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Abstract 25 

Linkage maps based on markers derived from genes are essential evolutionary tools for commercial 

marine fish to help identify genomic regions associated with complex traits and subject to selective forces 

at play during exploitation or selective breeding. Additionally, they allow the use of genomic information 

from other related species for which more detailed information is available. Sole (solea solea L.) is a 

commercially important flatfish species in the North Sea, subject to overexploitation and showing 30 

evidence of fisheries-induced evolutionary changes in growth- and maturation-related traits. Sole would 

definitely benefit from a linkage map to better understand how evolution has shaped its genome structure. 

This study presents a linkage map of sole based on 423 single nucleotide polymorphisms derived from 

expressed sequence tags and 8 neutral microsatellite markers. The total map length is 1233.8 cM and 

consists of 38 linkage groups with a size varying between 0 to 92.1 cM. Being derived from expressed 35 

sequence tags allowed us to align the map with the genome of four model fish species, namely medaka 

(Oryzias latipes), Nile tilapia (Oreochromis niloticus), three-spined stickleback (Gasterosteus aculeatus) 

and green spotted pufferfish (Tetraodon nigroviridis). This comparison revealed multiple conserved 

syntenic regions with all four species, and suggested that the linkage groups represent 21 putative sole 

chromosomes. The map was also compared to the linkage map of turbot (Scophthalmus maximus), another 40 

commercially important flatfish species and closely related to sole. For all putative sole chromosomes 

(except one) a turbot homolog was detected, confirming the even higher degree of synteny between these 

two flatfish species.  
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Introduction 45 

Preserving the evolutionary potential of exploited marine fish species is essential to secure viable 

populations across a species’ full geographical and environmental range [1]. A better understanding of the 

strength of local and fisheries-induced adaptation hence provides important insights into the resilience and 

evolutionary response to environmental change and harvesting of stocks [2]. This is crucial to move 

towards evolutionary enlightened sustainable fisheries management
 
[3]. In the last decade, marine 50 

fisheries have strongly declined or even collapsed [4,5] and a growing number of fish population studies 

have reported significant changes in life history traits that have been associated with fisheries-induced 

selection [6,7,8]. Examples include shifts towards earlier maturation at a smaller size, increased 

reproductive investment and changes in growth rate, all of which are consistent with the size-selective 

nature of fishing. These changes, in synergy with climate change, may have drastic negative effects on 55 

fish populations and their sustainable fisheries [2]. One of the most challenging problems in studying local 

adaptation and fisheries-induced evolution, however, is disentangling the environmental and genetic 

causes behind changes in life-history traits [7,9,10]. Many of the adaptive traits that respond to evolution 

are complex and quantitative by nature. Hence, genomic tools became pivotal to reveal footprints of 

selection, as changes can now be studied directly at the molecular level. 60 

Genetic linkage maps represent one of such essential evolutionary genomics tools for commercial marine 

fish, to help identify genomic regions associated with complex traits subject to selective forces. 

Additionally they are crucial during selective breeding initiatives, aiming at relieving fishery pressure on 

overexploited stocks, while increasing the cost-efficiency of farmed fish production. They also provide the 

necessary resources for genomic comparison with other fish species to understand their genome evolution 65 

and organization [11,12] and facilitate anchoring of scaffolds to chromosomes  in whole genome 

sequencing and assembly [13]. 

Sole (Solea solea L.) is a commercially important marine flatfish (Pleuronectiformes) of the family 

Soleidae mainly living in the Northeast Atlantic Ocean, but also in the whole Mediterranean Sea and in 



4 
 

the Southwestern Black Sea [14]. The spawning stock biomass of the North Sea has been fluctuating 70 

around the precautionary point of 35,000 tons depending on the strength of the year classes. Periods of 

revival however were short and overall there has been a downward trend, putting the sole stock at risk of 

reduced reproductive capacity [15]. Additionally, strong evidence exists for fisheries-induced evolutionary 

change in the onset of sexual maturity over the last 60 years [16].  

Despite the commercial importance of sole, no genomic tools are available to date [17,18]. Currently, 75 

genetic linkage maps are available for only five other flatfish species: turbot (Scophthalmus maximus) 

[19,20], brill (Scophthalmus rhombus) [21], Atlantic halibut (Hippoglossus hippoglossus) [22], half-

smooth tongue sole (Cynoglossus semilaevis) [23] and olive flounder (Paralichthys olivaceus) [24,25]. 

One of the major obstacles to build a linkage map for sole has been the lack of informative genetic 

markers. However, cutting-edge next‐generation DNA sequencing technologies allow for a rapid and cost-80 

efficient development of genetic markers across the genome of highly exploited species without any 

existing genomic information [26]. 

Here, we used a novel set of single nucleotide polymorphisms (SNPs) that were developed from expressed 

sequence tags (ESTs) to construct the first linkage map of sole. Additionally, we used this map for 

comparative mapping and establishing the syntenic relationships with four fully sequenced model species, 85 

namely medaka (Oryzias latipes), Nile tilapia (Oreochromis niloticus), three-spined stickleback 

(Gasterosteus aculeatus) and green spotted pufferfish (Tetraodon nigroviridis). These comparisons were 

ultimately used as a stepping stone to compare the sole linkage map with that of turbot (Scophthalmus 

maximus), which is more closely related to sole than the model fish species. The future applications of this 

novel molecular tool were further discussed into the context of evolutionary based fisheries management 90 

of flatfish species.   
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Materials and Methods 95 

Mapping families 

Two full-sib families with 46 and 35 offspring respectively were used for the linkage analysis. The 

sampling of the parents, broodstock management, offspring collection and DNA extractions were done by 

Blonk [27] and were part of a large breeding program, initiated by Solea B.V. (The Netherlands) and the 

Animal Breeding and Genomics Centre (Wageningen University), aiming at increased productivity of 100 

farmed sole. All procedures were in accordance with the Dutch law. The parents originated from the 

Southern North Sea (52°N and 2.5°E) and were collected between 2003 and 2005. Details on the 

management of the broodstock including these parents (called 'B') and their offspring can be found in [28]. 

Of each parent a blood sample (0.1 ml) was taken without killing them (as they were part of the sole 

breeding program). DNA was extracted from this sample using a Puregene DNA purification kit for non-105 

mammalian whole blood samples (Gentra Systems). DNA extraction of the offspring was performed on 3 

to 4 days old larvae using nucleospin tissue columns following the manufacturer's guideline (96 

procedure, Machery-Nagel). 

