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Abstract 16 

Redox reactions involving iron (Fe) strongly affect the mobility of phosphorus (P) and its 17 

migration from agricultural land to freshwater. We studied the transfer of P from groundwater 18 

to open drainage ditches in an area where, due to Fe(II) rich groundwater, the sediments of 19 

these ditches contain accumulated Fe oxyhydroxides. The average P concentrations in the 20 

groundwater feeding two out of three studied drainage ditches exceeded environmental limits 21 
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for freshwaters by factors 11 and 16, but after passing through the Fe-rich sediments, the P 22 

concentrations in the ditch water were below these limits. In order to identify the processes 23 

which govern Fe and P mobility in these systems, we used diffusive equilibration in thin films 24 

(DET) to measure the vertical concentration profiles of P and Fe in the sediment pore water 25 

and in the ditchwater. The Fe concentrations in the sediment pore water ranged between 10 26 

and 200 mg L
-1

 and exceeded those in the inflowing groundwater by approximately one order 27 

of magnitude, due to reductive dissolution of Fe oxyhydroxides in the sediment. The 28 

dissolved P concentrations only marginally increased between groundwater and sediment pore 29 

water. In the poorly mixed ditchwater, the dissolved Fe concentrations decreased towards the 30 

water surface due to oxidative precipitation of fresh Fe oxyhydroxides, and the P 31 

concentrations decreased more sharply than those of Fe. These observations support the view 32 

that the dynamics of Fe and P are governed by reduction reactions in the sediment and by 33 

oxidation reactions in the ditchwater. In the sediment, reductive dissolution of P-containing 34 

Fe oxyhydroxides causes more efficient solubilization of Fe than of P, likely because P is 35 

buffered by adsorption on residual Fe oxyhydroxides. Conversely, in the ditchwater, oxidative 36 

precipitation causes more efficient immobilization of P than of Fe, due to ferric phosphate 37 

formation. The combination of these processes yields a natural and highly efficient sink for P. 38 

It is concluded that, in Fe-rich systems, the fate of P at the sediment-water interface is 39 

determined by reduction and oxidation of Fe. 40 

 41 
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1. Introduction 46 

Excessive fertilization of agricultural land has resulted in large losses of phosphorus (P) from 47 

soils to the aquatic environment. This has caused cultural eutrophication of lakes, streams, 48 

and estuaries in many developed countries worldwide (Correll, 1999; Schindler, 2012; Smith, 49 

2003). Losses of P from agricultural land may occur either by soil erosion and overland flow 50 

or by leaching, i.e. vertical transport through the soil profile. Globally, overland flow is the 51 

principal pathway in most catchments (Hansen et al., 2002). Such losses are related to erosion 52 

of particulate P during storm events, mostly in fine-textured soils (Sharpley et al., 2001). The 53 

transport and environmental effects of eroded P have been studied in great detail (Delgado 54 

and Scalenghe, 2008; Ekholm, 1994). Conversely, in well-drained soils with low P sorption 55 

capacity, P losses predominantly occur through leaching (Van der Zee, 1988). Such percolates 56 

may cause P-enrichment of shallow groundwater and may ultimately reach the aquatic 57 

environment via the groundwater flow. The lowland areas of Belgium and the Netherlands 58 

have acid sandy soils with a long history of excessive fertilizer application. These soils are P-59 

saturated and exhibit large leaching losses to shallow groundwater (Lookman et al., 1995; 60 

Van der Zee et al., 1990). In such soils, it is difficult to balance agronomic needs (optimal 61 

crop production) and environmental concerns (limited P leaching) (del Campillo et al., 1999). 62 

The transport of P from percolate or groundwater through drains to the aquatic environment is 63 

often assumed to be conservative, i.e. it is not much affected by chemical processes 64 

(Schoumans et al., 2013; van der Salm et al., 2011). However, as P-enriched groundwater 65 

surfaces, it seeps through micro-oxic and highly redox-active environments, such as the 66 

linings of drainage tubes or the sediments of streams and ditches. In such environments, P 67 

may undergo complex chemical interactions with several redox-active elements, most notably 68 

with Fe. As hydrous ferric oxides are submerged and become anoxic, they may undergo 69 

reductive dissolution, which is often microbially mediated (Lovley, 1997). Conversely, in 70 
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oxic or micro-oxic environments, the reduced and highly mobile Fe(II) may be re-oxidized 71 

either chemically (Davison and Seed, 1983) or biotically (Druschel et al., 2008). The oxidized 72 

Fe(III) readily precipitates as authigenic hydrous ferric oxides, such as ferrihydrite or 73 

lepidocrocite (Baken et al., 2013; Duckworth et al., 2009; Fortin et al., 1993).  74 

Several studies have already addressed the interactions between Fe and P at the interface 75 

between anoxic and oxic environments. Reductive dissolution of hydrous ferric oxides 76 

generally releases associated P (Liu, 2010), and the release of P from reconstructed wetlands 77 

is of environmental concern (Zak and Gelbrecht, 2007; Zak et al., 2010). However, in some 78 

cases, the release of P from anoxic sediments is limited, possibly due to formation of vivianite 79 

(Heiberg et al., 2012, 2008). The subsequent oxidation of Fe(II) produces hydrous ferric 80 

oxides which combine a high specific surface area with a high affinity for oxyanions 81 

(Dzombak and Morel, 1990). They may bind P by adsorption or coprecipitation and are very 82 

efficient sinks for P. The formation of various ferric phosphate minerals with low molar Fe:P 83 

ratios, in some cases even down to unity, have been reported in synthetic solutions (Kaegi et 84 

al., 2010; Mayer and Jarrell, 2000; Voegelin et al., 2010), stream sediments (Hyacinthe and 85 

