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Abstract

Science is increasingly produced in collaborative teams, but collaborative teams
in science are self-assembled and fluid. Such characteristics call for a network ap-
proach to account for external activities responsible for team product but taking
place beyond closed team boundaries in the open network. Given such charac-
teristics of collaborative teams in science, we empirically test the interdependence
between collaborative teams in the same network. Specifically, using fixed effects
Poisson models and panel data of 1,310 American scientists’ life-time publication
histories, we demonstrate knowledge spillovers from new collaborators to other
teams not involving these new collaborators. Our findings have important impli-
cations for studying the organization of science.
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1 Introduction

Scientific knowledge is increasingly created collaboratively, as reflected in the increasing

share of coauthored papers and the growing size of collaborative teams (de Solla Price,

1986; Hicks and Katz, 1996; Wuchty et al., 2007). This increase in collaboration is driven

by a variety of factors, such as the importance of interdisciplinary research questions,

growing specialization and the consequent gains from division of labor, new informa-

tion and communication technologies, and the need to develop and access large shared

equipment and large databases (de Solla Price, 1986; Katz and Martin, 1997; Stephan,

2012). Because of the prevalence of collaboration in science, the collaborative team

has become an important unit of analysis for studying the organization of science. Ac-

cordingly, scholars have extended science studies and laboratory ethnographies from lab

benches to collaboratories (Chompalov et al., 2002; Cummings and Kiesler, 2005; Shrum

et al., 2001). In addition, by bringing in insights from the psychology literature on small

groups and the sociology literature on work organizations, scholars have made significant

contributions to the science of team science (Falk-Krzesinski et al., 2010; Fiore, 2008;

Stokols et al., 2008). For example, scholars have investigated the structure and process

of collaborative teams, and their effects on team productivity and creativity (Cummings

et al., 2013; Hemlin et al., 2013; Lee et al., 2014; Levine and Moreland, 2004).

Before this recent emergence of the science of team science, research on teams has a

long history in the social psychology literature (Guzzo and Dickson, 1996; Levine and

Moreland, 1990; McGrath and Kravitz, 1982). The management literature has also in-

vestigated teams extensively in the corporate world, as cross-functional project teams are

increasingly adopted by companies to couple with the rapidly changing and competitive

environment (Denison et al., 1996; Keller, 2001; Pearce and Ensley, 2004).

Teams in the real-world operate in various settings and undertake different struc-

tures and dynamics. Therefore, scholars have updated the traditional view of teams.

For example, the external approach emphasizes team behavior directed toward the ex-
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ternal environment, rather than assuming teams as isolated and independent from the

external environment (Ancona, 1990; Ancona and Caldwell, 1988, 1992). The virtual

team literature investigates teams with geographically dispersed members and predomi-

nantly coordinated via electronic media (Hertel et al., 2005; Lipnack and Stamps, 1997;

Townsend et al., 1998), as opposed to the earlier view of teams as small, collocated, and

cohesive entities with intense face-to-face interactions. Research on open source software

teams highlights that these teams are voluntary-based and fluid, different from the tra-

ditional teams with relatively clear and stable boundaries, functions, roles, and norms

(Aime et al., 2014; Bagozzi and Dholakia, 2006; Hertel et al., 2003).

Wellman (1997) argued that some teams are tightly-bound, clearly-delimited and

densely-knit, while other teams ramify like an expanding spider’s web. The latter is

more suitably studied as an open network instead of as a traditional team with clear

and stable boundaries. Collaborative teams in science clearly fall in the second category.

Following Wellman (1997), this paper argues that the network approach is especially

important for studying the organization of science. Specifically, this paper first discusses

special characteristics of teams in science, that is, teams in science are self-assembled

and fluid, and therefore it’s important to incorporate a network approach when studying

scientific teams. Contributing to the understanding of the complexity in scientific teams,

we develop empirical strategy to test the dependence of teams on networks, specifically,

the knowledge spillover across coauthor teams linked by a single scientist. The orga-

nizational learning literature has long emphasized newcomers as important sources of

innovation in organizations (Gupta et al., 2006; March, 1991; Perretti and Negro, 2006),

we further hypothesize that a scientist’s new collaborators would also contribute to the

citation performance of his/her other papers not coauthored with these new collabora-

tors. The confirmation of this hypothesis provides empirical evidence of the dependence

of collaborative teams on other scientists and teams, and such dependence has important

implications for investigating the organization of science.
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2 Teams in Science: Definition and Characteristics

The literature has defined teams in various ways. Following Guzzo and Dickson (1996),

we define a team as “made up of individuals who see themselves and who are seen by

others as a social entity, who are interdependent because of the tasks they perform as

members of a group, who are embedded in one or more larger social systems (e.g. com-

munity, organization), and who perform tasks that affect others (such as customers or

coworkers).” (p. 308-309). More specifically, we focus on the ad hoc teams in science

assembled for a specific project, with members from different organizations and locations.

