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Abstract

Multiple orthogonal polynomials satisfy a number of recurrence relations, in par-
ticular there is a (r 4+ 2)-term recurrence relation connecting the type II multiple
orthogonal polynomials near the diagonal (the so-called step-line recurrence rela-
tion) and there is a system of r recurrence relations connecting the nearest neighbors
(the so-called nearest neighbor recurrence relations). In this paper we deal with two
problems. First we show how one can obtain the nearest neighbor recurrence coeffi-
cients (and in particular the recurrence coefficients of the orthogonal polynomials for
each of the defining measures) from the step-line recurrence coefficients. Secondly
we show how one can compute the step-line recurrence coefficients from the recur-
rence coefficients of the orthogonal polynomials of each of the measures defining the
multiple orthogonality.

1 Introduction

Multiple orthogonal polynomials are polynomials of one variable that satisfy orthogonality
conditions with respect to r > 1 positive measures. In this paper we will only consider
positive measures on the real line. Let 7 = (n1,...,n,) € N” be a multi-index and
|7i| = ny + - -+ + n, its length and let py,..., u,. be r positive measures on the real line.
There are two types of multiple orthogonal polynomials [10, Chapter 23|, [1], [2], [20].
Type I multiple orthogonal polynomials are such that the (Az1, ..., Aq,) is a vector of r
polynomials, with deg Ay ; < n; — 1, satisfying

[ Ans@dise) =0, o< k<] -2 (1)
j=1
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with normalization .
[0S Ay dos ) = 1.
j=1

Type II multiple orthogonal polynomials are monic polynomials Py of degree |7| for which
/l’kpﬁ(l’) dpj(x) =0, 0<k<n;—1 (1.2)

holds for 1 < j < r. The existence (and unicity) is not guaranteed, but if the type I and
type II multiple polynomials exist with the above normalization, then they are unique
and then the multi-index 77 is said to be a normal index. The measures (u1, ..., i, ) are a
normal system if all the multi-indices are normal.

Multiple orthogonal polynomials satisfy a number of recurrence relations. Let p,,(z) =
P(n,n,...,n) (f)a Pro+1 (I) = P(n—l—l,n,n,...,n) ($)> and in general Pro+j (l’) = P(n+1,...,n+1,n...,n) (1') for
0<j<r where (n+1,...,n+1,n...,n) has j times the component n 4+ 1 and r — j
times the component n, i.e.,

(n—l—l,...,n—l—l,n...,n):(n,n,...,n)—l—Zé},

where €; are the standard unit vectors in N”. Then the step-line polynomials p,,(z) satisfy
the following (r 4+ 2)-term recurrence relation

l’pm(l’) = Pm+1 (l’) + Zﬁm,jpm—j(z)> (13)
=0
where (3, ; are real recurrence coefficients and py = 1 and p_; = 0 for 1 < j < r.

This recurrence relation corresponds to the well known three term recurrence relation for
orthogonal polynomials when r = 1. These step-line polynomials (the type II multiple
orthogonal polynomials near the diagonal) are also known as d-orthogonal polynomials
(with d = r) and the orthogonality in (1.2) becomes

/ p(@)a* dpy(z) =0, 0 <k < |(m—j)/r).

See, e.g., [12], [8], [4]. This recurrence relation only connects multiple orthogonal polyno-
mials near the diagonal (n,n,...,n). All multiple orthogonal polynomials (of a normal
system) are related by a system of r recurrence relations relating P; with its nearest
neighbors P,z and P;_g. The system of nearest neighbor recurrence relations is given
by (see [18])

:EPﬁ(ZE) = Prye, (:l?) + bﬁJgPﬁ(l’) + Z aﬁJPﬁ_é*j (:E), 1<kE<nr. (1.4)
j=1

In this paper we deal with two problems. For the first problem we assume that the
recurrence coefficients 3, j, m € N, 0 < j < r, in the step-line recurrence relation (1.3)
are given, and the goal is to find all the nearest neighbor recurrence coefficients as j, bi ;



with W € N" and 1 < j <r. In particular this would give all the recurrence coefficients of
the (monic) orthogonal polynomials for each of the measures j;:

[ P ) Pt ) dis ) = 318
which satisfy the three term recurrence relation

2P (s 113) = Poa (25 41) + by (1) P (5 1) + a5, (1) P (5 1)
Indeed, one has
ba(y) = bugygs  any) = ane, ;-

In Section 2 we will show, for »r = 2, how one first can obtain the recurrence relation
for the r shifted step-line polynomials, i.e., the multiple orthogonal polynomials with a
multi-index k€ 47, with k € N and 1 < 5 <7 fixed and 7 a multi-index on the step-line.
Then, in a second step, we show how to obtain the nearest neighbor recurrence coefficients
from the shifted step-line recurrence coefficients. We explain the procedure for r = 2 so
that the reasoning is easy to follow and not obscured by the notation.

The second problem is the inverse of the first problem: we assume that the recurrence
coefficients an41(1t5),bn(pt;) of the orthogonal polynomials of each of the measures y;,
1 < 5 < r, are given, and we show how one can compute all the nearest neighbor
recurrence coefficients and the step-line recurrence coefficients from this input. In Section
3 we will explain the case r = 2 in detail. We will also show how to find the nearest
neighbor recurrence coefficients from the marginal recurrence coefficients for general 7.

In order to find the recurrence coefficients 3, ;, m € N, 0 < 57 < r in the step-
line recurrence relation, one may use either the Jacobi-Perron algorithm or the vector
QD-algorithm. The Jacobi-Perron algorithm generates a vector continued fraction and
was introduced by Jacobi in 1868 [11] and studied in detail by Perron in 1907 [14]. A
modern version of the Jacobi-Perron algorithm and its relevance for simultaneous rational
approximation of functions can be found in [13]. Vector continued fractions and the
Jacobi-Perron algorithm are quite popular in number theory to produce simultaneous
Diophantine approximations to several real numbers, see the monographs of Schweiger
[16] [17]. Another way to obtain the step-line recurrence coefficients from the moments
of the measures p1,..., i, is to use a generalization of the QD-algorithm proposed by
Van Iseghem [22]. The classical QD-algorithm of Rutishauser [15] can be used to find
the recurrence coefficients a,,41 (1), b,(ptj) of the orthogonal polynomials of each of the
measures j;, but one can also use the (modified) Chebyshev algorithm as described in |9,
§2.1.7]. In this paper we assume that the step-line recurrence coefficients are given (for
the first problem) or we assume that the recurrence coefficients a,41(y;), b, (1) are given
for every measure p; with 1 < j <r (for the second problem).