Van Cappellen, 2004), and lakes (Gunnars et al., 2002; Lienemann et al., 1999).  86 

The coupling of reductive dissolution and oxidation of Fe may lead to intense Fe cycling, 87 

which has been observed in a variety of environments including sediments, groundwater 88 

seeps, and lakes (Blöthe and Roden, 2009; Davison, 1993; Gault et al., 2011; Kleeberg et al., 89 

2013). Diffusive techniques, such as Diffusive Gradients in Thin films (DGT) or Diffusive 90 

Equilibration in Thin films (DET), are highly suited for probing the chemical composition of 91 

such environments. Some recent methodological studies have already simultaneously 92 

determined spatially resolved Fe and P concentrations using diffusive techniques (Cesbron et 93 

al., 2014), and a study by Xu et al. (2013) showed a strong relationship between Fe and P 94 

concentrations in the pore waters of an incubated sediment. However, few studies have 95 
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examined Fe-P interactions in systems with combined reduction and oxidation reactions. 96 

Based on column experiments, Kjaergaard et al. (2012) speculate that if P and Fe(II) are 97 

concomitantly released from submerged soils, the export of P may be attenuated by the 98 

downstream re-oxidation of Fe(II) and subsequent binding of P. Zak and Gelbrecht (2004) 99 

and Zak et al. (2010) showed that even if high P concentrations are measured in the pore 100 

waters of reconstructed wetlands, the risk of P export is limited if molar Fe:P ratios in soils 101 

and pore waters do not fall below critical values. Immobilization of P by such processes may 102 

be a key process limiting P export from selected environments, but the limited evidence 103 

warrants further studies.  104 

This study was set up in order to identify the processes which govern the dynamics of Fe and 105 

P at the anoxic-oxic boundary. More specifically, we set out to determine how chemical Fe-P 106 

interactions in the sediment of drainage ditches can reduce the dissolved P concentrations 107 

from far above to well below environmental limits. The transport of dissolved P from Fe(II)-108 

bearing groundwater to open drainage ditches was monitored in an agricultural area where P 109 

losses predominantly occur through leaching (Lookman et al., 1995; Van der Zee, 1988 and 110 

references therein). Vertical concentration profiles of dissolved P and Fe at the sediment-111 

water interface of open drainage ditches were measured at 1 cm resolution using the DET 112 

(diffusive equilibrium in thin films) technique. Our approach relied on field measurements, 113 

since laboratory studies of redox-sensitive systems are inherently prone to artefacts (Brand-114 

Klibanski et al., 2007). We hypothesize that P export from drainage ditches is reduced by 115 

binding on freshly produced hydrous ferric oxides, and that P is scavenged in the oxic zone as 116 

long as the Fe:P ratio in the source (groundwater or sediment) exceeds a threshold value.  117 
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2. Materials and methods 118 

2.1. Study sites 119 

The study sites are located in the Kleine Nete catchment (Northern Belgium) which is 120 

characterized by acid sandy soils with iron-rich groundwater. The geography, geology, and 121 

hydrology of this catchment have been described in detail elsewhere (Vanlierde, 2013; 122 

Vanlierde et al., 2007). The land use in the area is characterized by intensive agriculture and 123 

animal husbandry, which cause diffuse emissions of P to the environment. After decades of 124 

excessive manure application, the soils are P-saturated (Lookman et al., 1995). The P losses 125 

mainly occur through leaching to the groundwater: the P concentrations in phreatic 126 

groundwater in the area commonly range between 0.02 and 2 mg L
-1

. Greensands in the 127 

underground supply reduced Fe(II) to the groundwater, which yields groundwater Fe 128 

concentrations between 1 and 90 mg L
-1

 (Vanlierde, 2013). Due to the flat topography, the 129 

streams are predominantly fed by phreatic groundwater: the groundwater contribution to the 130 

discharge of the Kleine Nete near the town of Grobbendonk is estimated at 87% (Vanlierde et 131 

al., 2007). The groundwater table is shallow and fluctuates seasonally. The groundwater may 132 

seep directly into the streams, or it may be exported from agricultural fields in the lowlands 133 

by drainage systems which are abundantly present in the area. Especially in winter and early 134 

spring, when the phreatic groundwater tables are at their highest level, export through 135 

drainage systems is likely the major pathway of P export from groundwater to streams. 136 

Two lowland agricultural sites adjacent to streams of the Kleine Nete catchment were selected 137 

for this study (Figures S1 and S2). At both sites, agricultural fields are drained by open 138 

ditches. At the bottom of the ditches, a reddish brown precipitate occurs, suggesting 139 

enrichment of Fe. Since the groundwater table fluctuates seasonally, the ditches generally 140 

drain groundwater from October to April, whereas in summer, the groundwater table is 141 
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usually just below the bottom of the ditches. The top sediment layer is, therefore, oxic during 142 

the summer months but submerged and likely more reduced during the winter. Site 1, located 143 

in the municipality of Retie, has two similar open drainage ditches (labelled ditch 1 and ditch 144 

2) adjacent to the same agricultural field. They receive no inputs from tributary ditches or 145 

pipes until their outlet into the nearby stream. The ditches are approximately 1 m wide and 146 

200-300 m in length, and the sediment surface is around 70 cm below the soil surface. The 147 

field was used for growing fodder maize during the summer of 2013. Before that, the field 148 

had been permanent grassland for at least 5 years and received annual organic manure inputs 149 

corresponding to at most 35 kg P ha
-1

. According to the Belgian soil map, the soils consist of 150 

(very) wet and strongly gleyic sandy loam with a reduction horizon at 100—120 cm below the 151 

soil surface (Belgian soil classification: Sep3z). According to WRB, the soil is classified as a 152 

fluvic gleyic umbrisol (Dondeyne et al., 2014). The groundwater table at this site fluctuates 153 

seasonally between 5 and 70 cm below the soil surface. Site 2, located in the municipality of 154 