Such teams differ from formal academic organizations such as departments or laborato-

ries, which are sometimes referred to as teams. Ad hoc project teams in science have

unstable memberships and ill-defined boundaries, causing a lot of problems for those at-

tempting to operationalize teams for empirical studies (Haeussler and Sauermann, 2013;

Katz and Martin, 1997; Laudel, 2002). Therefore, we adopt two definitions in this paper:

(1) a collaborative team defined broadly as the group of researchers contributing to a

scientific project, which is often hard to identify since some members may not be listed

as authors of the final publication, and (2) a coauthor team defined narrowly as the group

of authors taking credits for the publication. We will discuss the gap between these two

definitions and how a network approach is important to mitigate such problems in team

studies.

Science has many distinct features compared with other systems of work organiza-

tion (Whitley, 2000), and collaborative teams in science have many special character-

istics which may challenge the traditional view of teams. One important characteris-

tic distinguishing science from other systems of work organization is its autonomy and

self-governance. Collaborative teams in science are largely voluntary and based on mu-

tual interests, and scientists have substantial autonomy to create, maintain, restructure,

and dissolve their collaborative teams. This paper focuses on two characteristics: self-

assembly and fluidness. First, collaborative teams in science are self-assembled. In
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traditional team studies, teams are assembled first (and most likely assembled by man-

agers or researchers rather than by team members themselves) and then undertake the

complete group process which results in the final team outcome, so researchers can treat

team characteristics as exogenous variables and investigate their effects on team perfor-

mance (Cohen and Bailey, 1997; Hulsheger et al., 2009; Stewart, 2006). However, for

self-assembled teams nothing is exogenous (Contractor, 2013; Lungeanu et al., 2014; Zhu

et al., 2013). Projects are both the result and the cause of the team (Zhu et al., 2013).

In other words, the process of idea generation precedes or co-evolves with the process of

team assembly, and the creative process underlying the final team product starts in the

open network before the team is assembled.

Second, collaborative teams in science are fluid, that is, with ill-defined boundaries

and unstable memberships. Because of the autonomy in organizing teams, people con-

stantly come and go. For example, collaborative teams may acquire new members when

new expertise is needed, and team members may leave the team as they no longer share

the common interest with other teammates. To some extent, a collaborative team is

co-evolving with the project, and there is rarely a stable team seeing through the whole

creative process, such as idea generation, convergence, and implementation (Hackman

and Morris, 1975; Levine and Moreland, 2004; Skilton and Dooley, 2010). This fluidness

is also magnified by another feature that distinguishes science from other types of work-

ing environment, that is, high task uncertainty and continual novel production (Whitley,

2000). The course of the project may change at any point, and collaborative teams may

reorganize themselves accordingly.

Temporal instability of memberships creates fuzzy team boundaries. At any point

in time, there might be a group of scientists with a mutual understanding that they are

working together for a specific project, so there is a team boundary, and the project

responsibility resides within the team. However, collaborative teams are rarely closed or

exclusive. Instead, they interact with the external environment seeking advice from other
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scientists and remain open to the possibility of reorganizing the team. Some scientists

with indispensable expertise might be invited to join the team, and some enthusiastic

external advisors may have made such significant contributions to the project that they

are admitted as official team members. On the other hand, some members who left the

team in the process and external advisors who haven’t made sufficient contribution to

become an official member are not listed as authors taking credit for the final output. In

other words, the actual organization (i.e., the collaborative team) responsible for the final

output is an open network consisting of researchers with different levels of engagements

and contributions.

Therefore, it’s not always easy to cut out a closed group (i.e., the coauthor team)

to take credit and responsibility for the final project outcome. This issue is evidently

reflected in the difficulty of determining authorships for scientific publications and opera-

tionalizing collaborative teams as coauthor teams (Haeussler and Sauermann, 2013; Katz

and Martin, 1997; Laudel, 2002; Melin and Persson, 1996). Because collaborative teams

in science have unstable and ill-defined boundaries, and the team production of science

is not isolated from, but constantly exchanges with, the external network of other scien-

tists and teams, so these external activities in the open network provide an additional

explanation for team performance, in addition to within-team factors.

