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Abstract

Multiple orthogonal polynomials satisfy a number of recurrence relations, in par-

ticular there is a (r + 2)-term recurrence relation connecting the type II multiple
orthogonal polynomials near the diagonal (the so-called step-line recurrence rela-

tion) and there is a system of r recurrence relations connecting the nearest neighbors
(the so-called nearest neighbor recurrence relations). In this paper we deal with two

problems. First we show how one can obtain the nearest neighbor recurrence coeffi-
cients (and in particular the recurrence coefficients of the orthogonal polynomials for
each of the defining measures) from the step-line recurrence coefficients. Secondly

we show how one can compute the step-line recurrence coefficients from the recur-
rence coefficients of the orthogonal polynomials of each of the measures defining the

multiple orthogonality.

1 Introduction

Multiple orthogonal polynomials are polynomials of one variable that satisfy orthogonality
conditions with respect to r > 1 positive measures. In this paper we will only consider
positive measures on the real line. Let ~n = (n1, . . . , nr) ∈ N

r be a multi-index and
|~n| = n1 + · · · + nr its length and let µ1, . . . , µr be r positive measures on the real line.
There are two types of multiple orthogonal polynomials [10, Chapter 23], [1], [2], [20].
Type I multiple orthogonal polynomials are such that the (A~n,1, . . . , A~n,r) is a vector of r
polynomials, with deg A~n,j ≤ nj − 1, satisfying

∫

xk

r
∑

j=1

A~n,j(x) dµj(x) = 0, 0 ≤ k ≤ |~n| − 2, (1.1)
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with normalization
∫

x|~n|−1
r
∑

j=1

A~n,j(x) dµj(x) = 1.

Type II multiple orthogonal polynomials are monic polynomials P~n of degree |~n| for which

∫

xkP~n(x) dµj(x) = 0, 0 ≤ k ≤ nj − 1 (1.2)

holds for 1 ≤ j ≤ r. The existence (and unicity) is not guaranteed, but if the type I and
type II multiple polynomials exist with the above normalization, then they are unique
and then the multi-index ~n is said to be a normal index. The measures (µ1, . . . , µr) are a
normal system if all the multi-indices are normal.

Multiple orthogonal polynomials satisfy a number of recurrence relations. Let prn(x) =
P(n,n,...,n)(x), prn+1(x) = P(n+1,n,n,...,n)(x), and in general prn+j(x) = P(n+1,...,n+1,n...,n)(x) for
0 ≤ j ≤ r, where (n + 1, . . . , n + 1, n . . . , n) has j times the component n + 1 and r − j
times the component n, i.e.,

(n + 1, . . . , n + 1, n . . . , n) = (n, n, . . . , n) +

j
∑

i=1

~ei,

where ~ei are the standard unit vectors in N
r. Then the step-line polynomials pm(x) satisfy

the following (r + 2)-term recurrence relation

xpm(x) = pm+1(x) +
r
∑

j=0

βm,jpm−j(x), (1.3)

where βm,j are real recurrence coefficients and p0 = 1 and p−j = 0 for 1 ≤ j ≤ r.
This recurrence relation corresponds to the well known three term recurrence relation for
orthogonal polynomials when r = 1. These step-line polynomials (the type II multiple
orthogonal polynomials near the diagonal) are also known as d-orthogonal polynomials
(with d = r) and the orthogonality in (1.2) becomes

∫

pm(x)xk dµj(x) = 0, 0 ≤ k ≤ b(m− j)/rc.

See, e.g., [12], [8], [4]. This recurrence relation only connects multiple orthogonal polyno-
mials near the diagonal (n, n, . . . , n). All multiple orthogonal polynomials (of a normal
system) are related by a system of r recurrence relations relating P~n with its nearest
neighbors P~n+~ek

and P~n−~ej
. The system of nearest neighbor recurrence relations is given

by (see [18])

xP~n(x) = P~n+~ek
(x) + b~n,kP~n(x) +

r
∑

j=1

a~n,jP~n−~ej
(x), 1 ≤ k ≤ r. (1.4)

In this paper we deal with two problems. For the first problem we assume that the
recurrence coefficients βm,j, m ∈ N, 0 ≤ j ≤ r, in the step-line recurrence relation (1.3)
are given, and the goal is to find all the nearest neighbor recurrence coefficients a~n,j, b~n,j
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with ~n ∈ N
r and 1 ≤ j ≤ r. In particular this would give all the recurrence coefficients of

the (monic) orthogonal polynomials for each of the measures µj:
∫

Pn(x; µj)Pm(x; µj) dµj(x) = γ−2
n (µj)δm,n,

which satisfy the three term recurrence relation

xPn(x; µj) = Pn+1(x; µj) + bn(µj)Pn(x; µj) + a2
n(µj)Pn−1(x; µj).

Indeed, one has
bn(µj) = bn~ej ,j, a2

n(µj) = an~ej ,j .

In Section 2 we will show, for r = 2, how one first can obtain the recurrence relation
for the r shifted step-line polynomials, i.e., the multiple orthogonal polynomials with a
multi-index k~ej +~n, with k ∈ N and 1 ≤ j ≤ r fixed and ~n a multi-index on the step-line.
Then, in a second step, we show how to obtain the nearest neighbor recurrence coefficients
from the shifted step-line recurrence coefficients. We explain the procedure for r = 2 so
that the reasoning is easy to follow and not obscured by the notation.

The second problem is the inverse of the first problem: we assume that the recurrence
coefficients an+1(µj), bn(µj) of the orthogonal polynomials of each of the measures µj,
1 ≤ j ≤ r, are given, and we show how one can compute all the nearest neighbor
recurrence coefficients and the step-line recurrence coefficients from this input. In Section
3 we will explain the case r = 2 in detail. We will also show how to find the nearest
neighbor recurrence coefficients from the marginal recurrence coefficients for general r.

In order to find the recurrence coefficients βm,j, m ∈ N, 0 ≤ j ≤ r in the step-
line recurrence relation, one may use either the Jacobi-Perron algorithm or the vector
QD-algorithm. The Jacobi-Perron algorithm generates a vector continued fraction and
was introduced by Jacobi in 1868 [11] and studied in detail by Perron in 1907 [14]. A
modern version of the Jacobi-Perron algorithm and its relevance for simultaneous rational
approximation of functions can be found in [13]. Vector continued fractions and the
Jacobi-Perron algorithm are quite popular in number theory to produce simultaneous
Diophantine approximations to several real numbers, see the monographs of Schweiger
[16] [17]. Another way to obtain the step-line recurrence coefficients from the moments
of the measures µ1, . . . , µr is to use a generalization of the QD-algorithm proposed by
Van Iseghem [22]. The classical QD-algorithm of Rutishauser [15] can be used to find
the recurrence coefficients an+1(µj), bn(µj) of the orthogonal polynomials of each of the
measures µj, but one can also use the (modified) Chebyshev algorithm as described in [9,
§2.1.7]. In this paper we assume that the step-line recurrence coefficients are given (for
the first problem) or we assume that the recurrence coefficients an+1(µj), bn(µj) are given
for every measure µj with 1 ≤ j ≤ r (for the second problem).