Vorselaar, consists of an area of fallow fields drained by a network of ditches. One ditch of 155 

this network was selected for this study and was labelled ditch 3. These ditches are smaller 156 

than at site 1: approximately 30 cm wide and 20 cm deep. According to the Belgian soil map, 157 

the soils consist of wet and strongly gleyic sandy loam with a reduction horizon between 100 158 

and 120 cm depth and with a thick humic accumulation in the topsoil (Belgian soil 159 

classification: s-Pep3). According to WRB, the soil is classified as a fluvic gleyic umbrisol 160 

(Dondeyne et al., 2014). The adjacent fields had been permanent grassland for at least two 161 

years, and they receive organic manure inputs similar to those at site 1. The groundwater table 162 

fluctuates seasonally between 10 and 40 cm below the soil surface. 163 

2.2. Sampling of sediment, ditchwater, and groundwater 164 

At two locations next to each drainage ditch, two groundwater monitoring wells (filtered 165 

between 1 and 2 m depth) were installed at close distance (< 5 m) to the ditch. Automatic 166 
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hydraulic head loggers (Mini-divers, Schlumberger Water Services) were installed which 167 

measured the height of the water table every 15 minutes. In August 2013, when the drainage 168 

ditches were dry, the sediment of each ditch and the underlying parent material was sampled 169 

down to 60-90 cm below the sediment surface with a gouge auger. The sediment cores were 170 

subdivided into 10 cm-sections, air-dried, and the concentrations of oxalate extractable 171 

elements (Pox, Feox, Alox, Mnox) were determined according to Schwertmann (1964). This 172 

procedure is generally used in order to quantify the poorly crystalline oxyhydroxides of Fe, 173 

Al, and Mn, and the associated P. The P sorption capacity (PSC) and the degree of P 174 

saturation (DPS) of each section were calculated as (Lookman et al., 1995; Van der Zee et al., 175 

1990): 176 

                    

    
   
   

  

(Equation 1) 177 

with Feox, Alox and Pox in molar units. 178 

The groundwater and ditchwater were sampled on 6 occasions between September 2013 and 179 

February 2014 in each ditch. The groundwater was sampled with a peristaltic pump after first 180 

discarding at least three well volumes. The drainage water was sampled at two locations in 181 

each ditch with a syringe and was withdrawn either 1 or 10 cm below the water surface. The 182 

pH, water temperature and O2 concentration were measured in the field (CellOx 325 and 183 

SenTix 21 electrodes, WTW, Germany). Groundwater and ditchwater samples were 184 

membrane filtered in the field (Acrodisc syringe filters with Supor 0.45 µm membrane), and 185 

subsamples were immediately acidified (HCl, final concentration 0.01 M). The dissolved 186 

organic carbon (DOC), Fe(II), and total element concentrations were determined in the 187 
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acidified subsamples. The DOC was measured as the non-purgeable organic carbon on an 188 

elemental analyzer (AnalytikJena, Multi N/C 2100), the Fe(II) was determined 189 

colorimetrically using the ferrozine method (Viollier et al., 2000), and total element 190 

concentrations were measured with ICP-MS (Agilent 7700x). The soluble reactive P (SRP) 191 

was determined in selected samples by the molybdenum blue method (Murphy and Riley, 192 

1962). The dissolved concentrations of anions (Cl, SO4 and NO3) were determined in the non-193 

acidified subsamples of selected samples with anion chromatography (Dionex ICS-2000 with 194 

AS18 column), and dissolved inorganic carbon (DIC) was determined with an elemental 195 

analyzer (AnalytikJena, Multi N/C 2100). All constituents were determined after membrane 196 

filtration (0.45 µm) and are hereinafter referred to as “dissolved”.  197 

2.3. Concentration profiles of Fe and P by diffusive equilibration 198 

The diffusive equilibration in thin films (DET) technique was used to collect vertically 199 

resolved profiles (resolution 1 cm) of the Fe and P concentrations in the sediment pore water 200 

and in the overlying layers of water in the drainage ditches (Davison et al., 1994, 1991). The 201 

diffusive gel is in contact with the sampled water through a 0.45 µm membrane filter, and 202 

after diffusive equilibration, the composition of the water in the DET gel is equal to that of the 203 

sediment pore water. Details of the DET procedure are described in the supporting 204 

information. Briefly, assembled and deoxygenated DET probes were inserted into the 205 

sediment for 24 hours. At the same moment, groundwater and ditchwater was sampled as 206 

described in section 2.2. Upon retrieval, the probes were immediately immersed in 0.01 M 207 

NaOH in order to immobilize Fe and P. Upon return to the lab, the probes were disassembled, 208 

the diffusive gels were sliced in sections of 10 mm, immersed in 1 M HCl, and the Fe and P 209 

concentrations were measured by ICP-MS. The detection limits in sediment pore waters 210 

sampled by this method were 0.1 mg L
-1

 for P and 0.03 mg L
-1

 for Fe. 211 
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We anticipated that the precipitation of Fe oxyhydroxides, caused by immersion in NaOH, 212 

also causes immobilization of P as long as sufficiently large amounts of Fe are present to bind 213 

the P. This was verified in synthetic solutions containing 10 mg L
-1

 Fe(II) (as FeSO4·7H2O) 214 

and varying concentrations of P (from a stock solution of 1000 mg L
-1

 PO4 as KH2PO4, Merck 215 

Millipore) buffered at pH 4 by 0.01 M acetic acid. The low pH was adopted in order to avoid 216 

oxidation of Fe(II) to Fe(III) under ambient conditions. Four gel slices were inserted into each 217 

solution and were deployed for 24 hours. Immediately after retrieval from the solution, the Fe 218 

and P in the gel slices were immobilized by immersion in 0.01 M NaOH. Thereafter, the gels 219 

were re-eluted by immersing them in 1 M HCl for 24 hours. The concentrations of Fe and P in 220 

the synthetic solutions and in the gel eluates were measured with ICP-MS.  221 

  222 
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3. Results 223 

3.1. Sediment cores  224 

The cores of the ditch sediment and the underlying parent material exhibited markedly similar 225 

characteristics in all three studied ditches. The top 1 cm of the sediment layer consisted 226 

mostly of finely textured, reddish brown material. A reduction horizon was observed between 227 

