2009; 

Calanca and Semenov 2013). Furthermore, near-future predictions are more relevant for the design of adaptation 

or mitigation measures.  

 

Impact assessment 

Crop models 

Impacts were simulated with the multi-crop model AquaCrop (Steduto et al. 2009; Raes et al. 2009; Vanuytrecht 

et al. 2014a) for maize, potato and sugar beet. AquaCrop is a point-based, water-driven model that has been 

widely used (Stricevic et al. 2011; Abrha et al. 2012; Mkhabela and Bullock 2012; Shrestha et al. 2013; Mhizha 

et al. 2014) and allows simulation under future conditions, including elevated [CO2] (Vanuytrecht et al. 2011). 

Impacts for winter wheat were assessed with the Sirius model (Jamieson et al. 1998) because AquaCrop lacks 

vernalization and dormancy responses. Sirius is a wheat-specific radiation-driven model. It has been evaluated 

under a wide range of conditions, including ambient and elevated [CO2] (Jamieson and Semenov 2000; Jamieson 
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et al. 2000). Online Resource 3 describes key crop responses to climate variables of AquaCrop and Sirius. 

Complete model descriptions are given by Raes et al. (2009) and Jamieson et al. (1998), respectively.  

 

Model calibration 

The models’ crop parameters (Online Resource 4) were calibrated for the study area and subsequently validated 

against independent subsets of field data (including soil water content, crop canopy cover, phenology, biomass 

and yield throughout the season) collected on farmers' fields between 1999 and 2010 (Vanuytrecht 2013). 

Calibration included consecutively comparing simulations with observations, updating model parameters and 

improving the models' performance. Performance was evaluated with the relative root mean square error 

(rRMSE; Eq.1) and Nash-Sutcliffe coefficient of efficiency (EF; Nash and Sutcliffe 1970; Eq. 2).  
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with Fi and Oi simulated and observed values; n number of observations; O mean value of Oi. 

 

rRMSE is a percentage with values closer to zero indicating better simulation capacity. rRMSE ranges <10%, 

10-20%, 20-30% and >30% represent excellent, good, fair and poor performance, respectively (Jamieson et al. 

1991). EF is unitless and varies between -∞ and +1 with values closer to unity indicating better simulation 

efficiency. EF ranges >0.7, 0.35-0.7, 0-0.35 and <0 represent excellent, good, fair and poor performance, 

respectively. 
 

 

Impact simulation 

Generated baseline and future climate data from individual climate models, and associated [CO2] served as 

model input for each location. Additionally, runs with future climate data but baseline [CO2] were performed. 

Median impacts were computed for each of the 24 sets of 240 years climate data. These were assembled in 

boxplots, one for CMIP3 and one for ENS, for evaluation against the median baseline index. A boxplot 

illustrates the range of predicted impacts associated with the uncertainty in climate change as projected by the 

multi-model ensemble. The dual representation in boxplots allows comparison of impacts under GCM and RCM 

projections. The flow from climate projection to impact boxplot is schematized in Online Resource 5.  

 Water-limited yield (Y; t·ha
-1

) and potential yield (Ypot, without water or nutrient stresses; t·ha
-1

) were 

simulated. Inter-annual yield variability was assessed by the coefficient of variation for water-limited yield 

(CVy) of 240 runs (Eq.3). Additionally, the length of the growing period (LGP) and a drought stress index (DSI) 

were determined (Eq.4). The 95-percentile of DSI (DSI95) is the yield lost due to drought stress every 20 years 

on average.  

 

 
y

y

y

CV



        (Eq.3) 

    

with σ standard deviation and μ mean (t·ha
-1

). 
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pot

pot

Y Y
DSI

Y


       (Eq.4) 

 

 

with Ypot potential and Y water-limited yield (t·ha
-1

). 

 

 

Sensitivity to environmental growing conditions 

The sensitivity of impacts to environmental growing conditions was tested at three levels (Table 1): location 

(inland versus coast), soil (high versus low TAW) and crop management (traditional versus adapted). Adapted 

management was simulated as altered cultivation timing to make best use of the growing season (in terms of 

radiation and precipitation), i.e. shifting sowing date and harvest date by growing cultivars with high temperature 

requirement. For winter crops, sowing is delayed as optimal thermal conditions for sowing occur later. For 

spring-sown crops, the sowing advancement in response to warming agrees with simulations for mid-latitudes in 

Europe (Olesen et al. 2012) and with observed trends (Kaukoranta and Hakala 2008; Sacks and Kucharik 2011; 

Olesen et al. 2011).  

  

Statistics 
Statistical tests were performed to compare baseline versus future climate and impacts: null hypotheses for equal 

distributions of two-sample Kolmogorov-Smirnov (KS) tests and for equal means of unpaired t-tests (if data 

were normally distributed) or Mann–Whitney U-tests (if normality was violated) were tested at the 5% threshold 

probability level for 240 data. For the multi-model ensembles, the distribution and mean of 240 climatic data or 

simulations of the ensemble median (model) were subjected to the tests.  

 

Results and discussion 

Model performance 

There was good agreement between simulated and observed yield for four crops at the validation fields, after 

calibration of crop parameters against independent data (Fig.1). Statistical indices (rRMSE < 10% for wheat and 

maize and < 15% for potato and sugar beet, and positive EF values; Table 2) support the good performance of 

both crop models.  

 

Baseline production 

Median simulated dry yield of winter wheat, maize, potato and sugar beet averaged over all environmental 

conditions was 9.7, 10.8, 13.9, 14.3 t•ha
-1

, respectively. Simulated values correspond well with national statistics 

for the baseline period (8.9, 11.2, 11.1, 12.6 t•ha-1 and 9.5, 11.9, 12.8, 13.9 t•ha-1 for mean and maximum dry 

yields over the past six years, respectively; FOD Economie 2014) considering that national yields account for 

infestations whereas the models do not.  