2 The recurrence coefficients along the step-line

In this section we only consider multiple orthogonal polynomials with r = 2. Hence the
(monic) type II multiple orthogonal polynomials Pn,m depend on a multi-index (n, m) ∈
N

2. Let p2n(x) = Pn,n(x) and p2n+1(x) = Pn+1,n(x), then the recurrence relation along
the step-line is

xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x) + δnpn−2(x). (2.1)
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It is important to note that the step-line recurrence coefficients (βn)n≥0, (γn)n≥1 and
(δn)n≥2 do not determine the measures µ1 and µ2 in a unique way, even if we normalize
the measures to be probability measures. The first measure is determined uniquely as
a probability measure, but for the second measure one can use any convex combination
λµ1 + (1 − λ)µ2 because

λ

∫

pn(x)xk dµ1(x) + (1 − λ)

∫

pn(x)xkdµ2(x) = 0, k ≤ bn

2
c − 1,

since the first of these integrals vanishes for k ≤ bn−1
2
c and bn

2
c − 1 ≤ bn−1

2
c, see [6,

Remark 2.2]. This degree of freedom will be reflected when we want to compute the
recurrence coefficients of the orthogonal polynomials pn(x; µ1) and pn(x; µ2).

The nearest neighbor recurrence relations are

xPn,m(x) = Pn+1,m(x) + cn,mPn,m(x) + an,mPn−1,m(x) + bn,mPn,m−1(x), (2.2)

xPn,m(x) = Pn,m+1(x) + dn,mPn,m(x) + an,mPn−1,m(x) + bn,mPn,m−1(x). (2.3)

As a consequence one has

Pn+1,m(x) − Pn,m+1(x) = κn,mPn,m(x), (2.4)

where κn,m = dn,m − cn,m.

2.1 From step-line to shifted step-line

We introduce for j ≥ 0 the polynomials

p
(j,0)
2n+j(x) = Pn+j,n(x), p

(j,0)
2n+j+1(x) = Pn+j+1,n(x), (2.5)

and for k ≥ 0
p

(0,k)
2n+k(x) = Pn,n+k(x), p

(0,k)
2n+k+1(x) = Pn+1,n+k(x). (2.6)

The polynomials p
(j,0)
n are the multiple orthogonal polynomials on a shifted step-line with

a shift j in the direction of ~e1 = (1, 0). The polynomials p
(0,k)
n are those on the shifted

step-line with a shift k in the direction of ~e2 = (0, 1).

n

m Pn,n
Pn+1,n

Figure 1: Step-line and shifted step-lines

These shifted step-line polynomials again satisfy a four term recurrence relation, which
we denote by

xp(j,0)
n (x) = p

(j,0)
n+1 (x) + β(j,0)

n p(j,0)
n (x) + γ(j,0)

n p
(j,0)
n−1(x) + δ(j,0)

n p
(j,0)
n−2(x), (2.7)
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with initial conditions γ
(j,0)
j = δ

(j,0)
j = δ

(j,0)
j+1 = 0 and in a similar way

xp(0,k)
n (x) = p

(0,k)
n+1 (x) + β(0,k)

n p(0,k)
n (x) + γ(0,k)

n p
(0,k)
n−1 (x) + δ(0,k)

n p
(0,k)
n−2 (x), (2.8)

with initial conditions γ
(0,k+1)
k = δ

(0,k+1)
k = δ

(0,k+1)
k+1 = 0. With this notation we have

β
(0,0)
n = βn, γ

(0,0)
n = γn, and δ

(0,0)
n = δn. We introduce two more sequences (c

(j,0)
n )n≥0 and

(c
(0,k)
n )n≥0 by

Pn+j+1,n(x) − Pn+j,n+1(x) = c(j,0)
n Pn+j,n(x), (2.9)

and
Pn+1,n+k(x) − Pn,n+k+1(x) = c(0,k)

n Pn,n+k(x), (2.10)

so that (2.4) gives

c(j,0)
n = κn+j,n = dn+j,n − cn+j,n, c(0,k)

n = κn,n+k = dn,n+k − cn,n+k. (2.11)

Our first result shows how one can obtain the recurrence coefficients (β
(j,0)
n , γ

(j,0)
n , δ

(j,0)
n )

from the recurrence coefficients along the step-line.

Theorem 2.1. One has for all j ≥ 1

β
(j,0)
2n+j = β

(j−1,0)
2n+j − c(j,0)

n , n ≥ 0,

γ
(j,0)
2n+j = γ

(j−1,0)
2n+j , n ≥ 1, (2.12)

δ
(j,0)
2n+j = δ

(j−1,0)
2n+j − c

(j,0)
n−1γ

(j−1,0)
2n+j , n ≥ 1.

and

β
(j,0)
2n+j+1 = β

(j−1,0)
2n+j+1 + c(j,0)

n , n ≥ 0,

γ
(j,0)
2n+j+1 = γ

(j−1,0)
2n+j+1 + c(j,0)

n (β
(j−1,0)
2n+j − β

(j,0)
2n+j+1), n ≥ 0, (2.13)

δ
(j,0)
2n+j+1 = δ

(j−1,0)
2n+j+1 + c(j,0)

n γ
(j−1,0)
2n+j , n ≥ 0,

where (c
(j,0)
n )n≥0 is the solution of the Riccati type difference equation

c(j,0)
n =

c
(j,0)
n−1δ

(j−1,0)
2n+j+1

δ
(j−1,0)
2n+j − c

(j,0)
n−1γ

(j−1,0)
2n+j

, (2.14)

with initial condition

c
(j,0)
0 = −

δ
(j−1,0)
j+1

γ
(j−1,0)
j

. (2.15)

Proof. Take the recurrence relation (2.7) with n replaced by 2n + j

xp
(j,0)
2n+j(x) = p

(j,0)
2n+j+1(x) + β

(j,0)
2n+jp

(j,0)
2n+j(x) + γ

(j,0)
2n+jp

(j,0)
2n+j−1(x) + δ

(j,0)
2n+jp

(j,0)
2n+j−2(x),

use (2.5) to find

xPn+j,n(x) = Pn+j+1,n(x)+β
(j,0)
2n+jPn+j,n(x)+γ

(j,0)
2n+jPn+j,n−1(x)+δ

(j,0)
2n+jPn+j−1,n−1(x). (2.16)
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Now use (2.9) to replace Pn+j+1,n(x) and (by changing n to n − 1) Pn+j,n−1(x), to find

xPn+j,n(x) = Pn+j,n+1(x) +
(

β
(j,0)
2n+j + c(j,0)

n

)

Pn+j,n(x) + γ
(j,0)
2n+jPn+j−1,n(x)

+
(

δ
(j,0)
2n+j + c

(j,0)
n−1γ

(j,0)
2n+j

)

Pn+j−1,n−1(x). (2.17)

On the other hand, we take the recurrence relation (2.7) for j − 1

xp(j−1,0)
n (x) = p

(j−1,0)
n+1 (x) + β(j−1,0)

n p(j−1,0)
n (x) + γ(j−1,0)

n p
(j−1,0)
n−1 (x) + δ(j−1,0)

n p
(j−1,0)
n−2 (x),

replace n by 2n + j and use (2.5) to find

xPn+j,n(x) = Pn+j,n+1(x) + β
(j−1,0)
2n+j Pn+j,n(x) + γ

(j−1,0)
2n+j Pn+j−1,n(x)

+ δ
(j−1,0)
2n+j Pn+j−1,n−1(x). (2.18)

Comparing (2.17) and (2.18) gives

(

β
(j,0)
2n+j + c(j,0)

n

)

Pn+j,n(x) + γ
(j,0)
2n+jPn+j−1,n(x) +

(

δ
(j,0)
2n+j + c

(j,0)
n−1γ

(j,0)
2n+j

)

Pn+j−1,n−1(x)

= β
(j−1,0)
2n+j Pn+j,n(x) + γ

(j−1,0)
2n+j Pn+j−1,n(x) + δ

(j−1,0)
2n+j Pn+j−1,n−1(x).