30 and 50 cm below the surface of the ditch sediment (pictures in the Supplementary 228 

Material). Above the reduction horizon, black and reddish brown colours dominated, which 229 

are indicative of accumulations of organic matter and Fe oxyhydroxides. Below the reduction 230 

horizon, the soil was permanently reduced and consisted of pale, greenish grey sands. Oxalate 231 

extractions (Figure 1, Figure S3, and Table S1) showed that the top sediment layer was highly 232 

enriched in poorly crystalline Fe oxyhydroxides: the concentration of oxalate extractable Fe 233 

was up to 11% on a dry weight basis. The oxalate extractable concentrations of Fe and P in 234 

the top layers exceeded those in the deeper layers by one or two orders of magnitude. In 235 

contrast, the Fe:P ratio did not differ more than by a factor or 4, and the vertical distribution 236 

patterns of Fe and P were markedly similar. The concentrations of oxalate extractable Al and 237 

Mn did not follow the vertical distribution of Fe, and molar concentrations of Al and Mn were 238 

much lower than those of Fe in the top sediment layer. This shows that P was strongly 239 

associated with poorly crystalline Fe oxyhydroxides, but less so with oxyhydroxides of Al and 240 

Mn. The degree of P saturation in the top sediment layers of the studied ditches was between 241 

13 and 31%. Acid sandy soils are considered P-saturated and pose a risk for leaching of P if 242 

they have a degree of P saturation in excess of 25% (Van der Zee et al., 1990). Therefore, at 243 

first glance, it appears that the drainage ditches may have limited ability to retain inputs of 244 

groundwater-borne P. 245 

 246 
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3.2. Composition of groundwater and ditchwater 247 

The average composition of groundwater and ditchwater is reported separately for each 248 

studied ditch (Table 1). The groundwater was slightly acidic to neutral (pH between 5.5 and 249 

7.0), moderately hard, and contained dissolved oxygen concentrations below 1 mg L
-1

. The 250 

groundwater contained, on average, 9 mg L
-1

 Fe (near ditch 1) and 7 mg L
-1

 Fe (near ditch 3), 251 

with little temporal variation, whereas the groundwater near ditch 2 contained much less Fe 252 

(0.2 mg L
-1

). The average P concentrations in the groundwater near ditches 1 and 3 also 253 

exceeded that near ditch 2 by approximately one order of magnitude. The molybdate reactive 254 

P (MRP) concentrations in selected groundwater samples were almost equal to the P 255 

concentrations measured by ICP-MS, suggesting that nearly all P in the groundwater is 256 

present as inorganic orthophosphate, and that organic P compounds play a minor role (Van 257 

Moorleghem et al., 2011). The P concentrations in two ditches appeared to decrease between 258 

the autumn and the winter season. The exact reason for this decrease is not clear, but it may 259 

be related to fertilization of the adjacent fields. 260 

The ditchwater was stratified: 10 cm below the surface of the ditchwater, the O2 concentration 261 

was around 1 mg L
-1

, i.e. not much different from that in the groundwater, whereas just below 262 

the water surface, the O2 concentration generally increased to 2—5 mg L
-1

. Conversely, the Fe 263 

concentrations in the ditchwater at 10 cm below the surface exceeded those near the water 264 

surface by up to two orders of magnitude. In most samples, the dissolved Fe was almost 265 

exclusively present as reduced Fe(II). No clear temporal trend was observed in the Fe and P 266 

concentrations in ditchwater. The groundwater and ditchwater contained relatively high 267 

concentrations of SO4, and the SO4 concentrations in the ditchwater are above those in the 268 

groundwater. This shows that the ditch was no sink for SO4, suggesting that no extensive SO4 269 

reduction occurred in the studied systems.  270 
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3.3. Concentration profiles of Fe and P by diffusive equilibration 271 

The Fe and P in synthetic solutions are almost quantitatively recovered from diffusive gels 272 

after equilibration, immobilization in 0.01 M NaOH, and re-elution in 1 M HCl (> 87%, mean 273 

94% for both elements, Table 2). The P measured in the diffusive gels differed from that in 274 

solution in only one treatment, which was likely because the P concentration was near the 275 

detection limit (100 µg L
-1

) of this method. Surprisingly, the recovery of P remained 276 

unaffected when the molar Fe:P ratio in the synthetic solutions decreased to unity. The above 277 

results show that the P is effectively bound to the Fe after immersion in NaOH, likely as 278 

coprecipitate with hydrous ferric oxide or as ferric phosphate. The diffusive gels appear to 279 

underestimate the Fe and the P concentrations slightly but systematically by about 6%. This 280 

may be caused by minor errors in gel thickness or porosity. Alternatively, upon immersing the 281 

gel in NaOH, a small part of the Fe and P may diffuse out of the gel before it is precipitated 282 

and immobilized. Despite these minor issues, the experiment overall shows that Fe and P can 283 