2 The recurrence coefficients along the step-line

In this section we only consider multiple orthogonal polynomials with » = 2. Hence the
(monic) type II multiple orthogonal polynomials P, ,, depend on a multi-index (n,m) €
N2 Let pon(z) = Pon(z) and pany1(x) = Buy1n(x), then the recurrence relation along
the step-line is

:Epn(iv) = Pnt1 (ZE) + ﬁnpn(ip) + VYnPn—1 (ZE) + OnPn—2 (ZE) (2'1)
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It is important to note that the step-line recurrence coefficients (5,)n>0, (Yn)n>1 and
(0n)n>2 do not determine the measures p1 and ps2 in a unique way, even if we normalize
the measures to be probability measures. The first measure is determined uniquely as
a probability measure, but for the second measure one can use any convex combination
A1+ (1 — A)pe because

3 [ pua)etdin(o) + (13 [ polatduato) =0, k< (3] -1

since the first of these integrals vanishes for k& < [®71] and [2] —1 < [251], see [6,

Remark 2.2]. This degree of freedom will be reflected when we want to compute the
recurrence coefficients of the orthogonal polynomials p,(z; 1) and p,(x; p2).
The nearest neighbor recurrence relations are

an,m($) - Pn+1,m($) + Cn,mPn,m(f) + an,mPn—l,m(f) + bn,mPn,m—l(f)y (22)
an,m($) = Pn,m—l—l (f) + dn,mPn,m (f) + an,mPn—l,m (f) + bn,mPn,m—l(f)- (23)

As a consequence one has
Pn+1,m($) - Pn,m—l—l (f) = Kn,mpn,m(f)y (24)

where Ky m = dpm — Com.-

2.1 From step-line to shifted step-line

We introduce for j > 0 the polynomials

'70 '70
pID(x) = Pogjn(@), P50 () = Parjirn(2), (2.5)
and for k > 0 .
0,k 0,
PP (@) = Punsr(@), p5hss (@) = Pusisn (). (2.6)
(7,0)

The polynomials p;;” are the multiple orthogonal polynomials on a shifted step-line with
a shift j in the direction of €; = (1,0). The polynomials p&o’k) are those on the shifted
step-line with a shift & in the direction of €5 = (0, 1).

Figure 1: Step-line and shifted step-lines

These shifted step-line polynomials again satisfy a four term recurrence relation, which
we denote by

ap () = pI @) + BFOPIO () + P OpI () + 00O ), (27)
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with initial conditions 70 0 = 50 0 g(ﬁ) = (0 and in a similar way
k 0,k) 0,k
P (@) = Py (@) + BV (@) + PP (@) + 6P (@), (28)
with initial conditions 7(0 ARRR 5(0 kD 5,(3:?1) = 0. With this notation we have
6(00 On, T(LOO = Y, and 500 = dn. We introduce two more sequences (¢ (3.0 ))nzo and
(C£LO ) )nz(] by )
Pn+j+1,n($) - Pn—i—j,n—i—l (ZL’) = 0970)Pn+j,n (ZL’), (29)
and
Pn—i—l,n—i—k (l’) - Pn,n—i—k—i—l (l’) - Cgl(]’k)Pn,n—i-k (ZL’), (210)
so that (2.4) gives
Cg’o) = Rn+jn = dn—i—j,n — Cntjn, CgLO’k) = Rpnt+k = dn,n—i—k — Cnon+k- (211)
Our first result shows how one can obtain the recurrence coefficients (35 G 0), %(Lj 0 553 ’0))

from the recurrence coefficients along the step-line.

Theorem 2.1. One has for all j > 1

g = YT - B0 >,
Vongs = Yonei n>1, (212)
oot = gy =l nzL
and
ﬁéﬁziy—i—l = /Béiz—i-lj—?-l + ngj’o)a n >0,
Yot = g + 000" Bl), 20, (2.13)
Sintir = Sggn T, n=0,
where (cr (3.0 ))nzo 1s the solution of the Riccati type difference equation
c0) — 59%?21 (2.14)
e T |
with initial condition
5() 1,0)
50 = ’(;“10) (2.15)
75

Proof. Take the recurrence relation (2.7) with n replaced by 2n + j

,0 0 0 0 ,0 ,0 0 ,0
e () = pS9 1 (@) + BEL T () + S S0 () + 68D S (),

use (2.5) to find

0 1,0 0
T Putjn(t) = Patjirn (@) 450 Py n () 4785 Patjin1 () 4050 Pajot nn (2). (2.16)



Now use (2.9) to replace P41, () and (by changing n to n — 1) P,1j,,—1(z), to find
Puin(®) = Pasinnr () + (852 + c00) Pojn(2) + 952 Prss 10 ()
0) 0)_(j,0
+ <5§Jn+3 gzj 1)’Y§iz+)3) Pn—i-j—l,n—l ($) (217)
On the other hand, we take the recurrence relation (2.7) for j — 1

ap 7O @) = pl @) + BT O @) AT Op ) + 0O ),
replace n by 2n + j and use (2.5) to find
1,0) —1,0
WPuiin(2) = Pasiner (v) + 505" Pusin () + 505" Paso1.n(2)
+ 09 Pasjot i (2). (2.18)
Comparing (2.17) and (2.18) gives

,0) j j,0 ,0) ,0 ,0
(B8 + ) Pain (@) + 95 Potictn (@) + (355 + eS80 ) Passornma (@)

1 0 —1,0 1 0
= B9 Pain (@) + 4855 Patjorn (@) + 0950 Py e ().

