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Abstract 

The interregional cratonic relations between the Paleo- and Mesoproterozoic basement units 

surrounding the Neoproterozoic Central African Copperbelt are still largely unresolved, although they 

are regarded as major potential metal sources. This study focuses on the Domes region basement at 

depth below the Copperbelt and its relationship to the neighboring Bangweulu Block and its 

destabilized margin, the Irumide Belt. We applied an integrated whole rock petrochemical and Sm-Nd 

isotopic approach to major lithological units to assess the proposed mid-Proterozoic arc setting for the 

Domes basement inliers along with their relationship to the neighboring areas. The available 

petrochemical and isotopic data for the Paleoproterozoic eastern Domes granitoids and magmatic units 

in the SW Bangweulu Block is consistent with a continental arc setting. Moreover, the mid-

Paleoproterozoic Nd isotope ratios preclude an island arc because they are significantly less radiogenic 

than the depleted mantle. Predominantly Archean and Early Paleoproterozoic depleted mantle model 

ages in all terranes indicate limited juvenile input during Paleo- and Mesoproterozoic magmatic 

phases. Finally, broadly similar model ages in the Domes inliers and the Bangweulu-Irumide region 

suggest a relationship between these terranes.  
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1. Introduction 

The Central African Copperbelt is one of the world’s largest Copper provinces (e.g., Cailteux et al., 

2005). The basement units surrounding the Neoproterozoic Copperbelt are seen as major potential 

copper and cobalt sources for this stratiform Cu-Co province (e.g., Cailteux et al., 2005; Sweeney et 

al., 1991; Van Wilderode et al., 2014). The Paleoproterozoic Domes inliers lie directly below the 

Copperbelt deposits, yet their Paleo- to Mesoproterozoic history and the relation with the neighboring 

basement units is still largely unknown. A few occurrences of inherited Meso- to Neoarchean 

xenocrystic zircons in the Domes region suggest that these inliers rework a cryptic Archean terrane 

(De Waele et al., 2006b; Rainaud et al., 2002, 2003). This was recently confirmed by zircon εHf 

depleted mantle model ages (Eglinger, 2013). Because the Bangweulu Block and its southeastern 

destabilized margin, the Irumide Belt, also rework Archean crustal sources (e.g., De Waele et al., 

2006b), these inliers could represent the western destabilized margin of the Bangweulu Block 

(Eglinger, 2013). Various authors suggested that the Domes inliers were part of an extensive arc 

terrane system between c. 2050 Ma and c. 1850 Ma, stretching either to the Ubendian Belt (Brewer et 

al., 1979; Kabengele et al., 1991) or towards Namibia (Rainaud et al., 2005). Zircon U-Pb dating by 

Eglinger (2013) indicated a metamorphic episode in the Domes region at 1190-1150 Ma. However, 

this cannot be used as an argument for a relationship with the Irumide Belt as it predates the Irumide 

Orogeny that culminates at ~1020 Ma (De Waele et al., 2006b).  

A combined petrochemical and isotopic approach has been used to determine the relationship between 

the Domes inliers and two neighboring basement units, the Bangweulu Block and the Irumide Belt. 

Depleted mantle Nd model ages for major basement lithologies were used to estimate crustal residence 

times which were compared between the basement units. This isotopic approach was combined with a 

petrochemical characterization to compare the geotectonic setting of contemporaneous magmatic 

phases across the basement units.  

We will demonstrate that careful use of whole rock (isotope) data in conjunction with the available 

temporal framework can provide insights in interregional cratonic relations and geotectonic history of 



  

3 

 

Proterozoic basement units. Moreover, the whole rock isotopic approach allows to determine whether 

the isotopic differences are sufficient to act as source tracers for base metal mineralizations.  

 

2. Geological setting  

2.1 Bangweulu Block 

The Bangweulu Block is a Paleoproterozoic cratonic region of 275 by 450 km, surrounded by orogenic 

belts (Fig. 1; e.g., Andersen and Unrug, 1984). To the north, the Paleoproterozoic Ubendian and 

Usagaran Belts separate it from the Archean Tanzania Craton, whereas the Mesoproterozoic Kibara 

Belt and the Neoproterozoic Lufilian Foreland separate it from the Kasai Shield in the west (e.g., De 

Waele et al., 2008). The Mesoproterozoic Irumide Belt located to the southeast of the Bangweulu 

Block was recently identified as a destabilized (metacratonized) margin of the Bangweulu Block (De 

Waele et al., 2006b). Such metacratonic margins are generated by attempted subduction of a passive 

continental margin, resulting in a partial loss of their cratonic rigidity and increasing their 

susceptibility to magmatism during subsequent deformation (e.g., Black and Liégeois, 1993; 

Adbelsalam et al., 2002; Liégeois et al., 2013).  

Initial destabilization of the southern part of the Bangweulu craton occurred during the 

Paleoproterozoic when an unknown terrane collided with the Irumide margin. This collision resulted in 

voluminous magmatism throughout the Bangweulu region at 2050-1930 Ma, and this event represents 

the most recent major magmatic event recorded in this area (De Waele et al., 2006b). The crystalline 

Bangweulu basement consists of E-W oriented schist belts intruded by granitoids and overlain by 

metavolcanic rocks. The schist belts occur mainly in the eastern and northeastern parts of the 

Bangweulu Block as E-W oriented rafts which are up to 10 km wide and 75-100 km long (Andersen 

and Unrug, 1984). Farther south, the schist belts are less extensive and occur as discrete rafts 

(Andersen and Unrug, 1984). In the central part of the Bangweulu Block, the schist belts are weakly 

metamorphosed, dominated by assemblages of chlorite, muscovite and biotite schists associated with 

quartzites. These rafts either terminate against major shear zones or grade into higher grade 

equivalents in the Ubendian Belt, indicating a relationship between the Bangweulu and this belt 

(Andersen and Unrug, 1984; De Waele et al., 2006b). Towards the Ubendian Belt, sillimanite- and 
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cordierite-bearing gneisses and migmatites indicate higher metamorphic grades, and the structural 

trends are oriented NNW-SSE, parallel to the Ubendian Belt (De Waele et al., 2006b). The relatively 

undeformed Bangweulu granitoids are interpreted as shallow intrusions because they are associated 

with volcanic rocks (e.g., Brewer et al., 1979; Schandelmeier, 1980, 1983). The coeval volcaniclastic 

rocks are andesitic to rhyolitic in composition and are dominantly pyroclastic with subordinate lava 

flows and shallow intrusions (Brewer et al., 1979). Andersen and Unrug (1984) interpreted these as 

forming in a volcanic arc system situated along an active margin because the granitoids and the coeval 

volcanics display high-K calcalkaline compositions. Due to the absence of indications for significant 

crustal thickening and subsequent unroofing in the Bangweulu Block, these granitic rocks and the 

associated metavolcanic rocks were possibly generated in an intracontinental setting (De Waele et al., 

2006b). 

The Paleo- to Mesoproterozoic sedimentary cover of the Bangweulu Block also stretches out over 

parts of the Irumide and Domes regions. This cover is collectively termed the Muva Supergroup and 

comprises undeformed units in the north and strongly deformed units in the Irumide Belt (De Waele et 

al., 2005; De Waele and Fitzsimons, 2007). In the Bangweulu Block, it comprises the Mporokoso 

Group in the northwest and the Kasama Formation, a minor unit exposed in an E-W oriented basin to 

the east of the Mporokoso Group. The Mporokoso Group contains fluvial and lacustrine sediments, 

with minor aeolian sediments with a southern sediment source (Andersen and Unrug, 1984) and has a 

maximum depositional age of 1829 ± 19 Ma constrained by detrital zircons (De Waele and Fitzsimons, 

2007). Based on paleocurrent analysis, the extreme maturity of the Kasama quartzites and arenites, and 

on age modes of detrital zircons, they are interpreted as a reworking of the Mporokoso Group 

sediments to the west (Andersen and Unrug, 1984; De Waele and Fitzsimons, 2007). The depositional 

age of the Kasama Formation is constrained by detrital zircons and an Irumide-aged deformation 

between c. 1434 and 1020 Ma (De Waele and Fitzsimons, 2007). The Muva Supergroup is in turn 

overlain by Neoproterozoic Katanga Supergroup sediments and Cenozoic fluviatile and lacustrine 

sediments which are not discussed here (Andersen and Unrug, 1984). 

 

2.2 Irumide Belt 
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The Irumide Belt is characterized by voluminous Mesoproterozoic K-feldspar porphyric granitoids and 

strongly deformed and metamorphosed supracrustal sequences coexisting with Paleoproterozoic 

granitoids and minor Neoarchean granitic rocks (Fig. 1; De Waele et al., 2006b). Extensive studies by 

De Waele et al. (2001, 2005, 2006a, 2006b, 2009) indicate that the Irumide region was a passive 

margin to the Bangweulu Block during most of the Paleo- and Mesoproterozoic which was 

destabilized to form a metacraton.  

Initial metacratonization in the Irumide Belt occurred at 2050-1930 Ma and involved continental 

collision with an unidentified block approaching from the present-day south, resulting in the formation 

of the Usagaran Belt and magmatism throughout the Irumide and Bangweulu regions (De Waele et al., 

2006b). This collision was associated with dextral transpression, dominantly vertical plate movements 

and resulted in magmatism and brief, but potentially deep, subduction accompanied by eclogite-grade 

metamorphism (De Waele et al., 2006b).  

Deposition of the Muva Supergroup molasse occurred simultaneously and renewed convergence 

generated the Ubendian Belt at 1880-1850 Ma, after which deposition of the Muva Supergroup 

continued in a passive margin setting (De Waele et al., 2006b). This was followed by a period of 

relative quiescence, until minor reactivation at 1660-1550 Ma generated the anorogenic granites of the 

Lukamfwa phase (De Waele et al., 2006b). Between ~1080 and 1050 Ma, convergence of the Irumide 

with an unknown terrane and southward subduction resulted in continental arc magmatism in a part of 

this terrane now known as the Southern Irumide Belt (De Waele et al., 2006b; Johnson and Olivier, 

2004; Johnson et al., 2005, 2006; 2007b).  

The subsequent collision resulted in the Irumide Orogeny at 1050-1000 Ma and generated voluminous 

K-feldspar porphyric granitoids which are restricted to the Irumide Belt. Finally, post-orogenic 

collapse was associated with minor A-type magmatism around 950 Ma (De Waele et al., 2006b). 

Bimodal magmatism of c. 880 Ma is interpreted as a rift event which removed part of the colliding 

terrane, leaving the Southern Irumide Belt behind (De Waele et al., 2006b; Johnson et al., 2006; 

2007b). The Karoo Graben which developed along the Proterozoic Mwembeshi Shear zone currently 

separates the Irumide from the Southern Irumide Belt. This graben likely reactivated the suture 
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between these belts, represented by a SE-declining paleo-Benioff zone marking the northern margin of 

the Southern Irumide Belt (De Waele et al., 2006b; Johnson et al., 2006; 2007b).  

In the Irumide Belt, the Muva Supergroup includes the Kanona, Manshya River and Mafingi Groups 

(e.g., De Waele and Fitzsimons, 2007). The Mafingi Group occurs in the NE end of the Irumide Belt, 

has a limited extent and was correlated with the Manshya River Group in the northeastern part of the 

Irumide Belt (e.g., De Waele and Fitzsimons, 2007; Fitches, 1971). The depositional age of the 

Manshya River Group is constrained by conformal rhyolites dated at 1880 ± 12 Ma (De Waele and 

Mapani, 2002).  

The Kanona Group comprises extensively deformed supracrustal sequences occurring in the SW 

Irumide Belt and consists of mature quartzites and pelitic rocks (De Waele and Mapani, 2002). Based 

on broad similarities in lithostratigraphy, the Manshya River and Kanona Group sedimentary rocks are 

inferred to be coeval sequences deposited around 1850 Ma, although direct correlation is impossible 

due to lack of age constraints and exposure gaps (De Waele and Fitzsimons, 2007; De Waele and 

Mapani, 2002). These sequences are interpreted as extensive Paleoproterozoic beach deposits with a 

sediment source to the northwest, deposited in the Irumide Basin that formed after the Ubendian 

deformation phase (Andersen and Unrug, 1984; De Waele et al., 2001). The absence of carbonates and 

obducted oceanic crust in the Irumide Belt likely indicates that this was a shallow intracontinental 

basin (Daly, 1986). 