be quantified at molar Fe:P ratios down to unity by means of diffusive gel equilibration, 284 

immobilization in NaOH, and re-elution in HCl. 285 

Seventeen concentration profiles of Fe and P in the sediment pore water and in the overlying 286 

ditchwater were obtained with the DET method. The probes revealed Fe concentrations in the 287 

sediment pore water between 10 and 200 mg L
-1

, which is up to two orders of magnitude 288 

above those in groundwater (Table 1 and Figure 2). In the sediment pore water, the profiles of 289 

the Fe concentrations were variable: they decreased, remained more or less constant, or 290 

increased with elevation (Figure 2; more details in the Supplementary Material). In the 291 

overlying ditchwater, some profiles showed a sharp decrease in Fe concentrations just above 292 

the sediment-water interface (e.g. profiles C and D in Figure 2), but in other profiles, the Fe 293 

concentrations remained more or less equal to those in the sediment pore water (e.g. profiles 294 

A and B in Figure 2). The spatial heterogeneity was large: probes installed 50 cm apart 295 
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yielded markedly different concentration profiles. We did not observe any clear temporal 296 

trends in sediment pore water concentrations of Fe and P, possibly because such trends are 297 

overshadowed by the large spatial heterogeneity. However, in spite of the large variability, the 298 

ditchwater samples taken with a syringe at 1 cm and 10 cm below the water surface invariably 299 

contained lower Fe concentrations than those measured with DET probes in the water layers 300 

close to the sediment-water interface. The average Fe concentrations decreased from 77 mg L
-

301 

1
 in the sediment pore water to 5 mg L

-1
 near the water surface. Hence, Fe concentrations in 302 

the ditchwater decreased with increasing elevation.  303 

The P concentrations in the sediment pore water varied from below detection limit 304 

(< 100 µg L
-1

) to 6000 µg L
-1

. The P concentrations in the sediment pore water of ditch 1 305 

covered the range of the corresponding groundwater, whereas the P concentrations in the 306 

sediment pore water of ditches 2 and 3 exceeded those in the groundwater by a factor of 4. 307 

Four out of 17 concentration profiles contained sections in which the P concentrations were 308 

below the detection limit of the DET sampling method (100 µg L
-1

), e.g. profile C in Figure 2, 309 

and for plotting purposes these data points are shown at an arbitrary value of 50 µg L
-1

. In the 310 

sediment pore water, the P concentrations generally did not vary much with depth below the 311 

sediment-water interface. However, most P concentration profiles, including profiles B, C, 312 

and D in Figure 2, showed a sharp decrease in P concentrations near the sediment-water 313 

interface. The P concentrations measured in the ditchwater at 1 cm and 10 cm below the water 314 

surface were invariably lower than those in the sediment pore water. The average P 315 

concentrations decreased from 890 µg L
-1

 in the sediment pore water to 26 µg L
-1

 near the 316 

water surface. No clear temporal trends in P concentrations in the sediment pore water were 317 

observed. In summary, as groundwater flows into the drainage ditches, the P concentrations 318 

decrease sharply. 319 

4. Discussion 320 
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4.1. Reductive dissolution and oxidative precipitation of Fe 321 

Similar mechanisms appear to govern the behaviour of Fe and its interaction with P in the 322 

three studied ditches. The concentrations of Fe and P in the groundwater, sediment pore 323 

water, and ditchwater of the three ditches are summarized in Figure 3. As groundwater flows 324 

into the sediment of the drainage ditch, the Fe concentrations strongly increase by up to two 325 

orders of magnitude (Figure 3). Reductive dissolution of hydrous ferric oxides in the sediment 326 

likely explains this increase. The oxalate extractions of the sediment cores showed that there 327 

is an abundant stock of readily reducible Fe oxyhydroxides available. There is also ample 328 

supply of electron donors, i.e. readily degradable organic C derived from decaying vegetation 329 

which grows lavishly in the ditch in the summer season. The abundant stock of readily 330 

reducible Fe oxyhydroxides in the sediment of the studied drainage ditches may be the result 331 

of a process similar to the formation of bog iron ore: an accumulation of groundwater-borne 332 

Fe over prolonged periods of time in hydromorphic soils. Due to the fluctuating groundwater 333 

table, the top sediment layer is oxic in summer, but it is likely gradually more reduced as it 334 

becomes submerged in autumn. Previous studies have shown similar or greater increases in 335 

dissolved Fe concentrations upon waterlogging of soils (Hofacker et al., 2013; Van Laer et al., 336 

2010), and the reduction of Fe oxyhydroxides may occur at rates well above those needed to 337 

explain the observed increase in dissolved Fe concentrations from the groundwater to the 338 

sediment pore water (Blöthe and Roden, 2009; Kleeberg et al., 2013). Possibly, oxidation and 339 

reduction reactions occur simultaneously and at approximately the same location in the 340 

sediment, which result in strong Fe redox cycling. We were unable to measure the O2 341 

concentrations in the sediment, and therefore the extent of Fe redox cycling in the sediment of 342 

the studied systems remains unknown. Possibly, the ditch sediments exhibit transitions in 343 

redox regime as they are submerged for increasingly longer times during the winter. Our data 344 

did not show any clear temporal trends in Fe concentrations in the sediment pore water or in 345 
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the overlying ditchwater, but such temporal trends may be overshadowed by the large 346 

variability due to spatial heterogeneity. In addition, we studied the ditches only from 347 

September to February, but they are usually submerged until April or May. Any shifts in 348 

redox regime during these final months of waterlogging are not reflected in this study. 349 