The polynomials Py, Potj—1n, Potj—1,n—1 are linearly independent (since they have
degrees 2n + j,2n 4+ j — 1 and 2n + j — 2), hence one finds

,0) j 1,0)
ﬁéﬁz.ﬂ + C(LO) = ﬁéﬁz—i—g )

,0 1,0
’}éiz—i-)j = ’}éiz—i-g )7

,0) ,0 1,0)
5§jn+j + gzj 1)7524-)) = 5§jn+j )

which gives the required relations (2.12).
In a similar way we start with the recurrence relation (2.7) with n replaced by 2n+j+1

,0 0 0 ,0 ,0 ,0 0 ,0
wpS (@) = pE o @) + BEY PSS (@) A S () + 68 P (2),

and use (2.5) to find

0 1,0 0
TPutj1n () = Posjrinir (@) 4050 Prsjir n(2) 4980 P () 40520 P ().

Use (2.9) to replace Poyji10(z) and Ppyjn-1(x), to find
2 Pijni1 (2) + P02 Pyjn(2) = Payjrin () + ﬁéﬁz?i-j—i-l it (Z)
+ <7§il?|-)j+1 + 0 ﬁéﬁzij—i—l) Potjn (@)
+ 5§Jn9ry+1 n+j— 10(2) + (JO 5§Jn?i-j+1 n+j—1,n— 1().
Use (2.18) to replace 2P+, () to find
55Pn+j,n+1(if) = Pn+j+1,n+1( ) < é‘zz?‘,-_y—‘,-l — Gy 0)) Pn—i—j,n—i—l(I)
+ <’Y§iz?|-)j+1 + C(J 0 ﬁéﬁgﬂ - C /Béiz—i-ljo ) n+j, n()
+ <5§Jn9ry+1 ( )'7§iz+130)) Poyj—1n()

0) ,0) 1,0)
(26500 — 05535) Py i (2). (2.19)



On the other hand, we take the recurrence relation (2.7) for j — 1 with n replaced by
2n + j + 1 and use (2.5) to find

1,0)
TPyjn1 () = Pujrinn(x )+ﬁ2iz+j+1 Poyjnyi(z)

j—1,0 1,0)
+ 7§iz+j+)1pn+j, (z) + 5§Jn+j+1 nti—1n(T)- (2.20)

Comparing (2.19) and (2.20) then gives

0) ; 0 0) 1,0)
<ﬁ§i+g+1 g’o)) Poyjnyi(z) + <7§iz+)j+1 + COO ﬁéﬁz—i—j—i—l - C ﬁzizﬂ ) g (T)
0) 1,0 0 <(5,0) 1,0)
<5§jn+j+1 e O)V%ﬂ )) Prij1n(T) + < v 5§Jn+J+1 5§jn+j ) Poyj-1n-1(2)
1,0) 1,0 1,0)
= Osneir P (2 >+v§iﬂ+ﬁpnﬂ, (2) + 851 Pai-1.n (2).

The four polynomials P, jnt1, Potjmn, Prtj—1ns Patj—1,n—1 are linearly independent, hence
one finds

By =0 = B,
YD+ GOBED. | — GO = IO
5gjngry+1 (JO)V%JFIJO) = 5§jn+1g?r1>

GOSGD,  — POeFLY = 0. (2.21)

The first three relations give (2.13) and the last equation gives (2.14) if we replace 5%9” +

by the third equation in (2.13). For n = 0 the relation (2.19) becomes

Pa() = Prae)+ (859 - “”) Pya(z)
+ (A + VB — §59) Po(a)
()0)%(3 170)Pj_170($)’

and if we compare the coefficient of Pj_; o(x) with the corresponding coeflicient in (2.20)

when n = 0, then ( G ;
0 1,0) 1,0)
v ,}/‘7-7 - 5‘7‘11 9

which gives (2.15). O

The Riccati equation (2.14) can be solved explicitly if all the step-line coefficients at
shift 7 — 1 are known. The substitution Y =1 / a0 gives

(3-1,0) (4-1,0)
400 — d 52n+j ~ Vontj
n 5() 1,0) ’
2n+J+1

which is a first order linear recurrence relation. Its solution is

n 7éj—l,o) i 5%—1,0)1 o) n 53’{—1,0)

(43,0) — ity +i+ Js +j

) )= Z (i—1,0) (—1,0) + dy H G=1,0) " (2.22)
0 0. 1 0.

i=1 2@+J+1 k=1 Y2k+j 2k+j+1

However, this is only useful if one has explicit expressions for the step-line coefficients.
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An algorithm for computing the recurrence coefficients for the shifted step-line is as
follows. Assume that all the recurrence coefficients ﬁflj_l’o),vﬁj_l’o),égj_l’o) are known,
then one first computes the auxiliary sequence (chn)nzo recursively by using (2.14).
Once this is done, one uses the relations (2.12) and (2.13) to get the recurrence coef-
ficients for the shifted step-line with shift j. The following Maple procedure computes
(B9 jencan—js1, (W) jr1<ncan—jar and (087)jyacncan—ji1 for 1 <5 < J.

shift_j:=proc(N,J)
local n, j;
for n from 0 to 2*xN+J+1 do
b[n] (0) :=betal(n);
g[n] (0) :=gammaO (n) ;
d[n] (0) :=deltal(n);

end do;

for j from 1 to J do
gljl(3):=0;
dlj1(j):=0;

d[j+1]1(j):=0;
c[0]1(j):=—dlj+11(G-D/glj1(G-1);
b[j1(§):=b[j]1(G-1)-c[0](J);
b[j+11(j):=b[j+1]1 (j-1)+c[0] (j);
glj+11(§):=g[j+11 (G- +c[0] (D * (b [j1G-1)-b[j+11(G));
for n from 1 to N-j do
c[n] (j) :=c[n-1]1 (j)*d[2*n+j+1] (j-1)/(d[2*n+j] (j-1)-c[n-1] (j) *g[2*n+j]1 (j-1));
b[2#n+j] (j) :=b[2*n+j] (j-1)-c[n] (j);
g[2*n+j]1(j) :=g[2*n+j]1 (j-1);
d[2#n+3j] (j) :=d[2*n+j] (j-1)-c[n-1] (j) *g[2*n+j] (j-1);
b[2xn+j+1](j) :=b[2*n+j+1] (j-1)+c[nl (j);
g[2*n+j+11(j) :=g[2*n+j+1] (j-1)+c[n] (j)*(b[2*n+j] (j-1)-b[2*n+j+1]1(j));
d[2#n+j+1]1 (j) :=d [2*n+j+1] (j-1)+c[n] (j) *g[2*n+j] (j-1);
end do;
end do;
end proc;