 Simulated wheat and sugar beet yields were higher near the coast than inland, whereas maize and potato 

yields were lower and more variable (Fig.2). Near the coast, thermal mitigation can occur. This is a temperature 

moderating effect that raises low winter temperatures and reduces high summer temperatures, thus reducing cold 

stress in winter, and delaying maturity and increasing potential radiation interception in summer. The effect 

exerted a net positive result on wheat and sugar beet yields, whereas delayed maturity subjected maize and 

potato to drought stress at the end of the growing cycle. Drought stress was no limitation for wheat (DSI = 0). 
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For the spring-sown crops conversely, the risk of yield loss due to water stress was high on low-TAW soils 

resulting in lower mean and more variable yields.  
 

Climate projection 

CMIP3 projects inland precipitation will increase in the winter months and decrease in July and September 

(Online Resource 6). There is no such decrease in summer precipitation near the coast. ENS projects increases in 

precipitation in winter near the coast, but not inland. Summer precipitation does not decrease. These findings 

agree with the tendency of high-resolution scenarios (from RCMs) towards precipitation increase or stability 

instead of decrease, particularly in summer (Christensen and Christensen 2007). Inter-model and spatial (i.e. 

difference between the coastal and inland area) variation in projections were generally not larger for ENS than 

for CMIP3. Besides the presented (modest) differences in monthly totals, shifts in rainfall distribution were 

present, which potentially affect crop production.  

 All models agree on future temperature rises. CMIP3 projects larger median temperature increases in summer 

and early autumn, but smaller increases in winter than ENS. Remarkably, CMIP3 projects larger temperature 

increases in summer than in winter, whilst the opposite is true for ENS. Inter-model variation is similar for both 

ensembles. Spatial variation is limited.  

 Associating RCMs with their parental GCM showed that RCMs project mostly stronger warming in winter 

and reduced or equal warming in summer. RCM precipitation projections can divert significantly from 

projections of the parental GCM, sometimes even projecting the opposite effect. There were no general 

unambiguous indication of dominance of the parental GCM in the climate signals of nested RCMs. Close 

resemblance was only detected between SMHIRCA-BCM and the parental BCM. For the other model families, 

RCM signals could divert individually and largely from the parental GCM signal. This study did not endorse the 

dominance of the driving GCM in the RCM-signal, or less pronounced temperature and precipitation changes for 

RCMs compared to their driving GCM, as was mentioned by other studies (Olesen et al. 2007; Christensen and 

Christensen 2007; Fronzek and Carter 2007). It has to be noted however that these studies compared GCMs and 

RCMs over large regions and several grids, while this study compared GCM and RCM output grid by grid. 

Unfortunately, no exhaustive comparison within or between model families was possible because the available 

RCMs from ENS do not allow a systematic survey. The same problem of no comparably large sets of RCM runs 

by different driving models was mentioned in earlier studies.  

 

Future production 

Simulated yield impacts are visualized in Fig.2. The significance of difference in mean yield (of 240 

simulations) between the ensemble median and the baseline, or between two ensemble medians is presented in 

Online Resource 7.  

 

Wheat 

Wheat yield increased by 11 to 14% notwithstanding a shorter LGP (minus 10 days to two weeks) due to faster 

accumulation of thermal time following temperature increase. There were no differences between high- and low-

TAW soils because production was not water-limited. Trends were similar among the two locations, but yield 

increase was slightly larger near the coast. For winter wheat, delaying sowing was an appropriate management 

adaption since higher temperatures delay favourable sowing conditions for winter cereals. Late sowing caused 

further decrease of LGP. Yields were higher than the baseline but slightly lower compared to yields if the 

traditional sowing date was used. Rather than drought stress, shorter LGP is the main factor affecting future 

winter wheat production. Shorter LGP helps to avoid water stress (DSI remained zero), but it also reduces the 

potential amount of intercepted radiation. That unfavourable effect is counterbalanced by a positive CO2 effect 

on biomass production and crop transpiration (illustrated by the no-CO2 scenarios) that is common for all C3 

crops (e.g. Vanuytrecht et al. 2012). Higher temperatures also reduce frost and overwintering damage. Previous 

impact assessments in Europe already mentioned increasing wheat yields (Eckersten et al. 2001; Torriani et al. 

2007; Olesen et al. 2011). Others described increased vulnerability due to heat stress during flowering (Gobin 

2010; Semenov and Shewry 2011; Supit et al. 2012). But this effect is not expected to reduce wheat yields before 

2050 in the Flemish Region. 
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Maize 

Inland future maize yield differed from the baseline, with the direction of change dependent on the ensemble. 

Under ENS projections yield increased by 3% with an associated LGP decrease by two weeks. Under CMIP3 

projections yield decreased by 2 to 3% associated with an LGP decrease of over three weeks. No change in DSI95 

was simulated. Near the coast, mean yield increased under both ensemble projections, although less under 

CMIP3 (5%) than under ENS (8-9%) projections. Adapting management caused increases of 16 to 17% 

depending on ensemble, location and soil. Notwithstanding mean yield increases, DSI95 and inter-annual yield 

variability simultaneously increased, particularly on low-TAW soils. Without management adaptation, yield 

increases were smaller than for C3 crops, because maize shows a lower production response to elevated [CO2] 

(evidenced by the no-CO2 scenarios). Due to its C4 photosynthetic pathway, CO2 benefits maize growth mainly 

due to improved water use efficiency (Vanuytrecht et al. 2012). Simulated differences between ensembles are 

explained by higher CMIP3 temperature projections throughout the maize growing season as compared to ENS, 

and the resulting shorter LGP (over three weeks under CMIP3 vs. two to three weeks under ENS compared to 

the baseline). Because cumulative biomass production is proportional to intercepted radiation, acceleration of 

crop development and shortening of LGP reduces potential yield, even though crops benefit from cold stress and 

frost damage reduction due to the temperature increase. The results confirm that maize, which thrives in tropical 

conditions, will not suffer from temperature extremes in Western Europe (Supit et al. 2010). Yet, for low-TAW 

soils and late maturing cultivars, drought and increased climate variability challenges maize yield (Olesen et al. 

2011). 