3 Interdependence between Teams

The main message from the preceding section is that both team assembly and team

operation are deeply embedded in open networks, and such dependence on the network

should be accounted for when studying teams in science. In this section, we develop

empirical strategies to directly test the dependence of teams on networks, specifically,

the knowledge spillover across coauthor teams linked by a single scientist.

In addition to the fact that collaborative teams in science are self-assembled and fluid,
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scientists also simultaneously participate in multiple collaborative teams which may share

multiple common members and similar research agendas. Therefore, something learned

in one project might be applied soon after in another project by a person participating

in two projects, in other words, teams are interdependent. Since teams in science are

not independent or isolated, such interdependence with the external environment and

the external activities contributing to the team output should be taken into account in

order to better understand the team production of science.

Intellectual and other capital carried by members are important inputs to the team

(Amabile, 1983; Ford, 1996; Woodman et al., 1993), and undoubtedly team members can

bring in lessons learned from previous team experiences to new situations (Ancona, 1990;

Gino et al., 2010; Nonaka, 1994; Reagans et al., 2005). For example, a scientist may take

a novel idea from one team and implement it in another team, use methods developed

in one team to help problem-solving in another, and start new lines of research with a

new team based on knowledge learned from an old one. By tracking the turnover of

keywords, Tang and Hu (2013) showed that scholars pick up new research streams from

their international collaborators and further pursue these new streams in their domestic

collaborations.

In the literature on small groups, some scholars have long advocated an external ap-

proach to study team behavior directed toward the external environment and its impact

on group performance (Ancona, 1990; Ancona and Caldwell, 1988, 1992). In these stud-

ies, the focus of external activities is about managing external dependence and obtaining

critical resources (Pfeffer and Salancik, 1978), for example, obtain technical information,

map resources, support, and trends in organizations, to influence those individuals with

key resources, and to synchronize work flow (Ancona and Caldwell, 1988). In contrast,

Mathieu et al. (2001) proposed the concept of multiteam systems (MTSs) defined as

“two or more teams that interface directly and interdependently in response to envi-

ronmental contingencies toward the accomplishment of collective goals” (p. 289). This
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MTSs perspective emphasizes that teams are embedded in a network of teams and op-

erate collectively for their common goal. Some studies further showed that inter-team

processes explain MTS performance in addition to intra-team processes (DeChurch and

Marks, 2006; Marks et al., 2005). In the world of scientific collaboration, it is possible

that many teams form a multi-team system in the pursuit of a large scale project, and

each team is specialized and responsible for a sub-project, but this is not always the

case. In other words, the interdependency between collaborative teams in science might

not always be as high as described in the MTSs approach but is clearly much higher

than acknowledged in the external approach. The preceding section has discussed the

idea that teams co-evolve with the project and that the creative process underlying the

final scientific product is not constrained within the team boundary but intertwined with

external processes. Therefore, these external processes should be accounted for when

studying the organization of science.

To empirically test the interdependency between collaborative teams linked through

membership of a single scientist, we test the knowledge spillover from one type of coauthor

team to another. Note that while the preceding theoretical discussions mainly adopted

the broad definition of collaborative teams, the empirical part will mainly adopt the nar-

row definition of coauthor teams, and discuss the interdependence that comes directly

from the fact that collaborative teams have fuzzy boundaries and that coauthor teams

do not capture all the actions responsible for the final product. Specifically, we argue

that when a scientist has more new coauthors, his/her other coauthor teams not involv-

ing these new coauthors will have better performance in terms of citation impact. The

organizational learning literature has long emphasized newcomers as important sources

of innovation in organizations: newcomers are more likely to explore new knowledge,

while old-timers are more likely to exploit exiting knowledge (Gupta et al., 2006; March,