Remark: Observe that (2.14) and the third equation in (2.12) give

5G—10)
C(mo) _ C(j,O) 2n+j+1
n n—1 ; )
5(.770)
2n+j
and (2.21) gives
5(j70)
C(mo) o C(j,O) 2n+j+1
no T OG0y
2n+j

Comparing both expressions gives

5()’—170) 5()’—170)

5070)» _ 2n+74+172n+j5
2n+j+1 (5070)
2n+j

Hence one may therefore replace lines 16-24 in the Maple procedure by
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for n from 1 to N-j do

d[2#n+3j] (j) :=d[2*n+j] (j-1)-c[n-1] (j) *g[2*n+j] (j-1);

d[2%n+j+1] (j) :=d[2*n+j+1] (j-1)*d [2*n+]] (j-1) /d[2*n+j] () ;

c[n] (j) :=c[n-1] (j)*d[2*n+j+1] (j-1)/(d[2*n+j]1 () ;

b[2*n+j] (j) :=b[2*n+j] (j-1)-c[n] (j);

g[2*n+3j]1(j) :=g[2*n+j]1 (j-1);

b[2xn+j+1] (j) :=b[2*n+j+1] (j-1)+c[nl (j);

g[2*n+j+11(j) :=g[2*n+j+1] (j-1)+c[n] (j)*(b[2*n+j] (j-1)-b[2*n+j+1]1(j));
end do;

The formulas in Theorem 2.1 and the computations in the algorithm hold provided

5529” #0. If 5529” 0 then we cannot compute ¢"” and this quantity is needed in most

of the other formulas for the j-shifted step-line. The condition 5513” # 0 for all 7 > 1 and
n > 1 is a sufficient condition that implies that all the required recurrence coefficients can

be computed and hence implies that the multi-indices (n + k,n) are normal.

There is a similar result for the recurrence coefficients (3y (©. k), %(LO k) &(LO”C)).

Theorem 2.2. One has for all k >0

Bt = B+, om0,
i = ek n>1,
St = e, nxl
and
ﬁéﬂfﬁl = ﬁégfk—i—l - C(O Y, n =0,
N e N
55%—?;&)1 = 5gng—k+1 P k>7§2ﬁ> n>1,
where (c&o’k))nzo 1s the solution of the Riccati type difference equation
(0 k) 5(0 k)
o0 = ol 2)

2n+k Cpn—1 2n+k

with initial condition

508)
(08 jof}f), k> 1, (2.24)
k

and for k =0 the C(O D s a free parameter.

Proof. The proof is very similar to the proof of Theorem 2.1, but one uses the recurrence
relation (2.8) and the relations (2.6) and (2.10). O

An important difference is that one also needs C((]o,o) which one can find by taking n =0

and k = 0 in the relation for ﬁég’le), giving

(0 0) (0,1) (0,0
Co 0 0 :



Here ﬁ((]o,o) = [y is known as the first of the step-line recurrence coefficients, but ﬁéo’l) can
not be obtained in terms of the step-line recurrence coefficients. Recall that the step-line
recurrence coefficients do not determine the measures p; and po but only determine gy
and for the second measure any convex combination of p; and ps is possible. This degree

of freedom is reflected in C((]o,o) being a a free parameter.

Again, the Ricatti equation (2.23) can be solved explicitly. The substitution R
1 /d&o”f) gives

d/ELO_vkl)(;(ka) _I_ ,y(ovk)

d(O,k) _ 2n+k 2n+k
n 6(07k) ’
2n+k+1

and this first order linear recurrence has the following expression as solution

0 _ [~ st T Ssteier . 08 ) T st

0k) _ it ot : +

dy = Z 5(0,k) 5(0,k) +dq (0,k) - (2.25)
i=1 92i+k+1 1=1 921+k 1=1 %214+k+1

The following Maple procedure computes ( 7(L07k+1))kSnS2N_k+1, (’}/7(L07k+1))k+1§n§2N—k+1

and (5%0’“1))“299]\;_“1 for 0 < k < K. It requires as extra input the first two moments
of the measure pg, i.e., m(1,2) = mq(u2) and m(0,2) = mo(pu2).

shift_k:=proc(N,K)

local n,k;

for n from 0 to 2*xN+K+1 do
b[n] (0) := betalO(n);
g[n] (0) := gammaO(n);
d[n] (0) := deltalO(n);

end do;

c[0](0) := m(1,2)/m(0,2)-b[0](0);
for k from O to K do
glk] (k+1) :=0;
d (k] (k+1) :=0;
d[k+1] (k+1) :=0;
b k] (k+1) :=b[k] (k) +c[0] (k) ;
blk+1] (k+1) :=b[k+1] (k) -c[0] (k) ;
glk+1] (k+1) :=g[k+1] (k) -c [0] (k) *(b[k] (k) -b[k+1] (k+1));
for n from 1 to N-k do
c[n] (k) :=c[n-1] (k) *d [2*n+k+1] (k) / (d [2*n+k] (k) +c [n-1] (k) *g [2*n+k] (k)) ;
b[2*n+k] (k+1) :=b[2*n+k] (k) +c[n] (k) ;
g [2xn+k] (k+1) : =g [2*n+k] (k) ;
d[2*n+k] (k+1) :=d [2*n+k] (k) +c [n-1] (k) *g [2*n+k] (k) ;
b[2*n+k+1] (k+1) :=b[2*n+k+1] (k) -c[n] (k) ;
g[2xn+k+1] (k+1) :=g[2*n+k+1] (k) -c [n] (k) * (b [2*n+k] (k) -b[2*n+k+1] (k+1)) ;
d[2*n+k+1] (k+1) :=d [2*xn+k+1] (k) -c [n] (k) *g[2*n+k] (k) ;
end do;
c[0] (k+1) :=d [k+2] (k+1) /g [k+1] (k+1) ;
end do;
end proc;
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Remark: One has