 

2.3 The Domes Inliers 

In the Domes region, basement inliers are exposed within the Neoproterozoic Lufilian Belt. From east 

to west, the major inliers are the Kafue Basement Complex and the Luswishi, Solwezi, Mwombezhi 

and Kabompo Domes (Fig. 1). Radiometric age dating of rocks within these inliers indicates mostly 

Paleoproterozoic ages of 1970-1850 Ma (Eglinger, 2013; John, 2001; Nyogi et al., 1991; Rainaud et 

al., 2002, 2005). About half of the basement consists of the Lufubu Schist sequence, which is intruded 

by extensive granitic rocks (Mendelsohn, 1961, Rainaud et al., 2005). The Paleoproterozoic Lufubu 

Schists in the Kafue Basement Complex comprises mainly schist, quartzite and gneiss with minor 

metacarbonate, metagreywacke, arkose and conglomerate (Mendelsohn, 1961). The U-Pb ages for 
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igneous zircons within the Lufubu Schists units cluster around 1980-1960 Ma and 1870-1860 Ma 

(Rainaud et al., 2005). Mendelsohn (1961) interpreted the Lufubu Schist as a metasedimentary 

sequence with minor intercalated metavolcanitic rocks. However, Rainaud et al. (2005) argue in favor 

of a significant proportion of metavolcanic units, mainly based on blastoporphyric textures, occurrence 

of hornblende and predominantly oscillatory zoned zircons in the Lufubu Schist samples. Many 

lithologies within the Lufubu Schist are spatially associated with (sub)contemporaneous granitic rocks 

(e.g., Lobo-Guerrero Sanz, 2005; Rainaud et al., 2005). Based on this association, Rainaud et al. 

(2005) suggested that the metavolcanic Lufubu Schists and their plutonic contemporaries represent one 

or several magmatic arc terranes, active between the ~ 2049 Ma age of the Mkushi Gneiss in the 

Irumide Belt and the youngest Lufubu Schist crystallization age at ~ 1850 Ma. De Waele et al. (2006b) 

relate the Mkushi Gneiss to the 2050-1930 Ma Usagaran magmatism in a collisional setting between 

the Irumide Belt and an unidentified terrane. Parts of this complex experienced magmatic reworking in 

the Mesoproterozoic at 1090 ± 160 Ma (De Waele et al., 2006b; De Waele and Mapani, 2002; Rainaud 

et al., 2002).  

The ~1880 Ma granitoids and volcanic units in the Luina Dome (Ngoyi et al., 1991; Rainaud et al. 

2002) are thought to be related to similar, contemporaneous magmatic units in the SW Bangweulu and 

in the Usagaran Belt (De Waele et al., 2006b). Additionally, combination of zircon U-Pb and εHf data 

with geothermobarometric data suggests that the Domes inliers represent the southwestern 

metacratonic margin of the Bangweulu Block, in analogy with the Irumide Belt (Eglinger, 2013).  

Irumide-aged magmatic events around 1020 Ma are unknown in the Domes region. Nonetheless, 

recently dated zircon overgrowths revealed a Mesoproterozoic metamorphic event at 1190-1150 Ma in 

the Mwombezhi Dome and at 1240-1120 Ma in the Solwezi Dome (Eglinger, 2013).  

The most recent igneous event in the Domes region inliers is represented by volumetrically minor 

anorogenic granites such as the 877 ±11 Ma Nchanga granite in the Kafue Basement Complex , 

thought to be related to incipient rifting (Armstrong et al., 2005; Katongo et al., 2004). 

Contemporaneous magmatism also occurs in the Southern Irumide Belt, about 400 km southwards 

from this location, where it has been linked to the earliest breakup phases of the Rodinia 

Supercontinent (Johnson et al., 2007a).  
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During the Lufilian Orogeny from c. 595 to 490 Ma (e.g., Selley et al., 2005), the Mwombezhi 

basement was thrusted on top of the overlaying Neoproterozoic Katanga Supergroup sediments, 

resulting in a tectonic interlayering (e.g., Cosi et al., 1992). Recent mapping and drilling by Equinox, 

now part of Barrick Gold, confirmed that the undifferentiated Mwombezhi gneisses are rimmed by 

tectonic mélanges of basement and Katanga sequence (Bernau, 2007). 

 

3. Methodology 

3.1 Sample selection 

A set of lithologies was collected that characterize the main suite of exposed granitic and 

metasedimentary rocks and complement the existing published dataset (e.g., De Waele et al., 2006b; 

Katongo et al., 2004). Provenance studies indicate that the Kibara Belt did not contribute significant 

components to the Neoproterozoic Katanga sediments in the Copperbelt and that the Bangweulu Block 

is likely the dominant sediment source (Shuh et al., 2012). Sampling here has focused on the Domes, 

Bangweulu and Irumide regions. In the Domes region, 21 samples were collected from the 

Mwombezhi Dome and the Kafue Basement Complex area (Fig. 1). Samples from two deep 

Mwombezhi drill cores were kindly provided by Equinox Resources Ltd. These were supplemented by 

well-located samples from key units within the Kafue Basement Complex in the east, provided by the 

Royal Museum for Central Africa (RMCA) in Tervuren, Belgium. The samples from the Bangweulu 

(n=18) and the Irumide (n=14) regions bordering the Copperbelt were collected in a field campaign 

during 2012. A study by De Waele et al. (2006b) describes mainly felsic igneous units within the 

Irumide Belt and southern Bangweulu Block in terms of geochemistry, radiometric data, and Rb-Sr 

and Sm-Nd isotope systems. Special attention was given to metasedimentary and additional mafic 

rocks to complement this data.  

Please insert supplementary Table A here. 

 

3.2 Major and trace element composition 
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Major and minor elements were measured with a Varian 720 ICP-OES instrument after Li-metaborate 

fusion. The results are given in Table 1 along with the instrumental detection limits (IDL) calculated 

from repeated analyses of procedural blanks. For trace element analysis, samples from the Domes, 

Irumide and Bangweulu regions were dissolved using a microwave-assisted HF-HNO3-HClO4 

digestion adapted from Mareels (2004). After an initial two-phase digestion step at 180 and 200 °C 

using 6 ml 22 M HF and 2 ml 14 M HNO3, Re and In were added as internal standards. Fluor was 

subsequently removed using a near-total evaporation step with 2 ml HClO4, and the resulting droplet 

was dissolved in 2 ml 14 M HNO3 at 120°C and diluted to 50 ml with a 2% HCl solution. Trace 

elements were measured with a Perkin-Elmer SCIEX Elan DRC Plus single collector inductively 

coupled plasma mass spectrometer (ICP-MS) instrument at Ghent University. Blank subtraction was 

done with three procedure blanks and calibration is performed with international rock reference 

standards BCR-1, GA, AGV-1, AWI, NIM-G and GSP-1. Standard solutions were added to the 

measuring sequence and allowed for internal data quality checks along with duplicate analyses. The 

results are added in Table 1, along with their respective IDLs. Because many samples have 

experienced high-grade metamorphism, the geochemical interpretations are mainly based on the 

immobile trace element content. However, an overview of the present-day major element composition 

is shown in Figure 2 with quartz alkalifeldspar plagioclase (QAP) diagrams and graphs plotting the 

aluminum saturation index (A/CNK= molar Al2O3 / (Na2O + CaO + K2O)) versus the agpaitic index 

(A/NK = molar Al2O3 /(Na2O +K2O)).  

 

3.3 Strontium isotope analysis 

Powdered rock samples of c. 100 mg were digested on a hot plate using 22 M HF and 14 M HNO3 in a 

3:1 ratio at 120°C in a first step, followed by an aqua regia step with 6 M HCl and 14 M HNO3. Sr was 

isolated using Eichrom Sr Spec resin according to the procedure of De Muynck et al. (2009). 
87

Sr/
86

Sr 

ratios were determined using a Thermo Scientific NEPTUNE multi-collector (MC) ICP-MS operated 

in static multi-collection mode and normalized to the invariant 
86

Sr/
88

Sr ratio of 0.1194. The results 

from NIST SRM 987 reference standard were in excellent agreement with the 
87

Sr/
86

Sr ratio from 

Thirlwall (1991) and procedural blank signals were negligible. Rb and Sr concentrations were 
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determined using a Thermo Scientific ELEMENT XR single-collector sector field–ICP-MS. The Rb-

Sr data is included in the appendix (Table B), because this system was likely reset for many high-grade 

metamorphic rocks. 

 

3.4 Neodymium isotopic analysis 

After using the digestion method described in the previous section, Nd was isolated using two columns 

containing Eichrom TRU Spec and Ln Spec resins according to procedures developed by Pin et al. 

(1994) and Ganio et al. (2012). The Nd isotopic composition was determined using a Thermo 

Scientific NEPTUNE MC-ICP-MS instrument operated in static multi-collection mode. All Nd isotope 

ratios were normalized to 146Nd/144Nd = 0.7219. Repeated measurements of the JNdi-1 reference 

material yielded values in excellent agreement with the accepted value from Tanaka et al. (2000) and 

procedural blank signals were negligible. 

 

3.5 Depleted mantle Neodymium model ages and uncertainties 

Depleted mantle Nd model ages are calculated following the method of Nelson and DePaolo (1985) 

and represent approximate fractionation ages from the depleted mantle. If there are multiple episodes 

of juvenile material addition, these ages represent a weighted average of mantle fractionation times 

(e.g., Farmer and DePaolo, 1983). Equating the sample and depleted mantle evolution lines results in a 

quadratic equation of the form aT² + bT + c = 0. The model age TDM (in Ga) then corresponds to the 

lower intercept with the horizontal axis: 

  

147 144

sample
/

0.25 ² ( 3 25.13( 1)) 8.5 0
0.1964

now

Sm Nd
T T Ndε+ − + − + − =  

Nelson and DePaolo (1985) demonstrated graphically that the uncertainty on this age depends on the 

proximity to the chondrite 
147

Sm/
144

Nd. The errors induced by the uncertainty on 
147

Sm/
144

Nd and 

143
Nd/

144
Nd can be calculated by applying the error propagation equation to the solution for TDM (e.g., 

Bevington and Robinson, 1992):  

 
2 2c 1

( )² e( )² ²( )² ²( )²
² 4 (b ² 4 )) 4 ² 4

NdDM b

c
e T e e

b b ac b b ac ac b ac
ε

−
= = +

− − − − − −
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The standard deviation on the present-day εNd CHUR is around 0.5, and is assumed to be uncorrelated 

with the error on the 
147

Sm/
144

Nd ratio. The precision on the 
147

Sm/
144

Nd ratio obtained from section 

3.2 is estimated at around 2 % from repeated analyses of the international rock reference standard 

AGV-1. The analytical uncertainties typically induce model age uncertainties of about 50 to 150 Ma, 

but this can be much larger for samples with perichrondritic 
147

Sm/
144

Nd ratios (Table 2). This 

indicates that the effect of analytical factors are at least equally important as the uncertainty introduced 

by Sm-Nd fractionation during intracrustal anatexis, estimated at around 100 Ma (Nelson and 

DePaolo, 1985). All model ages are reported in Ga, following literature conventions (e.g., Nelson and 

DePaolo, 1985) and to avoid confusion with the radiometric ages from literature, reported in Ma. 

 

4. Results 

 4.1 Domes region 

4.1.1 The western Domes region: Mwombezhi Dome  

The drill core from Lumwana (DO01-DO07) and Chimiwungo prospect (DO08-DO13) in the 

Mwombezhi basement mainly consists of medium to coarse-grained gneiss and migmatite, intercalated 

with minor amphibolite and biotite-rich schistose layers (Fig 3A, B). The schists contain percentage-

levels of chalcopyrite and pyrite. Most gneisses are monzogranitic in composition, with minor 

granodiorite and quartz monzogabbro compositions (Fig. 2A). The Lumwana and Chimiwungo 

gneisses contain intermediate to high silica contents between 69 and 75 wt. % SiO2 and intermediate to 

high Al2O3 between 13.7 and 15.7 wt. %. Fe2O3(T) ranges from 0.58 to 3.44 wt. % and the CaO, Na2O 

and K2O content ranges between 0.68-2.37, 3.06-5.65 and 1.98-6.79 wt. % respectively. The schistose 

units contain low to intermediate silica contents and high alumina contents of 54.4-67.6 and 14.1-18.6 

wt. % respectively. Their Fe2O3(T) ranges from 3.93 to 8.16 wt. % while their CaO, Na2O and K2O 

content ranges between 1.30-3.44, 2.60-5.26 and 3.00-6.83 wt. % respectively. The Mwombezhi 

gneisses are exclusively subalkalic and straddle the border between metaluminous and peraluminous 

compositions, while the schistose intervals are strongly peraluminous (Fig. 2B). The white Lumwana 

gneisses are generally slightly peraluminous, with high Mg-numbers between 37 and 48. They are 
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depleted in rare earth elements (REE) and high field strength elements (HFSE), with low Y/Nb ratios 

between 0.6 and 1.2. In contrast, the pinkish Chimiwungo prospect gneisses and one pink Lumwana 

biotite gneiss DO07 are elevated in REE and HFSE, with Y/Nb ratios between 2.8 and 13 (Fig. 4A, 

5A). They are either slightly metaluminous with low magnesium-numbers (#25) or strongly 

peraluminous and biotite-rich with higher magnesium-numbers comparable to the Lumwana samples 

(Fig. 2B). Because of their low HFSE and REE content, the Lumwana gneisses plot in the volcanic arc 

or syncollisional granite field in the Nb-Y discrimination diagram (Fig. 6A). Figure 7 shows that the 

present-day εNd composition of the Mwombezhi basement falls between -20.5 and -18.5 for both the 

schistose units and the gneisses. Their TDM model ages mostly range between 2.4 and 2.8 Ga, with one 

older age at c. 3.1 Ga. The basement sequence also contains minor intervals of amphibolites, here 

represented by amphibolite DO01, which consists dominantly of hornblende, feldspars and biotite, 

with minor titanite and accessory zircon, magnetite and ilmenite (Fig. 3A). The amphibolite is silica 

poor, CaO- and Ti2O-rich, with 46.2, 9.54 and 1.99 wt. % respectively. It has a Mg number of 52, an 

elevated Ti/V ratio of 42 and La/YbUCC and Gd/YbUCC ratios of 0.37 and 1.24 respectively. In figure 

4C, the amphibolite shows minor negative Ba, Sr, Ti, Nb and Ta anomalies. It has a present-day εNd 

of -13 and gives a TDM model age of 2.43 Ga. The Lumwana East Granite (LEG) at the top of the 

Chimiwungo drill core is a fine-grained, foliated biotite-muscovite monzogranite with sericitized 

feldspars and accessory allanite and hematite. The LEG is currently alumina-poor and silica-rich with 

11.6 wt. % Al2O3 and 80 wt. % SiO2. It is poor in ferromagnesic elements, has a low Zr and Nb content 

of 105 and 17 ppm respectively and a low U /Th ratio of 0.04. Additionally, it is poor in alkali earths 

(Ca, Sr, Ba) and has an intermediate to high Na, K and Rb content. This monzogranite is strongly 

enriched in light REE (LREE), with a pronounced negative Ce-anomaly and high total REE 

concentrations amounting to 1330 ppm ∑REE (Fig 5B). Its present-day εNd of -25 is lower than those 

of the Mwombezhi gneisses, yet its Sm/Nd ratio is also much lower. This results in a younger TDM 

model age of c. 1.93 Ga.  