The polynomials Pn+j,n, Pn+j−1,n, Pn+j−1,n−1 are linearly independent (since they have
degrees 2n + j, 2n + j − 1 and 2n + j − 2), hence one finds

β
(j,0)
2n+j + c(j,0)

n = β
(j−1,0)
2n+j ,

γ
(j,0)
2n+j = γ

(j−1,0)
2n+j ,

δ
(j,0)
2n+j + c

(j,0)
n−1γ

(j,0)
2n+j = δ

(j−1,0)
2n+j ,

which gives the required relations (2.12).
In a similar way we start with the recurrence relation (2.7) with n replaced by 2n+j+1

xp
(j,0)
2n+j+1(x) = p

(j,0)
2n+j+2(x) + β

(j,0)
2n+j+1p

(j,0)
2n+j+1(x) + γ

(j,0)
2n+j+1p

(j,0)
2n+j(x) + δ

(j,0)
2n+j+1p

(j,0)
2n+j−1(x),

and use (2.5) to find

xPn+j+1,n(x) = Pn+j+1,n+1(x)+β
(j,0)
2n+j+1Pn+j+1,n(x)+γ

(j,0)
2n+j+1Pn+j,n(x)+δ

(j,0)
2n+j+1Pn+j,n−1(x).

Use (2.9) to replace Pn+j+1,n(x) and Pn+j,n−1(x), to find

xPn+j,n+1(x) + c(j,0)
n xPn+j,n(x) = Pn+j+1,n+1(x) + β

(j,0)
2n+j+1Pn+j,n+1(x)

+
(

γ
(j,0)
2n+j+1 + c(j,0)

n β
(j,0)
2n+j+1

)

Pn+j,n(x)

+ δ
(j,0)
2n+j+1Pn+j−1,n(x) + c

(j,0)
n−1δ

(j,0)
2n+j+1Pn+j−1,n−1(x).

Use (2.18) to replace xPn+j,n(x) to find

xPn+j,n+1(x) = Pn+j+1,n+1(x) +
(

β
(j,0)
2n+j+1 − c(j,0)

n

)

Pn+j,n+1(x)

+
(

γ
(j,0)
2n+j+1 + c(j,0)

n β
(j,0)
2n+j+1 − c(j,0)

n β
(j−1,0)
2n+j

)

Pn+j,n(x)

+
(

δ
(j,0)
2n+j+1 − c(j,0)

n γ
(j−1,0)
2n+j

)

Pn+j−1,n(x)

+
(

c
(j,0)
n−1δ

(j,0)
2n+j+1 − c(j,0)

n δ
(j−1,0)
2n+j

)

Pn+j−1,n−1(x). (2.19)

6



On the other hand, we take the recurrence relation (2.7) for j − 1 with n replaced by
2n + j + 1 and use (2.5) to find

xPn+j,n+1(x) = Pn+j+1,n+1(x) + β
(j−1,0)
2n+j+1Pn+j,n+1(x)

+ γ
(j−1,0)
2n+j+1Pn+j,n(x) + δ

(j−1,0)
2n+j+1Pn+j−1,n(x). (2.20)

Comparing (2.19) and (2.20) then gives

(

β
(j,0)
2n+j+1 − c(j,0)

n

)

Pn+j,n+1(x) +
(

γ
(j,0)
2n+j+1 + c(j,0)

n β
(j,0)
2n+j+1 − c(j,0)

n β
(j−1,0)
2n+j

)

Pn+j,n(x)

+
(

δ
(j,0)
2n+j+1 − c(j,0)

n γ
(j−1,0)
2n+j

)

Pn+j−1,n(x) +
(

c
(j,0)
n−1δ

(j,0)
2n+j+1 − c(j,0)

n δ
(j−1,0)
2n+j

)

Pn+j−1,n−1(x)

= β
(j−1,0)
2n+j+1Pn+j,n+1(x) + γ

(j−1,0)
2n+j+1Pn+j,n(x) + δ

(j−1,0)
2n+j+1Pn+j−1,n(x).

The four polynomials Pn+j,n+1 , Pn+j,n, Pn+j−1,n, Pn+j−1,n−1 are linearly independent, hence
one finds

β
(j,0)
2n+j+1 − c(j,0)

n = β
(j−1,0)
2n+j+1,

γ
(j,0)
2n+j+1 + c(j,0)

n β
(j,0)
2n+j+1 − c(j,0)

n β
(j−1,0)
2n+j = γ

(j−1,0)
2n+j+1,

δ
(j,0)
2n+j+1 − c(j,0)

n γ
(j−1,0)
2n+j = δ

(j−1,0)
2n+j+1,

c
(j,0)
n−1δ

(j,0)
2n+j+1 − c(j,0)

n δ
(j−1,0)
2n+j = 0. (2.21)

The first three relations give (2.13) and the last equation gives (2.14) if we replace δ
(j,0)
2n+j+1

by the third equation in (2.13). For n = 0 the relation (2.19) becomes

xPj,1(x) = Pj+1,1(x) +
(

β
(j,0)
j+1 − c

(j,0)
0

)

Pj,1(x)

+
(

γ
(j,0)
j+1 + c

(j,0)
0 β

(j,0)
j+1 − c

(j,0)
0 β

(j−1,0)
j

)

Pj,0(x)

− c
(j,0)
0 γ

(j−1,0)
j Pj−1,0(x),

and if we compare the coefficient of Pj−1,0(x) with the corresponding coefficient in (2.20)
when n = 0, then

−c
(j,0)
0 γ

(j−1,0)
j = δ

(j−1,0)
j+1 ,

which gives (2.15).

The Riccati equation (2.14) can be solved explicitly if all the step-line coefficients at

shift j − 1 are known. The substitution c
(j,0)
n = 1/d

(j,0)
n gives

d(j,0)
n =

d
(j,0)
n−1δ

(j−1,0)
2n+j − γ

(j−1,0)
2n+j

δ
(j−1,0)
2n+j+1

,

which is a first order linear recurrence relation. Its solution is

d(j,0)
n =

(

n
∑

i=1

γ
(j−1,0)
2i+j

δ
(j−1,0)
2i+j+1

i
∏

k=1

δ
(j−1,0)
2k+j+1

δ
(j−1,0)
2k+j

+ d
(j,0)
0

)

n
∏

k=1

δ
(j−1,0)
2k+j

δ
(j−1,0)
2k+j+1

. (2.22)

However, this is only useful if one has explicit expressions for the step-line coefficients.
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An algorithm for computing the recurrence coefficients for the shifted step-line is as
follows. Assume that all the recurrence coefficients β

(j−1,0)
n , γ

(j−1,0)
n , δ

(j−1,0)
n are known,

then one first computes the auxiliary sequence (c
(j,0)
n )n≥0 recursively by using (2.14).