(0,k)
0k) — 0 O2nthr
n n—1 5(0,k+1)’
2n+k
and in a way similar as before one has
5Ok _ O2ntkt1%mtk
2n+k+1 5(07k+1)
2n+k

Hence one can replace the lines 16-24 in the above procedure by

for n from 1 to N-k do

d[2*n+k] (k+1) :=d [2*n+k] (k) +c [n-1] (k) *g [2*n+k] (k) ;

d[2*n+k+1] (k+1) :=d[2*n+k+1] (k) *d [2*n+k] (k) /d [2*n+k] (k+1) ;

cn] (k) :=c[n-1] (k) *d [2*n+k+1] (k) /d[2*n+k] (k+1) ;

b[2*n+k] (k+1) :=b[2*n+k] (k) +c[n] (k) ;

g [2xn+k] (k+1) : =g [2*n+k] (k) ;

b[2*n+k+1] (k+1) :=b[2*n+k+1] (k) -c[n] (k) ;

g[2xn+k+1] (k+1) :=g[2*n+k+1] (k) -c [n] (k) * (b [2*n+k] (k) -b[2*n+k+1] (k+1)) ;
end do;

A sufficient condition for normality of the multi-indices (n, n+k) is now that 55%’_?:” #
Oforalln>1and k> 0.

2.2 From shifted step-line to nearest neighbor recurrence coef-
ficients

Our next step is to find the nearest neighbor recurrence coefficients ay, m, bn.m, Cnm, dnm
in (2.2)-(2.3) from the recurrence coefficients on the shifted step-lines.

Theorem 2.3. The coefficients of the nearest neighbor recurrence relations (2.2)—(2.3)
are formn >0 and j > 1 given by

_ 200
Crtjn = Dontjs
0
5(j—170)
. ) _ 2n+j+1
n+j,n 6970)
_ A0
bntjn = Yon+j — Antjn-
and forn>1 and k>0
_ R0k
C’I’L,?’L—l—k - /827’L+I€’
dn,n—l—k = Cpn+k + Cgl(]’k)y
0,k)
Sy
- 2n+k
Gtk = 7 0k)
Cn—1
n,n+k — 72n+k — Ann+k-

The initial coefficients are aopo = boo =0, coo = Bo and doo 15 a free parameter.
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Note that if bo(p1) = ma(p1)/mo(p) and bo(pe) = my(pg)/moe(u2) are the first
recurrence coefficients of the orthogonal polynomials for p; and po respectively, then
co0 = bo(p1) and doo = bo(u2). Hence the particular choice dyo = mq(p2)/mo(pe) gives
the nearest neighbor recurrence coefficients of the multiple orthogonal polynomials for the
measures p; and po. Another choice of dy g still gives iy as the first measure, but a linear
combination of p; and ps for the second measure.

Proof. We start from (2.16) and replace the polynomial P,y;_ 1 ,—1 by using (2.9) to find

0 1,0
2Psjn(€) = Patjirn (@) + B0 Purjn (@) + 78D Patjin1 ()
(7,0
2n+j

L3

(Potjn-1() = Poyjo1n()) .

A
Now we compare this with the recurrence relation (2.2) with n replaced by n + 7 and
m = n, then

0)
Cntjm = ﬁéiz—i-j)
5()0
b = G0 | O2nd
njn oty TG0
Cn—1
G
Gnvgn = 7" G0
Cp—1
Use the last equation in (2.21) to obtain
1,0)
o 5§jn+J+1
ntin = 77 Go)

so that the formula is valid for all n > 0. For d,,+;, we use the relation (2.11) to find
dn—i—j7 = Cntjn T C(j 0,

This gives the first part of the theorem.
For the second part of the theorem we use (2.8) with n replaced by 2n + k and by
(2.6) this gives

Pt (¥) = Parni(@) + Bk P (2) + 9050 Pt (2) + 85000 Pact i ().
(2.26)
replace the polynomial P, _; ,1,—1 by using (2.10) (but with n replaced by n — 1) to find
k) k
Ponsi(@) = Pustns (2) + B P (@) + 150 Prniieon ()

(0,k)

+ in:f (Ponti-1(x) — Po1nyk ().
n 1

Comparing with (2.2) with m = n + k then gives

o (0,k)
Cn,n—i—k - /82n+k7
(0,k)
- 52n+k
an,n—i—k - ( k)
Cpn—1
(0,k)
o (0,k) 2n+k
bnm-i-k 72n+k + 0,k)
Cn—l

12



For d,, 1 we use (2.11) to find

0,k
dn,n—l—k = Cn,n+k + Cgl )

This gives the second part of the theorem. O

In Maple one can compute the nearest neighbor recurrence coefficients using the fol-
lowing procedure:

nncoef :=proc(n,m)

local j,k;

if m<n then j:=n-m;
shift_j(n,j);
c(n,m):= b[2*m+j] (j);
d(n,m):= c(n,m)+c[m] (j);
a(n,m):= -d[2*m+j+1] (j-1)/c[m] (j);
b(n,m):= g[2*m+j]l (j)-a(n,m);

else k:=m-n;

shift_k(m,k);
c(n,m) := b[2*n+k] (k) ;
d(n,m):= c(n,m)+c[n] (k);

a(n,m) := -d[2*n+k] (k) /c[n-1] (k) ;
b(n,m) := g[2*n+k] (k) -a(n,m);
end if;
Vector([c(n,m), d(n,m), a(n,m), b(n,m)]);
end proc;

2.3 The recurrence coefficients of the marginal measures

Now that we know the nearest neighbor recurrence coefficients, we can find the recurrence
coefficients of the orthogonal polynomials P, (z; u1) for the measure p; and P, (x; ps) for
the measure 5. The recurrence relations for these monic orthogonal polynomials are

2P (5 13) = Pryr (5 415) + b (13) P (5 1) + a2 (113) P (5 23).