Based on the results of oxalate extractions and on previous studies (Voegelin et al., 2010), we 350 

assume that poorly crystalline oxyhydroxides and perhaps amorphous ferric phosphates are 351 

the most important reactive Fe phases present in the sediment. We did not study e.g. the 352 

conversion of poorly crystalline Fe oxyhydroxides to more crystalline phases. Goethite may 353 

occur in systems similar to the ones in this study (Mansfeldt et al., 2012). However, goethite 354 

would not be dissolved in oxalate extractions, and its presence would therefore not affect our 355 

results (Schwertmann, 1973). Furthermore, other reactive Fe phases, such as vivianite or Fe 356 

sulphides, may be present, even though SO4 measurements suggest that no extensive sulphate 357 

reduction occurred in the studied systems.  358 

In the ditch, i.e. above the sediment-water interface, the Fe concentrations decrease with 359 

increasing elevation above the interface (Figure 3). Oxidation of Fe(II) and subsequent 360 

precipitation of Fe oxyhydroxides is the key mechanism by which removal of Fe from the 361 

dissolved phase occurs. Assuming pH values between 5.5 and 7.0, dissolved O2 362 

concentrations of 2—6 mg L
-1

, and temperatures between 5 and 15°C, the rate of chemical 363 

Fe(II) oxidation in the studied systems is predicted to result in half-lives of Fe(II) between 2 364 

hours and 3 years (Davison and Seed, 1983). However, groundwater seeps are typical 365 

environments where Fe oxidizing (and reducing) bacteria thrive (Blöthe and Roden, 2009), 366 

and therefore it is likely that microbially mediated Fe oxidation outpaces the chemical 367 

oxidation reaction. The vertical concentration profiles of Fe in the ditchwater were highly 368 

variable, which may mostly be due to physical processes such as the local flow velocity, 369 

turbulence, and mixing. Nevertheless, the average Fe concentration near the water surface was 370 
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only 7% of that in the sediment pore water, showing that most of the Fe produced in the 371 

sediment is re-oxidized and precipitated in the ditch before it is drained into the receiving 372 

streams. The kinetics of Fe oxidation in drainage systems have recently been studied in 373 

greater detail by Van der Grift et al. (2014). In summary, as drainage water flows upward into 374 

the ditch, the Fe concentrations decrease due to oxidation of Fe(II).  375 

4.2. Release and binding of P 376 

The average P concentrations in the sediment pore water were similar to those in 377 

groundwater, or they exceeded those in the groundwater by at most a factor of four (Figure 3 378 

and Table 1). Surprisingly, this increase (in relative terms) is much less pronounced than that 379 

of Fe. Since Fe and P are strongly associated with each other in the sediment, it is expected 380 

that reductive dissolution releases Fe and P at a molar ratio equal to that in the sediment. Most 381 

likely, the released P is bound again by the residual pool of Fe oxyhydroxides in the sediment. 382 

The oxalate extractions showed that Fe is present in excess in the sediments 383 

(Fe:P > 5 mol:mol in the top sediment layer). Previous work on Fe-rich submerged soils has 384 

also shown that the release of P is less than expected based on the release of Fe and the molar 385 

Fe:P ratio in the solid (Rakotoson et al., 2014). Alternatively, the P-containing Fe 386 

oxyhydroxides may be less available for microbial reductive dissolution than P-free Fe 387 

oxyhydroxides, as previously shown by O’Loughlin (2013). Based on our data, we can neither 388 

confirm nor rule out that the P concentrations in the sediment pore water vary temporally due 389 

to shifts in redox regime as the ditch sediment is inundated for increasingly longer times: we 390 

did not observe such temporal trends, but they may be overshadowed by the high spatial 391 

variability. Based on the oxalate extractions, it is expected that poorly crystalline Fe 392 

oxyhydroxides are primarily responsible for binding and release of P in the sediments. 393 

Perhaps also ferric phosphates play a role (Hyacinthe and Van Cappellen, 2004). Other 394 

minerals, such as vivianite (Walpersdorf et al., 2013), may also contribute to binding and 395 
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release of P, but vivianite formation could not explain the rapid removal of P as the 396 

groundwater surfaces and reaches (micro-)oxic environments. In summary, the above shows 397 

that reductive dissolution solubilizes P in the sediments of drainage ditches, but due to the 398 

abundantly present Fe oxyhydroxides, much of this P is again bound by the residual pool of 399 

Fe oxyhydroxides.  400 

The sharp change in P concentrations near the sediment-water interface (Figure 2 and Figure 401 

3) is most likely caused by oxidation of Fe(II) and binding of P. Despite the variable sediment 402 

pore water P concentrations, those in the top ditchwater layer were invariably low (<100 µg L
-

403 

1
), showing that P removal was efficient during the studied period (September—February). 404 

The rapid removal of P from oxidizing Fe-containing groundwater samples has previously 405 

been noted. Studies in synthetic solutions have shown that, as Fe(II) is oxidized in the 406 

presence of phosphate, amorphous ferric phosphate with a molar Fe:P ratio of 1.8 is formed 407 

until P is nearly depleted from solution. Thereafter, during continued oxidation of Fe(II), the 408 

ferric phosphate is converted to a P-containing hydrous ferric oxide (Voegelin et al., 2013, 409 

2010). Results from a recent field study strongly suggest that these mechanisms also occur in 410 

the environment as Fe-containing groundwater is oxidized (van der Grift et al., 2014).  411 