Once this is done, one uses the relations (2.12) and (2.13) to get the recurrence coef-
ficients for the shifted step-line with shift j. The following Maple procedure computes
(β

(j,0)
n )j≤n≤2N−j+1, (γ

(j,0)
n )j+1≤n≤2N−j+1 and (δ

(j,0)
n )j+2≤n≤2N−j+1 for 1 ≤ j ≤ J .

shift_j:=proc(N,J)

local n,j;

for n from 0 to 2*N+J+1 do

b[n](0):=beta0(n);

g[n](0):=gamma0(n);

d[n](0):=delta0(n);

end do;

for j from 1 to J do

g[j](j):=0;

d[j](j):=0;

d[j+1](j):=0;

c[0](j):=-d[j+1](j-1)/g[j](j-1);

b[j](j):=b[j](j-1)-c[0](j);

b[j+1](j):=b[j+1](j-1)+c[0](j);

g[j+1](j):=g[j+1](j-1)+c[0](j)*(b[j](j-1)-b[j+1](j));

for n from 1 to N-j do

c[n](j):=c[n-1](j)*d[2*n+j+1](j-1)/(d[2*n+j](j-1)-c[n-1](j)*g[2*n+j](j-1));

b[2*n+j](j):=b[2*n+j](j-1)-c[n](j);

g[2*n+j](j):=g[2*n+j](j-1);

d[2*n+j](j):=d[2*n+j](j-1)-c[n-1](j)*g[2*n+j](j-1);

b[2*n+j+1](j):=b[2*n+j+1](j-1)+c[n](j);

g[2*n+j+1](j):=g[2*n+j+1](j-1)+c[n](j)*(b[2*n+j](j-1)-b[2*n+j+1](j));

d[2*n+j+1](j):=d[2*n+j+1](j-1)+c[n](j)*g[2*n+j](j-1);

end do;

end do;

end proc;

Remark: Observe that (2.14) and the third equation in (2.12) give

c(j,0)
n = c

(j,0)
n−1

δ
(j−1,0)
2n+j+1

δ
(j,0)
2n+j

,

and (2.21) gives

c(j,0)
n = c

(j,0)
n−1

δ
(j,0)
2n+j+1

δ
(j−1,0)
2n+j

.

Comparing both expressions gives

δ
(j,0)
2n+j+1 =

δ
(j−1,0)
2n+j+1δ

(j−1,0)
2n+j

δ
(j,0)
2n+j

.

Hence one may therefore replace lines 16–24 in the Maple procedure by
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for n from 1 to N-j do

d[2*n+j](j):=d[2*n+j](j-1)-c[n-1](j)*g[2*n+j](j-1);

d[2*n+j+1](j):=d[2*n+j+1](j-1)*d[2*n+j](j-1)/d[2*n+j](j);

c[n](j):=c[n-1](j)*d[2*n+j+1](j-1)/(d[2*n+j](j);

b[2*n+j](j):=b[2*n+j](j-1)-c[n](j);

g[2*n+j](j):=g[2*n+j](j-1);

b[2*n+j+1](j):=b[2*n+j+1](j-1)+c[n](j);

g[2*n+j+1](j):=g[2*n+j+1](j-1)+c[n](j)*(b[2*n+j](j-1)-b[2*n+j+1](j));

end do;

The formulas in Theorem 2.1 and the computations in the algorithm hold provided
δ

(j,0)
2n+j 6= 0. If δ

(j,0)
2n+j = 0 then we cannot compute c

(j,0)
n and this quantity is needed in most

of the other formulas for the j-shifted step-line. The condition δ
(j,0)
2n+j 6= 0 for all j ≥ 1 and

n ≥ 1 is a sufficient condition that implies that all the required recurrence coefficients can
be computed and hence implies that the multi-indices (n + k, n) are normal.

There is a similar result for the recurrence coefficients (β
(0,k)
n , γ

(0,k)
n , δ

(0,k)
n ).

Theorem 2.2. One has for all k ≥ 0

β
(0,k+1)
2n+k = β

(0,k)
2n+k + c(0,k)

n , n ≥ 0,

γ
(0,k+1)
2n+k = γ

(0,k)
2n+k, n ≥ 1,

δ
(0,k+1)
2n+k = δ

(0,k)
2n+k + c

(0,k)
n−1 γ

(0,k)
2n+k, n ≥ 1.

and

β
(0,k+1)
2n+k+1 = β

(0,k)
2n+k+1 − c(0,k)

n , n ≥ 0,

γ
(0,k+1)
2n+k+1 = γ

(0,k)
2n+k+1 − c(0,k)

n (β
(0,k)
2n+k − β

(0,k+1)
2n+k+1), n ≥ 0,

δ
(0,k+1)
2n+k+1 = δ

(0,k)
2n+k+1 − c(0,k)

n γ
(0,k)
2n+k, n ≥ 1,

where (c
(0,k)
n )n≥0 is the solution of the Riccati type difference equation

c(0,k)
n =

c
(0,k)
n−1 δ

(0,k)
2n+k+1

δ
(0,k)
2n+k + c

(0,k)
n−1 γ

(0,k)
2n+k

, (2.23)

with initial condition

c
(0,k)
0 =

δ
(0,k)
k+1

γ
(0,k)
k

, k ≥ 1, (2.24)

and for k = 0 the c
(0,0)
0 is a free parameter.

Proof. The proof is very similar to the proof of Theorem 2.1, but one uses the recurrence
relation (2.8) and the relations (2.6) and (2.10).

An important difference is that one also needs c
(0,0)
0 which one can find by taking n = 0

and k = 0 in the relation for β
(0,k+1)
2n+k , giving

c
(0,0)
0 = β

(0,1)
0 − β

(0,0)
0 .
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Here β
(0,0)
0 = β0 is known as the first of the step-line recurrence coefficients, but β

(0,1)
0 can

not be obtained in terms of the step-line recurrence coefficients. Recall that the step-line
recurrence coefficients do not determine the measures µ1 and µ2 but only determine µ1

and for the second measure any convex combination of µ1 and µ2 is possible. This degree
of freedom is reflected in c

(0,0)
0 being a a free parameter.