1991; Perretti and Negro, 2006). Consequently, there is a negative association between

repeated collaboration and creativity in science (Guimera et al., 2005; Porac et al., 2004).
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This paper does not intend to detangle the difference between new and repeated collab-

orations, but takes advantage of this difference to test the knowledge spillovers between

them. Newcomers are important sources of innovation for an organization because they

are more likely to bring in different knowledge and perspectives that are not yet shared

in the organization (Gupta et al., 2006; March, 1991; Perretti and Negro, 2006). We

further argue that a scientist can transfer the new knowledge and perspectives that he

learned from his/her new coauthor to his/her other coauthor teams not involving these

new coauthors. Another reason that newcomers are important sources of innovation is

that they are not constrained by inert and shared mental models emerging from repeated

collaborating experience. The mental model shapes not only the way that individuals

explain, predict, and describe events but also the way that the team differentiates roles

among members (Skilton and Dooley, 2010). However, newcomers do not share such

mental models, and the new team composition may call for an updated or a completely

new mental model. Here we further argue that exposure to different perspectives may

also help a scientist to break the mental model governing his/her other teams not di-

rectly “disturbed” by newcomers. In summary, there will be knowledge spillovers from

new coauthor teams to repeated coauthor teams. Furthermore, a larger number of new

coauthors will provide more diverse knowledge and perspectives and therefore will have

higher positive effect on the performance of repeated coauthor teams. Using the same

logic, more repeated coauthors would also suffocate creativity in other teams not direct

involving these old-timers. Therefore, we hypothesize that

Hypothesis 1: when a scientist has more new coauthors, his/her other coauthor teams

not involving these new coauthors will produce papers with higher impact.

Hypothesis 2: when a scientist has more repeated coauthors, his/her other coauthor

teams not involving these repeated coauthors will produce papers with lower impact.
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4 Data and Methods

4.1 Data

To test our hypotheses, we used fixed effects models and unbalanced panel data of Amer-

ican scientists’ life-time publication histories. The sample of American scientists came

from a project funded by the United States National Science Foundation (NSF). It sur-

veyed 3,677 stratified randomly sampled American scientists (i.e., egos) in 2007 in six

disciplines: biology, chemistry, computer science, earth and atmospheric sciences, elec-

trical engineering, and physics. The random sample was stratified by gender, rank, and

discipline, from the population of academic scientists and engineers in these six disci-

plines in Carnegie-designated Research I universities (150 universities). The population

was constructed by manually retrieving information from the websites of the relevant

departments or university directories. Of the 1,774 completed surveys, 176 were removed

because of ineligible rank or discipline, resulting in a final total sample size of 1,598. The

overall response rate of the survey, calculated using the RR2 method of the American

Association for Public Opinion Research (AAPOR), is 45.8%, and the weighted response

rate is 43.0%. The responses’ distribution of gender, rank, and discipline are very similar

to the survey population.

Life-time publication data for these survey respondents were subsequently retrieved

from Thomson Reuters Web of Science (WoS). The collection of the publication data

firstly required an author name and affiliation match, and then cleaned out false papers

of homonymous authors, following the name disambiguation algorithm documented in

Wang et al. (2012). Coauthor names were also cleaned and disambiguated to identify

unique coauthors. The publication data were last updated in May 2011. Because of the

complex publishing practice in the field of physics (i.e., papers often have hundreds of

authors), publication data for physicists were excluded from the data cleaning process,

leaving 1,323 scientists in the remaining five disciplines for analysis. Out of these 1,323
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scientists, 1,310 scientists published 43,996 WoS journal articles in total.

For each of the 43,996 papers, its number of forward citations in a five-year time

window was retrieved from WoS, that is, for a paper published in year t, citations received

by this paper from year t to t+4 were counted. Citation ageing pattern differs across

papers: many highly cited papers take a long time to establish themselves as elite papers,

while many other papers have very early citation peaks (Glänzel et al., 2003; Rogers,

2010; Van Raan, 2004), so a sufficient citation time window is needed to give reliable

citation counts. According to Wang’s (2013) calculation on the whole WoS database, the

Spearman correlations between five-year citation counts and 31-year citation counts are:

0.810, 0.906, 0.852, 0.888, and 0.792 in fields of biology, biomedical research, chemistry,

earth and space, and engineering, respectively. The correlations are sufficiently high for

this study. We did not exclude author self-citations because that they are an organic

part of the citation process (Glänzel et al., 2004), and also because of the difficulty and

potential errors in matching citing-author and cited-author names.

For this analysis, we further imposed some sample restrictions. First, observations

before 1983 were excluded because our complete WoS data start in 1980, and we classified

coauthors into new- or repeated-coauthors based on coauthoring history in the preceding

three years. Second, if the ego’s first paper was published in year t, then this ego’s

observations before (not including) year t+3 were excluded for the same reason. Third,

observations after 2007 were excluded because these papers do not have a full five-year

period to accumulate citations. We are left with 11,850 observations of 1,310 egos.