 

Potato 

Potato yield increased by 16 to 26% depending on the ensemble and environmental conditions. The increase was 

significantly different from the baseline except near the coast on a low-TAW soil. Yield increased 

notwithstanding a shorter LGP by approximately one week (ENS) to almost two weeks (CMIP3). Under CMIP3 

projections – with lower summer precipitation and higher temperatures – drought stress risk (DSI95) increased, 

while DSI95 decreased under ENS projections. Adapting management boosted yield further and LGP increased 

up to one week compared to the baseline. The only exception was found inland under CMIP3 projections and 

with a low-TAW soil, due to late drought stress that forced a faster ending of the growing cycle. DSI95 increased 

under CMIP3 projections whereas under ENS projections, DSI95 remained mostly stable. For potato, higher 

temperatures and a shorter LGP alone would reduce potential yield. Yet, potato benefits maximally from the CO2 

fertilization effect (illustrated by the no-CO2 scenarios). Still, with its superficial root system, the crop is 

susceptible to drought risk and high inter-annual yield variability. The results correspond with simulated impacts 

in the UK and Western Europe where the fundamental challenges for future potato cultivation are not super-

optimal temperatures but increased drought stress and irrigation needs (Holden et al. 2003; Supit et al. 2012; 

Daccache et al. 2012).  

 

Sugar beet 

Beet yield increased between 6 to 13%, notwithstanding shortening of LGP by almost three to five weeks. DSI95 

often did not increase. Yield increases were larger inland than near the coast. The risk of yield failure due to 

drought stress (DSI95) did not increase except on a low-TAW soil near the coast. Adapting management was 

beneficial with yield increases varying between 12 and 20%, depending on location, soil type and ensemble. 

Higher temperatures and a shorter LGP alone would reduce potential yield but similar to potato, sugar beet 

benefits substantially from the CO2 fertilization effect (illustrated by the no-CO2 scenarios). The simulated 

positive trends for sugar beet yield are in agreement with simulated impacts in the UK (Richter et al. 2006).  

 

Yield variation 

As well as changes in mean yield, changes in inter-annual yield variability are of interest. There are caused by 

drought stress and already indicated by simulated changes in DSI95. Fig.3 illustrates the inter-annual yield 

variability inland on a high-TAW soil for the baseline and future period under traditional and adapted 

management. With traditional management, CVy increases were not universal (Table 3). If there was an increase 

in CVy, it was mainly due to an increase in mean yield rather than to a reduction in variation. Although adapted 

management increased mean yield, it also increased inter-annual variation and CVy for maize and potato and 
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under particular conditions for sugar beet. Projected precipitation in August was a major factor affecting inter-

annual yield variability. The highest inter-annual yield variability in the baseline and future was simulated for 

potato, which is susceptible to drought stress with its superficial roots. Our results showed higher yields under 

future climate conditions, and particularly with adapted management, but at a cost of lower inter-annual yield 

stability. Generally, farmers are more likely to be risk-averse than risk-neutral, and prefer stable yields (Bontems 

and Thomas 2006; Serra et al. 2006; Groom et al. 2008; Knoke et al. 2011). Yet, even more important than stable 

yields is stable income. An economical evaluation building further on this study would be interesting to assess 

whether yield instability comes with income instability.  

 Variation in simulated yield existed also between climate models and climate model ensembles. Inter-

ensemble variation was small for wheat and sugar beet, but could be large - and larger than inter-model (or intra-

ensemble) variation - for maize and potato. The finding that inter-ensemble variation was more important for 

maize and potato can be associated with the importance of precipitation. Precipitation affects crops limited by 

water stress more and is likely to differ between climate models with different resolution. Differences between 

CMIP3 and ENS ensembles are partially associated with incorporated sub-GCM-grid processes in RCMs 

(Olesen et al. 2007). Earlier studies in the US for maize and wheat (Mearns et al. 2001) and in Europe for maize 

and soybean (Fronzek and Carter 2007) demonstrated that differences between RCM and GCM projections can 

affect simulated yield impacts of climate change, depending on the crop and conditions simulated. This is 

supported by the present study. Although RCMs resolve sub-GCM-grid processes better (Feser et al. 2011) and 

may be more suitable for agricultural assessments at small scale, RCM-based projections and predicted impacts 

are suspected to follow those from the driving GCM (Christensen and Christensen 2007; Fronzek and Carter 

2007). This implies that using RCM-based scenarios driven by a limited number of GCMs alone may not 

provide a representative range of impacts. Although the dominance of the parental GCM signal could not be 

unequivocally detected in this study, wider ranges of predicted impacts under CMIP3 projections (e.g. for potato 

and maize) suggest that by applying ENS alone, a representative range of impacts would not be assessed. 

Therefore, using both GCM- and RCM-based scenarios is advised. 

 The degree of spatial variation in modelled impacts (i.e. difference between the inland and coastal region) 

differed among crops. Except for maize, inter-model variation was larger than spatial variation. This was also 

true for ENS projections, which may be expected to reproduce local weather phenomena and introduce more 

spatial variation in yield impacts (Fronzek and Carter 2007). This finding advocates the use of multiple climate 

models in crop production assessments. It contrasts with the conclusion of Olesen et al (2007) who, unlike this 

study, assessed multiple climate model grids and concluded that impact variation associated with environmental 

conditions may be more important than the variation due to projected climate change in Europe.  

 

Considerations and directions for further research 

Positive impacts on mean crop yield were simulated in the Flemish Region, especially with adapted 

management. Crops benefitted from elevated [CO2] and increased radiation interception if cultivars with higher 

temperature requirements were grown. Although altering the cropping period improved average yield, it also 

increased risk including increases in water requirements of crops with longer LGP, susceptibility to water stress, 

inter-annual yield variability, and pressure on water resources. Adopting adaptation measures therefore requires 

evaluation of the trade-off between benefits of late maturing cultivars in normal and wet years and potential 

losses in dry years. But failure to consider adaptation may underestimate potential beneficial effects of climatic 

changes on crop productivity (Olesen et al. 2012).  