 

4.1.2 The eastern Domes region: Kafue Basement Complex and Luina Dome 
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The Kafue Basement Complex is named after the Kafue Anticline, a structure generated during the 

Lufilian Orogeny (e.g., Porada and Berhorst, 2000), not to be confused with the Kafue town area 

c. 400 km southwards in the Southern Irumide Belt (e.g., Johnson et al., 2007a). The Mufulira Grey 

Granite DO18, located within this Basement Complex, is a titanite-rich biotite-epidote granodiorite 

containing accessory muscovite, magnetite and ilmenite (Fig. 3E). This weakly metaluminous granite 

contains an intermediate 66.4 wt. % silica and high TiO2, Fe2O3 and CaO contents at 0.72, 5.16 and 

3.50 wt. % respectively (Fig. 2A, B). It is strongly sodic with a molar K/Na ratio of 0.65 and a K2O 

and Na2O content around 3.50 wt. %.  

The Tshinsenda granitoid rocks DO14 and DO15 in the Luina Dome to the north of the Kafue 

Basement Complex are titanite-rich feldspar- porphyric biotite-epidote monzogranites with sericitized 

feldspars and contain accessory zircon and ilmenite (Fig. 3C). Their major element composition is 

similar to the Mufulira Granite, except that these granitoids are potassic (K/Na ~1.2) and slightly 

peraluminous. In the Mufulira Grey and the Tshinsenda Granites, opaques are occasionally rimmed by 

white mica (Fig. 3C, E).  

The REEY and spidergram patterns in the Mufulira grey Granite and the Tshinsenda Granite are also 

similar, with Upper Continental Crust (UCC)-normalized HREE/LREE ratios above unity and 

pronounced positive Eu- anomalies (Fig. 4B, Fig. 5B). Their UCC-like REEY patterns and relatively 

low HFSE contents suggest an affinity with syncollisional or arc granites (Fig. 6A). The Mufulira 

Grey Granite has a present-day εNd of -28, and it gives a model age of 2.49 Ga (Fig. 7). An intrusive 

contact indicates that this granite postdates the 1994 ±7 Ma Mufulira Pink Granite (U-Pb zircon; 

Rainaud et al., 2005). The only available age estimate is a c. 1950 Ma Rb-Sr cooling age (Cahen et al., 

1970). Based on this estimated age, it gives an εNd(T) composition of -4. The Lufubu Schist samples 

have similar age-corrected εNd values around 1950 Ma and these have been found as xenoliths in the 

Mufulira Grey Granite (Brandt et al., 1961). The Tshinsenda Granitic rocks have present-day εNd 

compositions of -19 and -21 and give model ages of 2.57 and 2.40 Ga (Fig. 7).  

Mufulira Lufubu Schist DO19 is an equigranular biotite-chlorite-tourmaline schist, while DO20 is an 

equigranular quartz-feldspar-chlorite siltstone (Fig. 3F). The Nkana Lufubu Schist NSD49 contains 

mm-sized, mostly anhedral quartz and (sericitized) feldspar clasts in a fine-grained chlorite-white mica 
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matrix of about 50 vol. %. In addition, it contains minor green biotite and dolomite cement, along with 

accessory porphyroblastic cordierite. Quartz often forms elongated polycrystalline aggregates, aligned 

along the cleavage direction. The Nkana Lufubu Schist also contains an elevated Co content of 186 

ppm compared to <9 ppm for the Mufulira Lufubu Schists.  

The Nchanga Granite DO17 is a feldspar porphyric monzogranite and contains accessory, oscillatory 

zoned allanite, titanite, garnet and ilmenite (Fig. 3D). This granite is slightly peraluminous (Fig. 2B) 

and is characterized by high Na, K, Rb, Zr, Nb, Y and REE contents, low Ca, Mg content and 

extremely high HREE concentrations at ~ 10 times the UCC value (Fig. 5B). Nchanga Granite DO17 

combines a suprachondritic 147Sm/143Nd ratio of 0.205 with a negative present-day εNd of -11 and 

therefore does not intersect with the depleted mantle evolution curve (Fig. 7). 

 

4.2 Bangweulu and Irumide  

4.2.1 Bangweulu and Irumide: magmatic units 

The Bangweulu and Irumide magmatic rocks are generally monzogranitic, subalkalic and most are 

peraluminous (Fig. 2C, D), except monzogranite BGA and meta-andesite BG10 which are slightly 

metaluminous. All these granitoids show negative Nb, Ta, Zr, Hf, Ti and P anomalies accompanied by 

positive anomalies of large ion lithophile elements (LILE, e.g., K, Rb and Cs), U, Th and Pb in UCC-

normalized spidergrams (Fig. 4B). Their Nb and Y content is relatively homogenous and most rocks 

plot near the junction between the within plate and syncollisional or arc fields in the Nb-Y diagram 

(Fig 6B). The Sr and Ba content varies between low values for IR06, IR13 and BG18, and 

intermediate values for monzogranite BGA and the Mansa Granites (BG01, BG02). 

The Kapiri Mposhi Complex IR14 (KMpG) in the SW Irumide Belt is a fine-grained biotite 

monzogranite (Fig. 9F). It is silica- and sodium- rich (71.5 and 4.07 wt. %), intermediate in alumina 

and Fe2O3(T) (15.0 and 2.49 wt. %), K-poor (2.46 wt. % K2O) and has magnesium number of 37. 

Figure 5D shows that its HREE content is much lower than the UCC with an elevated La/LuUCC ratio 

close to 4. This granite has a present-day Nd isotope composition of -35 εNd and gives a TDM model 

age of 2.93 Ga (Fig. 7). The monzogranitic IR13, 80 km southeast of the Kapiri Mposhi Complex, also 
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has a low present-day εNd of -24 and also gives a model age of 2.93 Ga. The latter is also close to the 

feldspar porphyric Mkushi complex IR11, which contains chalcopyrite mineralizations around quartz 

grains (Fig. 9E). 

The central Irumide Belt monzogranite IR06 shows a foliation defined by coarse-grained muscovites 

(Fig. 9A) and has a low present-day εNd value of -30 with a TDM age of 3.01 Ga. Another 

monzogranite from this area, IR07, shows rounded cm-sized biotite-dominated xenocrysts with 

micaceous reaction rims around opaques (Fig. 9B). The NE Irumide Belt meta-andesite IR04 consists 

of intensely altered amphibole phenocrysts in a chlorite-rich matrix, while amphibolite IR05 consists 

mostly of actinolite (Fig. 10C, D). Both NE Irumide Belt metabasites show volcanic arc basalt 

affinities according to Meshede (1986), yet the higher Ti content in amphibolite IR05 suggests within 

plate affinities (Fig. 8, Pearce and Cann, 1973, Shervais, 1982). They have present-day εNd values of -

16 and -12, with TDM ages of 3.08 and 2.50 Ga, respectively.  

Deformed, broken quartz, epidote and titanite in the Mansa Granites BG01 and BG02 indicate intense 

deformation (Fig. 10A), unlike the granodiorite BG12 in the south central part of the Bangweulu 

Block (Fig 10B). The Mansa region granites are enriched in REEY compared to the UCC with flat 

patterns and minor negative Eu anomalies. The associated felsic extrusives (e.g., metarhyolite BG07; 

Fig 10C) contain sericitized feldspar phenocrysts in a glassy matrix, while the phenocrysts in more 

mafic units are replaced by epidote and actinolite, contained in a chlorite-rich matrix (e.g., meta-

andesite BG10; Fig 10D). The trace element compositions in the Mansa extrusive rocks (BG03, BG07, 

BG08, BG10) are broadly similar, although the granites have lower Ba, Zr and higher HREE contents 

compared to the coeval extrusives (Fig. 4E, 5C). The 1870 Ma Mansa granites and extrusives give 

age-corrected εNd values between -4 and -1 (Fig. 7; De Waele et al., 2006b). The alkali feldspar 

metarhyolite BG09 gives a higher age-corrected +3 εNd value that reflects the lower Sm/Nd ratio in 

this metarhyolite. 

The South-Central Bangweulu granite BG12 and the migmatitic BG13 are moderately LREE enriched 

and show pronounced negative Eu-anomalies. They have present-day εNds of -23, with model ages of 

3.14 and 2.88 Ga respectively (Fig. 7). The East-Central Bangweulu granitoid BG18 has a present-day 

εNd value of -16 and an elevated 
147

Sm/
144

Nd ratio (0.161) that results in an imprecise TDM of 3.62 Ga.  
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4.2.2 Bangweulu and Irumide: metasedimentary rocks 

The quartzites contain highly variable trace element contents, generally with negative Sr, P, Ti and Eu 

and positive U, Th and Pb anomalies in Post Archean Average Shale (PAAS)-normalized spidergrams 

(Fig. 4F, G). Their REE content varies in the most pure quartzites varies between 7 and 50 ppm 

∑REE, while their Zr content varies between 20.5 and 72 ppm. The feldspar-rich Muva quartzite BGQ 

contains more REE and Zr (114 and 195 ppm respectively) and shows a relatively flat REEY pattern 

with a slight LREE enrichment compared to the UCC. The Nsama Fm quartzites BG04 and BG11 

have relatively flat, upward concave patterns, while the Kabweluma Fm quartzite BG05 has a quasi-

complementary upward convex pattern versus the UCC composition. The Nsama Fm quartzite BG11 

and especially the Kabweluma Fm quartzite BG05 show positive Y anomalies, accompanied by 

negative Eu-anomalies, while the Muva quartzite BGQ displays a pronounced positive Y-anomaly. 

The Zr/Sc, Th/Sc and Th/La ratios mostly range between 20-90, 1.6-3.8 and 0.17-4.4 respectively. At 

the inferred ~ 1800 Ma depositional age of the Muva Supergroup (De Waele and Fitzsimons, 2007), 

the εNd values in the Bangweulu and Irumide metasediments have a wide range between -10 and 0, 

except for the Nsama Fm siltstone BG14 which has +2 εNd value at this time. 

 

5. Discussion 

5.1 Domes region 

5.1.1 Western Domes region: evidence for sedimentary cycles and cryptic Archean sources  

Lithologically, the Mwombezhi gneisses and migmatites are similar to the Kabompo Dome gneisses 

which were dated at 1940 ±3 Ma and 1884 ±10 Ma (John, 2001; Key et al., 2001; Liyungu and Njamu, 

2000), and similar age ranges are observed in other Domes inliers (e.g., Ngoyi et al., 1991; Rainaud et 

al., 2002). A recent study by Eglinger (2013) indicated that the Mwombezhi and Solwezi basement 

contains both ortho- and paragneisses. Paragneisses were identified by multiple age modes of detrital 

zircons, which constrain a maximum age of deposition at <1515-1475 Ma.  
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Although the Lumwana gneisses are petrochemically reminiscent of granites, their REEY- and HFSE-

contents are uncharacteristically low. Therefore, they are more easily reconciled with meta-arenites 

(e.g., Spalleti et al., 2012). The high Mg-numbers and low Y/Nb ratios between 0.6 and 1.2 suggest a 

major proportion of mafic sources for these paragneisses. Such paragneisses are also recognized at 

Solwezi (Eglinger, 2013) and demonstrate the presence of a regional post-Muva, pre-Katangan 

sedimentary cycle.  

Fine-grained sediments also typically have low Y/Nb ratios (e.g., ~1.4 for PAAS; Pourmand et al., 

2012; Taylor and McLennan, 1985), but generally contain elevated REE and HFSE concentrations. 

