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Abstract 26 

Acyclic nucleoside phosphonates (ANPs) are well-known for their antiviral properties, three of them being 27 

approved for the treatment of HIV (tenofovir), chronic hepatitis B infections (tenofovir and adefovir) or human 28 

cytomegalovirus retinitis (cidofovir). In addition, cidofovir is mostly used off-label for the treatment of viral 29 

infections caused by several DNA viruses other than cytomegalovirus, including papilloma- and polyomaviruses, 30 

which do not encode for their own DNA polymerases. There is considerable interest in understanding why 31 

cidofovir is effective against these small DNA tumor viruses. Considering that papilloma- and polyomaviruses 32 

cause diseases associated either with productive infection (characterized by high production of infectious virus) 33 

or transformation (where only a limited number of viral proteins are expressed without synthesis of viral 34 

particles), it can be envisaged that cidofovir may act as antiviral and/or antiproliferative agent. 35 

The aim of this review is to discuss the advances performed during the last years in understanding the mode 36 

of action of ANPs as antiproliferative agents giving the fact that current data suggest that their use can be 37 

extended for the treatment of non-viral related malignancies. 38 
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1. Introduction 94 

The acyclic nucleotide analogue cidofovir {(CDV), 1-[(S)-3-hydroxy-2-(phosphonylmethoxy)-propyl]cytosine, 95 

HPMPC}, displays potent activity against a broad spectrum of DNA viruses. The intravenous formulation of CDV 96 

has been formerly licensed for the treatment of human cytomegalovirus (HCMV) retinitis in AIDS patients in 97 

1996. However, this compound is mostly used off-label for the treatment of severe infections caused by various 98 

DNA viruses other than HCMV (De Clercq, 2007,De Clercq, 2011). Different formulations of CDV have been 99 

employed for the management of acyclovir resistant and/or foscavir resistant herpes simplex virus infections, 100 

poxvirus-associated diseases including molluscum contagiosum virus and orf virus, life-threatening adenovirus 101 

and human polyomavirus (PyV) infections as well as human papillomavirus (HPV)-associated hyperproliferative 102 

diseases. A summary of the applications of CDV as an antiviral and antiproliferative agent in the treatment of 103 

human diseases is presented in Table 1. 104 

CDV belongs to the class of acyclic nucleoside phosphonates (ANPs), which are well-known for their antiviral 105 

properties. In addition to CDV, two other ANPs got approval for the treatment of viral infections (De Clercq and 106 

Holy, 2005,De Clercq, 2007,De Clercq, 2006). Tenofovir {PMPA, (R)-9-[2-(phosphonylmethoxy)propyl]adenine} 107 

and adefovir {PMEA, 9-[(2-phosphonylmethoxy)ethyl]adenine} are active against retro- and hepadnaviruses, 108 

their oral prodrugs forms being licensed for the therapy of human immune deficiency virus (HIV) (tenofovir) and 109 

of chronic hepatitis B virus (HBV) infections (tenofovir and adefovir).  110 

ANPs have been shown to enter the cell by an endocytosis-like process and they are converted intracellularly 111 

to their diphosphate metabolites by cellular enzymes (De Clercq and Holy, 2005). The diphosphate forms of the 112 

ANPs (i.e. CDVpp, PMEApp and PMPApp) interact as competitive inhibitors/alternative substrates with respect 113 

to the normal substrates (i.e. dCTP and dATP). Incorporation of one molecule of PMEApp or PMPApp into the 114 

growing DNA strand results inevitably in DNA chain termination whereas CDVpp requires two consecutive 115 

incorporations to efficiently terminate DNA synthesis, as has been shown for HCMV (Xiong et al., 1996,Xiong et 116 

al., 1997). The selective antiviral activity of ANPs results from the higher affinity of the ANPpp for viral DNA 117 

polymerases [that is herpesvirus and poxvirus DNA polymerases and HIV or HBV reverse transcriptases] than for 118 

cellular DNA polymerases α, δ, and ε. Figure 1 illustrates the intracellular activation of CDV and its mode of 119 

action against viruses encoding for their own DNA polymerases. The mechanism of action of ANPs as antiviral 120 

agents has been extensively summarized in various reviews (De Clercq, 2003,Andrei and Snoeck, 2010,De Clercq, 121 