 Potential bias in coarse-scale GCM and RCM output necessitated downscaling (and bias correction) of the 

outputs for this local impact study (Themessl et al. 2011; Ehret et al. 2012; Willems et al. 2012a). However, 

statistical downscaling has drawbacks, particularly in relation to underestimation of inter-annual variation, such 

as overdispersion (i.e. underrepresentation of successive days with large (or small) temperature or precipitation 

sums; Wilks and Wilby 1999; Kim et al. 2012); elimination of inter-annual variation in climate output by 

applying a single change factor (Kendon et al. 2008; Prudhomme et al. 2010); events outside those present in the 

selected series of baseline weather that cannot be reproduced (Wilby and Wigley 1997; Wilby et al. 1998; 

Fowler et al. 2007); and unanticipated effects to secondary variables when modifying precipitation distributions 

by climate change factors (Wilby and Wigley 1997; Willems et al. 2012b). In particular, LARS-WG performs 
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well for the generation of mean monthly weather variables but may understate the variance in observed 

precipitation data (Sunyer et al. 2012; Taye and Willems 2013). Different downscaling methods should therefore 

be used to map the uncertainty arising from the downscaling method (Chen et al. 2011; Taye and Willems 2013). 

This is particularly important during prolonged periods of extreme conditions, because this may result in a series 

of low yields, which will have long-term implications for farming systems. 

 Simulated changes in crop productivity in this study were dependent on crop responses to elevated [CO2]. 

The simulated responses of different crops were developed in a study on the AquaCrop model (Vanuytrecht et al. 

2011) using crop responses to CO2 measured in free air CO2 enrichment (FACE) environments (Vanuytrecht et 

al. 2012). However, while FACE studies indicate that field crops respond positively to elevated [CO2], actual 

responses depend on the crop's sink strength, which is affected by internal (genetic) and external (e.g. adequate 

nitrogen availability) factors (Poorter 1993; Leakey et al. 2009; Vanuytrecht et al. 2011). Crop responsiveness 

may diminish over time through photosynthetic “acclimation” whereby the maximum carboxylation rate 

decreases (Stitt and Krapp 1999; Ainsworth and Rogers 2007). The no-CO2 simulations in this study therefore 

demonstrate not only the contribution of elevated [CO2] to the total climate change impact but also the 

consequences for yield if the CO2 fertilization effect does not occur due to inadequate management or 

acclimation. Without CO2 effect, simulated yields for wheat, and especially potato and sugar beet are lower 

under all conditions, even with management adaptation. Yet, the water saving effect of transpiration reduction at 

elevated [CO2], which is universal and independent of sink strength or acclimation effects (Leakey et al. 2009), 

is also eliminated in the no-CO2 simulations. Therefore, these simulations are unrepresentative for maize because 

it is a C4 crop that predominantly benefits from elevated [CO2] through water saving effects. A further 

consideration regarding the representativeness of simulated crop responses to elevated [CO2] includes grain and 

fodder quality since these can decrease following altered carbon-nitrogen ratios and decreased protein contents 

(Taub et al. 2008; Leakey et al. 2009; Kant et al. 2012). A follow-up study that simulates grain and fodder 

quality could quantify the implications for the region. 

 In addition to the model parameterization of crop responses to elevated [CO2], simulated impacts were also 

affected by the model used. Uncertainty in predictions due to crop model, which are likely to affect the 

magnitude of simulated impacts (Asseng et al. 2013), was not considered. However, variation in simulated 

impact among different crop models is smaller in high-yielding environments, for lower climatic changes (early- 

to mid-century projections, or low to moderate emission scenarios) and for well calibrated models (Asseng et al. 

2013). These conditions apply to this study. Further, Olesen et al (2007) emphasized the general agreement on 

direction of change among studies in Europe made with different models. Thus while the magnitude of simulated 

impacts in this study may have been different if other impact models had been used, the trend of changes in 

simulated productivity would probably not be conditioned on the impact model. Trends in productivity predicted 

in our study were consistent with other studies for mid to high latitudes in Europe (Olesen and Bindi 2002; 

Audsley et al. 2006; Olesen et al. 2011; Bindi and Olesen 2011; Supit et al. 2012).  

 Predicted crop productivity in our study may be overstated because the effect of changed climates on other 

factors such as pests and nutrient management were not included. Temperature rises may provide conditions that 

promote crop diseases and survival of crop pests (Olesen et al. 2011). In addition, productivity increases and 

longer LGP may increase crop nutritional requirements but at the same time result in increased nutrient leaching. 

Future management need to be adapted to fulfil the predicted positive impacts of climatic changes (Olesen et al. 

2011; Bindi and Olesen 2011).  

 Mid-century temperature projections used in this study are moderate and not high enough to reduce 

assimilation substantially in the study region (Supit et al. 2010), leading to mainly positive impacts. End-of-the-

century projections include higher temperatures and more frequent and extreme periods of drought. These 

stronger climatic signals are expected to cause more negative impacts on mean yield and deteriorate stability 

further (IPCC 2013; IPCC 2014).  

 A follow-up analysis to this study that involves an economic and/or a GIS model to incorporate price effects 

and influences of agricultural policy measures on cultivated area would add value for an integrated, regional 

assessment. 
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Conclusions 
Mid-century climatic changes are predicted to increase yield variability and crop productivity in the Flemish 

Region, especially with adapted management. Average crop yields increased in response to both elevated [CO2] 

and more radiation interception if the cropping period was adapted for higher temperatures. However, increased 

productivity was linked with increased susceptibility to water stress and greater inter-annual yield variability.  