The shaley intervals between the gneisses are Cu-(Co) mineralized, and this has been related to 

metasomatism along shear zones (Bernau et al., 2013). The gneissic units bordering these schistose 

layers are characterized by elongated sub-cm sized feldspar clasts aligned along the foliation and lack 

the equidimensional pegmatoid textures in gneisses further away from the schistose parts. On drill core 

scale, it is unclear whether there is a tectonic contact or a preferential accommodation of strain near 

the schistose units (e.g., Bernau et al., 2013). Therefore, it cannot be excluded that the mineralized 

schistose parts are in fact Katanga sequence units that were tectonically interlayered with the 

Mwombezhi basement during the Lufilian Orogeny (Cosi et al., 1992). 

Most felsic Chimiwungo prospect gneisses and one Lumwana gneiss (DO04) have a major- and trace 

element composition and mineralogy consistent with an orthogneissic origin. Their TDM model ages 

range between c. 2.2 and 3.1 Ga and thus predate the Paleoproterozoic igneous ages in the Domes 

region considerably. This suggests that their igneous protoliths have considerable crustal residence 

times. This is also consistent with igneous model ages from Eglinger (2013), who calculates 2.4-

2.9 Ga zircon εHf model ages with a minor component between 3.0 and 3.6 Ga.  

The geochemical characteristics of the Mwombezhi amphibolite are similar to those of the Katangan 

tholeite and alkali basalt suite related to rifting in the Domes region at 765-735 Ma (Fig. 8; Key et al., 

2001; Tembo et al., 1999). The Ti-V characteristics preclude an arc-related igneous origin, as these 

typically have much lower Ti/V ratios and contents (Fig. 8). Similar units are also reported in the 

Mwombezhi and Solwezi Domes by Eglinger (2013). Their position within the Mwombezhi 

paragneisses implies an age younger than c. 1500 Ma, as indicated by detrital zircons within these 
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gneisses (Eglinger, 2013). These amphibolites potentially belong to the Neoproterozoic tholeite suite, 

but this needs to be confirmed with radiometric dating.  

The younger model age of 1.93 Ga in the Lumwana East Granite is attributed to relative LREE 

enrichment decreasing Sm/Nd, during intense post-igneous alteration, likely in oxidizing conditions as 

indicated by the pronounced negative Ce-anomaly. The Ca, Sr and Ba-poor composition of the 

Lumwana East Granite is probably related to the sericitization of the feldspars, whereas the high LREE 

content in this granite is contained in the LREE-selective allanite. The high Th-low U characteristics 

of this granite likely result from U mobilization towards the uranium deposits rimming the 

Mwombezhi Dome, i.e. this granitoid and similar ones are likely sources for the uranium in these 

deposits (e.g., Eglinger et al., 2013). 

 

5.1.2 Eastern Domes region: arc terranes and intracratonic magmatism ? 

Model ages for the Kafue basement region are similar to those in the Mwombezhi Dome, indicating 

that both inliers have similar crustal residence times, with an important Archean component. The 

petrographic data for the Mufulira Lufubu Schist samples DO19 and DO20 indicates that they are 

likely not of extrusive origin since they lack typical extrusive textures or contain tourmaline. While it 

cannot be excluded that the Nkana Lufubu Schist NSD49 has a volcanic protolith, a sedimentary origin 

seems more likely, given its petrological characteristics. From a Copperbelt metal source perspective, 

this unit is interesting, as it underlies the Neoproterozoic Nkana Cu-Co deposit. Its high-Co, low-Cu 

composition is likely not primary and is attributed to intense metasomatic alteration related to the 

hydrothermal ore-forming processes. Differential mobility of Co and Cu during reworking commonly 

results in Cu-Co fractionation (e.g., De Putter et al., 2010, Torremans et al., 2013).  

The Mufulira Grey Granite is estimated at ~1950 Ma (see section 4.1.2) and is spatially associated 

with the Mufulira Lufubu schists, which have been dated at 1968 ±9 Ma (Lobo-Guerrero Sanz, 2005; 

Rainaud et al., 2005). Based on these spatial associations, Rainaud et al. (2005) suggested that the 

metavolcanic Lufubu Schists and their plutonic contemporaries represent one or several magmatic arc 

terranes. The age-corrected εNd values in the eastern Domes granitoids are around -4 to -2 and 
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preclude an island arc setting, since εNd values around 5 are expected from island arcs originating 

from the depleted mantle (DePaolo, 1981; Fig. 7). 

The Tshinsenda and Mufulira granites are petrochemically reminiscent of arc-related granites. They 

are relatively Si-poor and relatively rich in ferromagnesic elements. Furthermore, the epidote-chlorite-

magnetite clusters within these granitoids could respresent an alteration of hornblende. This mineral 

typically characterizes arc-related granites and relict hornblende was reported in Lufubu metavolcanics 

(Babarin, 1999; Rainaud et al., 2005). Therefore, it seems plausible that these Paleoproterozoic 

granites are placed in a continental arc setting, where they rework older crustal material. 

The Neoproterozoic Nchanga granite was dated at 880 Ma and occurs as a NW-SE oriented 10 by 

15 km ellipsoid pluton in the northwestern part of the Kafue Basement Complex (Armstrong et al., 

2005; Katongo et al., 2004). The geochemical characteristics of the Nchanga Granite with high alkali, 

REE, Nb and low Ca, Mg are consistent with an anorogenic origin (e.g., Eby, 1992; Trumbull et al., 

2004). This is also indicated by elevated Ga/Al ratios (Katongo et al., 2004; Lobo-Guerrero Sanz, 

2005). Most parts of the pluton display low Nb/Y ratios characteristic of a dominant crustal protolith, 

while some parts display elevated, MORB-like Nb/Y ratios (e.g., Katongo et al., 2004; Lobo-Guerrero 

Sanz, 2005). The HREE-enrichment and suprachondritic 
157

Sm/
144

Nd ratio in this granite is likely 

related to intense alteration during albitization in sample DO17.  

A high mantle contribution is not atypical for anorogenic granite suites which are often characterized 

by variable amounts of mixing between a crustal and a mantle source (e.g., Trumbull et al., 2004). 

However, Katongo et al. (2004) infer that this granite intruded during early stages of rift development 

where mantle involvement is usually minimal. In the context of our Nd isotope data, this would require 

that the present-day suprachondritic Sm/Nd ratio was generated close to its igneous age at 880 Ma 

(Armstrong et al., 2005). The present-day εNd of -11 corresponds closely to the average crustal Nd 

composition of the domes samples at that time, and this would have evolved at a CHUR-like rate (Fig. 

7). Therefore, the elevated εNd would only imply a significant contribution from mantle material if the 

high Sm/Nd ratio was generated much later.  

 

5.2 Bangweulu-Irumide region 
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5.2.1 Evidence for reworking of Archean sources  

The geochemical characteristics of the Kapiri Mposhi Complex correspond closely to the tonalite 

trondjhemite granodorites (TTG) of the G0 group defined by De Waele et al. (2006b) who dated the 

Kapiri Mposhi complex at 2726 ±36 Ma (De Waele, 2005). De Waele et al. (2006b) attribute the low 

HREE content to melting in the presence of garnet, for instance by melting of the eclogitized parts of a 

subducting oceanic slab. They point out that this is incompatible with the negative Nb anomaly (Fig 

4D), which suggests mantle melting in the presence of aqueous fluids. However, experimental data 

suggests that melting in the stability field of garnet and hornblende can generate HREE and Nb 

depleted melt compositions, as the latter incorporates Nb (e.g., Martin et al., 2005). Since modern 

analogues for TTGs are mainly formed by slab melting with subordinate contamination from mantle 

peridotite (Martin et al., 2005), we argue in favor of such an origin for the Kapiri Mposhi Complex. 

The 2.93 Ga TDM exceeds its crystallization age and indicates contribution from more enriched mantle 

domains or involvement of Mesoarchean crust. 

 

Earlier studies noted that post-Archean granitoids are geochemically similar in the Irumide and 

Bangweulu regions (De Waele et al., 2006b; Tembo et al., 2002), and this is confirmed by this study 

(Fig. 4D). Their trace element patterns show low HFSE contents typical for magmatics with a crustal 

origin (e.g., De Waele et al., 2006b; Hofmann, 1997). All granites show the typical negative Ti and P 

anomalies related to titanite or ilmenite and apatite fractionation, while plagioclase fractionation 

accounts for their negative Eu-anomalies and low Sr and Ba content, as noted by De Waele et al. 

(2006b). The main difference between our results and those of De Waele et al. (2006b) is that around 

1870 Ma our Mansa magmatics have more enriched Nd compositions (-4 to -2 versus -7 to -4) and 

younger model ages (2.3-2.5 Ga versus 2.5-2.9 Ga). This suggests a sub-suite with more input of 

juvenile material in this region, with similar model ages as those in contemporaneous Irumide 

extrusives (De Waele et al., 2006b).  

The Mesoproterozoic G4 group is restricted to the Irumide Belt, and is geochemically and isotopically 

similar to the G1 granitoids. Because the G1 and G4 groups melt sources with similar compositions, 

they are hard to distinguish (De Waele et al., 2006b). Therefore, it is not possible to identify if Irumide 
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granitoids IR06 and IR13 belong to the G1 or G4 group, except by radiometric dating. In any case, 

geochemical compositions and TDM model ages for the Irumide granitoids are similar to those in the 

Bangweulu Block, except in the Mansa magmatics (Fig. 7). This corroborates both the Archean 

inheritance and the relationship between the Bangweulu and the Irumide Belt proposed by De Waele 

et al. (2006b).  

 

5.2.2 Locally sourced metasedimentary units? 

The Bangweulu and the Irumide were essentially one tectonic unit during deposition of the 

Paleoproterozoic sedimentary successions, which correlate across these basement blocks (e.g., De 

Waele et al., 2001). The depositional setting and correlations between the sedimentary sequences is 

extensively treated in e.g., Andersen and Unrug (1984), De Waele and Mapani (2002) and De Waele 

and Fitzsimons (2007). This study provides an overview of the chemical composition of these 

sediments. Most elemental anomalies mimic the ones in the Bangweulu and Irumide granites, with the 

exception of Nb and Ta, whose anomalies are far less pronounced. Apart from the Nsama Fm siltstone 

BG14, all metasedimentary units show high Zr, Hf and high Th/Sc, Zr/Sc and low La/Th ratios 

indicative for crustal or passive margin sedimentary sources (e.g., Spaletti et al., 2012).  

The Nsama Fm siltstone has a high εNd(T) value of 2. In combination with its elevated concentrations 

of ferromagnesic elements, this suggests a major contribution from a mafic source. The age-corrected 

εNd values and the Nd model ages of the other sediments suggest sedimentary sources with crustal 

residence times that are significantly higher than 1800 Ma, the approximate depositional age for these 

sediments (De Waele et al., 2006b). This data suggests that these metasediments are locally sourced 

from the Bangweulu and Irumide magmatics.  

 

5.3 Implications for interregional cratonic relationships 

Several authors proposed a relationship between the Domes region and the Bangweulu Block or the 

Irumide Belt based on the contemporaneity of the magmatic phases (e.g., De Waele et al., 2006b; 

Eglinger, 2013; Rainaud et al., 2005). For the ~1870 Ma Ubendian phase, this is further corroborated 
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by association of intrusives and extrusives that indicates shallow intrusion in these regions (e.g., De 

Waele et al., 2006b; Rainaud et al., 2005). Additionally, TDM ages indicate reworking of Archean 

crustal components in all terranes. The model ages for the eastern Domes magmatic rocks indicate 

similar average crustal residence times as those of the SW Bangweulu magmatic rocks (Fig. 7; De 

Waele et al. 2006b). Geochemically, the eastern Domes magmatics are more similar to the 

intermediate SW Bangweulu extrusives than to their silica-rich intrusive counterparts and lack the 

pronounced Pb anomaly (Fig. 4B,E), indicating that the crustal contribution is less prominent here.  

The oldest model age components in the E Domes and SW Bangweulu appear less prominent than in 

other regions, for instance the SW Irumide. This is consistent with juvenile input in a continental arc 

setting. The cluster of c. 3 Ga model ages in the SW Irumide likely relates to an older nucleus centered 

around the Archean Kapiri Mposhi Complex (e.g., De Waele et al., 2006b). 

Although estimates for average crustal residence times are highly variable in each region, they are 

broadly comparable between all regions, suggesting a relationship between the Domes and the 

Bangweulu, including its metacratonized margin, the Irumide Belt. Moreover, TDM ages above 2.5 and 

2.3 Ga in all terranes indicate that juvenile input is relatively limited after the Ubendian phase. This 

suggests an intracratonic setting for these terranes from c. 1870 Ma onwards. However, renewed 

juvenile input in the Domes region is evidenced by rift-related tholeites at 750-735 Ma (e.g., Key et 

al., 2001; Tembo et al., 1999). Radiometric dating of the Mwombezhi and Solwezi amphibolites is 

required to determine whether these belong to this suite or represent an earlier phase of juvenile input. 