2007,De Clercq, 2011,De Clercq and Holy, 2005) and will not be further discussed here. 122 

Besides their well-recognized antiviral characteristics, CDV as well as some PME derivatives, such as PMEA, 123 

PMEDAP  {9-[(2-phosphonylmethoxy)ethyl]-2,6-diaminopurine} and PMEG {9-[(2-124 

phosphonylmethoxy)ethyl]guanine} (Figure 2), possess antiproliferative properties, although their mechanisms 125 

of antitumor efficacy appear to be dissimilar considering that CDV is not an obligate chain terminator, in 126 
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contrast to the PME derivatives, and that the effects of CDVpp on cellular DNA polymerization are weaker 127 

compared to the diphosphate forms of the PME derivatives (Wolfgang et al., 2009). 128 

In this review, we focus on the antiproliferative activities of ANPs and we debate on their mode of action 129 

against viruses, such as polyomaviruses (PyVs) and papillomaviruses (PVs) that do not encode for their own DNA 130 

polymerases. Also, the potential use of ANPs for the treatment of non-viral induced tumors will be discussed.   131 

   132 

2. Similarities and differences between polyomaviruses (PyVs) and papillomaviruses (PVs) 133 

Until 2000, PVs and PyVs were grouped together in the family Papovaviridae (“pa-po-va” stands for 134 

papilloma- polyoma – vacuolizing agent SV40). Since then, the family Papovaviridae is obsolete and the 135 

Papillomaviridae and Polyomaviridae families were recognized by the International Committee on Taxonomy of 136 

Viruses (ICTV) (Johne et al., 2011,de Villiers et al., 2004)  137 

Table 2 summarizes the main similarities and differences between PyVs and PVs. These two viral families 138 

have a non-enveloped icosahedral capsid (composed of 72 capsomers) surrounding a double-stranded circular 139 

DNA genome of ∼5kbp in PyVs and of ∼8kbp in PVs.  Both viruses use overlapping genes and differential splicing 140 

to pack the maximum amount of genetic material in the minimum space. All open reading frames (ORFs) are 141 

located on only one (PVs) or both (PyVs) strands of DNA, as depicted in Box 1 and Box 2, respectively. Two 142 

classes of genes, the early (E) genes (which are required for viral DNA replication) and late (L) genes (coding for 143 

the structural proteins) exist in both PyVs and PVs. 144 

The HPV genome contains a coding region that encompasses an E region that includes up to seven ORFs 145 

encoding non-structural proteins and the late region comprises the L1 and L2 ORFs. In HPV, a ∼1kbp non-coding 146 

region [also known as the long control region (LCR) or the upstream regulatory region] separates the early and 147 

late regions. The LCR harbours the origin of replication, the transcription start sites and promoter/enhancer 148 

elements that regulate viral gene expression.  In PyV, both strands of DNA code for the viral proteins. One strand 149 

of DNA encodes an overlapping set of multifunctional early regulatory proteins and the other strand encode for 150 

the capsid proteins expressed late in permissive cells. Some PyVs also encode for an agno protein that facilitates 151 

virion assembly. The control region between the early and the late transcription units contains a bidirectional 152 

enhancer, early and late promoters, the viral origin of replication, the viral packaging signal and binding sites for 153 

host transcription factors. 154 

Papillomavirus particles are ∼55 nm diameter, compared to ∼45 nm diameter in PyVs. Papillomaviruses 155 

encode two structural proteins: the major capsid protein, L1 (∼510 amino acids and ∼58 kDa), and the minor 156 

protein L2 (∼470 amino acids and ∼51 kDa). In contrast, PyVs encode for three structural proteins: the major 157 

capsid protein, VP1 (∼370 amino acids and ∼41 kDa) and two minor proteins VP2 (∼350 amino acids and ∼38 158 

kDa) and VP3 (∼230 amino acids and ∼26 kDa). Despite significant differences in amino acid sequences of the 159 