4.2 Measures

We first classified, in each year and for each ego, coauthors into two types: new (not

coauthored with the ego in the preceding three years) and repeated (coauthored at least

once with the ego in the preceding three years). Correspondingly, papers of each ego in

each year were classified into four types: solo (single-authored paper), new (coauthored
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with only new coauthors), repeated (coauthored with only repeated coauthors), and mixed

(coauthored with both new and repeated coauthors).

Dependent variables. To test the knowledge spillover from new to repeated coauthor

teams, we use the average number of citations per paper for repeated coauthor team

papers (Citations.AVG.REP). To test the constraining effect from repeated to new coau-

thor teams, we use the average number of citations per paper for new coauthor team

papers (Citations.AVG.NEW ).

Independent variables. The number of new coauthors or the number of projects in-

volving new coauthors were counted: (1) the number of new coauthors (Coauthors.NEW )

and (2) the number of projects/papers involving new coauthors, that is, the number of

new- and mixed- coauthor team papers (Pubs.NEW&MIX ). Similarly, Coauthors.REP

and Pubs.REP&MIX were constructed for the number of repeated coauthors and the

number of projects involving repeated coauthors. The natural logarithms of these inde-

pendent variables are roughly normally distributed and were used in regressions.

Control variables. We incorporated ego fixed effects to control for unobserved and

time-invariant individual heterogeneities. In addition, we adopted the following variables

to control for time-variant individual characteristics. First, following Lee and Bozeman

(2005), we used ego’s career age, defined as the number of years after receiving Ph.D., to

control for both age and experience effects. Both career age and career age squared were

incorporated to account for the nonlinear trajectory of research performance over the

life cycle (Cole, 1979; Lee and Bozeman, 2005; Stephan and Levin, 1991). We also tried

with physical age instead of career age and got consistent results. Furthermore, both the

number of citations (the dependent variables) and the number of coauthors (the focal

independent variables) are likely to be correlated with the ego’s previous performance, in

other words, successful history breeds further success and also attracts more coauthors.

To address this endogeneity issue, ego’s citation performance in the preceding year was

also controlled for, that is, the average number of citations received by all papers of the
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ego published in the preceding year (Citations.AVG.LAG). Morgan and Winship (2007)

warned of potential issues when incorporating a lagged dependent variable. In our case,

strictly speaking, Citations.AVG.LAG is not a lagged dependent variable because it

measures overall citation impact of the ego (not new/repeated coauthor team papers

separately corresponding to the dependent variables). Our theoretical argument is also

very clear: previous success is the mutual cause for both the current citation impact and

the current number of coauthors. Therefore, we directly control for such an observable

confounder, instead of attempting to decompose such confounder (when unobservable)

into a lagged dependent variable and two separate unobserved variables: one affects both

the current number of coauthors and the lagged citation performance, and the other

affects both the lagged and the current citations. Therefore, we avoided the problem

explained by Morgan and Winship (2007). The log of this control variable was used in

regressions. Descriptive statistics and correlations are reported in Table 1.

Table 1: Descriptive statistics and correlations
Variables N Mean S.D. Min Max 1 2 3 4 5 6 7

1 Citations.AVG.REP 4556 12.28 17.15 0 504
2 Citations.AVG.NEW 6815 12.81 32.07 0 1741 .29
3 Coauthhors.NEW 17202 3.27 7.03 0 328 .14 .22
4 Pubs.NEW&MIX 17202 1.35 1.80 0 22 .12 .11 .94
5 Coauthors.REP 17202 1.61 4.04 0 173 .12 .11 .54 .59
6 Pubs.REP&MIX 17202 1.14 1.94 0 25 .09 .11 .55 .61 .97
7 Citations.AVG.LAG 17202 7.68 20.53 0 1741 .36 .23 .28 .30 .40 .40
8 Career age 17151 14.07 9.42 -10 54 -.06 -.09 .11 .12 .14 .13 .09

5 Results

5.1 Fluidness of Coauthor Teams

Before reporting the regression results for the interdependence between coauthor teams,

we first use some descriptive statistics to illustrate the fluidness of coauthor teams in

science. Based on the sample of papers published between 2005 and 2007, that is, 7,678
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papers of 1,148 egos, we retrieve coauthor teams associated with these egos, and classify

these coauthor teams based on size: doublet (two members), triplet (three members),

quartet (four members), and so on. Subsequently we evaluate the stability of these

coauthor teams. For each coauthor team, the number of papers that were published by

exactly the same group of authors was counted. Table 2 reports how many coauthor

teams were repeated, that is, having more than one paper. In addition, we also count

how many teams also existed in some slightly different forms: (1) teams that have papers

authored by all the team members plus some other scientists and (2) teams that have

papers authored by a subset of the team (not all team members) and possibly (but not

necessarily) plus some other scientists. However, this second count is actually underes-

timated in this paper, because our data are egocentric data, that is, all papers in our

sample have to include the ego. Therefore, for a coauthor team, it is possible that a

subset of the team has their own collaborations without the ego, but these papers are

not observed in our data. The implication is that the actual fluidness indicated by the

second count is actually even higher than reported in Table 2. Note that Table 2 reports

teams with up to six members, while singlet and teams with more than six members are

left out.