 Impacts differed among and within ensembles of climate models with different resolution, among crops and 

environments. Impacts for spring-sown crops were generally more positive under the lower summer 

temperatures projected by the RCMs of ENS. The RCMs resolve sub-GCM-grid processes better and may be 

more suitable for local impact assessments. Despite this, inter-ensemble differences and contingent wider ranges 

of predicted impacts with the GCM projections of CMIP3 indicate that the full range of possible impacts is not 

assessed when applying RCMs driven by a limited number of GCMs alone. Further, this study suggests that the 

simulated inter-model variation can be larger than spatial variation within the region. Accordingly, both GCM 

and RCM ensembles should be used in assessments where temperature and precipitation are central, such as for 

crop production.  
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Figures 

(created with Veusz - A Scientific Plotting Package by Jeremy Sanders) 

 

Fig. 1 Observed versus simulated baseline yield of validation fields with winter wheat (circles), maize 

(diamonds), potato (squares) and sugar beet (stars) in the temperate maritime climate of Belgium 

 

Fig. 2 Simulated baseline yield (Y; black with standard deviation in bottom graphs) and future change (boxplots 

in top graphs; hatched for CMIP3 projections, open for ENS projections) for the four crops inland (left panel) 

and near the coast (right panel) for traditional (TM) and adapted (AM) management on soils with a high and a 

low totally available water content (TAW). Grey boxplots represent no-CO2 scenarios. 

Boxplots illustrate uncertainty in simulated yield due to climate model-inherent differences between members of 

a multi-model ensemble. Box boundaries represent 25- and 75-percentiles, thick line within the box represents 

the median, whiskers represent 10- and 90-percentiles. The dashed horizontal line reflects no change from the 

baseline to the future. * shows significant difference in mean yield (of 240 simulations) between the ensemble 

median and the baseline at threshold probability value p < 0.05 (only for scenarios with consideration of CO2).  

 

 
Fig. 3 Cumulative probability distribution of 240 simulated yields in the baseline period (black) and the future 

(grey) under climatic changes projected by individual models of the CMIP3 ensemble (full) and the ENS 

ensemble (dashed) for the four crops with traditional (left column) and adapted (right column) management (data 

shown for a high-TAW soil (siltloam) inland). Projections of the climate model that represents the median of 

each ensemble is indicated in red.  
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Table 1 Growing conditions considered for the impact assessment 

Location   

 Inland Coast 

Tmax (°C) 23.2   21.6   

Tmin (°C) 1.0   1.7   

Annual P (mm) 795   786   

 

Soil 

 High TAW Low TAW 
Type Siltloam (inland & coast) Loamsand (inland) Clayloam (coast) 

TAW (mm·m-1) 223 173 184 

 

Management 

 Traditional Adapted 

Crop  Winter 

wheat  

(tb 2°C) 

Maize  

 

(tb 8°C) 

Potato  

 

(tb 2°C) 

Sugar 

beet  

(tb 5°C) 

Winter 

wheat  

(tb 2°C) 

Maize  

 

(tb 8°C) 

Potato  

 

(tb 2°C) 

Sugar 

beet  

(tb 5°C) 

Sowing date 25 Oct 25 Apr 25 Apr 25 Apr 15 Nov 4 Apr 4 Apr 4 Apr 

Thermal 

requirement 

(GDD) 

1900 1200 1850 1850 1900 1350  2050 1950 

 
 
Tmax: mean monthly maximum temperature; Tmin: mean monthly minimum temperature; P: annual 

precipitation; TAW: totally available water content;  tb: crop base temperature 
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Table 2 Statistical indices for model validation based on final dry yield simulation in the baseline period 

Model Crop n Observations range 

(t·ha-1) 

Simulations range 

(t·ha-1) 

rRMSE  

(%) 

EF 

AquaCrop Maize 8 5.8 – 11.3 6.1 – 10.7 7.3 0.70 

       

AquaCrop Potato 22 5.4 – 15.5 4.5 – 12.9 12.6 0.85 

       

AquaCrop Sugar beet 9 7.8 – 12.4 6.6 – 12.9 11.5 0.27 

       
Sirius Winter wheat 5 8.3 – 11.0 9.2 - 10.5 7.1 0.42 

       

n: number of independent experiments used for validation; rRMSE: relative root mean square error; EF: model 

efficiency 
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Table 3 Coefficient of variation for yield (CVy) under baseline conditions and under the median climate model 

from the CMIP3 and ENS ensembles 

 Winter wheat Maize Potato Sugar beet 
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Traditional sowing date and cultivar         

Soil with high totally available water content (TAW)    

inland 0.049 0.048 0.051 0.021 0.019 0.020 0.133 0.140 0.123 0.046 0.044 0.040 

coast 0.048 0.045 0.044 0.036 0.031 0.030 0.202 0.189 0.176 0.053 0.053 0.048 

Soil with low TAW            

inland 0.049 0.048 0.051 0.108 0.105 0.099 0.262 0.272 0.243 0.089 0.089 0.077 

coast 0.048 0.045 0.044 0.109 0.116 0.108 0.371 0.352 0.328 0.083 0.087 0.080 
  

Adapted managment
a  

Soil with high TAW            

inland  0.041 0.043  0.026 0.024  0.165 0.140  0.045 0.042 

coast  0.045 0.046  0.049 0.055  0.226 0.215  0.058 0.051 

Soil with low TAW            

inland  0.041 0.043  0.165 0.109  0.291 0.278  0.090 0.083 

coast  0.045 0.046  0.165 0.176  0.417 0.372  0.096 0.088 
a Early sowing date and late-maturing cultivar for maize, potato and sugar beet; late sowing date and traditional 

cultivar for wheat 
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Supplementary material 1. Fundamentals of the stochastic downscaling technique and the LARS-WG 
weather generator 
 