 

5.4 Implications for metal provenance studies  

The Neoproterozoic Katanga sediments in the Copperbelt region host abundant economic Cu-Co 

deposits. Mass balance calculations suggest that the Neoproterozoic Katanga sediments that host these 

deposits are unable to provide sufficient metals to act as the principal source (e.g., Cailteux et al., 

2005; Hitzman et al., 2000). An extensive review by Sweeney et al. (1991) shows that some basement 

units may contain significant amounts of Cu, besides the sulfide-hosted copper in basement deposits 

such as the Lumwana and Mkushi deposits. This dataset and similar datasets (e.g., De Waele et al., 

2006b; Duchesne et al., 2004; Johnson et al., 2007b) can be used in combination with isotope analyses 
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of gangue carbonates associated with the Copperbelt ore deposits to test the basement’s source 

potential (e.g., Van Wilderode et al., 2014). Because the Rb-Sr system is readily perturbed, it is 

preferably used as a potential extra discriminating factor in combination with the Nd isotope signature. 

For instance, the Mwombezhi paragneisses and Lufubu Schists can be distinguished from the felsic 

Bangweulu and Irumide units, as they generally have higher age-corrected Nd isotope values at the 

Neoproterozoic mineralization times. The results from Van Wilderode et al. (2014) show that the 

gangue minerals correspond more closely to the Mwombezhi paragneisses or Lufubu Schist 

signatures, suggesting local Cu sourcing from the basement units directly below the Copperbelt. 

6. Conclusions 

Our integrated whole rock petrochemical and Sm-Nd isotopic approach offers more evidence for 

reworking of (cryptic) Archean crustal material in the Domes inliers at depth below the 

Neoproterozoic Central African Copperbelt and in the Bangweulu-Irumide region. The data for the 

eastern Domes granitoids and similar magmatic units in the SW Bangweulu Block corroborates earlier 

studies that suggest a mid-Paleoproterozoic arc terrane (De Waele et al., 2006b; Rainaud et al., 2005). 

Moreover, the available petrochemical and isotopic data is consistent with a mid-Paleoproterozoic 

continental arc, but precludes an island arc, since the isotope ratios indicate incorporation of older 

crustal material. Finally, Archean and early-Paleoproterozoic model ages in all terranes indicate 

limited juvenile input from the mid-Paleoproterozoic onwards, implying mostly intracratonic positions 

during subsequent magmatic phases. The broadly similar crustal residence times suggest a relationship 

between the Domes region inliers and the Bangweulu-Irumide terrane. 
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8. Figure captions 

 
Figure 1. Simplified geological map with the sample locations in the Bangweulu Block, the Domes 

inliers and the Irumide Belt. Depleted mantle Nd model ages (in Ga) are also shown: model ages for 

altered igneous units are in italic (see 4.2.1, 5.1.1); model ages for metasedimentary units are indicated 
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between brackets. Modified from Andersen and Unrug (1984), De Waele et al. (2006a, 2006b) and 

Tembo et al. (1999). 

 

Figure 2. Diagrams showing the major element composition of the studied samples. (A) and (C) plot 

the normative quartz-alkalifeldspar-plagioclase (QAP) composition of the Domes (DO) and 

Bangweulu and Irumide (BG and IR) samples respectively. (B) and (D) show the aluminum saturation 

index (A/CNK) versus the agpaitic index (A/NK) for the DO and BG + IR samples respectively. 

Abbreviations (A, B): MwG, Mwombezhi gneisses; MwA, Mwombezhi amphibolite; LS, Lufubu 

Schist, LEG, Lumwana East Granite; TsG, Tshinsenda Granitoids; MGG, Mufulira Grey Granite; NG, 

Nchanga granite. Includes additional Nchanga granite data from Katongo et al. (2004) and Lobo-

Guerrero Sanz (2005) for comparison. Abbreviations (B, E): BG, Bangweulu, IR, Irumide; G, 

granitoids; sed, metasediments; maf, mafics; MmV, Mansa metavolcanites; KmPG,Kapiri Mposhi 

Granite Complex. Normative compositions calculated using Igpet (2005). 

 

Figure 3. Representative microphotographs of the studied Domes region samples. (A) Hornblende, 

plagioclase, biotite and minor titanite in Mwombezhi amphibolite DO01 (PPL). (B) Typical 

Mwombezhi paragneiss DO04 with opaques and exsolutions in feldspars coexisting with biotite and 

muscovite (PPL). (C) Epidote, magnetite and chlorite could represent a metamorphically altered 

hornblende in Tshinsenda monzogranite DO14. Biotite shows rutile exsolutions and pleochroitic halos 

around zircon or monazite inclusions (XPL). (D) Nchanga granite with cm-sized microcline showing 

perthitic unmixing and micaceous reaction rims around opaques (XPL). (E) Mufulira Grey Granite 

with sericitized feldspars, quartz with subgrains, biotite, skeletal titanite and accessory epidote (XPL). 

(F) Mufulira Lufubu schist with feldspar laths, tourmaline, biotite and chlorite (PPL). PPL, parallel 

polars; XPL, crossed polars; mineral abbreviations after Whitney and Evans (2010). 

 

Figure 4. Primitive mantle (PM) normalized spidergrams for the analyzed samples. (A) Mwombezhi 

gneisses, (B) Domes region granitoids, (C) Domes and Irumide mafics, (D) Bangweulu and Irumide 

granitoids, (E) Mansa region magmatics, (F) Bangweulu metasediments and (G) Irumide 



  

31 

 

metasediments. Abbreviations as in Figure 2, except LUM, Lumwana; CHI, Chimiwungo. The grey 

shaded areas correspond to the compositional range of the G1-group granites from De Waele et al. 

(2006b). PM composition after McDonough and Sun (1989). Post Archean Average Shale (PAAS) 

composition compiled from Taylor and McLennan (1985), McLennan and Xiao (1998) and Pourmand 

et al. (2012). 

 

Figure 5. Upper Continental Crust (UCC) normalized REEY plots. (A) Domes region granitoids, (B) 

Mwombezhi gneisses, (C) Mansa magmatics and (D) Bangweulu and Irumide granitoids. 

Abbreviations as in Figure 2. The grey shaded areas correspond to the compositional range of the G1-

group granites from De Waele et al. (2006a, b). UCC composition after Rudnick and Gao (2003). 

 

Figure 6. Nb-Y diagram from Pearce et al. (1984). (A) Domes samples, with indicated sample 

numbers for the Mwombezhi gneisses and additional Nchanga Granite data from Katongo et al. (2004) 

and Lobo-Guerrero Sanz (2005). (B) the Irumide and Bangweulu samples. The G1 group granites from 

De Waele et al. (2006b) are added for comparison. Abbreviations as in Figure 2.  

 

Figure 7. Nd evolution diagram for the Domes samples (left) and Irumide and Bangweulu samples 

(right). Depleted mantle from Nelson and DePaolo (1985). Indicated events from Armstrong et al., 

2005; De Waele et al., 2006b; De Waele and Fitzsimons, 2007; Eglinger, 2013; Key et al., 2001, 

Rainaud et al., 2005.  

 

Figure 8. Ti-V diagram from Shervais (1982) for the Domes, Irumide and Bangweulu mafics. The grey 

fields indicate typical compositions for mafic units in different tectonic settings, including mid-oceanic 

ridge and back arc basin basalts (MORB and BAB) according to Shervais (1982). Also shown are the 

compositions of rift-related Neoproterozoic Domes region tholeites from Tembo et al. (1999), and 

magmatic units in the Mansa region from De Waele et al. (2006b). 
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Figure 9. Representative microphotographs of the studied Irumide samples. (A) Muscovite rims 

around deformed plagioclase and recrystallized quartz in the foliated monzogranite IR06 (XPL). (B) 

Biotite-rich zone in monzogranite IR07 where biotite reacts with iron oxide to from fine-grained white 

micas (PPL). (C) Intense alteration in andesite IR04, ex-hornblende reacts to oxides and a micaceous 

ground mass but preserves its characteristic cleavage (PPL). (D) Actinolite laths with pleochroitic 

halos around zircon or monazite inclusions in amphibolite IR05 (PPL). (E) Chalcopyrite 

mineralizations around quartz grains in the monzogranitic Mkushi complex IR11 (reflected light, 

PPL). (F) The Kapiri Mposhi Complex IR14 is nearly exclusively composed of quartz, partially 

sericitized feldspars and biotite (XPL). PPL, parallel polars; XPL, crossed polars; mineral 

abbreviations after Whitney and Evans (2010). 

 

Figure 10. Representative microphotographs of the studied Bangweulu samples. (A) Intense 

deformation in Mansa monzogranite BG01 with fractured or mylonitized quartz and weathered, 

fractured and bended epidote (XPL). (B) K-feldspar porphyric texture in the eastern Bangweulu 

monzogranite BG18 (XPL). (C) Mansa metarhyolite BG07 contains intensely sericitized feldspars in a 

glass and mica-rich groundmass (XPL). (D) Mansa meta-andesite BG10 showing actinolite and 

epidote in a chlorite-feldspar-rich ground mass (XPL). PPL, parallel polars; XPL, crossed polars; 

mineral abbreviations after Whitney and Evans (2010). 

 

 

  



  

Table 1: Whole rock geochemistry of magmatic and metasedimentary rocks in the Domes, Bangweulu and Irumide regions. 
DOMES Lumwana Chimiwungo Tshinsenda Nchanga Mufulira Nkana 

ID 

 

DO1 DO2 DO3 DO4 DO6 DO7 DO8 DO9 DO10 DO11 DO12 DO13 DO14 DO15 DO17 DO18 DO19 DO20 NSD49 

Typea IDL(wt. %, ppm)b Amph Gn Gn Gn Gn Gn/Mig Gn/Mig Gn/Mig Gn Gn/Sch Gn/Sch Gran Gran Gran Gran Gran Sch Sch Sch 

SiO2 0.07 46.2 72.6 74.6 67.6 75.4 74.6 69.3 75.0 75.3 65.6 54.4 80.2 65.6 66.0 74.2 66.4 57.7 74.2 59.4 

TiO2 0.002 1.99 0.30 0.08 0.95 0.05 0.08 0.66 0.09 0.37 0.97 1.03 0.12 0.70 0.69 0.12 0.72 0.65 0.17 0.58 

Al2O3 0.01 14.1 15.8 15.6 14.1 14.9 14.3 15.3 14.8 13.7 17.7 18.6 11.6 15.5 15.3 13.8 15.6 22.3 9.2 15.9 

Fe2O3T 0.003 13.9 2.33 1.04 6.97 0.65 0.58 3.44 1.08 1.40 3.93 8.16 0.82 5.13 5.33 2.31 5.16 6.56 1.05 6.25 

MnO 0.001 0.17 0.02 0.01 0.06 0.01 0.005 0.05 0.02 0.02 0.03 0.05 0.01 0.05 0.04 0.07 0.14 0.03 0.06 0.07 

MgO <0.001 7.68 0.85 0.31 3.14 0.30 0.22 0.49 0.17 0.24 1.44 6.36 0.07 1.85 1.88 0.06 1.47 2.61 0.71 3.94 

CaO 0.002 9.54 2.10 2.37 1.30 1.68 0.68 1.12 1.23 1.49 3.44 2.21 0.45 2.59 2.51 1.07 3.50 0.12 4.10 1.01 

Na2O 0.01 2.67 

1.88 

4.87 5.03 2.60 5.46 3.06 4.36 5.65 3.61 5.26 3.37 2.87 2.97 2.95 3.43 3.58 0.46 0.85 0.50 

K2O 0.01 3.11 1.98 4.29 2.32 6.79 6.02 3.30 4.90 3.00 6.83 4.99 5.41 4.97 5.64 3.55 7.64 5.58 6.66 

P2O5 0.01 0.38 0.05 0.02 0.16 0.01 b.l. 0.11 0.01 0.08 0.18 0.41 b.l. 0.20 0.21 0.01 0.25 0.08 0.05 0.23 

Total 

 

98.5 102.0 101.1 101.1 100.7 100.3 100.8 101.3 101.1 101.6 101.5 101.1 100.0 99.8 100.7 100.4 98.2 96.0 94.6 

Ba 3.3 197 712 516 648 495 2250 1620 809 1310 923 1090 63 1880 1520 122 1420 1660 1160 1830 

Sc 0.44 36.6 4.5 1.5 13.4 1.6 1.0 8.2 5.2 3.3 8.8 22.0 4.4 11.7 11.2 0.7 14.0 20.9 3.9 15.2 

Sr 0.86 112 267 192 111 183 237 125 126 162 318 282 30 361 355 27 376 48 167 61 

V 3.4 285 28.8 4.5 125 b.l. 6.2 11.1 b.l. 7.6 54.4 177 4.3 82.2 85.2 b.l. 61.9 122 13.3 105 

Zn 25 81 b.l. b.l. 38 b.l. b.l. 34 b.l. b.l. b.l. 28 b.l. b.l. 30 105 113 57 b.l. 50 

Rb 0.28 65.1 90.0 36.8 207 44.4 139 106 210 134 67.3 235 312 158 157 363 125 317 137 187 

Cs 0.009 n.a. 1.18 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Co 2 56 b.l. b.l. 16 b.l. b.l. b.l. b.l. b.l. 11 44 b.l. 8 9 b.l. b.l. 9 b.l. 186 

Cr 12 238 66 296 38 35 14 68 36 38 48 28 6 167 196 b.l. 25 203 42 b.l. 