Observe that P,(z;pu1) = Pao(x) and P, (x;p2) = Pym(x), so if we compare with the
nearest neighbor recurrence relations (2.2) and (2.3) we find

bi(p1) = ¢jo,  a3(1m) = ajo,

and
bi(p2) = doj,  ai(pa) = bo.

If we use Theorem 2.3 then this gives
bi(in) = 8P, a2 () =Y, (2.27)

where we used (2.15) to simplify the expression for a;o. The recurrence coefficients for 1o
can be obtained more easily from (2.26) with n = 0, which gives

wPos(x) = Pr(x) + B Po () + 42" Poja (),

13



and if we replace P ; by using (2.10) with n = 0, then

2Po(@) = Possa () + (" + M) Por@) + 9 Poa (@),

so that

b(pz) = B + e () = 1Y, (2.28)

Observe that these results allow us to find the recurrence coefficients of the orthogonal
polynomials for the measures 1 and ps if the the recurrence coefficients of the step-line
multiple orthogonal polynomials are known. There are examples of multiple orthogo-
nal polynomials for which the recurrence coefficients of marginal orthogonal polynomials
are not known. Such a situation occurs for instance in the case of multiple orthogo-
nal polynomials associated to the modified Bessel functions of the first and second kind.
In 1990 A.P. Prudnikov posed an open problem to find the orthogonal polynomials for
the modified Bessel functions of the second kind K, (2y/x) on [0,00) (see [19, Problem
9 on pp. 239-241]). It turned out that in this case it is more natural to consider mul-
tiple orthogonal polynomials for a pair of modified Bessel functions of the second kind
K,(2v/x), K,11(2y/x). This was shown by Van Assche and Yakubovich in [21] (see also
[3]) and later for the modified Bessel functions of the first kind by Coussement and Van
Assche in [5] (see also [7]). Our algorithm allows us to find the recurrence coefficients of
those polynomials, even though we are not able to find explicit expressions for them. If
we start from the step-line recurrence coefficients given in [21, Thm. 4]

Bn = (n+a+1)Bn+a+2v)—(a+1)(v—1),
Y = nn+a)(n+a+v)(3n+2a+v),
0p = nn—1n+a)(n+a—-)n+a+v)(n+a+v—1),

for the multiple orthogonal polynomials with
dpn (z) = 2°PPK,(2v/x),  dps(x) = 2*TUHIPK, L (2V/7),

and put o = 0 and v = 0, then Table 1 gives the results of our algorithm for the recurrence
coefficients (ay, b,) of the weight Ky(2/).

3

an bn

- 1

1.7320508075688772935 | 9.6666666666666666667
8.5374989832437982487 | 28.186991869918699187
20.265386777687130909 | 56.571895845674401834
36.925214834648582674 | 94.823932737801348717
58.518554562959399225 | 142.94410230778264607
85.045955898223602580 | 200.93289913274452209
116.50767686120789662 | 268.79060407933245800
152.90385976282648737 | 346.51739199614374938
194.23459164836084172 | 434.11337913848760712
240.49992974325090503 | 531.57864673346522330

O © 00O U WwNn — O

—_

Table 1: Recurrence coefficients of orthogonal polynomials for Ky(2/x)

Note that the values for the coefficients a,, presented in Table 1 are the same as the
ones that were computed in [19] using the moments.
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3 From marginal to nearest neighbor

In the previous section we started from the step-line recurrence coefficients and we showed
how to find the nearest neighbor recurrence coefficients and in particular the recur-
rence coefficients of the orthogonal polynomials for the marginal measures p; and pus.
In this section we will investigate the inverse problem: suppose the recurrence coefficients
(a2, (i), ba(pti))nso0 are given for @ € {1,2}. How can one find all the nearest neigh-
bor recurrence coefficients (@ m, bn.m, Cnms dnm) and the step-line recurrence coefficients

(ﬁna ’Yna 6”)?

3.1 The nearest neighbor recurrence coefficients

The nearest neighbor recurrence coefficients satisfy a system of non-linear partial dif-
ference equations, as was noted in [18]. We will briefly show how to find these partial
difference equations. The nearest neighbor recurrence relations (2.2) and (2.3) can be
written in a matrix form as

Yn—l—l,m = Rl(n> m)Yn,m> Yn,m—l—l = R2(n> m)YnJm

where
Pom(2)
Yn,m = Pn—l,m ([L’)
Pn,m—l ([L’)
and R; and R,y are the two transfer matrices
r — Cn,m _an,m _bn,m
Ry(n,m) = 1 0 0 ,
1 0 dn,m—l — Cpym—1
and
r — dn,m _an,m _bn,m
R2(n> m) = 1 Cn—1,m — dn—l,m 0
1 0 0

Now there are two ways of finding Y41 41 from Y, ., using these transfer matrices: one
way is to first compute Y,,1;,, and then to increase m by one, which gives

Yisimir = Re(n+ 1, m)Ri(n,m)Y,m.

Another way is to first compute Y}, ,,+1 and then to increase n by one, giving
Yisimir = Ri(n,m + 1)Ra(n,m)Y,m.

Comparing both expressions gives the matrix relation

Ry(n+1,m)Ri(n,m) = Ry(n,m+ 1)Ra(n,m).