Again, the Ricatti equation (2.23) can be solved explicitly. The substitution c
(0,k)
n =

1/d
(0,k)
n gives

d(0,k)
n =

d
(0,k)
n−1 δ

(0,k)
2n+k + γ

(0,k)
2n+k

δ
(0,k)
2n+k+1

,

and this first order linear recurrence has the following expression as solution

d(0,k)
n =

(

n
∑

i=1

γ
(0,k)
2i+k

δ
(0,k)
2i+k+1

i
∏

l=1

δ
(0,k)
2l+k+1

δ
(0,k)
2l+k

+ d
(0,k)
0

)

n
∏

l=1

δ
(0,k)
2l+k

δ
(0,k)
2l+k+1

. (2.25)

The following Maple procedure computes (β
(0,k+1)
n )k≤n≤2N−k+1 , (γ

(0,k+1)
n )k+1≤n≤2N−k+1

and (δ
(0,k+1)
n )k+2≤n≤2N−k+1 for 0 ≤ k ≤ K. It requires as extra input the first two moments

of the measure µ2, i.e., m(1, 2) = m1(µ2) and m(0, 2) = m0(µ2).

shift_k:=proc(N,K)

local n,k;

for n from 0 to 2*N+K+1 do

b[n](0) := beta0(n);

g[n](0) := gamma0(n);

d[n](0) := delta0(n);

end do;

c[0](0) := m(1,2)/m(0,2)-b[0](0);

for k from 0 to K do

g[k](k+1):=0;

d[k](k+1):=0;

d[k+1](k+1):=0;

b[k](k+1):=b[k](k)+c[0](k);

b[k+1](k+1):=b[k+1](k)-c[0](k);

g[k+1](k+1):=g[k+1](k)-c[0](k)*(b[k](k)-b[k+1](k+1));

for n from 1 to N-k do

c[n](k):=c[n-1](k)*d[2*n+k+1](k)/(d[2*n+k](k)+c[n-1](k)*g[2*n+k](k));

b[2*n+k](k+1):=b[2*n+k](k)+c[n](k);

g[2*n+k](k+1):=g[2*n+k](k);

d[2*n+k](k+1):=d[2*n+k](k)+c[n-1](k)*g[2*n+k](k);

b[2*n+k+1](k+1):=b[2*n+k+1](k)-c[n](k);

g[2*n+k+1](k+1):=g[2*n+k+1](k)-c[n](k)*(b[2*n+k](k)-b[2*n+k+1](k+1));

d[2*n+k+1](k+1):=d[2*n+k+1](k)-c[n](k)*g[2*n+k](k);

end do;

c[0](k+1):=d[k+2](k+1)/g[k+1](k+1);

end do;

end proc;
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Remark: One has

c(0,k)
n = c

(0,k)
n−1

δ
(0,k)
2n+k+1

δ
(0,k+1)
2n+k

,

and in a way similar as before one has

δ
(0,k+1)
2n+k+1 =

δ
(0,k)
2n+k+1δ

(0,k)
2n+k

δ
(0,k+1)
2n+k

.

Hence one can replace the lines 16–24 in the above procedure by

for n from 1 to N-k do

d[2*n+k](k+1):=d[2*n+k](k)+c[n-1](k)*g[2*n+k](k);

d[2*n+k+1](k+1):=d[2*n+k+1](k)*d[2*n+k](k)/d[2*n+k](k+1);

c[n](k):=c[n-1](k)*d[2*n+k+1](k)/d[2*n+k](k+1);

b[2*n+k](k+1):=b[2*n+k](k)+c[n](k);

g[2*n+k](k+1):=g[2*n+k](k);

b[2*n+k+1](k+1):=b[2*n+k+1](k)-c[n](k);

g[2*n+k+1](k+1):=g[2*n+k+1](k)-c[n](k)*(b[2*n+k](k)-b[2*n+k+1](k+1));

end do;

A sufficient condition for normality of the multi-indices (n, n+k) is now that δ
(0,k+1)
2n+k 6=

0 for all n ≥ 1 and k ≥ 0.

2.2 From shifted step-line to nearest neighbor recurrence coef-

ficients

Our next step is to find the nearest neighbor recurrence coefficients an,m, bn,m, cn,m, dn,m

in (2.2)–(2.3) from the recurrence coefficients on the shifted step-lines.

Theorem 2.3. The coefficients of the nearest neighbor recurrence relations (2.2)–(2.3)
are for n ≥ 0 and j ≥ 1 given by

cn+j,n = β
(j,0)
2n+j,

dn+j,n = cn+j,n + c(j,0)
n ,

an+j,n = −
δ

(j−1,0)
2n+j+1

c
(j,0)
n

,

bn+j,n = γ
(j,0)
2n+j − an+j,n.

and for n ≥ 1 and k ≥ 0

cn,n+k = β
(0,k)
2n+k,

dn,n+k = cn,n+k + c(0,k)
n ,

an,n+k = −δ
(0,k)
2n+k

c
(0,k)
n−1

,

bn,n+k = γ
(0,k)
2n+k − an,n+k.

The initial coefficients are a0,0 = b0,0 = 0, c0,0 = β0 and d0,0 is a free parameter.
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Note that if b0(µ1) = m1(µ1)/m0(µ1) and b0(µ2) = m1(µ2)/m0(µ2) are the first
recurrence coefficients of the orthogonal polynomials for µ1 and µ2 respectively, then
c0,0 = b0(µ1) and d0,0 = b0(µ2). Hence the particular choice d0,0 = m1(µ2)/m0(µ2) gives
the nearest neighbor recurrence coefficients of the multiple orthogonal polynomials for the
measures µ1 and µ2. Another choice of d0,0 still gives µ1 as the first measure, but a linear
combination of µ1 and µ2 for the second measure.

Proof. We start from (2.16) and replace the polynomial Pn+j−1,n−1 by using (2.9) to find

xPn+j,n(x) = Pn+j+1,n(x) + β
(j,0)
2n+jPn+j,n(x) + γ

(j,0)
2n+jPn+j,n−1(x)

+
δ

(j,0)
2n+j

c
(j,0)
n−1

(Pn+j,n−1(x) − Pn+j−1,n(x)) .

Now we compare this with the recurrence relation (2.2) with n replaced by n + j and
m = n, then

cn+j,n = β
(j,0)
2n+j ,

bn+j,n = γ
(j,0)
2n+j +

δ
(j,0)
2n+j

c
(j,0)
n−1

,

an+j,n = −
δ

(j,0)
2n+j

c
(j,0)
n−1

.

Use the last equation in (2.21) to obtain

an+j,n = −
δ

(j−1,0)
2n+j+1

c
(j,0)
n

,

so that the formula is valid for all n ≥ 0. For dn+j,n we use the relation (2.11) to find

dn+j,n = cn+j,n + c(j,0)
n .

This gives the first part of the theorem.
For the second part of the theorem we use (2.8) with n replaced by 2n + k and by

(2.6) this gives

xPn,n+k(x) = Pn+1,n+k(x) + β
(0,k)
2n+kPn,n+k(x) + γ

(0,k)
2n+kPn,n+k−1(x) + δ

(0,k)
2n+kPn−1,n+k−1(x).

(2.26)
replace the polynomial Pn−1,n+k−1 by using (2.10) (but with n replaced by n − 1) to find

xPn,n+k(x) = Pn+1,n+k(x) + β
(0,k)
2n+kPn,n+k(x) + γ

(0,k)
2n+kPn,n+k−1(x)

+
δ

(0,k)
2n+k

c
(0,k)
n−1

(Pn,n+k−1(x) − Pn−1,n+k(x)) .

Comparing with (2.2) with m = n + k then gives

cn,n+k = β
(0,k)
2n+k,

an,n+k = −δ
(0,k)
2n+k

c
(0,k)
n−1

,

bn,n+k = γ
(0,k)
2n+k +

δ
(0,k)
2n+k

c
(0,k)
n−1

.
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For dn,n+k we use (2.11) to find

dn,n+k = cn,n+k + c(0,k)
n .