Cu 14 16 b.l. 16 123 14 b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. 16 b.l. b.l. b.l. 

Ni 10 90 11 b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. 42 b.l. 820 973 b.l. b.l. 48 b.l. b.l. 

La 0.16 24.5 8.62 12.0 53.6 3.56 3.18 65.8 132 85.4 67.6 43.0 619 33.7 37.1 62.2 58.5 57.8 18.3 8.60 

Ce 0.52 54.2 18.3 23.8 105 6.88 10.1 130 260 164 138 93.1 466 76.6 76.7 135 94.5 104 37.2 17.7 

Pr 0.08 7.33 2.47 2.96 12.3 0.85 0.89 16.5 32.9 19.7 17.9 12.4 50.3 6.86 6.86 17.8 10.0 12.67 4.89 2.23 

Nd 0.29 31.9 9.38 11.7 46.0 3.42 3.49 66.6 131 72.7 73.5 52.3 134 26.2 25.3 71.7 35.3 47.5 19.0 9.07 

Sm 0.048 7.47 1.92 2.44 9.37 0.79 0.81 13.3 27.2 15.4 15.4 11.3 17.8 5.65 5.03 24.4 5.8 8.93 3.96 2.09 

Eu 0.008 2.01 0.76 0.89 1.14 0.42 0.95 3.39 6.81 2.35 5.39 2.1 2.6 1.64 1.49 0.76 1.83 1.74 0.78 0.6 

Gd 0.032 6.84 1.23 1.54 7.02 0.64 0.5 9.95 19.7 13.0 11.8 8.38 13.8 4.43 4.14 26.1 4.14 5.97 2.83 1.77 

Tb 0.005 1.26 0.19 0.22 1.18 0.1 0.08 1.66 3.32 2.5 2.02 1.35 2.16 0.78 0.77 5.78 0.66 0.92 0.46 0.31 

Dy 0.032 7.03 0.89 0.79 5.37 0.5 0.39 8.22 16.4 14.2 10.28 6.3 9.67 4.21 4.21 37.56 3.06 3.83 2.1 1.7 

Ho 0.005 1.57 0.18 0.13 1.01 0.1 0.08 1.74 3.53 3.17 2.22 1.23 2.09 0.94 0.96 8.93 0.67 0.7 0.44 0.4 

Y 0.17 48.2 4.99 3.46 28.2 3.1 2.59 50.6 99.3 91.9 63.2 36.9 76.7 27.3 29.5 245 20.3 19.7 12.7 11.9 

Er 0.028 4.48 0.48 0.28 2.51 0.28 0.25 4.89 9.72 9.44 6.15 3.15 5.8 2.78 2.82 26.8 1.88 1.74 1.26 1.24 

Tm 0.005 0.62 0.07 0.03 0.33 0.05 0.04 0.68 1.35 1.39 0.84 0.41 0.85 0.39 0.42 3.78 0.27 0.23 0.19 0.2 

Yb 0.047 4.24 0.52 0.19 2.22 0.40 0.36 4.56 9.26 9.37 5.71 2.71 6.53 2.78 2.99 23.62 1.88 1.61 1.41 1.35 

Lu 0.005 0.62 0.09 0.03 0.33 0.08 0.06 0.66 1.3 1.32 0.84 0.38 1.02 0.43 0.46 3.13 0.3 0.24 0.23 0.2 

Zr 62 175 193 b.l. 396 84 b.l. 729 88 287 978 187 105 240 263 189 207 98 b.l. 173 

Nb 0.11 16.8 8.0 2.6 21.1 3.7 2.1 10.6 20.9 28.4 4.9 13.3 17.0 11.1 11.6 84.3 15.6 8.7 5.7 10.0 

Ta 0.053 1.3 b.l. b.l. 1.2 0.5 b.l. 0.9 1.5 0.5 b.l. 0.8 b.l. 0.6 0.9 2.7 0.6 b.l. 0.5 1.0 

Th 0.090 4.3 5.1 5.8 25.9 5.2 2.1 9.8 19.5 22.8 8.9 2.5 71.4 8.6 8.6 90.8 10.9 17.3 5.7 10.0 

U 0.006 1.2 0.6 0.8 2.5 1.9 0.5 2.7 5.5 5.4 4.5 4.8 3.1 2.4 2.6 12.6 1.6 1.5 0.8 2.3 

Pb 0.32 3.3 9.0 11.3 4.9 10.9 12.6 28.4 57.8 19.8 3.5 1.9 27.9 3.8 3.5 64.1 14.1 11.2 5.1 1.0 
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Table 1(continued). 

BANGWEULU 

 

 Mansa region (SW Bangweulu) South-Central to West Bangweulu 

ID 

 

BGA BGQ BG01 BG02 BG03 BG07 BG08 BG09 BG10 BG04 BG05 BG06 BG11 BG13 BG14 BG15 BG17 BG18 

Typea IDL(wt. %, ppm)b Gran Qzte Gran Gran Q-lat Rhyol Q-lat AF rhyol And Qzte Siltst Qzite Qzte Gran Siltst Siltst Clayst Gran 

SiO2 0.07 71.2 80.5 71.9 74.0 66.5 70.3 66.7 69.2 60.1 94.7 101.4 72.8 98.2 72.6 65.6 66.9 37.2 75.3 

TiO2 0.002 0.56 0.52 0.54 0.29 0.63 0.42 0.49 0.52 0.78 0.09 0.03 0.46 0.03 0.39 0.64 0.71 0.9 0.2 

Al2O3 0.01 14.0 9.9 14.0 14.4 17.5 16.0 17.9 17.9 19.5 1.1 0.2 14.7 0.7 13.7 20.4 19.3 19.2 14.0 

Fe2O3T 0.003 3.41 2.91 2.97 1.76 4.08 1.92 2.83 3.07 4.58 0.99 0.07 5.92 0.08 2.28 2.81 5.69 31.0 1.65 

MnO 0.001 0.06 0.04 0.06 0.05 0.09 0.05 0.07 0.14 0.21 b.l. b.l. 0.004 b.l. 0.03 0.004 0.001 0.01 0.05 

MgO <0.001 0.84 0.91 0.79 0.43 1.33 0.42 0.68 0.47 1.44 0.03 0.01 0.35 0.01 0.56 0.42 0.28 0.53 0.46 

CaO 0.002 1.62 0.87 2.1 1.29 1.83 1.7 2.94 0.04 4.3 0.01 0.01 0.03 b.l. 0.6 0.01 0.01 0.04 0.43 

Na2O 0.01 3.27 2.78 3.02 3.47 4.43 4.22 4.1 0.25 4.08 b.l. 0.01 0.08 b.l. 2.01 0.09 0.12 0.07 2.59 

K2O 0.01 5.53 2.73 4.53 5.06 4.7 4.58 5.18 6.43 4.84 0.19 0.04 4.38 0.18 6.15 6.64 5.24 4.6 5.24 

P2O5 0.01 0.17 0.12 0.15 0.06 0.2 0.12 0.13 0.12 0.24 b.l. 0.01 0.06 b.l. 0.13 0.08 0.06 0.18 0.19 

Total 

 

100.7 101.2 100.1 100.8 101.3 99.8 101.0 98.2 100.0 97.2 101.7 98.8 99.2 98.4 96.7 98.3 93.7 100.1 

Ba 3.3 1970 507 1040 1330 1950 2840 3280 2730 2580 37 12 640 18 508 623 744 450 280 

Sc 0.44 4.2 5.8 5.9 3.8 7.2 4.9 6.3 6.9 7.6 0.9 b.l. 9.3 b.l. 5.9 17.5 12.2 14.4 6.7 

Sr 0.86 326 106 267 205 441 407 572 95 772 2 6 33 7 72 104 77 15 57 

V 3.4 29.8 50.2 45 20 64 32 33 35 72 9 b.l. 56 4 19 94 71 183 10 

Zn 25 57 b.l. 29 35 76 40 52 98 102 b.l. b.l. 8 b.l. b.l. b.l. b.l. 31 33 

Ga 18 b.l. b.l. b.l. 22 b.l. 20 18 b.l. 22 b.l. b.l. 25 b.l. 18 28 25 38 18 

Rb 0.28 144 58.9 203 171 144 128 118 311 140 11.61 0.88 146 10.2 339 436 199 213 282 

Cs 0.009 n.a. n.a. 4 1.98 2.93 2.77 2.41 5.61 2.58 0.34 0.09 3.89 0.17 2.29 6.56 3.42 9.38 13.7 

Co 2 b.l. b.l. b.l. b.l. 3 b.l. b.l. b.l. 4 b.l. b.l. b.l. b.l. b.l. b.l. b.l. 8 b.l. 

Cr 12 34 105 b.l. 35 b.l. b.l. 47 b.l. 27 33 b.l. b.l. b.l. b.l. 32 b.l. 265 b.l. 

Cu 14 b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. 14 b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. 

Ni 10 b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. b.l. 

La 0.16 202 23.0 55.3 63.3 53.8 54.8 59.3 115 54.4 9.44 7.06 49.8 8.32 96.4 114 86.8 15.4 17.2 

Ce 0.52 349 47.7 99.4 98.1 95.5 99.3 107 92.3 103 23.0 13.5 96.1 15.3 282 166 152 28.8 40.1 

Pr 0.08 32.0 5.85 11.7 10.9 11.2 10.9 11.7 28.6 11.8 2.56 1.52 11.5 1.72 27.6 20.9 17.9 2.48 4.31 

Nd 0.29 112 22.9 42.3 38.7 40.8 38.8 42.1 102 43.8 9.75 5.7 42.4 6.01 107 66.9 61.9 8.4 16.2 

Sm 0.048 16.5 4.50 7.6 7.13 7.05 6.23 6.96 15.0 7.66 1.95 1.23 6.76 1.1 22.8 10.9 10.5 1.71 4.32 

Eu 0.008 3.22 0.89 1.54 1.53 1.98 1.78 2.35 2.86 2.36 0.34 0.23 0.97 0.11 1.22 1.8 1.92 0.49 0.41 

Gd 0.032 10.5 3.33 6.78 7.05 5.42 4.59 5.05 9.22 5.7 1.21 1.85 4.55 0.69 15.3 7.31 5.62 2.1 4.23 

Tb 0.005 1.52 0.47 1.19 1.21 0.89 0.75 0.81 1.43 0.93 0.17 0.38 0.81 0.1 2.33 1.09 0.78 0.46 0.87 

Dy 0.032 8.69 2.44 5.95 6.21 3.93 3.29 3.46 5.42 4.08 0.62 1.81 3.92 0.37 8.74 3.53 3.05 2.64 4.57 

Ho 0.005 1.75 0.43 1.45 1.47 0.86 0.72 0.75 1.04 0.89 0.14 0.34 0.93 0.08 1.54 0.61 0.7 0.63 0.96 

Y 0.17 47.3 10.7 45.7 52.9 26.6 21.5 22.0 27.2 26.7 3.18 10.4 26.8 2.12 43.5 15.4 20.4 17.7 30.2 

Er 0.028 4.98 1.14 4.11 4.27 2.45 2.08 2.12 2.86 2.52 0.41 0.83 2.83 0.21 3.58 1.57 2.23 1.92 2.72 

Tm 0.005 0.75 0.17 0.58 0.6 0.34 0.31 0.31 0.41 0.36 0.07 0.1 0.43 0.03 0.43 0.22 0.36 0.29 0.4 

Yb 0.047 4.85 1.07 3.93 4.05 2.43 2.26 2.25 3.04 2.59 0.5 0.68 3.22 0.26 2.66 1.73 2.8 2.21 2.88 

Lu 0.005 0.72 0.17 0.59 0.62 0.38 0.36 0.36 0.47 0.41 0.08 0.09 0.5 0.04 0.38 0.28 0.44 0.33 0.41 

Zr 62/2.3 362 195 141 141 252 246 307 243 379 72.2 27.9 177 42.5 305 183 255 289 117 

Hf 0.12 5.52 2.79 4.65 4.81 6.93 7.28 8.35 7.6 9.88 2.13 0.87 5.58 1.39 9.82 5.93 7.8 8.74 4.07 

Nb 0.11 n.a. n.a. 26.1 19.4 7.2 18.7 17.9 27.7 24.4 2.7 0.8 17.4 3.3 35.7 24.1 22.4 27.5 24.3 

Ta 0.053 n.a. n.a. 1.09 0.98 0.16 1.37 1.03 2.15 1.49 0.21 b.l. 1.33 0.32 1.28 1.45 1.46 2.1 2.35 

Th 0.090 n.a. n.a. 21.2 15.7 15.0 14.0 13.1 17.3 15.4 3.38 2.06 15.3 9.56 117 21.2 19.5 27.6 13.1 

U 0.006 n.a. n.a. 4.77 3.12 2.76 2.87 2.35 4.54 2.57 0.33 0.26 2.35 0.25 3.31 2.62 2.86 4.19 5.9 

Pb 0.32 n.a. n.a. 18.8 19.1 8.64 26.6 31.6 16.4 73.3 2.13 2.06 6.97 1.13 69.7 6.3 8.48 15.9 21.7 



  

Table 1(continued). 