 

Genetic markers and genotyping 110 

Using the Roche FLX Titanium technology, in total 348,042 cDNA sequences were generated from a 

multiplexed sole muscle library based on seven sole individuals sampled across the East Atlantic Ocean 

and the Mediterranean Sea (unpublished data). A total of 11,021 contigs could be assembled and over 

3,000 SNPs detected in silico. Among those, 1,536 SNPs were selected for validation using the Illumina 

GoldenGateTM high-throughput genotyping assay. Some of these markers have already been applied 115 

successfully in a traceability context [29]. The inheritance and the informativeness of the markers were 

visually checked with the GenomeStudio
TM

 genotyping module of Illumina. Of the 1,536 genotyped 

SNPs, 749 were not informative within the two families. For 21 SNPs inconsistencies with mendelian 

inheritance were observed and for 297 SNPs the genotyping assay failed. An overview of the remaining 
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469 SNPs that were used to perform linkage analysis, can be found in Table S1. In addition both families 120 

were genotyped at the following 10 microsatellite markers with the method described in Blonk et al. [28]: 

AF173849, AF173852, AF173854, AF173855 [30], AY950587, AY950588, AY950589, AY950591, 

AY950592, AY950593 [31]. In total 479 markers (469 SNPs and 10 microsatellites) were included in the 

linkage analysis. A high number of missing data often indicates either poor DNA quality or markers that 

are difficult to call, which may lead to difficulties in linkage map construction. Therefore, individuals or 125 

markers with more than 30% missing data were excluded from the dataset, being two individuals and none 

of the markers. The final dataset consisted of two families with respectively 46 and 33 offspring (with no 

more than 3% missing values per individual) and 479 markers (of which only 13 SNPs had more than 3% 

missing data).  

 130 

Linkage map construction and genome coverage 

SNPs located within the same contig were combined into haplotypes using the program PEDPHASE v3.0 

[32]. The map was built with the program CRI-MAP v2.4 [33]. Initial grouping of the markers was carried 

out using the twopoint and autogroup option of CRI-MAP. The twopoint analysis was performed for all 

pairs of markers with a threshold of LOD = 3. Autogroup was then used to identify sets of markers which 135 

were likely located in the same linkage group (LOD ≥ 8). Some small linkage groups were pooled based 

on additional information: (1) an autogroup analysis with a lower threshold (LOD of four instead of eight) 

and (2) if linkage was found between the majority of the markers after performing an additional twopoint 

analysis with a threshold of LOD = 0.5. Secondly, the position of the SNPs and microsatellite markers 

within the groups was determined with the build option of CRIMAP in an iterative process, starting with a 140 

LOD score of 3 and through subsequent stepwise lowering of the LOD score. Finally, marker order was 

calibrated using the flips option with a window size of five markers. The map was drawn in the program 

MAPCHART v2.2 [34]. Two methods were used to estimate the genome length (Ge) of sole. According to 

Fishman et al. [35] corrections should be made for chromosome ends by adding 2*Dav to the length of 
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each linkage group, where Dav is the average inter-marker distance of the linkage map. Chakravarti et al. 145 

[36] suggested to multiply each linkage group by (m+1)/(m-1), where m is the number of loci in each 

linkage group (4th method in Chakravarti et al. [36]). The average length calculated by both methods was 

used as an estimate for the genome length  (resp. Ge1 and Ge2). 

 

Comparative mapping and syntenic relationships 150 

As all SNPs in the sole map were discovered from ESTs, the assembled contigs were used as queries to 

perform a local blast against the genome of four fully sequenced fish species: medaka (Oryzias latipes, 

order Beloniformes), Nile tilapia (Oreochromis niloticus, order Cichliformes), three-spined stickleback 

(Gasterosteus aculeatus, order Perciformes) and green spotted pufferfish (Tetraodon nigroviridis, order 

Tetraodontiformes). Of all available model species, these four are most closely related to the 155 

Pleuronectiformes, each representing a different order within the Percomorphaceae [37]. Genomic 

information was downloaded from the genome browser UCSC (http://genome.ucsc.edu/). A BLASTN 

analysis was performed with NCBI-Blast under default settings with exception of the E-value (< 10
-10

). To 

establish syntenic relationships with turbot (Scophthalmus maximus) a direct comparison by blast analysis 

was not possible, as this species is not fully sequenced yet. Therefore, the stepping stone approach as 160 

described by Sarropoulou et al. [38] was used. The four model species were used as a bridge which 

allowed passing from the sole linkage groups to those of turbot. 

 

Results and Discussion 

Linkage map construction and genome coverage 165 

The 469 informative SNPs were distributed over 291 single-marker contigs and 73 contigs with multiple 

SNPs. These markers located on the same contig were combined into haplotypes, in order to compensate 

for the low number of informative meioses due to the low number of individuals in the mapping families 

and to provide a more accurate estimate of the recombination frequency between the markers [39]. This 
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was done for all contigs with multiple SNPs, except for four of them because of evidence for 170 

recombination within that contig (Table S1). Of the 469 SNPs and 10 microsatellite markers, 423 and 8 

(~90%) respectively were incorporated into the linkage map (Figure 1, Table S1). The total length of the 

map was estimated at 1233.8 cM and consists of 38 linkage groups (LG1 to LG38) with a size varying 

between 0 to  92.1 cM (Table 1, Table S1). The number of markers per group ranges from two to 39. The 

average inter-marker distance (Dav) is 8.1 cM and the maximal interval is 32.7 cM. The 48 unmapped 175 

markers could not be assigned a position due to an insufficient number of informative meioses. For the 

same reason, the order of closely linked markers might be inaccurate or it may be impossible to separate 

markers.  

The estimated genome length according to Fishman et al. [35] (Ge1) is 1849.4 cM. However, to obtain a 

more accurate estimate, two further corrections were made: (1) The distance between two markers in a 180 

linkage map should not exceed 30 cM [40]. As the haploid chromosome number of sole is 21 [41], there 

are 17 linkage groups in excess. For these 17, no correction was made for chromosome ends, but instead 

17*30 cM was added to the map length of 1233.8 cM. (2) For the number of acrocentric chromosomes, 13 

in the case of sole [41], only Dav instead of 2Dav was added (105.3 cM instead of 210.6 cM). For the other 

8 chromosomes 2Dav was added (129.6 cM). In total, the estimated genome length (Ge1) after both 185 

corrections is 1978.7 cM. The estimated genome length (Ge2) according to the fourth method of 

Chakravarti et al. [36] is 1490.2 cM. The average of both values (Ge1 and Ge2) is 1734.45 cM, 

corresponding to approximately 70% genome coverage. Half of the linkage groups are larger than 30 cM, 

a size similar to those found in maps of other (flat)fish species [20,22,24,42]. Twelve linkage groups are 

smaller than 10 cM, therefore covering only part of the chromosomes represented by these linkage groups. 190 

Several of these linkage groups most likely represent different parts of the same chromosomes. 
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Comparative mapping with model fish species 195 

The 423 mapped SNPs originated from 326 different contigs (Table S1). The sequences for these contigs 

were aligned against the genome of stickleback, pufferfish, medaka and tilapia using BLASTN. One-

hundred and eighty contigs showed a significant sequence homology above the threshold (E-value < 10
-10

) 

in at least one of the four fish species examined: 152 in stickleback, 126 in tilapia, 105 in medaka and 97 

in pufferfish. Fifty-eight contigs showed a significant sequence homology in all four model species. A 200 

detailed overview of the BLASTN results can be found in Table S2-S5. The highest levels of sequence 

similarity were found with the stickleback genome (~47%), followed by the tilapia genome (~39%) and 

the lowest levels with the medaka (~31%) and pufferfish (~30%) genome. However, these results are not 

in concordance with the phylogenetic position of the Pleuronectiformes among other Percomorphaceae, 