LARS-WG belongs to the group of stochastic weather generators (WGs). Like other WGs, LARS-WG generates 
synthetic time series of daily weather based on site parameters derived from observed weather data. The 
probability distributions of generated data are statistically similar to the observed data, which implies equality in 
means and variances, but not in sequence of events. Precipitation occurrence and amount is simulated for each 
day based on semi-empirical distributions for the succession and transition of dry and wet days. Other weather 
variables are conditioned on precipitation simulations.  
In a second step, the baseline distributions of climatic variables are adjusted by change factors derived from 
GCM or RCM outputs (i.e. relative differences for precipitation and radiation, and absolute differences for 
temperature between future and baseline climatic statistics) to generate daily weather series of arbitrary length 
for the future. No adjustments are made to the distributions of dry and wet series and to temperature variability 
(Semenov and Barrow 1997; Semenov and Stratonovitch 2010). LARS-WG has been shown to perform well in 
reproducing various weather statistics (Semenov et al. 1998; Semenov 2008). Bias correction in a post-
processing step – correction of the model output towards observations (Ehret et al. 2012) – is not explicitly 
required because comparison of generated with observed baseline weather data is an inherent part of the WG 
process. 
 LARS-WG was selected among various statistical downscaling techniques because of its ability to adjust 
series of dry-wet spells and generate long data series, and the availability of minimum and maximum 
temperature data for crop production impact assessment. Long weather series allow to include the natural year-
to-year variation of weather and long-term extreme events, and are thus suitable for risk assessment (Porter and 
Semenov 2005; Semenov 2007). 
  Notwithstanding the considered choice for LARS-WG in this study, a WG has, like all downscaling 
techniques, some weaknesses. There is the tendency to underestimate extremes because events outside those 
present in the observations cannot be reproduced (Wilby and Wigley 1997; Wilby et al. 1998; Fowler et al. 2007; 
Tebaldi and Knutti 2007; Knutti et al. 2010). Another limitation is the potential underestimation of interannual 
variance of monthly precipitation sums due to overdispersion and underrepresentation of precipitation 
persistence. Overdispersion in generated weather data leads to the underrepresentation of series of successive 
days, for example, with relatively high (or low) temperature, which may cluster in reality (Wilks and Wilby 
1999; Kim et al. 2012). LARS-WG performs well for the generation of mean monthly weather variables, but 
might not entirely capture the variance of observed precipitation data (incl. extremes) (Sunyer et al. 2012; Taye 
and Willems 2013). In relation to future climate data, a major assumption of the WG technique concerns the 
relation between the atmosphere and local climatic variables, which is presupposed to remain unaltered in the 
future. Also, unanticipated (and possibly unrealistic) effects to secondary variables can occur when parameters 
describing precipitation distributions are modified by climate change factors (Wilks 1992; Wilby and Wigley 
1997; 2012).  
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Supplementary material 2. GCMs and RCMs from the CMIP3 and ENS ensembles used in this study 

Table S-1 Global climate models (GCMs) from CMIP3 and regional climate models (RCMs) from ENS 

Model 
acronym 

Research centre GCM /RCM Driving 
GCM for 
RCM 

Grid 
resolution 

Source 

GCMs from CMIP3      
BCM2 Bjerknes Centre for 

Climate Research 
GCM BCM2.0 - 1.9 × 1.9° (Déqué et al. 

1994) 
CGMR Canadian Centre for 

Climate Modelling 
and Analysis 

GCM CGCM33.1 
(T47) 

- 2.8 × 2.8° (McFarlane 
et al. 1992) 

CNCM3 Centre National de 
Recherches 
Meteorologiques 

GCM CNRM-CM3 - 1.9 × 1.9° (Déqué et al. 
1994) 

CSMK3 Commonwealth 
Scientific and 
Industrial Research 
Organisation 

GCM CSIRO-
MK3.0 

- 1.9 × 1.9° (Gordon et al. 
2002; CSMD 
2005) 

FGOALS Institute of 
Atmospheric 
Physics 

GCM FGOALS-
g1.0 

- 2.8 × 2.8° (Wang et al. 
2004) 

GFCM21 Geophysical Fluid 
Dynamics Lab 

GCM GFDL-
CM2.1 

- 2.0 × 2.5° (Anderson et 
al. 2004) 

GIAOM Goddard Institute 
for Space Studies 

GCM GISS-AOM - 3 × 4° (Russell et al. 
1995) 

HadCM3 UK Meteorological 
Office 

GCM HadCM3 - 2.5 × 
3.75° 

(Gordon et al. 
2000; Pope et 
al. 2000) 

HADGEM “ GCM HadGEM1 - 1.3 × 1.9° (Martin et al. 
2006; Ringer 
et al. 2006)  

INCM3 Institute for 
Numerical 
Mathematics 

GCM INM-CM3.0 - 4 × 5° (Galin et al. 
2003) 

IPCM4 Institute Pierre 
Simon Laplace 

GCM IPSL-CM4 - 2.5 × 
3.75° 

(Hourdin et 
al. 2006)  

MIHR National Institute 
for 
Environnemental 
Studies 

GCM MRI-
CGCM2.3.2 

- 2.8 × 2.8° (Hasumi et 
al. 2004)  

MPEH5 Max-Planck 
Institute for 
Meteorology 

GCM ECHAM5-
OM 

- 1.9 × 1.9° (Roeckner et 
al. 1996)  

NCCCS National Centre for 
Atmospheric 
Research 

GCM CCSM3 - 1.4 × 1.4° (Collins et al. 
2006)  

NCPCM “ GCM PCM - 2.8 × 2.8° (Kiehl et al. 
1998; Kiehl 
and Gent 
2004)  

       
RCMs from 
ENS 

      

C4IRCA3 Community 
Climate Change 
Consortium for 

RCM RCA3.0 HadCM3Q16 25 km (Kjellström et 
al. 2005) 
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Ireland 
DMI-
HIRHAM5 

Danish 
Meteorological 
Institute 

RCM HIRHAM5 ECHAM5-r3 25 km (Christensen 
et al. 2006) 

ETHZ-CLM Swiss Federal 
Institute of 
Technology Zurich 

RCM CLM HadCM3Q0 25 km (Jaeger et al. 
2008) 

KNMI-
RACMO2 

Royal Dutch 
Meteorological 
Institute 

RCM RACMO2 ECHAM5-r3 25 km (van 
Meijgaard et 
al. 2008)  

METO-HC UK Meteorological 
Office 

RCM HADRM3Q3 HadCM3Q3 25 km (Collins et al. 
2011) 

MPI-M-
REMO 

Max-Planck 
Institute for 
Meteorology 

RCM REMO ECHAM5-r3 25 km (Jacob 2001) 

SMHIRCA-
BCM 

Swedish 
Meteorological and 
Hydrological 
Institute 

RCM RCA3.0 BCM 25 km (Kjellström et 
al. 2005) 