Table 2: Fluidness of coauthor teams
Doublet Triplet Quartet Quintet Sextet

Total number of teams 1169 1460 1404 891 601
Number of teams which have more than one 228 133 57 31 13

paper (repeated teams) (20%) (9%) (4%) (3%) (2%)
Number of teams which have paper(s) with 517 256 139 56 30

someone outside of the team (44%) (18%) (10%) (6%) (5%)
Number of teams which have paper(s) by the 917 991 684 462

ego, a subset of the team, and maybe (63%) (71%) (77%) (77%)
also someone outside of the team

Maximum number of papers of the team 16 6 4 3 3
Percentages in parentheses.

As shown in Table 2, coauthor teams are mostly one-time phenomena and do not

repeat. About 20% of the doublets have repeated, that is, have more than one paper,

and only about 9% of the triplets and 4% of the quartets have repeated. As the team
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size increases, the percentage of repeated teams decreases. Although coauthor teams do

not repeat in the exact form, they do frequently “repeat” in a slightly different form.

Take triplets as an example, 18% of them have paper(s) authored by the whole team and

some other scientist(s), and more than 63% of them have paper(s) authored by a subset

of the team and some other scientist(s).

5.2 Interdependence between Coauthor Teams

Because our dependent variables are over-dispersed count variables, we use Poisson re-

gression with robust standard errors, following previous literature (Hall and Ziedonis,

2001; Hottenrott and Lopes-Bento, 2014; Somaya et al., 2007). An alternative is the neg-

ative binomial model. However, because the Poisson model is in the linear exponential

class, Gourieroux et al. (1984) have shown that the Poisson estimator and the robust

standard errors are consistent so long as the mean is correctly specified even under mis-

specification of the distribution, but the negative binomial estimator is inconsistent if the

true underlying distribution is not negative binomial. Therefore, we adopt the Poisson

model with robust standard errors in our empirical analysis. Furthermore, we incorpo-

rate individual fixed effects to account for time-invariant individual heterogeneities, so

that within-ego effects are estimated. Such fixed effects Poisson models can be fitted by

conditioning out the individual fixed effects (Hausman et al., 1984). Specifically, we use

the xtpoisson command in STATA (StataCorp, 2013b), which implements the formula as

presented in Wooldridge (1999). In addition, because of the exponential specification in

the Poisson model (i.e., describing the log of the dependent variable by a linear equation

of independent variables), we take natural logarithm to transform all the independent

count variables, so that both dependent and independent variables are scaled in the same

way. As a result, the coefficients can be interpreted as elasticity (except for career age

and squared, which are not log transformed), that is, a percentage change in the depen-

dent variable corresponding to a percentage change in the independent variable, ceteris
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paribus.

Table 3: Fixed effects Poisson models: interdependence between coauthor teams
Citations.AVG.REP Citations.AVG.NEW

(1) (2) (3) (4)
Coauthors.NEW (ln) 0.0426*

(0.0252)
Pubs.NEW&MIX (ln) 0.0753*

(0.0419)
Coauthors.REP (ln) –0.0762*

(0.0413)
Pubs.REP&MIX (ln) –0.0747

(0.0582)
Citations.AVG.LAG (ln) 0.0451** 0.0444** –0.0343* –0.0357**

(0.0219) (0.0219) (0.0179) (0.0179)
Career age –0.0068 –0.0071 –0.0179 –0.0182

(0.0121) (0.0119) (0.0119) (0.0125)
Career age squared 0.0002 0.0003 0.0009*** 0.0009***

(0.0003) (0.0003) (0.0003) (0.0003)
Ego fixed effects YES YES YES YES
Log pseudolikelihood –21632 –21622 –44698 –44718
χ2 10** 10** 26*** 24***
N obs 4307 4307 6674 6674
N egos 738 738 1053 1053
Cluster-robust standard errors in parentheses
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Two-tailed tests

Regression results are reported in Table 3. Panel data are used for regressions, so one

observation is an ego-year. Take Table 3 column 1 as an example, the dependent variable

would be the average number of citations received by repeated-coauthored papers of ego

i in year t, and the focal independent variable is the log number of new coauthors of ego

i in year t. In addition, egos with only one observation or no within-ego variations are

automatically dropped out from the regression, so the number of groups and observations

are smaller than the total number of observation without missing values.