[37,43]. Flatfish belong to the Carangimorphariae, which are most closely related to the Ovalentariae, 205 

which include medaka and tilapia, and more distantly related to Percomorpharia, which include 

stickleback and pufferfish. Similar results were observed for turbot [20]. Despite the closer relationship 

between turbot and medaka, more sequence similarity was observed with stickleback (~50% ) than with 

medaka and pufferfish (~40%). Bouza et al. [20] suggested that this reflected phylogenetic discordances 

between the use of mitochondrial and nuclear genes, as the proposed phylogeny was based on the 210 

mitogenome [44,45]. However, recent phylogenetic studies using a combination of both marker types do 

not support such discordance [37,43,46]. Another possible explanation for this apparent discrepancy is 

provided by the different evolutionary rates among closely related species. Medaka and pufferfish (and 

teleosts in general) evolved faster than other vertebrate species [45,47,48,49], hence they might also have 

evolved faster than sole, stickleback and tilapia. Support for this is presented by Betancur et al.[43], which 215 

show that the branch lengths in their evolutionary tree are longer for medaka and pufferfish in comparison 

to the other three species. Table S6 lists the number and length of the conserved syntenic regions (i.e. 

markers on the same linkage group that are also on the same chromosome, regardless the order) with each 

of the four model species. Most syntenic sequences were found with stickleback (23 syntenic regions, 
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containing on average 5.3 sequences), followed by tilapia, medaka and pufferfish (resp. 23, 19 and 18 220 

regions, containing 4.3, 4.3 and 3.6 sequences). These numbers are in concordance with the observed 

levels of sequences similarity for each species (see above). The total length of the syntenic regions was 

smaller for stickleback (200.1 Mb) than for tilapia (257.8 Mb) and medaka (224.7 Mb), but larger when 

compared to pufferfish (89.2 Mb). This suggests that the stickleback genome is more compact in 

comparison to tilapia and medaka, but larger than pufferfish, which is consistent with their genome size. 225 

Tilapia has the largest genome at about 820 Mb, followed by medaka (~700 Mb), stickleback (~460 Mb) 

and pufferfish (~350 Mb). 

 

Syntenic relationships between sole and model fish species 

The distribution of the sequence homology between the model species chromosomes and the sole linkage 230 

groups is shown in Figure 2. The chromosomes of the four model species are organized in A-groups (with 

one-to-one relationships) and B-groups (with inter-chromosomal rearrangements) according to their 

syntenic relationships as described in Sarropoulou et al. [38], Kai et al. [13] and Guyon et al. [50] (see left 

column). The middle section shows the number of contigs where sequence homology was found between 

the sole linkage groups and the chromosomes of the four model species. For each chromosome the sole 235 

linkage group with the largest number of homologous sequences is highlighted in grey. For the 

chromosomes belonging to the same A-group or B-subgroup this was mostly the same linkage group, 

pointing to the chromosome counterpart (or at least part of it) in sole. In total, twenty-one linkage groups 

were suggested as chromosome counterpart (marked with *). The remaining 17 linkage groups were in 

surplus as there are only 21 sole chromosomes [41]. Even with a limited number of blast hits (because of 240 

their smaller size), nine of these 17 (in italics) were suggested to be on the same chromosome as some of 

the other 21 linkage groups, as only hits were found with a single A- or B-subgroup.  

The comparative analysis implies a high degree of conserved synteny, in addition to several chromosomal 

rearrangements. Twelve of the 21 putative sole chromosomes predominantly showed a one-to-one 
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syntenic relationship with the model species, namely LG4/29-A1, LG5-A2, LG6-A3, LG7-A4, LG9-A5, 245 

LG11/32-A6, LG14/37-A7, LG18-A8, LG17-A9, LG12/27/36-B1a, LG2-B4a and LG8-B4b. Six other 

putative sole chromosomes also showed a one-to-one syntenic relationship, with the exception of one 

model species: LG22/16 and LG23, both showed homology with chromosome seven of stickleback (S7), 

indicating that the fusion event leading to S7 in the stickleback ancestor [38], did probably not occur in the 

sole ancestor. A similar observation was found between LG3, LG21 and chromosome seven of tilapia 250 

(T7), and between LG10, LG15 and chromosome one of pufferfish (P1), indicating that the fusion events 

leading to T7 and P1 [13,50] did not occur in sole. Beside these three inter-chromosomal rearrangements 

between sole and one of the four model species, interestingly, one major inter-chromosomal 

rearrangement between sole and all four model species was observed, namely LG1, which corresponded 

to two A-groups (A10 and A11), suggesting a fusion in the lineage leading to sole. Finally, the remaining 255 

two putative sole chromosomes, LG31/26/28 and LG24/19, showed conserved synteny with the 

chromosomes belonging to the synteny groups, A12 and B1b, respectively. However, for A12 additional 

hits were found with LG23 and for B1b with LG2. The homology of LG23, LG2 and several other linkage 

groups with multiple chromosomes can be attributed to the presence of contigs that were annotated with 

multigene families (e.g. myosine heavy chain, alpha-actinin-3-like, ryanodine receptor, major 260 

histocompatibility complex and tubulin genes). Paralogous sequences from such families are dispersed 

among chromosomes and therefore interfere with the true syntenic relationships. For all 21 putative sole 

chromosomes one synteny group (or two in the case of LG1) was suggested, leaving B4c and B5c. In 

medaka (n=24) they represent two additional chromosomes, M2 and M23 [47]. However, M2 merged 

together with M8 in pufferfish (P3) and with M13 in stickleback (S1), and M23 with M10 in stickleback 265 

(S4) [13,38]. Also in tilapia several arguments suggested that M2 merged with M4 into T23 [50]. 

Unfortunately, for sole no blast hits were found with M2 nor M23 (except one between M2 and LG12). 
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Syntenic relationships between sole and turbot 270 

Combining linkage groups in sole chromosomes based on synteny with distantly related model species 

(i.e. all belonging to different orders within the Percomorphaceae), has to be done with cautious. 

Therefore, the syntenic relationships were also studied with another flatfish species, and thus much closer 

related. The sole linkage map was built exclusively with EST-based SNP markers (with the exception of 

eight anonymous microsatellite markers). Given their higher evolutionary conserved status than 275 

anonymous markers [51,52], they provide a suitable framework for comparative mapping with fully 

sequenced species, as illustrated in the present study. However, as all markers are sole-specific and not 

present in the turbot or any other flatfish map, a direct comparison, similar to turbot and brill 

(Scophthalmus rhombus) [21], is impossible. The syntenic relationships between sole and turbot were 

established indirectly through evolutionary conservation with the model species [38,53]. Bouza et al. [20] 280 

studied the syntenic relationships between turbot and stickleback, medaka and pufferfish. We used these 

three stepping stone species to anchor the sole linkage groups to turbot. For all 21 putative sole 

chromosomes (except for LG23) a homologous turbot linkage group was found (see right column in 

Figure 2), suggesting a high degree of conserved synteny between these two flatfish. Additionally, these 

results support the approach of combining linkage groups based on synteny with model species and 285 

putting forward 21 putative sole chromosomes. However, also some differences were discussed below. 