SMHIRCA-
ECHAM 

“ RCM RCA3.0 ECHAM5-r3 25 km (Kjellström et 
al. 2005) 

SMHIRCA-
HadCM 

“ RCM RCA3.0 HadCM3Q3 25 km (Kjellström et 
al. 2005) 
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Supplementary material 3. Description of the AquaCrop and Sirius crop models  
 

AquaCrop (Raes et al. 2009; Steduto et al. 2009; Vanuytrecht et al. 2014) is a water productivity model that 
simulates biomass production based on the amount of water transpired from the green canopy cover, which 
develops based on thermal time and as affected by water stress. Biomass production is linked to crop 
transpiration, which is also affected by water stress, via the crop water productivity parameter WP*, i.e. a 
measure for water use efficiency). Besides temperature determining thermal time and pollination success, there 
is an additional limitation effect on biomass production at cold temperatures. With increasing [CO2], WP* 
increases and transpiration decreases. The variable WP* response to CO2 was set low as recommended for maize 
with its C4 photosynthetic pathway (Vanuytrecht et al. 2011): WP*increased by 6.5% for a [CO2] increase to 
530 ppm relative to a baseline concentration of 370 ppm. AquaCrop requires daily precipitation, minimum and 
maximum temperature, and ETo as input data. 
 Sirius (Jamieson et al. 1998) simulates biomass production from intercepted photosynthetically active 
radiation and radiation-use efficiency (RUE). Leaf area index (LAI) is developed based on thermal time and 
phenology follows from leaf appearance, which responds to daylength and vernalization. Water stresses have an 
effect on LAI and RUE. The latter is proportional to [CO2] with an increase in RUE of 15.5% for a [CO2] 
increase to 530 ppm relative to a baseline concentration of 350 ppm. Sirius required  daily precipitation, 
minimum and maximum temperature, and solar radiation as input data.  
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Supplementary material 4. Crop parameters for maize, potato and sugar beet (AquaCrop model) and for 
winter wheat (Sirius model) for the Flemish Region, Belgium 
 

Table S-2 AquaCrop crop parameters for maize, potato and sugar beet  

Parameter ¥ Value   Units 

 Maize Potato Sugar 
beet 

 

Crop type (2 = fruit/grain producing, 3 = root/tuber) 2 3 3  

Crop is sown (1) or transplanted (0) 1 0 1  

Base temperature below which crop development does not progress 8.0 2.0 5.0 °C 

Upper temperature above which crop development no longer increases 
with an increase in temperature 

30.0 26.0 30.0 °C 

Total length of crop cycle 1200 1850 1850 
 

GDD 

Soil water depletion factor for canopy expansion - upper threshold 0.14 0.20 0.20  

Soil water depletion factor for canopy expansion - lower threshold 0.72 0.60 0.60  

Shape factor for water stress coefficient for canopy expansion 2.9 3.0 3.0  

Soil water depletion fraction for stomatal control - upper threshold 0.69 0.55 0.65  

Shape factor for water stress coefficient for stomatal control 6.0 3.0 3.0  

Soil water depletion factor for canopy senescence - upper threshold 0.69 0.70 0.75  

Shape factor for water stress coefficient for canopy senescence 2.7 3.0 3.0  

ETo-sum threshold during stress period for triggering senescence 0 0 0 mm 

Soil water depletion factor for pollination - upper threshold 0.80 0.80 0.80  

Anaerobiotic point at which deficient aeration occurs 5 5 5 vol% below 
saturation 

Minimum air temperature below which pollination starts to fail 10.0  -    8.0 °C 

Maximum air temperature above which pollination starts to fail  40.0  -    40.0 °C 

Minimum growing degrees required for full biomass production 13.0 8.0 9.0 °C·day-1 

Crop coefficient when canopy is complete but prior to senescence 1.05 1.10 1.10  

Decline of crop coefficient as a result of ageing, nitrogen deficiency, 
etc. 

0.30 0.15 0.15 %·day-1 

Minimum effective rooting depth 0.3 0.3 0.3 m 

Maximum effective rooting depth 1.1 0.6 1.0 m 

Shape factor describing root zone expansion 13 15 15  

Maximum root water extraction in top quarter of root zone 0.021 0.088 0.025 m3·m-3 soil·day-1 

Maximum root water extraction in bottom quarter of root zone 0.007 0.022 0.006 m3·m-3 soil·day-1 

Effect of canopy cover in reducing soil evaporation in late season 50 60 60  

Soil surface covered by an individual seedling at 90% emergence 6.50 20.00 1.00 cm² 

Number of plants per hectare 75000 
 

32000 
 

100000 
 

plants·ha-1 

Maximum canopy cover 0.87 1.00 0.98  

Crop determinancy linked with flowering 1 0 0  

Excess of potential fruits 50  -    -   % 

Water productivity normalized for ETo and CO2 33.7 18.5 17.0 g·m-2 

Water productivity ratio normalized for ETo and CO2 during yield 
formation 

100 100 100 % 

Crop performance under elevated atmospheric CO2 concentration  0 75 50 % 
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Reference harvest index 52 90 70 % 

Possible increase of HI due to water stress before flowering 0 2 0 % 

Positive HI impact of restricted vegetative growth during yield 
formation 

7.0  -   4.0   

Negative HI impact of stomatal closure during yield formation 3 10 -  

Allowable maximum increase of specified HI 15 5 20 % 

Period from sowing to emergence 50 
 

150 20 
 

GDD 

Period from sowing to maximum rooting depth 1200 650 620 
 

GDD 

Period from sowing to start senescence 1100 1550 1450 
 

GDD 

Total length of crop cycle from sowing to maturity 1200 1850 1850 
 

GDD 

Period from sowing to flowering Length of flowering 650 
 

650 620 
 

GDD 

Length of flowering 180 0 0 GDD 

Increase in canopy cover 0.013 0.009 0.012 fraction·GDD-1 

Decrease in canopy cover 0.010 0.008 0.004 fraction·GDD-1 

Period of harvest index building-up during yield formation 500 1100 
 

1100 
 

GDD 
 

 