This gives the second part of the theorem.

In Maple one can compute the nearest neighbor recurrence coefficients using the fol-
lowing procedure:

nncoef:=proc(n,m)

local j,k;

if m<n then j:=n-m;

shift_j(n,j);

c(n,m):= b[2*m+j](j);

d(n,m):= c(n,m)+c[m](j);

a(n,m):= -d[2*m+j+1](j-1)/c[m](j);

b(n,m):= g[2*m+j](j)-a(n,m);

else k:=m-n;

shift_k(m,k);

c(n,m):= b[2*n+k](k);

d(n,m):= c(n,m)+c[n](k);

a(n,m):= -d[2*n+k](k)/c[n-1](k);

b(n,m):= g[2*n+k](k)-a(n,m);

end if;

Vector([c(n,m), d(n,m), a(n,m), b(n,m)]);

end proc;

2.3 The recurrence coefficients of the marginal measures

Now that we know the nearest neighbor recurrence coefficients, we can find the recurrence
coefficients of the orthogonal polynomials Pn(x; µ1) for the measure µ1 and Pn(x; µ2) for
the measure µ2. The recurrence relations for these monic orthogonal polynomials are

xPn(x; µi) = Pn+1(x; µi) + bn(µi)Pn(x; µi) + a2
n(µi)Pn−1(x; µi).

Observe that Pn(x; µ1) = Pn,0(x) and Pm(x; µ2) = P0,m(x), so if we compare with the
nearest neighbor recurrence relations (2.2) and (2.3) we find

bj(µ1) = cj,0, a2
j(µ1) = aj,0,

and
bk(µ2) = d0,k, a2

k(µ2) = b0,k.

If we use Theorem 2.3 then this gives

bj(µ1) = β
(j,0)
j , a2

j(µ1) = γ
(j−1,0)
j , (2.27)

where we used (2.15) to simplify the expression for aj,0. The recurrence coefficients for µ2

can be obtained more easily from (2.26) with n = 0, which gives

xP0,k(x) = P1,k(x) + β
(0,k)
k P0,k(x) + γ

(0,k)
k P0,k−1(x),
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and if we replace P1,k by using (2.10) with n = 0, then

xP0,k(x) = P0,k+1(x) +
(

c
(0,k)
0 + β

(0,k)
k

)

P0,k(x) + γ
(0,k)
k P0,k−1(x),

so that
bk(µ2) = β

(0,k)
k + c

(0,k)
0 , a2

k(µ2) = γ
(0,k)
k . (2.28)

Observe that these results allow us to find the recurrence coefficients of the orthogonal
polynomials for the measures µ1 and µ2 if the the recurrence coefficients of the step-line
multiple orthogonal polynomials are known. There are examples of multiple orthogo-
nal polynomials for which the recurrence coefficients of marginal orthogonal polynomials
are not known. Such a situation occurs for instance in the case of multiple orthogo-
nal polynomials associated to the modified Bessel functions of the first and second kind.
In 1990 A.P. Prudnikov posed an open problem to find the orthogonal polynomials for
the modified Bessel functions of the second kind Kν(2

√
x) on [0,∞) (see [19, Problem

9 on pp. 239–241]). It turned out that in this case it is more natural to consider mul-
tiple orthogonal polynomials for a pair of modified Bessel functions of the second kind
Kν(2

√
x), Kν+1(2

√
x). This was shown by Van Assche and Yakubovich in [21] (see also

[3]) and later for the modified Bessel functions of the first kind by Coussement and Van
Assche in [5] (see also [7]). Our algorithm allows us to find the recurrence coefficients of
those polynomials, even though we are not able to find explicit expressions for them. If
we start from the step-line recurrence coefficients given in [21, Thm. 4]

βn = (n + α + 1)(3n + α + 2ν) − (α + 1)(ν − 1),

γn = n(n + α)(n + α + ν)(3n + 2α + ν),

δn = n(n − 1)(n + α)(n + α − 1)(n + α + ν)(n + α + ν − 1),

for the multiple orthogonal polynomials with

dµ1(x) = xα+ν/2Kν(2
√

x), dµ2(x) = xα+(ν+1)/2Kν+1(2
√

x),

and put α = 0 and ν = 0, then Table 1 gives the results of our algorithm for the recurrence
coefficients (an, bn) of the weight K0(2

√
x).

n an bn

0 – 1
1 1.7320508075688772935 9.6666666666666666667
2 8.5374989832437982487 28.186991869918699187
3 20.265386777687130909 56.571895845674401834
4 36.925214834648582674 94.823932737801348717
5 58.518554562959399225 142.94410230778264607
6 85.045955898223602580 200.93289913274452209
7 116.50767686120789662 268.79060407933245800
8 152.90385976282648737 346.51739199614374938
9 194.23459164836084172 434.11337913848760712

10 240.49992974325090503 531.57864673346522330

Table 1: Recurrence coefficients of orthogonal polynomials for K0(2
√

x)

Note that the values for the coefficients an presented in Table 1 are the same as the
ones that were computed in [19] using the moments.
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3 From marginal to nearest neighbor

In the previous section we started from the step-line recurrence coefficients and we showed
how to find the nearest neighbor recurrence coefficients and in particular the recur-
rence coefficients of the orthogonal polynomials for the marginal measures µ1 and µ2.
In this section we will investigate the inverse problem: suppose the recurrence coefficients
(a2

n+1(µi), bn(µi))n≥0 are given for i ∈ {1, 2}. How can one find all the nearest neigh-
bor recurrence coefficients (an,m, bn,m, cn,m, dn,m) and the step-line recurrence coefficients
(βn, γn, δn)?

3.1 The nearest neighbor recurrence coefficients

The nearest neighbor recurrence coefficients satisfy a system of non-linear partial dif-
ference equations, as was noted in [18]. We will briefly show how to find these partial
difference equations. The nearest neighbor recurrence relations (2.2) and (2.3) can be
written in a matrix form as

Yn+1,m = R1(n, m)Yn,m, Yn,m+1 = R2(n, m)Yn,m,

where

Yn,m =





Pn,m(x)
Pn−1,m(x)
Pn,m−1(x)





and R1 and R2 are the two transfer matrices

R1(n, m) =





x − cn,m −an,m −bn,m

1 0 0
1 0 dn,m−1 − cn,m−1



 ,

and

R2(n, m) =





x − dn,m −an,m −bn,m

1 cn−1,m − dn−1,m 0
1 0 0



 .

Now there are two ways of finding Yn+1,m+1 from Yn,m using these transfer matrices: one
way is to first compute Yn+1,m and then to increase m by one, which gives

Yn+1,m+1 = R2(n + 1, m)R1(n, m)Yn,m.

Another way is to first compute Yn,m+1 and then to increase n by one, giving

Yn+1,m+1 = R1(n, m + 1)R2(n, m)Yn,m.