For LG22/16 two turbot linkage groups (LG8-LG18) were observed, but it was suggested that these two 

probably are located on the same turbot chromosome. This was justified as LG8 and LG18 were syntenic 

to a single chromosome in all model species studied by Bouza et al. [20]. Moreover, the turbot map 

contains 24 linkage groups, so there are still two in surplus, as there are only 22 turbot chromosomes. 290 

Next, Bouza et al. [20] suggested a translocation between LG1 and LG22 in the lineage leading to turbot. 

This was not observed between the corresponding linkage groups of sole (resp. LG1 and LG9). For LG23 

of sole (homologous with the chromosomes of synteny group B2b), no turbot homolog was found, 

whereas for LG16 of turbot (homologous with the chromosomes of synteny group B5c), no sole 
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counterpart was suggested. These findings could be a consequence of different chromosomal 295 

rearrangements in the lineages leading to both species, however, more evidence is needed to confirm this. 

Finally, the fusion that was suggested leading to LG1 of sole, was clearly not observed for turbot. 

Interestingly, this is consistent with the karyotype of both species and might explain why sole has one 

chromosome less than turbot [54].  

 300 

Future applications 

The fisheries-induced evolutionary change observed in North Sea sole over the last 60 years [16] might 

significantly impact the productivity of the stock, and eventually lead to stock collapse. From a 

conservation point of view, evolutionary insights are of paramount importance to avoid irreversible loss of 

adaptive genetic diversity. This linkage map based on gene-linked markers allowed for a first exploration 305 

of the sole genome. By studying the syntenic relationships with other (flat)fish, these genetic markers 

were positioned and 21 sole chromosomes were suggested. This knowledge is highly relevant for 

evolutionary studies and can serve as a roadmap to help identify and locate genes involved in local 

adaptive differentiation and fisheries-induced selection. Using genome scans and if selection is strong 

enough, genetic markers in the proximity of these genes will display reduced variation and higher degrees 310 

of differentiation (e.g. “selective sweeps”) [10,55]. Identifying such genomic regions is impossible 

without knowledge on the location of the genetic markers. From a commercial point of view, a linkage 

map is an essential tool for selective breeding initiatives, aiming at relieving fishery pressure, while 

increasing the cost-efficiency of farmed fish production. The long generation time, slow growth and the 

occurrence of infections such as Black Patch Necrosis, have slowed down the large-scale aquaculture of 315 

sole [56]. However, research on the culture of various sole species has gained momentum [18,57], leading 

to novel breeding strategies, optimised sustainable feed and improved disease resistance. The promising 

results from recent experimental selective breeding initiatives of sole [58,59] further stimulate the 

development of genomic tools in the field of aquaculture. Maximizing growth is a focal goal in 
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aquaculture. For turbot, a more successful flatfish in aquaculture than sole, knowledge on the locations of 320 

several growth-related traits is already available. Given the comparison between turbot and sole, that was 

provided by the present study, the available genomic information of turbot might point in the direction of 

growth-related genomic regions in sole, similar as was recently illustrated by Hermida et al. [21] between 

the two flatfish, turbot and brill. 

 325 

Conclusion 

This study constitutes the first mapping effort of the sole genome using gene-linked markers. This linkage 

map provides a good genome coverage with a homogenous distribution of the markers. Although genomic 

resource are limited for sole, this map allowed us to explore genomic architecture through comparative 

mapping with other fish species. The EST-linked markers offered a useful framework for a comparison 330 

with four model species. A remarkable degree of conserved synteny was observed, enabling to reconstruct 

21 putative sole chromosomes with a high degree of confidence. Several cases of inter-chromosomal 

rearrangements were suggested as well, including a fusion in the lineage leading to sole. The stepping 

stone approach, used to compare the sole and turbot genome, confirmed the even higher degree of 

conserved synteny between the more related flatfish species. For all putative sole chromosomes (except 335 

one) it was possible to detect a turbot homolog. The fusion in sole was not observed in turbot, which is 

consistent with their karyotypes. This first sole map and comparative analysis represents a good starting 

point to identify functional genomic regions and associated candidate genes of evolutionary and 

commercial interest in sole, but also in other Pleuronectiformes and teleosts.  

 340 
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Figure legends 

 360 

Figure 1: Sex-averaged linkage map of sole. Map distances are calculated using the Kosambi mapping 

function and shown in centimorgans. Combined SNPs are indicated with a 'C' at the beginning of their 

name.  

 

Figure 2: Syntenic relationships between sole and five other (flat)fish. The chromosomes of four model 365 

fish species, namely  stickleback (S), tilapia (T), pufferfish (P) and medaka (M), were grouped in A- and 

B-groups according to their syntenic relationships as described in Sarropoulou et al. (2008), Kai et al. 

(2011) and Guyon et al. (2012) (left column). The numbers in the grid indicate the number of contigs 

where sequence homology was found between the sole linkage groups and the chromosomes of the four 

model species. For each chromosome the sole linkage group with the largest number of homologous 370 

sequences is highlighted in grey. Marked with *: the 21 linkage groups that are suggested as chromosome 

counterpart for sole (or at least part of it). In italics: linkage groups likely to be on the same chromosome 

as the linkage group marked with * to the left of it. For all 21 putative sole chromosomes (except for 

LG23) a homologous turbot linkage group is suggested (right column). 

  375 
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Tables 

Table 1: Number of markers, the corresponding number of distinct contigs and map length for each 

linkage group of sole. 

LG No. Markers No. contigs Length (cM) 

LG1 30 21 92.1 

LG2 39 35 89.2 

LG3 21 15 82.3 

LG4 32 17 75.5 

LG5 15 10 74.8 

LG6 28 25 73.9 

LG7 12 9 62.8 

LG8 17 15 54.2 

LG9 15 9 53.5 

LG10 18 14 52 

LG11 27 17 51.7 

LG12 14 10 45.5 

LG13 10 10 45.1 

LG14 14 11 41.6 

LG15 16 13 37.4 

LG16 8 4 35.7 

LG17 9 6 32 

LG18 16 10 30.7 

LG19 4 3 26.9 

LG20 7 3 26.8 

LG21 6 6 21.9 

LG22 6 5 21.5 

LG23 14 13 18.8 

LG24 6 5 18.1 

LG25 6 5 17.5 

LG26 4 3 11 

LG27 8 5 9.2 

LG28 2 2 9 

LG29 2 2 7 

LG30 2 2 7 

LG31 3 3 6.1 

LG32 2 2 3 

LG33 3 2 0 

LG34 4 4 0 

LG35 4 3 0 

LG36 3 3 0 

LG37 2 2 0 

LG38 2 2 0 
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Abstract 25 

Linkage maps based on markers derived from genes are essential evolutionary tools for commercial 

marine fish to help identify genomic regions associated with complex traits and subject to selective forces 

at play during exploitation or selective breeding. Additionally, they allow the use of genomic information 

from other related species for which more detailed information is available. Sole (solea solea L.) is a 

commercially important flatfish species in the North Sea, subject to overexploitation and showing 30 

evidence of fisheries-induced evolutionary changes in growth- and maturation-related traits. Sole would 

definitely benefit from a linkage map to better understand how evolution has shaped its genome structure. 