15



If one computes the entries of this matrix identity, then one finds the following partial
difference relations (see also [18, Thm. 3.1]):

dn—l—l,m - dn,m = Cpm+1 — Cnym, (31)
d, d
+1,m n,m
An+1,m + bn—l—l,m - (an,m—l—l + bn,m—l—l) = det 5 (32)
Cnym+1  Cnym
An,m+1 o Cnym — dn,m 3.3
An,m Cn—1,m — Un—1,m
bn—l—l,m o Cnym — dn,m (3 4)
bn,m Cnym—1 — dn,m—l

We will show that these partial difference equations with boundary conditions

ano = as(t1), bno=0, cno=0bn(tm1), n >0, (3.5)

and
aom =0, bom = as,(p2), dom = bm(p2), m > 0, (3.6)

where a2 (p;), bn(11:) are the recurrence coefficients of the monic orthogonal polynomials
for the measure y; (1 = 1,2) (with ad(u1) = ag(u2) = 0), can be solved recursively to find
the nearest neighbor recurrence coefficients for the multiple orthogonal polynomials with
the measures (py, p2).

Theorem 3.1. Suppose (aZ(pi))n>1 and (b, (11:))n>0 are the recurrence coefficients of the
monic orthogonal polynomials P, (x; ;) for the measure y;, i.e.,

@B (w3 p13) = Poyr (25 45) + bn(113) P (5 ) + @ (p13) Poa (w3 p13), 1m0 >0,

with Py(x; pi) = 1 and P_y(x;pu;) = 0. Then the nearest neighbor recurrence coefficients
for the type I multiple orthogonal polynomials can be computed recursively by (3.1)—(3.4),
using the boundary conditions (3.5)—(3.6), provided ¢y m # dpm for all n,m > 0.

Proof. We use induction on k, where k& = n+m is the length of the multi-index (n, m) and
show how to compute ay, 1, bpm, Cnm, dnm When the recurrence coefficients are known for
multi-indices of length less than k. For k = 0 we have that apg = boo = 0 (these
appear as coefficients of P_; o and P, _; and hence are not needed) and coo = bo(p1),
doo = bo(p2). Hence the case k = 0 is settled. For k& = 1 we already have a;¢ =
a2(p1),c10 = bi(p1),boq = a3(u2),dos = bi(pa), and we also defined ag; = b1 = 0
(these appear as coefficients for P_;; and P;_; and are not needed). This leaves only
to determine ¢p; and dyo. If we use (3.1) and (3.2) for n = m = 0, then this gives the
system of equations

dio—con = dop— Cop,
dl,oco,o - Co,1d0,0 = a10+ bl,o — Qo,1 — 50,1-
This is a linear system of two equations for cy; and d; g. The determinant of the system
is doo — co0 and hence this system has a unique solution whenever by(p1) # bo(pe).

Suppose next that we know all the nearest neighbor recurrence coefficients for multi-
indices (n,m) of length < k. From (3.3) we then find

Cn,m - dn,m

Anm+1 = Qpm 5

Cn—1,m — dn—l,m
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Figure 2: Moving along the lines m +n =k

and from (3.4) we find

Cn,m - dn,m

bn—l—l,m = bn,m .
Cnym—1 — dn,m—l

If we replace n by £ and m by k — ¢, then this gives

Cok—t — dé,k—é

1<(<Fk (3.7)

Qg k—t+1 = Auk—¢ s
Co—1,k—t — dz-m-e

For { =0 and ¢ = k + 1 we use the boundary conditions
aok+1 =0, agr10= ai+1(u1)-
In a similar way

Cok—0 — dé,k—é

bg+17k_g = b&k_g R 0< 14 < k—1. (3.8)

Cok—t—1 — de,k—e—1
For ¢ = —1 and ¢ = k we use the boundary conditions
boet1 = app1(p2), e = 0.

The expressions on the right of (3.7)—(3.8) contain coefficients of multi-indices of length
k and k — 1 and hence they are known. If we use (3.1) and (3.2), then

dn—l—l,m — Cpm+1 = dn,m — Cnymy

dn—l—l,mcn,m - Cn,m—l—ldn,m = Op+1,m + bn—l—l,m — Apm+1 — bn,m—l—l,

which is a linear system for ¢, y,+1 and d, 41, with determinant d,, ,, — ¢,m. This system
has a unique solution whenever ¢, ,, # d, . This solution is

An+1,m + bn—l—l,m — Apm+1 — bn,m—l—l

Cnym+1 = Cnym + 5

Cn,m - dn,m

and

An+1,m + bn—l—l,m — Anm+1 — bn,m—l—l
dn—l—l,m = dn,m + .

Cn,m - dn,m

Replacing n by ¢ and m by k — £ then gives

g1kt + bor1 k-t — Qo k—e41 — bok—e11

Cok—t+1 = Cok—e T , 0</?<k, (3.9)

Cok—0 — de,k—e
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and for ¢ = k + 1 we use the boundary condition
Ck+1,0 =:bk+1(ul)
Similarly we have

i1kt + bor1 k—e — Qg k—e41 — bek—e11

Aoy k—e = doj—r , 0</¢<Ek, (3.10)

Cok—t — d&k—é

and for / = —1 we use the boundary condition

do k1 = b1 (p2).
]

We can implement this in Maple using the following procedure which computes ay, n,
by Crmy A for n+m < N+M. Tt requires the input al(n) = a2 (1) and b1(n) = by, (1)
for the first measure p; and a2(n) = a?(u2) and b2(n) = b,(u2) for the second measure
pa, for 0 < m < N + M, where we set a(u1) = 0 = a3(uz). In particular it gives the
coefficients cy v, dn v, an v, by g which will be given in the output explicitly.

IP:=proc(N,M)

local n,m,k;

for n from 0 to N+M do
c(n,0):=bi(n);
a(n,0):=al(n);
b(n,0) :=0;

end do;

for m from 0 to N+M do
d(0,m) :=b2(m) ;

a(0,m) :=0;
b(0,m) :=a2(m) ;
end do;

for n from 1 to N+M do
for k from 1 to n-1 do
a(k,n-k):=a(k,n-k-1)*(c(k,n-k-1)-d(k,n-k-1))/(c(k-1,n-k-1)-d(k-1,n-k-1));
b(k,n-k) :=b(k-1,n-k)*(c(k-1,n-k)-d(k-1,n-k))/(c(k-1,n-k-1)-d(k-1,n-k-1));
end do;
for k from 1 to n do
c(n-k,k) :=c(n-k,k-1)
+(a(n-k+1,k-1)+b(n-k+1,k-1)-a(n-k,k)-b(n-k,k))/(c(n-k,k-1)-d(n-k,k-1));
end do;
for k from 1 to n do
d(k,n-k):=c(k-1,n-k+1)-c(k-1,n-k)+d(k-1,n-k);
end do;
end do;
Vector ([c(N,M),d(N,M),a(N,M),b(N,M)]);
end proc;
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3.2 The step-line recurrence coefficients

Next we will show how to compute the recurrence coefficients in the step-line recurrence
(2.1) if one knows the nearest neighbor recurrence coefficients.