Comparing both expressions gives the matrix relation

R2(n + 1, m)R1(n, m) = R1(n, m + 1)R2(n, m).
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If one computes the entries of this matrix identity, then one finds the following partial
difference relations (see also [18, Thm. 3.1]):

dn+1,m − dn,m = cn,m+1 − cn,m, (3.1)

an+1,m + bn+1,m − (an,m+1 + bn,m+1) = det

(

dn+1,m dn,m

cn,m+1 cn,m

)

, (3.2)

an,m+1

an,m
=

cn,m − dn,m

cn−1,m − dn−1,m
, (3.3)

bn+1,m

bn,m
=

cn,m − dn,m

cn,m−1 − dn,m−1
. (3.4)

We will show that these partial difference equations with boundary conditions

an,0 = a2
n(µ1), bn,0 = 0, cn,0 = bn(µ1), n ≥ 0, (3.5)

and
a0,m = 0, b0,m = a2

m(µ2), d0,m = bm(µ2), m ≥ 0, (3.6)

where a2
n(µi), bn(µi) are the recurrence coefficients of the monic orthogonal polynomials

for the measure µi (i = 1, 2) (with a2
0(µ1) = a2

0(µ2) = 0), can be solved recursively to find
the nearest neighbor recurrence coefficients for the multiple orthogonal polynomials with
the measures (µ1, µ2).

Theorem 3.1. Suppose (a2
n(µi))n≥1 and (bn(µi))n≥0 are the recurrence coefficients of the

monic orthogonal polynomials Pn(x; µi) for the measure µi, i.e.,

xPn(x; µi) = Pn+1(x; µi) + bn(µi)Pn(x; µi) + a2
n(µi)Pn−1(x; µi), n ≥ 0,

with P0(x; µi) = 1 and P−1(x; µi) = 0. Then the nearest neighbor recurrence coefficients

for the type II multiple orthogonal polynomials can be computed recursively by (3.1)–(3.4),
using the boundary conditions (3.5)–(3.6), provided cn,m 6= dn,m for all n, m ≥ 0.

Proof. We use induction on k, where k = n+m is the length of the multi-index (n, m) and
show how to compute an,m, bn,m, cn,m, dn,m when the recurrence coefficients are known for
multi-indices of length less than k. For k = 0 we have that a0,0 = b0,0 = 0 (these
appear as coefficients of P−1,0 and P0,−1 and hence are not needed) and c0,0 = b0(µ1),
d0,0 = b0(µ2). Hence the case k = 0 is settled. For k = 1 we already have a1,0 =
a2

1(µ1), c1,0 = b1(µ1), b0,1 = a2
1(µ2), d0,1 = b1(µ2), and we also defined a0,1 = b1,0 = 0

(these appear as coefficients for P−1,1 and P1,−1 and are not needed). This leaves only
to determine c0,1 and d1,0. If we use (3.1) and (3.2) for n = m = 0, then this gives the
system of equations

d1,0 − c0,1 = d0,0 − c0,0,

d1,0c0,0 − c0,1d0,0 = a1,0 + b1,0 − a0,1 − b0,1.

This is a linear system of two equations for c0,1 and d1,0. The determinant of the system
is d0,0 − c0,0 and hence this system has a unique solution whenever b0(µ1) 6= b0(µ2).

Suppose next that we know all the nearest neighbor recurrence coefficients for multi-
indices (n, m) of length ≤ k. From (3.3) we then find

an,m+1 = an,m
cn,m − dn,m

cn−1,m − dn−1,m
,
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Figure 2: Moving along the lines m + n = k

and from (3.4) we find

bn+1,m = bn,m
cn,m − dn,m

cn,m−1 − dn,m−1
.

If we replace n by ` and m by k − `, then this gives

a`,k−`+1 = a`,k−`
c`,k−` − d`,k−`

c`−1,k−` − d`−1,k−`
, 1 ≤ ` ≤ k. (3.7)

For ` = 0 and ` = k + 1 we use the boundary conditions

a0,k+1 = 0, ak+1,0 = a2
k+1(µ1).

In a similar way

b`+1,k−` = b`,k−`
c`,k−` − d`,k−`

c`,k−`−1 − d`,k−`−1
, 0 ≤ ` ≤ k − 1. (3.8)

For ` = −1 and ` = k we use the boundary conditions

b0,k+1 = a2
k+1(µ2), bk+1,0 = 0.

The expressions on the right of (3.7)–(3.8) contain coefficients of multi-indices of length
k and k − 1 and hence they are known. If we use (3.1) and (3.2), then

dn+1,m − cn,m+1 = dn,m − cn,m,

dn+1,mcn,m − cn,m+1dn,m = an+1,m + bn+1,m − an,m+1 − bn,m+1,

which is a linear system for cn,m+1 and dn+1,m with determinant dn,m − cn,m. This system
has a unique solution whenever cn,m 6= dn,m. This solution is

cn,m+1 = cn,m +
an+1,m + bn+1,m − an,m+1 − bn,m+1

cn,m − dn,m

,

and

dn+1,m = dn,m +
an+1,m + bn+1,m − an,m+1 − bn,m+1

cn,m − dn,m
.

Replacing n by ` and m by k − ` then gives

c`,k−`+1 = c`,k−` +
a`+1,k−` + b`+1,k−` − a`,k−`+1 − b`,k−`+1

c`,k−` − d`,k−`
, 0 ≤ ` ≤ k, (3.9)
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and for ` = k + 1 we use the boundary condition

ck+1,0 = bk+1(µ1).

Similarly we have

d`+1,k−` = d`,k−` +
a`+1,k−` + b`+1,k−` − a`,k−`+1 − b`,k−`+1

c`,k−` − d`,k−`
, 0 ≤ ` ≤ k, (3.10)

and for ` = −1 we use the boundary condition

d0,k+1 = bk+1(µ2).

We can implement this in Maple using the following procedure which computes an,m,
bn,m, cn,m, dn,m for n+m ≤ N+M . It requires the input a1(n) = a2

n(µ1) and b1(n) = bn(µ1)
for the first measure µ1 and a2(n) = a2

n(µ2) and b2(n) = bn(µ2) for the second measure
µ2, for 0 ≤ n ≤ N + M , where we set a2

0(µ1) = 0 = a2
0(µ2). In particular it gives the

coefficients cN,M , dN,M , aN,M , bN,M which will be given in the output explicitly.

IP:=proc(N,M)

local n,m,k;

for n from 0 to N+M do

c(n,0):=b1(n);

a(n,0):=a1(n);

b(n,0):=0;

end do;

for m from 0 to N+M do

d(0,m):=b2(m);

a(0,m):=0;

b(0,m):=a2(m);

end do;

for n from 1 to N+M do

for k from 1 to n-1 do

a(k,n-k):=a(k,n-k-1)*(c(k,n-k-1)-d(k,n-k-1))/(c(k-1,n-k-1)-d(k-1,n-k-1));

b(k,n-k):=b(k-1,n-k)*(c(k-1,n-k)-d(k-1,n-k))/(c(k-1,n-k-1)-d(k-1,n-k-1));

end do;

for k from 1 to n do

c(n-k,k):=c(n-k,k-1)

+(a(n-k+1,k-1)+b(n-k+1,k-1)-a(n-k,k)-b(n-k,k))/(c(n-k,k-1)-d(n-k,k-1));

end do;

for k from 1 to n do

d(k,n-k):=c(k-1,n-k+1)-c(k-1,n-k)+d(k-1,n-k);

end do;

end do;

Vector([c(N,M),d(N,M),a(N,M),b(N,M)]);

end proc;
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3.2 The step-line recurrence coefficients

Next we will show how to compute the recurrence coefficients in the step-line recurrence
(2.1) if one knows the nearest neighbor recurrence coefficients.