Table S-3 Sirius crop parameters for winter wheat 

Parameter Value Units 

Thermal time from sowing to emergence 150 GDD 

Thermal time from anthesis to beginning of grain fill 50 GDD 

Thermal time beginning grain fill to end grain fill 650 GDD 

Thermal time from end grain fill to harvest maturity 200 GDD 

Potential maximum leaf size 0.007 m2·m-2 

Phyllochron 90 GDD 

Minimum possible leaf number 8.55 - 

Absolute maximum leaf number 24 - 

Day length response 0.65 number of leaves per hour of day length 

Response of vernalization rate to temperature 0.0012 °C-1 

Vernalization rate at 0°C    0.015 day-1 

PAR extinction coefficient  0.45 - 

Maximum protein concentration in unlimited growth conditions ¥ 15 %  
¥ for 15% grain moisture 
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Supplementary material 5. Schematic presentation of the assessment methodology  
 

 
Fig. S-1 Schematic presentation of the assessment methodology for each location from generation of 

climate data to calculation of the predicted impacts  

ENS is the ensemble with fine resolution regional climate models of the EU-ENSEMBLES project; CMIP3 is 

the ensemble with course resolution global climate models of the Coupled Model Intercomparison Project phase 

3. 
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Supplementary material 6. Projected climatic changes by CMIP3 and ENS multi-model ensembles 
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Fig. S-2 Projected climatic changes by CMIP3 (hatched boxes) and ENS (open boxes) multi-model ensembles. 

Relative changes in monthly precipitation (upper row) and absolute changes in monthly mean temperature (lower row) between future climate projections and the baseline for 

inland (left side) and coastal region (right side).  

Boxplots illustrate uncertainty in climate change projections due to model-inherent differences between members of the multi-model ensemble. Box boundaries represent 25- 

and 75-percentiles, thick line within the box represents the median, whiskers represent 10- and 90-percentiles. Three-armed stars indicate baseline precipitation and 

temperature on the right Y-axis. The dashed horizontal line reflects no change from the baseline to the future projections. * shows significant change in monthly precipitation 

or mean temperature (of 240 data) between the ensemble median model and the baseline at threshold probability value p < 0.05 according to two-sample Kolmogorov-

Smirnov tests.  

The coloured lines overlaying background boxplots in figures b-d-f-h indicate projections from individual models. Full symbols represent GCMs, open symbols represent 

RCMs. Colour key: BCM-family = red; HadCM-family = green; ECHAM-family = dark blue; CNCM-family = light blue.  
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Supplementary material 7. Significance of differences in mean yield between the ensemble median and the baseline, or between two ensemble medians for winter 
wheat, maize, potato and sugar beet 
 
Winter wheat 

 
 

Maize 

 

Base InHSCTM InHSCAM InHSETM InHSEAM InLSCTM InLSCAM InLSETM InLSEAM CoHSCTM CoHSCAM CoHSETM CoHSEAM CoLSCTM CoLSCAM CoLSETM CoLSEAM

Base * * * * * * * * * * * * * * * *

InHSCTM * * ns *

InHSCAM * ns *

InHSETM * ns * *

InHSEAM ns *

InLSCTM * * *

InLSCAM * *

InLSETM * *

InLSEAM *

CoHSCTM * ns ns

CoHSCAM * ns *

CoHSETM * ns

CoHSEAM ns

CoLSCTM * ns

CoLSCAM *

CoLSETM *

CoLSEAM

Base InHSCTM InHSCAM InHSETM InHSEAM InLSCTM InLSCAM InLSETM InLSEAM CoHSCTM CoHSCAM CoHSETM CoHSEAM CoLSCTM CoLSCAM CoLSETM CoLSEAM

Base * * * * * * * * * * * * * * * *

InHSCTM * * * *

InHSCAM * * *

InHSETM * * * *

InHSEAM * *

InLSCTM * * *

InLSCAM * *

InLSETM * *

InLSEAM *

CoHSCTM * * *

CoHSCAM * * *

CoHSETM * *

CoHSEAM *

CoLSCTM * *

CoLSCAM *

CoLSETM *

CoLSEAM
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Potato 

 
 

Sugar beet 

 
 
* : significant difference between means (of 240 simulations) at threshold probability value p < 0.05 according to Mann–Whitney U-tests (or t-tests if data were normally distributed, indicated 
by black rectangles); ns : not significant at threshold probability value p < 0.05 according to Mann–Whitney U-tests tests (or t-tests if data were normally distributed) 
In: inland; Co: coast; HS: soil with high totally available water content (TAW); LS: soil with low TAW; C: CMIP3; E: ENS; TM: traditional managment; AM: adapted management 

Base InHSCTM InHSCAM InHSETM InHSEAM InLSCTM InLSCAM InLSETM InLSEAM CoHSCTM CoHSCAM CoHSETM CoHSEAM CoLSCTM CoLSCAM CoLSETM CoLSEAM

Base * * * * * * * * * * * * ns ns ns *

InHSCTM * * * ns

InHSCAM * * *

InHSETM * * ns

InHSEAM * ns

InLSCTM * ns *

InLSCAM * *

InLSETM * ns

InLSEAM ns

CoHSCTM * * *

CoHSCAM * * *

CoHSETM * *

CoHSEAM *

CoLSCTM * *

CoLSCAM *

CoLSETM *

CoLSEAM

Base InHSCTM InHSCAM InHSETM InHSEAM InLSCTM InLSCAM InLSETM InLSEAM CoHSCTM CoHSCAM CoHSETM CoHSEAM CoLSCTM CoLSCAM CoLSETM CoLSEAM

Base * * * * * * * * * * * * * * * *

InHSCTM * * * *

InHSCAM * * *

InHSETM * ns * *

InHSEAM * *

InLSCTM * * *

InLSCAM * *

InLSETM * *

InLSEAM *

CoHSCTM * * *

CoHSCAM * * *

CoHSETM * *

CoHSEAM ns

CoLSCTM * *

CoLSCAM *

CoLSETM *

CoLSEAM