As fixed effects models are implemented, coefficients report within-individual effects,

but not between-ego effects. We observe significant positive effect from the number of

new coauthors to repeated coauthor team papers. For the same scientist, as the number
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of new coauthors increases by 1%, the average number of citations received by repeated

coauthor team papers increases by 0.04%. As the number of projects/papers involving

new coauthors increases by 1%, the average number of citations received by repeated

coauthor team papers increases by 0.08%. On the other hand, as the number of repeated

coauthors increases by 1%, the average number of citations received by new coauthor

team papers decreases by 0.08%, while the number of projects/papers involving repeated

coauthors has no significant effect on the citation impact of new coauthor team pa-

pers. Overall, empirical results confirm our first hypothesis about the positive knowledge

spillover effects from new to repeated coauthor teams and partially support our second

hypothesis about the negative constraining effect from repeated to new coauthor teams.

5.3 Alternative Explanations

An alternative explanation for our findings is that successful scientists are more likely

to attract new potential coauthors, and these new coauthors would crowd out repeated

ones. Therefore, we would observe that the citation performance in general (regardless of

new or repeated coauthor team papers) is positively correlated with the number of new

coauthors but negatively correlated with the number of repeated coauthors. We believe

that we have already addressed this issue by incorporating the average citations in the

preceding period as a control variable. To further investigate this alternative explanation,

we run another set of regressions, using the same model specification but replacing the

dependent variables by the number of new/repeated coauthors. Regression results are

reported in Table 4. First, we observe no evidence of crowding-out effects. Table 4

column 1 shows that, as the number of new coauthors increases by 1%, the number of

repeated coauthors increases by 0.24%. Second, we observe no evidence that, as scientists

become more successful, they have more new coauthors and fewer repeated coauthors.

On the contrary, more successful scientists initiate fewer new coauthors and retain more

repeated coauthors . This makes sense, previous success may motivate scientists to
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keep and reinforce the existing collaborative ties instead of seeking new collaborators.

However, under such circumstances, although not motivated to, when successful scientists

actually do establish more new collaborative ties, their repeated coauthor teams would

achieve higher citation impact. Combining Table 3 and 4 provides stronger support for

our hypotheses.

Table 4: Fixed effects Poisson models: crowding-out effects
Coauthors.REP Coauthors.NEW
(1) (2) (3) (4)

Coauthors.NEW (ln) 0.3632***
(0.0297)

Pubs.NEW&MIX (ln) 0.7459***
(0.0298)

Coauthors.REP (ln) 0.4698***
(0.0312)

Pubs.REP&MIX (ln) 0.7328***
(0.0319)

Citations.AVG.LAG (ln) 0.1785*** 0.1654*** –0.0570*** –0.0627***
(0.0143) (0.0146) (0.0167) (0.0155)

Career age 0.0626*** 0.0577*** 0.0728*** 0.0668***
(0.0068) (0.0062) (0.0067) (0.0069)

Career age squared –0.0006*** –0.0005*** –0.0010*** –0.0008***
(0.0002) (0.0001) (0.0002) (0.0002)

Ego fixed effects YES YES YES YES
Log pseudolikelihood –20796 –20069 –43806 –42401
χ2 1020*** 1257*** 816*** 1047***
N obs 15950 15950 17003 17003
N egos 1096 1096 1202 1202
Cluster-robust standard errors in parentheses
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Two-tailed tests

In addition, following much prior work in this area (Guimera et al., 2005; Simonton,

2004; Uzzi et al., 2013), our empirical design uses citations to evaluate the performance

of science production. However, citations depend on not only the intrinsic quality of the

paper but also the knowledge diffusion process which is not under the control of the au-

thors (Bornmann and Daniel, 2008; Gilbert, 1977; Whitley, 2000). Therefore, there is an

alternative explanation for the positive association between the number of new coauthors
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and the number of citations received by repeated coauthor team papers: having more new

coauthors helps disseminate the work of repeated coauthor team papers. However, Wang

(2014) demonstrated that there is no retroactive networking effect (i.e., the number of

coauthors of the ego) on citations to solo-authored papers. In addition, if this alternative

explanation is true, then we should also observe a significant positive association between

the number of repeated coauthors and the number of citations received by new coauthor

team papers, because repeated coauthors should also contribute to the diffusion of new

coauthor team papers. However, this is not supported by our data (Table 3).