Theorem 3.2. Suppose that the nearest neighbor recurrence coefficients are given. Then
the step-line recurrence coefficients in (2.1) are given by

ﬁ2n = Cnn, n 2 07

Yon = Qnn + bn,n> n 2 17

62n = an,n(cn—l,n—l - dn—l,n—1)> n 2 17
and

ﬁ2n+1 = dn+1,n> n 2 07

Yon+1 = An4in + bn+1,n> n > 07

52n+1 = bn—l—l,n(dn,n—l - Cn,n—1)> n > 1.

Proof. From the nearest neighbor recurrence relation (2.2) we find
TPun() = Pov1n(2) + ConPron(®) + annPr1n(x) + bpnPrn-1(2).
Use (2.4) to replace P,_1,, to find
TPun() = Pov1n(2) + CunPon(®) + (Gnmn + bnn) Pon—1(x)
+ ann(Cn-1n-1 — dp-1n-1)Pro1.n-1(2).

If we compare this with (2.1) with n replaced by 2n, then we find the relations for the
even recurrence coefficients. The proof for the odd recurrence coefficients is similar: use
(2.3) to find

IPn+1,n($) - Pn—l—l,n—l—l (f) + dn—l—l,nPn—l—l,n(I) + an+1,nPn,n($) + bn—l—l,npn—l—l,n—l (I)>

and replace P41 ,-1 using (2.4), giving

IPn+1,n($) - Pn—l—l,n—l—l (f) + dn+1,nPn+1,n($) + (an—l—l,n + bn+1,n)Pn,n($)
+ bn—l—l,n(dn,n—l - Cn,n—l)Pn,n—l(I)-
Comparing with the recurrence relation (2.1) with n replaced by 2n+ 1 gives the required

result. O

3.3 The nearest neighbor coefficients for general r

For general r there are more partial difference equations for the nearest neighbor recur-
rence coefficients. The nearest neighbor recurrence relations (1.4) can be written as

Yﬁ+é’k = Rk(ﬁ)Yﬁ 1 S k S T,
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where

Pi_e ()

and Ry (1) are (r + 1) x (r + 1) transfer matrices given by

T — bk —ai; Qg e —Qiy
1 bi—e,1 — bia—a k 0 0
Ri(mi) = 1 0 0 0
1 0 . 0 - bier—bicn

Expressing that Y5 e ¢, can be computed in two ways when ¢ # j is done by
Ri(ni + &) R; (i) = R; (i + &) Ry (1),

and this gives the following partial difference relations [18, Thm. 3.2]: forall 1 <i# j <r
one has

bite,j —baj = bare;i — bi, (3.11)
I8 I8
bise s i
—+€5,1 7,1
E Aiite; k — E aiirer = det (b~ ) (3.12)
k—1 k—1 n+ei7.7 2y
iR (3.13)
i bi-z,; — ba-z,.i

Theorem 3.3. Suppose the recurrence coefficients (a2(i;))n>1 and (bn(pi))nso0 of the
monic orthogonal polynomials for the measure p; are known (1 < i <r). Then the nearest
neighbor recurrence coefficients as ;,bq; (1 < j <r) can be computed from (3.11)-(3.13)
and the boundary conditions

tneys = @n(13), bogyy = balpy),  n >0, 1<j<r,

where a?(pu;) =0, and
an€i7j:0> 7120, 27&‘77

provided that bz ; # by ; for all multi-indices 1 € N" and 1 <1 # 5 <r.

Proof. We use induction on the length N = |7i| of the multi-index 7. For |7i| = 0 we see
that ag; =0 and bﬁ,j = bo(py) for 1 < j < r. If |ri| = 1 then 7i = ¢€; for some i with
1 <4 < r. Therefore az; = az; = 0 whenever ¢ # j and ag,; = aj(y;). Furthermore
bii = be,i = b1 (). Using (3.11) we also find

be.j = be;i + bo(pe) — bo(pua),
and (3.12) gives

be bo(ti) — bejbo(ps) = Y agx — > e -
k=1 k=1
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Solving this linear system gives for i # j

22:1 Qe k — 22:1 ag; k

bo(p) — bo(ps) 7

provided bo(st;) # bo(ft;). Hence all the nearest neighbor recurrence coefficients are known
for |n] = 1.

Suppose that we know all the nearest neighbor recurrence coefficients with multi-
indices of length < N. Let m be a multi-index of length NV + 1. In order to compute a;; ;
we choose a j # i such that m; > 1 and write m = 7 + €;, where 7 is a multi-index of
length N. Then from (3.13) we find that

be,i = bo(p) +

S P—" — (3.14)
The coefficients on the right hand side have a multi-indices of length N or N —1 and hence
(3.14) allows us to compute a;7,; when m; = n; > 1. If m; = 0 then a;;; is the coefficient
of the polynomial Py _z which is 0, hence we don’t need this coefficient and we can set it
equal to 0. If m; = 0 for all j # ¢ then m = (N + 1)é; and we have a(n+1)z: = a5 (p)-

If i # j then the equations (3.11) and (3.12) are a linear system for the two unknowns
biitre,,; and bgye, ;. The solution is

' '
D ket Qiive; k= D ey G4k

bitj — biii

bive;i = b + : (3.15)

provided that bz ; # bz;. Hence if there exists j # ¢ with m; > 1, then m = 7 + €},
and we can compute by; from (3.15). If m; = 0 for all j # ¢ then m = (N + 1)¢; and
biny1)e,i = b1 (fts)- ]
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