This study presents a linkage map of sole based on 423 single nucleotide polymorphisms derived from 

expressed sequence tags and 8 neutral microsatellite markers. The total map length is 1233.8 cM and 

consists of 38 linkage groups with a size varying between 0 to 92.1 cM. Being derived from expressed 35 

sequence tags allowed us to align the map with the genome of four model fish species, namely medaka 

(Oryzias latipes), Nile tilapia (Oreochromis niloticus), three-spined stickleback (Gasterosteus aculeatus) 

and green spotted pufferfish (Tetraodon nigroviridis). This comparison revealed multiple conserved 

syntenic regions with all four species, and suggested that the linkage groups represent 21 putative sole 

chromosomes. The map was also compared to the linkage map of turbot (Scophthalmus maximusPsetta 40 

maxima), another commercially important flatfish species and closely related to sole. For all putative sole 

chromosomes (except one) a turbot homolog was detected, confirming the even higher degree of synteny 

between these two flatfish species.  
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Introduction 45 

Preserving the evolutionary potential of exploited marine fish species is essential to secure viable 

populations across a species’ full geographical and environmental range [1]. A better understanding of the 

strength of local and fisheries-induced adaptation hence provides important insights into the resilience and 

evolutionary response to environmental change and harvesting of stocks [2]. This is crucial to move 

towards evolutionary enlightened sustainable fisheries management
 
[3]. In the last decade, marine 50 

fisheries have strongly declined or even collapsed [4,5] and a growing number of fish population studies 

have reported significant changes in life history traits that have been associated with fisheries-induced 

selection [6,7,8]. Examples include shifts towards earlier maturation at a smaller size, increased 

reproductive investment and changes in growth rate, all of which are consistent with the size-selective 

nature of fishing. These changes, in synergy with climate change, may have drastic negative effects on 55 

fish populations and their sustainable fisheries [2]. One of the most challenging problems in studying local 

adaptation and fisheries-induced evolution, however, is disentangling the environmental and genetic 

causes behind changes in life-history traits [7,9,10]. Many of the adaptive traits that respond to evolution 

are complex and quantitative by nature. Hence, genomic tools became pivotal to reveal footprints of 

selection, as changes can now be studied directly at the molecular level. 60 

Genetic linkage maps represent one of such essential evolutionary genomics tools for commercial marine 

fish, to help identify genomic regions associated with complex traits subject to selective forces. 

Additionally they are crucial during selective breeding initiatives, aiming at relieving fishery pressure on 

overexploited stocks, while increasing the cost-efficiency of farmed fish production. They also provide the 

necessary resources for genomic comparison with other fish species to understand their genome evolution 65 

and organization [11,12] and facilitate anchoring of scaffolds to chromosomes  in whole genome 

sequencing and assembly [13]. 

Sole (Solea solea L.) is a commercially important marine flatfish (Pleuronectiformes) of the family 

Soleidae mainly living in the Northeast Atlantic Ocean, but also in the whole Mediterranean Sea and in 
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the Southwestern Black Sea [14]. The spawning stock biomass of the North Sea has been fluctuating 70 

around the precautionary point of 35,000 tons depending on the strength of the year classes. Periods of 

revival however were short and overall there has been a downward trend, putting the sole stock at risk of 

reduced reproductive capacity [15]. Additionally, strong evidence exists for fisheries-induced evolutionary 

change in the onset of sexual maturity over the last 60 years [16].  

Despite the commercial importance of sole, no genomic tools are available to date [17,18]. Currently, 75 

genetic linkage maps are available for only five other flatfish species: turbot (Psetta Scophthalmus 

maximamaximus) [19,20], brill (Scophthalmus rhombus) [21], Atlantic halibut (Hippoglossus 

hippoglossus) [22], half-smooth tongue sole (Cynoglossus semilaevis) [23] and olive flounder 

(Paralichthys olivaceus) [24,25]. One of the major obstacles to build a linkage map for sole has been the 

lack of informative genetic markers. However, cutting-edge next‐generation DNA sequencing 80 

technologies allow for a rapid and cost-efficient development of genetic markers across the genome of 

highly exploited species without any existing genomic information [26]. 

Here, we used a novel set of single nucleotide polymorphisms (SNPs) that were developed from expressed 

sequence tags (ESTs) to construct the first linkage map of sole. Additionally, we used this map for 

comparative mapping and establishing the syntenic relationships with four fully sequenced model species, 85 

namely medaka (Oryzias latipes), Nile tilapia (Oreochromis niloticus), three-spined stickleback 

(Gasterosteus aculeatus) and green spotted pufferfish (Tetraodon nigroviridis). These comparisons were 

ultimately used as a stepping stone to compare the sole linkage map with that of turbot (Psetta 

Scophthalmus maximusa), which is more closely related to sole than the model fish species. The future 

applications of this novel molecular tool were further discussed into the context of evolutionary based 90 

fisheries management of flatfish species.   
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Materials and Methods 95 

Mapping families 

Two full-sib families with 46 and 33 35 offspring respectively were used for the linkage analysis. The 

sampling of the parents, broodstock management, offspring collection and DNA extractions were done by 

Blonk et al. [27] and were part of a large breeding program, initiated by Solea B.V. (The Netherlands) and 

the Animal Breeding and Genomics Centre (Wageningen University), aiming at increased productivity of 100 

farmed sole. All procedures were in accordance with the Dutch law. The parents originated from the 

Southern North Sea (52°N and 2.5°E) and were collected between 2003 and 2005. Details on the 

management of the broodstock including these parents (called 'B') and their offspring can be found in [28]. 

Of each parent a blood sample (0.1 ml) was taken without killing them (as they were part of the sole 

breeding program). DNA was extracted from this sample using a Puregene DNA purification kit for non-105 

mammalian whole blood samples (Gentra Systems). DNA extraction of the offspring was performed on 3 

to 4 days old larvae using nucleospin tissue columns following the manufacturer's guideline (96 

procedure, Machery-Nagel). 