IRUMIDE  NE Irumide Central Irumide SW Irumide 

ID 

 

IR01 IR02 IR03 IR04 IR05 IR06 IR07 IR09 IR10 IR13 IR14 

Typea IDL(wt. %, ppm)b Qzte Siltst Siltst And Amph Gran Gn Sch Phyll Gran Gran 

SiO2 0.07 100.6 66.3 60.5 50.5 48.2 78.9 83.6 69.4 55.6 75.7 71.5 

TiO2 0.002 0.02 0.87 0.93 0.73 1.99 0.32 0.19 1.07 1.08 0.3 0.31 

Al2O3 0.01 0.3 17.6 18.4 18.6 15.9 12.0 10.0 23.8 24.1 13.8 15.0 

Fe2O3T 0.003 0.01 8.76 12.04 10 14.34 3.03 2.21 0.76 6.4 2.03 2.49 

MnO 0.001 b.l. 0.004 0.57 0.16 0.19 0.1 0.04 b.l. 0.02 0.06 0.04 

MgO <0.001 0.01 0.12 1.59 6.38 7.79 0.69 0.08 0.18 0.18 0.51 0.73 

CaO 0.002 0.01 0.05 0.1 11.4 9.16 0.97 0.77 b.l. 0.07 1.23 2.56 

Na2O 0.01 b.l. 0.43 0.43 2.14 2.69 2.3 1.77 0.23 0.68 2.88 4.07 

K2O 0.01 0.08 3.44 4.96 1.03 0.09 4.35 4.81 3.6 4.86 5.1 2.46 

P2O5 0.01 b.l. 0.03 0.11 0.08 0.28 0.19 0.02 0.05 0.05 0.06 0.08 

Total 

 

101.0 97.6 99.6 101.0 100.7 102.9 103.4 99.1 93.1 101.7 99.3 

Ba 3.3 13 682 2980 334 67 333 278 349 851 512 633 

Sc 0.44 b.l. 12.7 16.3 32.4 21.8 5.7 7 14.1 15.2 6.3 3.4 

Sr 0.86 1 63 86 185 219 50 27 120 78 78 260 

V 3.4 b.l. 66 113 204 249 23 b.l. 124 64 22 24 

Zn 25 b.l. b.l. 87 77 131 83 57 b.l. 523 32 58 

Ga 18 b.l. 25 25 22 19 34 19 33 37 b.l. 21 

Rb 0.28 2 179 256 32 2 416 179 123 310 290 83 

Cs 0.009 0.06 8.5 13.4 0.34 0.58 37.4 n.a. 17.7 13.0 5.67 1.81 

Co 2 b.l. 5 51 44 71 b.l. b.l. b.l. 4 b.l. b.l. 

Cr 12 b.l. b.l. 70 121 103 b.l. b.l. 60 21 b.l. b.l. 

Cu 14 b.l. b.l. b.l. 77 25 b.l. b.l. b.l. b.l. b.l. b.l. 

Ni 10 b.l. b.l. 11 41 160 b.l. b.l. b.l. b.l. b.l. b.l. 

La 0.16 1.57 4.15 56.7 11.7 13.8 78.6 n.a. 56.1 21.2 33 35.1 

Ce 0.52 2.46 7.3 121 22.0 28.1 139 n.a. 104 35.5 81.2 58.2 

Pr 0.08 0.27 0.67 11.7 2.68 3.74 15.2 n.a. 11.7 4.1 8.93 6.36 

Nd 0.29 1 2.92 42.5 11.3 16.7 52.3 n.a. 41.3 15.3 32.6 21.8 

Sm 0.048 0.25 0.9 7.9 2.86 4.21 9.96 n.a. 7.54 3.33 6.95 3.55 

Eu 0.008 0.04 0.3 1.93 0.96 1.63 0.62 n.a. 1.31 0.79 0.93 0.79 

Gd 0.032 0.3 1.22 6.38 3.19 4.46 7.89 n.a. 4.85 3.25 5.67 2.59 

Tb 0.005 0.05 0.28 1.09 0.61 0.81 1.39 n.a. 0.72 0.63 1.07 0.4 

Dy 0.032 0.24 1.81 5.07 3.42 4.31 6.29 n.a. 2.54 3.47 5.31 1.5 

Ho 0.005 0.06 0.46 1.17 0.8 0.98 1.32 n.a. 0.49 0.8 1.16 0.29 

Y 0.17 1.54 13.5 37.3 22.8 28.2 40.9 55.6 12.9 21.3 35.2 9.92 

Er 0.028 0.15 1.53 3.43 2.27 2.79 3.72 n.a. 1.35 2.48 3.47 0.76 

Tm 0.005 0.02 0.26 0.49 0.32 0.38 0.53 n.a. 0.2 0.38 0.52 0.09 

Yb 0.047 0.16 2.11 3.49 2.19 2.63 3.7 n.a. 1.56 2.72 3.71 0.6 

Lu 0.005 0.02 0.34 0.53 0.32 0.38 0.54 n.a. 0.25 0.41 0.53 0.09 

Zr 2.3 20.5 393 212 95 89 219 238 1250 228 161 171 

Hf 0.12 0.74 11.8 6.1 2.86 2.46 8.12 n.a. 14.2 7.23 5.56 4.9 

Nb 0.11 0.46 26.1 32.7 7.58 1.85 38.3 n.a. 20.8 12.3 21.9 8.14 

Ta 0.053 0.05 1.17 0.87 0.47 0.1 1.54 n.a. 1.35 1.17 0.8 0.9 

Th 0.090 0.82 23.9 19.6 2.47 1.88 51.0 n.a. 26.3 33.4 37.5 23.2 

U 0.006 0.2 1.91 2.58 0.39 0.19 8.11 n.a. 3.84 3.74 3.87 1.57 

Pb 0.32 1.24 21.0 24.7 8.48 30.7 46.4 b.l. 11.7 58.5 37.6 15.3 
a Clayst, claystone; Siltst, siltstone; Sandst, sandstone; Phyll, phyllite; Sch, schist; Qzte, quartzite; Gn, gneiss; Mig, migmatite; Amph, amphibolite; Gran, granitoid; Rhyol, rhyolite; AF rhyol, alkali feldspar rhyolite; Q 
lat, quartz latite; And, andesite; Dol, dolerite. 
b Concentrations and instrumental detection limits (IDL) for ICP-OES (normal) and ICP-MS data (italic); b.l., below limit; n.a., not analyzed.  

 



  

Table 2. Whole rock Sm-Nd isotope data for igneous and sedimentary rocks in the Domes, Bangweulu and Irumide regions. 

Domes Type ID T (Ga)a 143Nd/144Nd 2s 147Sm/144Nd 1s(rel) TDM(Ga) εNd (now) εNd (T) 

Magm. Amph DO11JV001 1.50 0.51200 0.00005 0.142 0.02 2.22±0.11 -13 -2 

 Grt DO11JV013 1.92 0.51135 0.00004 0.080 0.02 1.93±0.03 -25 4 

 Grt DO11JV014 1.92 0.51165 0.00006 0.130 0.02 2.57±0.10 -19 -3 

 Grt DO11JV015 1.92 0.51158 0.00005 0.120 0.02 2.40±0.08 -21 -2 

 Grt DO11JV017 0.88 0.51205 0.00007 0.205 0.02 N.A.b -11 -12 

 Grt DO11JV018 1.95 0.51118 0.00005 0.099 0.02 2.49±0.06 -28 -4 

Orthogn? Gn DO11JV007 1.92 0.51159 0.00006 0.140 0.02 3.07±0.14 -20 -7 

 Gn DO11JV008 1.92 0.51168 0.00005 0.121 0.02 2.24±0.07 -19 0 

 Gn DO11JV010 1.92 0.51158 0.00005 0.128 0.02 2.63±0.09 -21 -4 

Metased Luf S DO11JV019 1.95 0.51131 0.00005 0.114 0.02 2.66±0.08 -26 -5 

 Luf S DO11JV020 1.95 0.51160 0.00005 0.126 0.02 2.52±0.09 -20 -2 

 Luf S NS12DD49 1.92 0.51155 0.00006 0.139 0.02 3.11±0.14 -21 -7 

 Gn DO11JV002 1.92 0.51164 0.00006 0.124 0.02 2.38±0.09 -19 -1 

 Gn DO11JV003 1.92 0.51162 0.00005 0.127 0.02 2.50±0.09 -20 -3 

 Gn DO11JV004 1.92 0.51162 0.00006 0.123 0.02 2.40±0.08 -20 -2 

 Gn DO11JV006 1.92 0.51168 0.00005 0.140 0.02 2.83±0.13 -19 -5 

 Gn/sch DO11JV011 1.92 0.51169 0.00004 0.127 0.02 2.37±0.08 -18 -1 

 Gn/sch DO11JV012 1.92 0.51169 0.00006 0.130 0.02 2.48±0.10 -19 -2 

Bangweulu and Irumide  

Magm. Gran BG12JV01 1.87 0.51146 0.00006 0.109 0.02 2.30±0.07 -23 -2 

 Gran BG12JV01 1.87 0.51150 0.00007 0.109 0.02 2.24±0.07 -22 -1 

 Gran BG12JV02 1.87 0.51140 0.00007 0.111 0.02 2.47±0.08 -24 -4 

 Extr BG12JV03 1.87 0.51142 0.00006 0.104 0.02 2.27±0.06 -24 -2 

 Extr BG12JV07 1.87 0.51127 0.00006 0.097 0.02 2.30±0.06 -27 -3 

 Extr BG12JV08 1.87 0.51133 0.00004 0.100 0.02 2.30±0.05 -26 -2 

 Extr BG12JV09 1.87 0.51145 0.00007 0.089 0.02 1.94±0.05 -23 3 

 Extr BG12JV10 1.87 0.51139 0.00006 0.106 0.02 2.34±0.07 -24 -3 

 Gran BG12JV12 1.96 0.51148 0.00006 0.136 0.02 3.14±0.36 -23 -8 

 Migm BG12JV13 1.96 0.51146 0.00006 0.129 0.02 2.88±0.11 -23 -6 

 Gran BG12JV18 1.96 0.51183 0.00005 0.161 0.02 3.62±0.27 -16 -7 

 Maf IR12JV04 1.96 0.51183 0.00006 0.153 0.02 3.08±0.19 -16 -5 

 Maf IR12JV05 1.96 0.51205 0.00006 0.153 0.02 2.50±0.15 -12 0 

 Gran IR12JV06 1 0.51112 0.00005 0.115 0.02 3.01±0.08 -30 -19 

 Gran IR12JV13 1 0.51143 0.00007 0.129 0.02 2.93±0.11 -24 -15 

 Gran IR12JV14 2.74 0.51085 0.00006 0.098 0.02 2.93±0.07 -35 0 

Sed. Sed BG12JV06 1.8 0.51138 0.00008 0.096 0.02 2.16±0.07 -25 -1 

 Sed BG12JV14 1.8 0.51158 0.00005 0.098 0.02 1.93±0.05 -21 2 

 Sed BG12JV15 1.8 0.51151 0.00005 0.102 0.02 2.10±0.05 -22 0 

 Sed BG12JV17 1.8 0.51149 0.00005 0.123 0.02 2.64±0.09 -22 -5 

 Sed IR12JV02 1.8 0.51146 0.00005 0.186 0.02 N.A. b -23 -21 

 Sed IR12JV03 1.8 0.51147 0.00006 0.112 0.02 2.36±0.07 -23 -3 

 Sed IR12JV09 1.8 0.51134 0.00006 0.110 0.02 2.53±0.07 -25 -5 

 Sed IR12JV10 1.8 0.51136 0.00006 0.132 0.02 3.19±0.13 -25 -10 
a The chosen age T for the undated Domes units is 1.92 Ga, the central value of the igneous Domes ages referenced in the text 

(1.98-1.86 Ga). This corresponds closely to the 1.91 Ga modus of igeous zircon ages by Eglinger (2013). Bangweulu and 

Irumide ages follow the central values from the corresponding magmatic phase of De Waele et al. (2006b) and references 

therein. The isotope composition of the Muva Supergroup and inferred correlatives is shown at the inferred depositional age 

of the former (~1.8 Ga, De Waele and Fitzsimons, 2007). b N.A., not applicable. 

Table 2
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Table A. Macroscopic description and available GPS coordinates (in WGS84) of the studied samples. 