5.4 Robustness and Limitations

We used the conditional fixed effects Poisson models and incorporated robust standard

errors to deal with the over-dispersion. Given that the negative binomial model is also

commonly used in the literature, we also tried with negative binomial models. Consider-

ing the nature of our research question, we incorporated ego fixed effects to account for

unobserved heterogeneity among individual, so that we can estimate within-individual

effects, e.g., how does citation rate of repeated coauthor papers change as the number of

new coauthors changes, for the same individual rather than between different individu-

als. In a least squares framework, consistent estimates can be obtained by incorporating

a set of individual dummies, but such strategy is not available for nonlinear models

such as Poisson or negative binomial. For estimating within-individual effects, the con-

ditional maximum likelihood is developed for Poisson models which conditions out the

individual fixed effects (Cameron and Trivedi, 2013; Hausman et al., 1984; Wooldridge,

1999), and this method is implemented in the xtpoisson function in STATA (StataCorp,

2013b). Hausman et al. (1984) also developed a conditional maximum likelihood strategy

for negative binomial models, which is implemented in the xtnbreg function in STATA

(StataCorp, 2013a). However, this method allows for individual-specific variation in the

dispersion parameter rather than in the conditional mean, and therefore does not qualify
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as a true fixed effects method (Allison and Waterman, 2002; Greene, 2005; Guimaraes,

2008). To the best of our knowledge, we are not aware of any statistics software providing

a true fixed effect negative binomial solution. Therefore, we implement the following two

imperfect strategies as robustness checks: (1) standard negative binomial models with the

complete set of individual dummies, and (2) the xtnbreg model grouped by individuals.

Both yielded consistent results.

In addition, as our study is based on bibliometric data, we cannot avoid some fun-

damental limitations of the bibliometric data. For example, our empirical analysis is

based on coauthorship data, but not all collaborations result in coauthored papers and

not all coauthorships embody collaborations (Haeussler and Sauermann, 2013; Katz and

Martin, 1997; Laudel, 2002; Melin and Persson, 1996). In addition, we do not observe

collaborative teams that failed to publish papers, and such selection biases may cause

errors in our retrieval of coauthor teams and coding of new/repeated coauthors. These

are important limitations of our study.

6 Discussion

Science is increasingly produced by self-assembled and fluid collaborative teams, which

calls for an open approach to studying them. Scientists assemble teams based on the

needs of the project, and project idea generation precedes or co-evolves with the process

of team assembly, in other words, the creative process underlying a scientific production is

initiated before the intra-team process starts. Therefore, sources of creativity outside the

team should be accounted for. Collaborative teams in science also have unstable mem-

berships and fuzzy boundaries. Collaborative teams have intense exchanges with other

scientists and teams, and a considerable amount of the activities responsible for the final

team product take place in the scientific community outside of the team. Such external

activities should be taken into account in explaining team performance, in addition to
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intra-team activities. This paper empirically tests the dependence of collaborative teams

on people outside the team. Specifically, we demonstrate positive knowledge spillover

effects from new to repeated collaborations.

Our findings have important implications for the study of science production following

a team approach. Given that both team assembly and operation are embedded in a wider

community, and teams sharing members are interdependent, scholars should account

for such external activities responsible for the team performance, in order to better

understand team processes and sources of team creativity.

This study suggests the organization of science must be studied at multiple levels

simultaneously. The creative process in science production is not bounded within closed

teams but takes place in a fluid, evolving environment. Idea generation (finding and

defining the problem) precedes team assembly. Even after a team is assembled, the

team keeps interacting with other scientists and teams to tap into external sources of

knowledge. Furthermore, because of the uncertainty in scientific research, the initial idea

behind the team is constantly subject to change, so is the team, adding new expertise

and resources or removing exiting ones. This dynamic process leads to the observed

instability of teams as described in this paper. Furthermore, in this dynamic process,

teams have intensive exchange with other scientists and teams. Therefore, the boundaries

of teams are fuzzy, and teams are interdependent. Scientific teams must be studied not

in isolation, but as contributors to and beneficiaries of a larger environment, the scientific

community.
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