 

Genetic markers and genotyping 110 

Using the Roche FLX Titanium technology, in total 348,042 cDNA sequences were generated from a 

multiplexed sole muscle library based on seven sole individuals sampled across the East Atlantic Ocean 

and the Mediterranean Sea (unpublished data). A total of 11,021 contigs could be assembled and over 

3,000 SNPs detected in silico. Among those, 1,536 SNPs were selected for validation using the Illumina 

GoldenGateTM high-throughput genotyping assay. Some of these markers have already been applied 115 

successfully in a traceability context [29]. The inheritance and the informativeness of the markers were 

visually checked with the GenomeStudio
TM

 genotyping module of Illumina. Of the 1,536 genotyped 

SNPs, 749 were not informative within the two families. For 21 SNPs inconsistencies with mendelian 

inheritance were observed and for 318 297 SNPs the genotyping assay failed. An overview of the 
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remaining 469 SNPs that were used to perform linkage analysis, can be found in Table S1. In addition 120 

both families were genotyped at the following 10 microsatellite markers with the method described in 

Blonk et al. [28]: AF173849, AF173852, AF173854, AF173855 [30], AY950587, AY950588, AY950589, 

AY950591, AY950592, AY950593 [31]. In total 479 markers (469 SNPs and 10 microsatellites) were 

included in the linkage analysis. A high number of missing data often indicates either poor DNA quality 

or markers that are difficult to call, which may lead to difficulties in linkage map construction. Therefore, 125 

individuals or markers with more than 30% missing data were excluded from the dataset, being two 

individuals and none of the markers. The final dataset consisted of two families with respectively 46 and 

33 offspring (with no more than 3% missing values per individual) and 479 markers (of which only 13 

SNPs had more than 3% missing data).  

 130 

 

Linkage map construction and genome coverage 

SNPs located within the same contig were combined into haplotypes using the program PEDPHASE v3.0 

[32]. The map was built with the program CRI-MAP v2.4 [33]. Initial grouping of the markers was carried 

out using the twopoint and autogroup option of CRI-MAP. The twopoint analysis was performed for all 135 

pairs of markers with a threshold of LOD = 3. Autogroup was then used to identify sets of markers which 

were likely located in the same linkage group (LOD ≥ 8). Some small linkage groups were pooled based 

on additional information: (1) an autogroup analysis with a lower threshold (LOD of four instead of eight) 

and (2) if linkage was found between the majority of the markers after performing an additional twopoint 

analysis with a threshold of LOD = 0.5. Secondly, the position of the SNPs and microsatellite markers 140 

within the groups was determined with the build option of CRIMAP in an iterative process, starting with a 

LOD score of 3 and through subsequent stepwise lowering of the LOD score. Finally, marker order was 

calibrated using the flips option with a window size of five markers. The map was drawn in the program 

MAPCHART v2.2 [34]. Two methods were used to estimate the genome length (Ge) of sole. According to 

Field Code Changed

Field Code Changed

Field Code Changed
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Fishman et al. [35] corrections should be made for chromosome ends by adding 2*Dav to the length of 145 

each linkage group, where Dav is the average inter-marker distance of the linkage map. Chakravarti et al. 

[36] suggested to multiply each linkage group by (m+1)/(m-1), where m is the number of loci in each 

linkage group (4th method in Chakravarti et al. [36]). The average length calculated by both methods was 

used as an estimate for the genome length  (resp. Ge1 and Ge2). 

 150 

 

 

 

 

Comparative mapping and syntenic relationships 155 

As all SNPs in the sole map were discovered from ESTs, the assembled contigs were used as queries to 

perform a local blast against the genome of four fully sequenced fish species: medaka (Oryzias latipes, 

order Beloniformes), Nile tilapia (Oreochromis niloticus, order Cichliformes), three-spined stickleback 

(Gasterosteus aculeatus, order Perciformes) and green spotted pufferfish (Tetraodon nigroviridis, order 

Tetraodontiformes). Of all available model species, these four are most closely related to the 160 

Pleuronectiformes, each representing a different order within the Percomorphaceae [37]. Genomic 

information was downloaded from the genome browser UCSC (http://genome.ucsc.edu/). A BLASTN 

analysis was performed with NCBI-Blast under default settings with exception of the E-value (< 10
-10

). To 

establish syntenic relationships with turbot (Psetta Scophthalmus maximamaximus) a direct comparison by 

blast analysis was not possible, as this species is not fully sequenced yet. Therefore, the stepping stone 165 

approach as described by Sarropoulou et al. [38] was used. The four model species were used as a bridge 

which allowed passing from the sole linkage groups to those of turbot. 

 

Results and Discussion 
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Linkage map construction and genome coverage 170 

The 469 informative SNPs were distributed over 291 single-marker contigs and 73 contigs with multiple 

SNPs. These markers located on the same contig were combined into haplotypes, in order to compensate 

for the low number of informative meioses due to the low number of individuals in the mapping families 

and to provide a more accurate estimate of the recombination frequency between the markers [39]. This 

was done for all contigs with multiple SNPs, except for four of them because of evidence for 175 

recombination within that contig (Table S1). Of the 469 SNPs and 10 microsatellite markers, 423 and 8 

(~90%) respectively were incorporated into the linkage map (Figure 1, Table S1). The total length of the 

map was estimated at 1233.8 cM and consists of 38 linkage groups (LG1 to LG38) with a size varying 

between 0 to  92.1 cM (Table 1, Table S1). The number of markers per group ranges from two to 39. The 

average inter-marker distance (Dav) is 8.1 cM and the maximal interval is 32.7 cM. The 48 unmapped 180 

markers could not be assigned a position due to an insufficient number of informative meioses. For the 

same reason, the order of closely linked markers might be inaccurate or it may be impossible to separate 

markers.  

The estimated genome length according to Fishman et al. [35] (Ge1) is 1849.4 cM. However, to obtain a 

more accurate estimate, two further corrections were made: (1) The distance between two markers in a 185 

linkage map should not exceed 30 cM [40]. As the haploid chromosome number of sole is 21 [41], there 

are 17 linkage groups in excess. For these 17, no correction was made for chromosome ends, but instead 

17*30 cM was added to the map length of 1233.8 cM. (2) For the number of acrocentric chromosomes, 13 

in the case of sole [41], only Dav instead of 2Dav was added (105.3 cM instead of 210.6 cM). For the other 

8 chromosomes 2Dav was added (129.6 cM). In total, the estimated genome length (Ge1) after both 190 

corrections is 1978.7 cM. The estimated genome length (Ge2) according to the fourth method of 

Chakravarti et al. [36] is 1490.2 cM. The average of both values (Ge1 and Ge2) is 1734.45 cM, 

corresponding to approximately 70% genome coverage. Half of the linkage groups are larger than 30 cM, 

a size similar to those found in maps of other (flat)fish species [20,22,24,42]. Twelve linkage groups are 
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smaller than 10 cM, therefore covering only part of the chromosomes represented by these linkage groups. 195 

Several of these linkage groups most likely represent different parts of the same chromosomes. 