Sample  Macroscopic description Drill Core/Location Depth RMCA 

DO11JV01 Medium-grained (3mm) amphibolite schist with lineated amphiboles and feldspar-filled veinlets LUB0220a 51 m - 

DO11JV02 Medium-grained (2-3mm), heterogenic, white granitoid biotite gneiss LUB0220 59.5 m - 

DO11JV03 Medium-grained (2-3mm), heterogenic, white granitoid biotite gneiss, fewer biotite than DO02 LUB0220 88.5 m - 

DO11JV05 Medium-grained (2-3mm), heterogenic, white granitoid biotite gneiss, fewer biotite than DO02 LUB0220 88.5 m - 

DO11JV06 Medium-grained (2-3mm) , white granitoid gneiss LUB0220 125.5 m - 

DO11JV07 Coarse-grained, pegmatoidal, pinkish granitoid biotite gneiss with biotite-annealed fractures, feldspars up to 1cm LUB0220 35.5 m - 

DO11JV08 Coarse-grained (5mm) pinkish granitoid biotite gneiss with quartz veins CHI00707b 262.5 m - 

DO11JV09 Coarse-grained gneiss with a pinkish, heterogenic felsic pegmatoid part & homogeneous, banded mafic/felsic part 

(cf. DO10) feldspars up to 4cm 

CHI00707 269 m - 

DO11JV10 Medium-grained (3mm) pinkish granitoid gneiss + quartz-biotite-rich bands and quartz veins CHI00707 288 m - 

DO11JV11 Medium-grained (3mm), homogeneous white gneiss, with schistose quartz biotite dominated parts CHI00707 509 m - 

DO11JV12 Medium-grained (3mm), white granitoid biotite gneiss with abundant biotite dominated schistose parts and coarse-

grained (<1cm) heterogenic felsic parts  

CHI00707 502 m - 

DO11JV13 Medium-grained (2-3mm) homogeneous, biotite granite, no banding, foliated, weathered appearance Lumwanac 0 m - 

DO11JV14 Granitoid, powdered sample Tshinsenda - R.G.71.282 

DO11JV15 Medium-grained (2mm) titanite-rich epidote granitoid sample, feldspars up to 8mm Tshinsenda - R.G.71.286 

DO11JV16 Medium-grained (2mm) biotite-chlorite granitoid  - - R.G.71.291 

DO11JV17 Medium- to coarse-grained, pink biotite granitoid Nchanga - R.G.71.190 

DO11JV18 Medium-grained (2mm), grey, titanite-rich biotite-epidote granite Mufulira - R.G.70.552 

DO11JV19 Dark green, fine-grained chlorite-tourmaline schist Mufulira - R.G.70.553 

DO11JV20 Pale green, fine-grained, banded chlorite-bearing quartz schist Mufulira 960 m - 

NS12DD49 Pale green fine-grained, mottled chlorite-feldspar-quartz schist SE797d 48-98 m - 

Sample number format and representative grain sizes are indicated between brackets. Abbreviations: DO, Domes region; IR, Irumide region; BG, Bangweulu region. The RMCA numbers refer 

to the collection numbers from the Royal Museum for Central Africa in Tervuren, Brussels; sample IDs refer to the KUL collection numbers. The latter are abbreviated in other sections. 

aLUB0220: S12  8.968 E25 57.300 (WGS84); bCHI00707: S12 16.921 E25 51.642 (WGS84);c S12 16.291 E25 40.141 d Nkana South copper mine, Kitwe, Zambia. 
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Table A(continued).  

Sample ID Macroscopic description Stratigraphy GPS coordinates/RMCA 

IR12JV01 Massive, fine-grained (<1mm) white quartzite Manshya River Gr S11 37.380 E31 31.638 1620 m 

IR12JV03 Black-blue siltstone showing fissibility Manshya River Gr S11 42.430 E31 35.208 1514 m 

IR12JV04 Plagioclase-pyroxene-amphibole phenocrystic (2-3mm) metavolcanite with micaceous matrix n.a. S11 55.480 E31 32.378 1389 m 

IR12JV05 Fine-grained (<1mm), massive dark grey homogeneous, amphibolite n.a. S11 55.595 E31 32.705 1353 m 

IR12JV06 Medium- to coarse-grained (1-5mm), foliated, white, biotite granitoid, contains biotite-quartz 

dominated zones in outcrop 

n.a. S12 17.232 E31 06.345 1479 m 

IR12JV07 Coarse-grained (3-5mm) white to pinkish biotite granitoid  n.a. S12 40.353 E31 01.353 1578 m 

IR12JV08 Sugar-textured white sandstone, rimmed by black crust Kanona Gr S13 03.675 E30 38.698 1645 m 

IR12JV09 White-green to golden, micaceous quartzitic schist Kanona Gr S13 04.692 E30 36.312 1649 m 

IR12JV10 Purple-red micaceous phyllite  Kanona Gr S13 40.805 E29 15.861 1255 m 

IR12JV11d Chalcopyrite and malachite mineralized white to pink granitoid n.a. S13 56.919 E29 08.569 1134 m 

IR12JV12d Chalcopyrite and malachite mineralized whitish to beige granitoid  n.a. S13 56.919 E29 08.569 1134 m 

IR12JV13 Medium- to coarse-grained (2mm), feldspar porphyric (<4mm) biotite granitoid  n.a. S13 56.661 E29 08.920 1155 m 

IR12JV14 Fine-grained (1-2mm), homogeneous, white-greenish biotite granodiorite  n.a. S13 45.318 E28 40.261 1232 m 

BG11JV001 Coarse-grained (3-4mm) dark red equigranular biotite granitoid (BGA) n.a. R.G.42.282 

BG11JV002 Sugar textured massive quartzite (Kamuzua basement quartzite of N. Zambia, BGQ) Muva S-Gr R.G.70.638 

BG12JV01 Coarse-grained, equigranular (3-5mm), foliated, greenish, biotite granitoid with epidote and titanite n.a. S11 18.647 E28 51.475 1243 m 

BG12JV02 Medium-grained (2mm), equigranular, reddish, chlorite-biotite-epidote granitoid n.a. S11 11.534 E28 45.136 1241 m 

BG12JV03 Fine-grained, massive, feldspar and quartz phenocrystic metavolcanite with dark grey matrix n.a. S11 11.113 E28 40.684 1120 m 

BG12JV04 Massive, fine-grained (< 1mm), equigranular, sugar-textured quartzite Nsama Fm S10 56.802 E28 48.940 1280 m 

BG12JV05 Fine-grained (<1mm) equigranular, pinkish quartzite Kabweluma Fm S10 54.865 E28 48.403 1308 m 

BG12JV06 Banded red siltstone without fissibility Nsama Fm S10 54.957 E28 48.347 1317 m 

BG12JV07 Quartz and red feldspar phenocrystic metavolcanite with black miceaceous matrix n.a. S10 59.178 E28 49.850 1320 m 

BG12JV08 Plagioclase phenocrystic (1-2mm) metavolcanite with greenish chlorite matrix  n.a. S11 00.571 E28 50.015 1294 m 

BG12JV09 Feldspar phenocrystic, red metavolcanite with Mn-oxides in veinlets n.a. S11 00.448 E28 48.664 1305 m 

BG12JV10 Massive, amphibole phenocrystic metavolcanite with chlorite-rich matrix n.a. S11 06.416 E28 52.625 1254 m 

BG12JV11 Massive, sugar-textured, pink quartzite with minor opaques  (Nsama Fm) S10 50.156 E29 01.874 1285 m 

BG12JV12 Coarse-grained (3-4mm) greenish epidote-(amphibole) granitoid with muscovite filling veinlets n.a. S10 12.788 E30 10.099 1346 m 

BG12JV13 Coarse-grained (3-4mm) greenish epidote-(amphibole) granitoid with well developed shear planes 

and decimeter to meter-scaled quartz veins 

n.a. S10 13.153 E30 11.944 1285 m 

BG12JV14 Massive white to reddish siltstone  (Nsama Fm) S10 14.104 E30 24.022 1455 m 

BG12JV15 Micaceous red siltstone (Nsama Fm) S10 19.139 E30 46.698 1412 m 

BG12JV16 Red-black quartzite with biotite spots, weathered along stratification  Kasama Fm S10 12.932 E31 09.025 1381 m 

BG12JV17 Dark-red fine-grained argillite, with fissibility evolving to slatey cleavage Kasama Fm S10 09.666 E31 01.117 1354 m 

BG12JV18 Coarse-grained (2-5mm), homogeneous, white-green epidote granitoid n.a. S10 16.827 E31 05.727 1270 m 
dSeringa mining Ltd/Mkushi Copper joint venture 



  

Table B. Whole rock Rb-Sr isotope data for igneous and sedimentary rocks in the Domes, Bangweulu and Irumide regions. 

Domes Type ID T (Ga)a 87Sr/86Sr 2s 87Rb/86Sr Sr(T) 

Magmatics Amph DO11JV001 1.50 0.74706 0.00017 1.22 0.72082 

 LEG DO11JV013 1.92 1.27363 0.00046 49.4 - 

 Grt DO11JV014 1.92 0.73328 0.00028 1.32 0.69680 

 Grt DO11JV015 1.92 0.73294 0.00019 1.31 0.69687 

 NG DO11JV017 0.88 1.18962 0.00051 42.4 0.65689 

 MGG DO11JV018 1.95 0.73461 0.00031 0.94 0.70813 

Orthogn.? Gn DO11JV007 1.92 0.74005 0.00022 1.75 0.69183 

 Gn DO11JV008 1.92 0.76101 0.00019 2.47 0.69283 

 Gn DO11JV010 1.92 0.77199 0.00020 2.60 0.70028 

Metasediments Luf S DO11JV019 1.95 1.07431 0.00081 21.9 0.45938 

 Luf S DO11JV020 1.95 0.75021 0.00022 2.36 0.68398 

 Luf S NS12DD49 1.92 0.78267 0.00008 9.0 0.53409 

 Gn DO11JV002 1.92 0.72989 0.00031 0.99 0.70251 

 Gn DO11JV003 1.92 0.74175 0.00025 0.61 0.72498 

 Gn DO11JV004 1.92 0.78653 0.00031 5.7 0.62891 

 Gn DO11JV006 1.92 0.73711 0.00037 0.75 0.71643 

 Gn/sch DO11JV011 1.92 0.72312 0.00018 0.65 0.70507 

 Gn/sch DO11JV012 1.92 0.73920 0.00030 2.53 0.66921 

Bangweulu and Irumide 

Magmatics Gran BG12JV01 1.87 0.75638 0.00008 2.21 0.69693 

 Gran BG12JV01BIS 1.87 0.75697 0.00010 2.43 0.69752 

 Gran BG12JV02 1.87 0.76413 0.00010 0.95 0.69883 

 Extr BG12JV03 1.87 0.72925 0.00008 0.91 0.70260 

 Extr BG12JV07 1.87 0.72847 0.00007 0.60 0.70280 

 Extr BG12JV08 1.87 0.72014 0.00007 9.7 0.70329 

 Extr BG12JV09 1.87 0.84654 0.00011 0.53 0.57533 

 Extr BG12JV10 1.87 0.71886 0.00011 8.6 0.70409 

 Gran BG12JV12 1.96 0.96578 0.00013 14.0 0.72339 

 Migm BG12JV13 1.96 1.01188 0.00014 14.9 0.61986 

 Gran BG12JV18 1.96 1.16328 0.00016 0.49 0.77712 

 Maf IR12JV04 1.96 0.71787 0.00009 0.032 0.70398 

 Maf IR12JV05 1.96 0.72535 0.00008 25.0 0.72446 

 Gran IR12JV06 1.00 1.01064 0.00009 11.0 0.30984 

 Gran IR12JV13 1.00 0.98898 0.00020 0.93 0.68044 

 Gran IR12JV14 2.74 0.73393 0.00010 13.3 0.69709 

Metasediments Sed BG12JV06 1.8 0.96556 0.00013 12.5 0.69883 

 Sed BG12JV14 1.8 0.93231 0.00012 7.6 0.62214 

 Sed BG12JV15 1.8 0.82021 0.00022 44.1 0.60987 

 Sed BG12JV17 1.8 1.46061 0.00022 8.4 0.62305 

 Sed IR12JV02 1.8 0.89840 0.00014 8.8 0.31947 

 Sed IR12JV03 1.8 0.86603 0.00014 2.99 0.68027 

 Sed IR12JV09 1.8 0.76562 0.00010 11.8 0.63873 

 Sed IR12JV10 1.8 0.97165 0.00011 2.21 0.68830 
a The chosen age T for the undated Domes units is 1.92 Ga, the central value of the igneous Domes ages referenced in the text 

(1.98-1.86 Ga). This corresponds closely to the 1.91 Ga modus of igeous zircon ages by Eglinger (2013). Bangweulu and 

Irumide ages follow the central values from the corresponding magmatic phase of De Waele et al. (2006b) and references 

therein. The isotope composition of the Muva Supergroup and inferred correlatives is shown at the inferred depositional age 

of the former (~1.8 Ga, De Waele and Fitzsimons, 2007). b N.A., not applicable. 

Table B
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• Petrochemical and isotopic characterization of Domes, Irumide and Bangweulu units. 

• Calculation of depleted mantle Nd model ages with analytically induced errors. 

• Nd model ages reveal cryptic Archean sources in all terranes. 

• The isotope data indicates long-lived crustal reworking in the entire region. 

• Evidence for a Paleoproterozoic continental arc in the East Domes and SW Bangweulu. 

 

 

 