Taken together, reductive dissolution of P-containing Fe oxyhydroxides in the sediment 412 

preferentially solubilizes Fe, because the released P is bound again by residual Fe 413 

oxyhydroxides. Conversely, oxidative precipitation in the overlying water preferentially 414 

immobilizes P: since the water contains molar Fe:P ratios far above unity, ferric phosphate 415 

formation causes more efficient immobilization of P than of Fe. The combination of these 416 

processes results in a natural and highly efficient sink for P: the average P concentrations in 417 

the groundwater feeding two out of three studied drainage ditches exceeded environmental 418 

limits for freshwaters (70 µg L
-1

, commonly measured as MRP in unfiltered samples (Flemish 419 

Government, 1995)) by factors 11 and 16, but after passing through the Fe-rich sediments, the 420 
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dissolved P concentrations in the drainage water were below these limits. Therefore, our 421 

results combined with previous studies appear to confirm that oxidizing Fe in groundwater or 422 

drainage water is a highly efficient natural mechanism for immobilization of dissolved P. 423 

4.3. Implications for P-removal technology and watershed management 424 

Interactions between Fe and P have already been utilized in technological applications. For 425 

example, Fe-coated sand as a liner in drainage systems reduce the P export (Chardon et al., 426 

2005; Groenenberg et al., 2013). We showed that a similar result is obtained by reaction of P 427 

with naturally present Fe. One difference is that, in the present study, the P was removed 428 

while oxidation of Fe was ongoing. Previous studies in synthetic solutions have shown that, 429 

under such conditions, ferric phosphates are formed (Voegelin et al., 2013). Ferric phosphates 430 

may contain up to one mole of P per mole of Fe, which is stoechiometrically the highest 431 

possible efficiency for P binding. We speculate that technology for the removal of P from 432 

diffuse sources, such as agricultural drainage systems, may be based on the oxidation of 433 

reduced Fe. However, key challenges include the mode of Fe addition to the system, and the 434 

retention of the formed Fe oxyhydroxide particles at the outlet. 435 

Since Fe-P interactions can critically affect P fluxes, such processes should be taken into 436 

account when assessing the eutrophication risk associated with P losses from agricultural 437 

land. A key challenge is to determine the circumstances under which P is retained by Fe in 438 

drainage systems. Based on this study, it appears that the P concentrations in drainage water 439 

are mostly determined by the composition and reactivity of the sediment of the drainage ditch, 440 

and not much by the initial composition of the groundwater. We therefore suggest that the 441 

molar Fe:P ratio in oxalate extractions of drainage ditch sediments is a feasible candidate for 442 

predicting P losses from open drainage ditches with Fe-rich sediments. The molar Fe:P ratio 443 

has previously been proposed as a useful tool for estimating the mobility of P in sediments. 444 
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For example, in rewetted fens, molar Fe:P ratios of 10 in bicarbonate-dithionite extractions of 445 

sediment material have been suggested as a limit above which no critical P export is expected 446 

(Zak et al., 2010). However, for systems similar to those studied here, no Fe:P threshold 447 

below which there is a eutrophication risk in the receiving streams has been determined so far. 448 

In the present study, we measured molar Fe:P ratios in oxalate extracts of drainage ditch 449 

sediments between 6 and 14. Despite being close to or below the threshold for P-saturated 450 

soils (Van der Zee et al., 1990), the P concentrations in drainage water flowing through these 451 

sediments did not exceed environmental limits. Clearly, more work is needed in order to 452 

identify the relationship between the composition of the sediment and the resulting P 453 

concentrations in the drainage effluent. 454 

We have based our study on measurements of concentrations in the operationally defined 455 

“dissolved” (< 0.45 µm) fraction, and have so far ignored the transport of particulate P. It 456 

must be acknowledged that during periods of very high flow, particulate P may be mobilized 457 

from drainage ditches and exported to the receiving streams. The P associated with Fe 458 

oxyhydroxides is less available to biota than dissolved orthophosphate (Baken et al., 2014), 459 

but it may become available e.g. after undergoing reductive dissolution in the streambed 460 

sediment further downstream. Therefore, even though dissolved P losses are low in the 461 

studied areas, sediment losses from drainage systems may still impair water quality in the 462 

receiving streams. 463 

5. Conclusions 464 

 465 

- In the redox active zone between groundwater and surface water, P and Fe strongly interact. 466 
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- Immobilization of P may occur in periodically inundated drainage ditches with Fe-rich 467 

sediments. This is the result of two chemical processes: reductive dissolution in the sediment 468 

and oxidative precipitation in the ditchwater. 469 

- This natural sequestration of P leads to a decreased P flux from groundwater to surface 470 

water. This must be taken into account in watershed management plans and in assessments of 471 

the environmental risk associated with P losses from agricultural land. 472 

- Technologies for P removal from drainage water may be based on Fe-P interactions in the 473 

redox active zone. 474 
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Table 1: The composition (mean ± standard deviation; n = 1—7 for anion and C measurements and 5—12 for other measurements) of drained 656 

groundwater at different stages along its trajectory from the subsurface to the surface. The groundwater was sampled using monitoring wells, the 657 

sediment pore water was sampled with DET probes at 1—10 cm below the sediment-water interface, and the ditchwater was sampled with a 658 

syringe either 1 cm or 10 cm below the water surface. The reported values are derived from measurements at two locations along each ditch and 659 

on up to 6 occasions between September 2013 and February 2014.  660 

  pH O2 Fe P Fe/P Al Mn K Ca Na Mg Cl SO4 NO3 DOC DIC 

   mg L-1 mg L-1 µg L-1 mol:mol µg L-1 µg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 

                  