Theorem 3.2. Suppose that the nearest neighbor recurrence coefficients are given. Then

the step-line recurrence coefficients in (2.1) are given by

β2n = cn,n, n ≥ 0,

γ2n = an,n + bn,n, n ≥ 1,

δ2n = an,n(cn−1,n−1 − dn−1,n−1), n ≥ 1,

and

β2n+1 = dn+1,n, n ≥ 0,

γ2n+1 = an+1,n + bn+1,n, n ≥ 0,

δ2n+1 = bn+1,n(dn,n−1 − cn,n−1), n ≥ 1.

Proof. From the nearest neighbor recurrence relation (2.2) we find

xPn,n(x) = Pn+1,n(x) + cn,nPn,n(x) + an,nPn−1,n(x) + bn,nPn,n−1(x).

Use (2.4) to replace Pn−1,n to find

xPn,n(x) = Pn+1,n(x) + cn,nPn,n(x) + (an,n + bn,n)Pn,n−1(x)

+ an,n(cn−1,n−1 − dn−1,n−1)Pn−1,n−1(x).

If we compare this with (2.1) with n replaced by 2n, then we find the relations for the
even recurrence coefficients. The proof for the odd recurrence coefficients is similar: use
(2.3) to find

xPn+1,n(x) = Pn+1,n+1(x) + dn+1,nPn+1,n(x) + an+1,nPn,n(x) + bn+1,nPn+1,n−1(x),

and replace Pn+1,n−1 using (2.4), giving

xPn+1,n(x) = Pn+1,n+1(x) + dn+1,nPn+1,n(x) + (an+1,n + bn+1,n)Pn,n(x)

+ bn+1,n(dn,n−1 − cn,n−1)Pn,n−1(x).

Comparing with the recurrence relation (2.1) with n replaced by 2n+1 gives the required
result.

3.3 The nearest neighbor coefficients for general r

For general r there are more partial difference equations for the nearest neighbor recur-
rence coefficients. The nearest neighbor recurrence relations (1.4) can be written as

Y~n+~ek
= Rk(~n)Y~n, 1 ≤ k ≤ r,
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where

Y~n =











P~n(x)
P~n−~e1

(x)
...

P~n−~er(x)











and Rk(~n) are (r + 1) × (r + 1) transfer matrices given by

Rk(~n) =



















x − b~n,k −a~n,1 · · · −a~n,k · · · −a~n,r

1 b~n−~e1,1 − b~n−~e1 ,k · · · 0 · · · 0
...

. . .
...

1 0 · · · 0 · · · 0
...

. . .
...

1 0 · · · 0 · · · b~n−~er ,r − b~n−~er ,k



















.

Expressing that Y~n+~ei+~ej
can be computed in two ways when i 6= j is done by

Ri(~n + ~ej)Rj(~n) = Rj(~n + ~ei)Ri(~n),

and this gives the following partial difference relations [18, Thm. 3.2]: for all 1 ≤ i 6= j ≤ r
one has

b~n+~ei,j − b~n,j = b~n+~ej ,i − b~n,i, (3.11)
r
∑

k=1

a~n+~ej ,k −
r
∑

k=1

a~n+~ei,k = det

(

b~n+~ej ,i b~n,i

b~n+~ei,j b~n,j

)

, (3.12)

a~n+~ej ,i

a~n,i
=

b~n,j − b~n,i

b~n−~ei,j − b~n−~ei,i
. (3.13)

Theorem 3.3. Suppose the recurrence coefficients (a2
n(µi))n≥1 and (bn(µi))n≥0 of the

monic orthogonal polynomials for the measure µi are known (1 ≤ i ≤ r). Then the nearest

neighbor recurrence coefficients a~n,j, b~n,j (1 ≤ j ≤ r) can be computed from (3.11)–(3.13)
and the boundary conditions

an~ej ,j = a2
n(µj), bn~ej ,j = bn(µj), n ≥ 0, 1 ≤ j ≤ r,

where a2
0(µj) = 0, and

an~ei,j = 0, n ≥ 0, i 6= j,

provided that b~n,i 6= b~n,j for all multi-indices ~n ∈ N
r and 1 ≤ i 6= j ≤ r.

Proof. We use induction on the length N = |~n| of the multi-index ~n. For |~n| = 0 we see
that a~0,j = 0 and b~0,j = b0(µj) for 1 ≤ j ≤ r. If |~n| = 1 then ~n = ~ei for some i with
1 ≤ i ≤ r. Therefore a~n,j = a~ei,j = 0 whenever i 6= j and a~ei,i = a2

1(µi). Furthermore
b~n,i = b~ei,i = b1(µi). Using (3.11) we also find

b~ei,j = b~ej ,i + b0(µj) − b0(µi),

and (3.12) gives

b~ej ,ib0(µj) − b~ei,jb0(µi) =
r
∑

k=1

a~ej ,k −
r
∑

k=1

a~ei,k.
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Solving this linear system gives for i 6= j

b~ej ,i = b0(µi) +

∑r
k=1 a~ej ,k −

∑r
k=1 a~ei,k

b0(µj) − b0(µi)
,

provided b0(µi) 6= b0(µj). Hence all the nearest neighbor recurrence coefficients are known
for |~n| = 1.

Suppose that we know all the nearest neighbor recurrence coefficients with multi-
indices of length ≤ N . Let ~m be a multi-index of length N + 1. In order to compute a~m,i

we choose a j 6= i such that mi ≥ 1 and write ~m = ~n + ~ej, where ~n is a multi-index of
length N . Then from (3.13) we find that

a~m,i = a~n+~ej ,i = a~n,i
b~n,j − b~n,i

b~n−~ei,j − b~n−~ei,i
. (3.14)

The coefficients on the right hand side have a multi-indices of length N or N−1 and hence
(3.14) allows us to compute a~m,i when mi = ni ≥ 1. If mi = 0 then a~m,i is the coefficient
of the polynomial P~m−~ei

which is 0, hence we don’t need this coefficient and we can set it
equal to 0. If mj = 0 for all j 6= i then ~m = (N + 1)~ei and we have a(N+1)~ei,i = a2

N+1(µi).
If i 6= j then the equations (3.11) and (3.12) are a linear system for the two unknowns

b~n+~ei,j and b~n+~ej ,i. The solution is

b~n+~ej ,i = b~n,i +

∑r
k=1 a~n+~ej ,k −

∑r
k=1 a~n+~ei,k

b~n,j − b~n,i
, (3.15)

provided that b~n,j 6= b~n,i. Hence if there exists j 6= i with mj ≥ 1, then ~m = ~n + ~ej,
and we can compute b~m,i from (3.15). If mj = 0 for all j 6= i then ~m = (N + 1)~ei and
b(N+1)~ei,i = bN+1(µi).
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