 

Comparative mapping with model fish species 

The 423 mapped SNPs originated from 326 different contigs (Table S1). The sequences for these contigs 

were aligned against the genome of stickleback, pufferfish, medaka and tilapia using BLASTN. One-200 

hundred and eighty contigs showed a significant sequence homology above the threshold (E-value < 10
-10

) 

in at least one of the four fish species examined: 152 in stickleback, 126 in tilapia, 105 in medaka and 97 

in pufferfish. Fifty-eight contigs showed a significant sequence homology in all four model species. A 

detailed overview of the BLASTN results can be found in Table S2-S5. The highest levels of sequence 

similarity were found with the stickleback genome (~47%), followed by the tilapia genome (~39%) and 205 

the lowest levels with the medaka (~31%) and pufferfish (~30%) genome. However, these results are not 

in concordance with the phylogenetic position of the Pleuronectiformes among other Percomorphaceae, 

[37,43]. Flatfish belong to the Carangimorphariae, which are most closely related to the Ovalentariae, 

which include medaka and tilapia, and more distantly related to Percomorpharia, which include 

stickleback and pufferfish. Similar results were observed for turbot [20]. Despite the closer relationship 210 

between turbot and medaka, more sequence similarity was observed with stickleback (~50% ) than with 

medaka and pufferfish (~40%). Bouza et al. [20] suggested that this reflected phylogenetic discordances 

between the use of mitochondrial and nuclear genes, as the proposed phylogeny was based on the 

mitogenome [44,45]. However, recent phylogenetic studies using a combination of both marker types do 

not support such discordance [37,43,46]. Another possible explanation for this apparent discrepancy is 215 

provided by the different evolutionary rates among closely related species. Medaka and pufferfish (and 

teleosts in general) evolved faster than other vertebrate species [45,47,48,49], hence they might also have 

evolved faster than sole, stickleback and tilapia. Support for this is presented by Betancur et al.[43], which 

show that the branch lengths in their evolutionary tree are longer for medaka and pufferfish in comparison 
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to the other three species. Table S6 lists the number and length of the conserved syntenic regions (i.e. 220 

markers on the same linkage group that are also on the same chromosome, regardless the order) with each 

of the four model species. Most syntenic sequences were found with stickleback (23 syntenic regions, 

containing on average 5.3 sequences), followed by tilapia, medaka and pufferfish (resp. 23, 19 and 18 

regions, containing 4.3, 4.3 and 3.6 sequences). These numbers are in concordance with the observed 

levels of sequences similarity for each species (see above). The total length of the syntenic regions was 225 

smaller for stickleback (200.1 Mb) than for tilapia (257.8 Mb) and medaka (224.7 Mb), but larger when 

compared to pufferfish (89.2 Mb). This suggests that the stickleback genome is more compact in 

comparison to tilapia and medaka, but larger than pufferfish, which is consistent with their genome size. 

Tilapia has the largest genome at about 820 Mb, followed by medaka (~700 Mb), stickleback (~460 Mb) 

and pufferfish (~350 Mb). 230 

 

Syntenic relationships between sole and model fish species 

The distribution of the sequence homology between the model species chromosomes and the sole linkage 

groups is shown in Figure 2. The chromosomes of the four model species are organized in A-groups (with 

one-to-one relationships) and B-groups (with inter-chromosomal rearrangements) according to their 235 

syntenic relationships as described in Sarropoulou et al. [38], Kai et al. [13] and Guyon et al. [50] (see left 

column). The middle section shows the number of contigs where sequence homology was found between 

the sole linkage groups and the chromosomes of the four model species. For each chromosome the sole 

linkage group with the largest number of homologous sequences is highlighted in grey. For the 

chromosomes belonging to the same A-group or B-subgroup this was mostly the same linkage group, 240 

pointing to the chromosome counterpart (or at least part of it) in sole. In total, twenty-one linkage groups 

were suggested as chromosome counterpart (marked with *). The remaining 17 linkage groups were in 

surplus as there are only 21 sole chromosomes [41]. Even with a limited number of blast hits (because of 
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their smaller size), nine of these 17 (in italics) were suggested to be on the same chromosome as some of 

the other 21 linkage groups, as only hits were found with a single A- or B-subgroup.  245 

The comparative analysis implies a high degree of conserved synteny, in addition to several chromosomal 

rearrangements. Twelve of the 21 putative sole chromosomes predominantly showed a one-to-one 

syntenic relationship with the model species, namely LG4/29-A1, LG5-A2, LG6-A3, LG7-A4, LG9-A5, 

LG11/32-A6, LG14/37-A7, LG18-A8, LG17-A9, LG12/27/36-B1a, LG2-B4a and LG8-B4b. Six other 

putative sole chromosomes also showed a one-to-one syntenic relationship, with the exception of one 250 

model species: LG22/16 and LG23, both showed homology with chromosome seven of stickleback (S7), 

indicating that the fusion event leading to S7 in the stickleback ancestor [38], did probably not occur in the 

sole ancestor. A similar observation was found between LG3, LG21 and chromosome seven of tilapia 

(T7), and between LG10, LG15 and chromosome one of pufferfish (P1), indicating that the fusion events 

leading to T7 and P1 [13,50] did not occur in sole. Beside these three inter-chromosomal rearrangements 255 

between sole and one of the four model species, interestingly, one major inter-chromosomal 

rearrangement between sole and all four model species was observed, namely LG1, which corresponded 

to two A-groups (A10 and A11), suggesting a fusion in the lineage leading to sole. Finally, the remaining 

two putative sole chromosomes, LG31/26/28 and LG24/19, showed conserved synteny with the 

chromosomes belonging to the synteny groups, A12 and B1b, respectively. However, for A12 additional 260 

hits were found with LG23 and for B1b with LG2. The homology of LG23, LG2 and several other linkage 

groups with multiple chromosomes can be attributed to the presence of contigs that were annotated with 

multigene families (e.g. myosine heavy chain, alpha-actinin-3-like, ryanodine receptor, major 

histocompatibility complex and tubulin genes). Paralogous sequences from such families are dispersed 

among chromosomes and therefore interfere with the true syntenic relationships. For all 21 putative sole 265 

chromosomes one synteny group (or two in the case of LG1) was suggested, leaving B4c and B5c. In 

medaka (n=24) they represent two additional chromosomes, M2 and M23 [47]. However, M2 merged 

together with M8 in pufferfish (P3) and with M13 in stickleback (S1), and M23 with M10 in stickleback 
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(S4) [13,38]. Also in tilapia several arguments suggested that M2 merged with M4 into T23 [50]. 

Unfortunately, for sole no blast hits were found with M2 nor M23 (except one between M2 and LG12). 270 

 

 

Syntenic relationships between sole and turbot 

Combining linkage groups in sole chromosomes based on synteny with distantly related model species 

(i.e. all belonging to different orders within the Percomorphaceae), has to be done with cautious. 275 

Therefore, the syntenic relationships were also studied with another flatfish species, and thus much closer 

related. The sole linkage map was built exclusively with EST-based SNP markers (with the exception of 

eight anonymous microsatellite markers). Given their higher evolutionary conserved status than 

anonymous markers [51,52], they provide a suitable framework for comparative mapping with fully 

sequenced species, as illustrated in the present study. However, as all markers are sole-specific and not 280 

present in the turbot or any other flatfish map, a direct comparison, similar to turbot and brill 

(Scophthalmus rhombus) [21], is impossible. The syntenic relationships between sole and turbot were 

established indirectly through evolutionary conservation with the model species [38,53]. Bouza et al. [20] 

studied the syntenic relationships between turbot and stickleback, medaka and pufferfish. We used these 

three stepping stone species to anchor the sole linkage groups to turbot. For all 21 putative sole 285 

chromosomes (except for LG23) a homologous turbot linkage group was found (see right column in 

Figure 2), suggesting a high degree of conserved synteny between these two flatfish. Additionally, these 

results support the approach of combining linkage groups based on synteny with model species and 

putting forward 21 putative sole chromosomes. However, also some differences were discussed below. 