D
IT

C
H

 1
 

ditchwater, 1 cm deep 5.9 ± 0.3 4.5 ± 2.5 3.2 ± 3.6 20 ± 21 136 ± 108 15 ± 9 335 ± 57 13 ± 4 29 ± 2 22 ± 1 10 ± 2 50 * 93 * 11.0 * 7 * 5 * 

ditchwater, 10 cm deep 5.7 ± 0.3 0.7 ± 0.8 25.5 ± 27.9 71 ± 117 335 ± 117 12 ± 6 337 ± 61 10 ± 3 26 ± 7 21 ± 1 9 ± 1 nm nm nm 10 ± 4 5 * 

sediment pore water   77.5 ± 21.8 653 ± 430 233 ± 105            

groundwater 6.0 ± 0.4 0.5 ± 0.1 8.5 ± 3.6 1085 ± 1228 12 ± 9 18 ± 13 289 ± 156 24 ± 16 49 ± 21 23 ± 3 12 ± 5 44 ± 10 60 ± 31 1.2 ± 1.9 22 ± 15 36 ± 4 

                  

D
IT

C
H

 2
 

ditchwater, 1 cm deep 5.9 ± 0.7 3.9 ± 1.5 11.0 ± 9.0 18 ± 10 393 ± 323 10 ± 7 551 ± 289 7 ± 2 48 ± 5 22 ± 2 7 ± 1 44 ± 9 146 ± 66 0.5 ± 0.4 7 ± 0.4 11 ± 7 

ditchwater, 10 cm deep 5.9 ± 0.3 0.7 ± 0.5 33.8 ± 23.2 19 ± 9 1010 ± 785 12 ± 6 630 ± 240 7 ± 2 54 ± 7 22 ± 2 7 ± 1 51 ± 3 195 ± 14 0.2 ± 0.04 10 ± 3 9 ± 6 

sediment pore water   101.2 ± 57.9 219 ± 157 1006 ± 576            

groundwater 6.1 ± 0.2 0.6 ± 0.2 0.2 ± 0.3 49 ± 19 2 ± 3 11 ± 7 230 ± 254 24 ± 9 72 ± 17 30 ± 8 17 ± 4 59 ± 6 69 ± 6 84.3 ± 80.5 27 ± 5 53 ± 9 

                  

D
IT

C
H

 3
 

ditchwater, 1 cm deep 6.7 ± 0.3 3.1 ± 1.7 1.5 ± 2.2 37 ± 32 16 ± 12 5 ± 2 111 ± 87 3 ± 0.4 72 ± 8 9 ± 1 6 ± 1 20 * 66 * 0.1 * 11 ± 2 49 ± 5 

ditchwater, 10 cm deep 6.8 ± 0.2 1.1 ± 0.4 6.2 ± 10.5 100 ± 154 27 ± 21 5 ± 1 227 ± 211 3 ± 1 77 ± 8 10 ± 1 7 ± 0.4 16 ± 6 45 ± 28 0.2 * 14 ± 3 50 ± 6 

sediment pore water   47.7 ± 33.7 2743 ± 1903 30 ± 7            

groundwater 6.4 ± 0.4 0.5 ± 0.2 7.1 ± 1.2 744 ± 525 8 ± 4 4 ± 2 70 ± 47 4 ± 2 44 ± 8 7 ± 2 3 ± 1 10 ± 3 13 ± 6 1.9 ± 2.0 8 ± 1 30 ± 1 

DOC: dissolved organic carbon; DIC: dissolved inorganic carbon; nm: not measured; *: single observation, no standard deviation available 661 

 662 
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 663 

Table 2: Fe and P concentrations, their standard errors (n = 4), and their recovery measured in 664 

diffusive gels after equilibration with synthetic solutions, fixation with NaOH, and re-elution 665 

with HCl. 666 

IN SYNTHETIC SOLUTION  IN DIFFUSIVE GELS 

Fe P Fe:P  Fe recovery  P recovery  Fe:P 

mg L
-1

 mg L
-1

 mol:mol  mg L
-1

 %  mg L
-1

 %  mol:mol 

10.4 0.14 41  9.3 ± 0.2 90  0.20 ± 0.01 141  26 

10.2 0.29 19  9.3 ± 0.1 92  0.31 ± 0.02 105  17 

10.0 0.57 10  9.7 ± 0.1 97  0.55 ± 0.04 96  10 

10.2 1.18 4.8  9.5 ± 0.04 93  1.04 ± 0.03 88  5.1 

10.1 1.50 3.8  9.8 ± 0.1 96  1.31 ± 0.07 87  4.2 

10.1 1.95 2.9  10.0 ± 0.2 98  1.91 ± 0.06 98  2.9 

10.2 2.94 1.9  9.5 ± 0.1 93  2.70 ± 0.09 92  2.0 

10.2 5.93 1.0  9.3 ± 0.2 91  5.60 ± 0.13 94  0.9 

 667 

 668 

 669 

  670 
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Figures 671 

Figure 1, Figure 2, Figure 3: see below. 672 

 673 

 674 

Figure 1: Oxalate extractable concentrations of Fe and P (Feox: closed symbols; Pox: open 675 

symbols), their molar ratios, and the degree of P saturation (DPS) in the ditch sediment and 676 

the underlying parent material of the three studied ditches (A: ditch 1; B: ditch 2; C: ditch 3). 677 

The depth was measured from the surface of the ditch sediment.  678 
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 679 

 680 

Figure 2: Examples of concentration profiles of Fe and P versus the elevation above the 681 

sediment-water interface of open drainage ditches. Open circles refer to water samples taken 682 

with a syringe either 1 or 10 cm below the water surface; crosses refer to concentration 683 

profiles determined by diffusive equilibration (DET). The full line is the water-sediment 684 

interface, the dashed line is the water surface. 685 
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 686 

 687 

 688 

Figure 3: Schematic overview of the evolution of dissolved Fe and P concentrations (log scale) as groundwater flows through Fe-rich sediments 689 

into open drainage ditches. All available data from all three studied ditches are combined. Dotted lines are drawn to guide the eye. 690 

 691 