For LG22/16 two turbot linkage groups (LG8-LG18) were observed, but it was suggested that these two 290 

probably are located on the same turbot chromosome. This was justified as LG8 and LG18 were syntenic 

to a single chromosome in all model species studied by Bouza et al. [20]. Moreover, the turbot map 

contains 24 linkage groups, so there are still two in surplus, as there are only 22 turbot chromosomes. 
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Next, Bouza et al. [20] suggested a translocation between LG1 and LG22 in the lineage leading to turbot. 

This was not observed between the corresponding linkage groups of sole (resp. LG1 and LG9). For LG23 295 

of sole (homologous with the chromosomes of synteny group B2b), no turbot homolog was found, 

whereas for LG16 of turbot (homologous with the chromosomes of synteny group B5c), no sole 

counterpart was suggested. These findings could be a consequence of different chromosomal 

rearrangements in the lineages leading to both species, however, more evidence is needed to confirm this. 

Finally, the fusion that was suggested leading to LG1 of sole, was clearly not observed for turbot. 300 

Interestingly, this is consistent with the karyotype of both species and might explain why sole has one 

chromosome less than turbot [54].  

 

Future applications 

The fisheries-induced evolutionary change observed in North Sea sole over the last 60 years [16] might 305 

significantly impact the productivity of the stock, and eventually lead to stock collapse. From a 

conservation point of view, evolutionary insights are of paramount importance to avoid irreversible loss of 

adaptive genetic diversity. This linkage map based on gene-linked markers allowed for a first exploration 

of the sole genome. By studying the syntenic relationships with other (flat)fish, these genetic markers 

were positioned and 21 sole chromosomes were suggested. This knowledge is highly relevant for 310 

evolutionary studies and can serve as a roadmap to help identify and locate genes involved in local 

adaptive differentiation and fisheries-induced selection. Using genome scans and if selection is strong 

enough, genetic markers in the proximity of these genes will display reduced variation and higher degrees 

of differentiation (e.g. “selective sweeps”) [10,55]. Identifying such genomic regions is impossible 

without knowledge on the location of the genetic markers. From a commercial point of view, a linkage 315 

map is an essential tool for selective breeding initiatives, aiming at relieving fishery pressure, while 

increasing the cost-efficiency of farmed fish production. The long generation time, slow growth and the 

occurrence of infections such as Black Patch Necrosis, have slowed down the large-scale aquaculture of 
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sole [56]. However, research on the culture of various sole species has gained momentum [18,57], leading 

to novel breeding strategies, optimised sustainable feed and improved disease resistance. The promising 320 

results from recent experimental selective breeding initiatives of sole [58,59] further stimulate the 

development of genomic tools in the field of aquaculture. Maximizing growth is a focal goal in 

aquaculture. For turbot, a more successful flatfish in aquaculture than sole, knowledge on the locations of 

several growth-related traits is already available. Given the comparison between turbot and sole, that was 

provided by the present study, the available genomic information of turbot might point in the direction of 325 

growth-related genomic regions in sole, similar as was recently illustrated by Hermida et al. [21] between 

the two flatfish, turbot and brill. 

 

Conclusion 

This study constitutes the first mapping effort of the sole genome using gene-linked markers. This linkage 330 

map provides a good genome coverage with a homogenous distribution of the markers. Although genomic 

resource are limited for sole, this map allowed us to explore genomic architecture through comparative 

mapping with other fish species. The EST-linked markers offered a useful framework for a comparison 

with four model species. A remarkable degree of conserved synteny was observed, enabling to reconstruct 

21 putative sole chromosomes with a high degree of confidence. Several cases of inter-chromosomal 335 

rearrangements were suggested as well, including a fusion in the lineage leading to sole. The stepping 

stone approach, used to compare the sole and turbot genome, confirmed the even higher degree of 

conserved synteny between the more related flatfish species. For all putative sole chromosomes (except 

one) it was possible to detect a turbot homolog. The fusion in sole was not observed in turbot, which is 

consistent with their karyotypes. This first sole map and comparative analysis represents a good starting 340 

point to identify functional genomic regions and associated candidate genes of evolutionary and 

commercial interest in sole, but also in other Ppleuronectiformes and teleosts.  
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Figure legends 

 

Figure 1: Sex-averaged linkage map of sole. Map distances are calculated using the Kosambi mapping 365 

function and shown in centimorgans. Combined SNPs are indicated with a 'C' at the beginning of their 

name.  

 

Figure 2: Syntenic relationships between sole and five other (flat)fish. The chromosomes of four model 

fish species, namely  stickleback (S), tilapia (T), pufferfish (P) and medaka (M), were grouped in A- and 370 

B-groups according to their syntenic relationships as described in Sarropoulou et al. (2008), Kai et al. 

(2011) and Guyon et al. (2012) (left column). The numbers in the grid indicate the number of contigs 

where sequence homology was found between the sole linkage groups and the chromosomes of the four 

model species. For each chromosome the sole linkage group with the largest number of homologous 

sequences is highlighted in grey. Marked with *: the 21 linkage groups that are suggested as chromosome 375 

counterpart for sole (or at least part of it). In italics: linkage groups likely to be on the same chromosome 

as the linkage group marked with * to the left of it. For all 21 putative sole chromosomes (except for 

LG23) a homologous turbot linkage group is suggested (right column). 
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Tables 380 

Table 1: Number of markers, the corresponding number of distinct contigs and map length for each 

linkage group of sole. 

LG No. Markers No. contigs Length (cM) 

LG1 30 21 92.1 

LG2 39 35 89.2 

LG3 21 15 82.3 

LG4 32 17 75.5 

LG5 15 10 74.8 

LG6 28 25 73.9 

LG7 12 9 62.8 

LG8 17 15 54.2 

LG9 15 9 53.5 

LG10 18 14 52 

LG11 27 17 51.7 

LG12 14 10 45.5 

LG13 10 10 45.1 

LG14 14 11 41.6 

LG15 16 13 37.4 

LG16 8 4 35.7 

LG17 9 6 32 

LG18 16 10 30.7 

LG19 4 3 26.9 

LG20 7 3 26.8 

LG21 6 6 21.9 

LG22 6 5 21.5 

LG23 14 13 18.8 

LG24 6 5 18.1 

LG25 6 5 17.5 

LG26 4 3 11 

LG27 8 5 9.2 

LG28 2 2 9 

LG29 2 2 7 

LG30 2 2 7 

LG31 3 3 6.1 

LG32 2 2 3 

LG33 3 2 0 

LG34 4 4 0 

LG35 4 3 0 

LG36 3 3 0 

LG37 2 2 0 

LG38 2 2 0 
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