major capsid proteins, both PV and PyV capsids exhibit conserved features, as the 72 capsomers are pentamers 160 
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of the major capsid protein and are arranged on a T=7 icosahedral lattice. Papillomaviridae and Polyomaviridae 161 

differ in capsomer morphology and size. Papillomavirus capsomers are star-shaped, 11 to 12 nm in diameter, 162 

while polyomavirus are barrel-shaped, 8 nm in diameter. Intercapsomer interactions are also slightly different 163 

between these viral families (Belnap et al., 1996). The carboxyl terminus of VP1 or L1 mediates contacts 164 

between the pentamers in the capsid. While disulfite bonds stabilize the interpentamer contacts for L1, both 165 

disulfite bonds and calcium bridges stabilize these contacts for VP1 (Sapp and Day, 2009). Also, differences in 166 

receptor binding and internalization pathway also exist between PVs and PyVs, reviewed in (Sapp and Day, 167 

2009). 168 

Polyomaviruses generally have a narrow host range and limited cell type tropism (Gjoerup and Chang, 2010). 169 

In their natural host, they are able to infect cells giving rise to a productive life cycle causing cell lysis. In 170 

addition, PyVs establish a latent/persistent infection that is asymptomatic and is rarely associated with disease 171 

unless when the immune system is impaired. The full, infectious viral life cycle of human PyVs has only been 172 

studied for JCPyV and BKPyV because no infectious system exists up to now for the other human PyVs (Box 3). 173 

As PyVs are non-enveloped viruses, the viral capsid proteins interact directly with the receptor molecules in 174 

order to gain entry into the cells, being this interaction a major determinant of host and tissue tropism. Entry of 175 

PyVs into the cells includes receptor binding, internalization and intracellular trafficking, virus uncoating and 176 

nuclear entry. Once the uncoated viral genome is inside the cells, the regulatory early proteins [Large tumor 177 

antigen (LT-ag) and small T antigen (sT-ag) are produced in all PyVs. Besides LT-ag and sT-ag, other virus-specific 178 

T-antigen isoforms [such as middle T antigen (mT-ag) in rodent PyVs, the 17kT antigen in SV40 and the 57kT 179 

antigen in Merkel cell polyomavirus (MCPyV)] are derived from alternative splicing of the LT-ag transcript (Cheng 180 

et al., 2009,An et al., 2012,Topalis et al., 2013). Some PyVs can cause tumors and products from the early region, 181 

especially SV40 LT-ag and murine PyV mT-ag, are required for cellular transformation.  182 

In benign lesions induced by PyVs, viral genomes are typically maintained extra-chromosomally. Malignant 183 

progression, as in the case of Merkel cell carcinoma (MCC), is associated with viral integration into host cell 184 

chromatin (Box 1).  Although MCPyV is very common, MCC is very infrequent, most probably because 185 

integration is not part of the MCPyV life cycle and is a rare event. This integration event is involved in the 186 

initiation of the tumor, since MCPyV was found to be clonally integrated into a single site of the host genome, 187 

indicating that viral integration preceded tumor expansion (Feng et al., 2008,DeCaprio and Garcea, 2013). 188 

Recently, an overprinting gene, expressed from an Alternate Frame of the Large T Open reading frame (ALTO) 189 

was identified in MCPyV (Carter et al., 2013). Although ALTO is expressed during replication of MCPyV genome it 190 

is not required for replication. Despite no sequence similarities with the rodent mT-Ag, ALTO was found to be 191 

evolutionary related to mT-ag. 192 

Both PyV and PVs multiply in the nucleus of the infected cell and their circular genome associates with host 193 

encoded histones in the virions. These small DNA tumor viruses widely rely on the host cell DNA replication 194 
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machinery to replicate their genomes.  The LT-ag in PyVs is a multifunctional initiator protein that can 195 

successively recognize the viral origin of replication, assemble into a double hexamer melting and unwinding the 196 

DNA ahead of the replication fork, and interact with the host DNA replication factors (such as polymerase α-197 

primase, replication protein A (RPA) and topoisomerase I (Box 4). The LT-ag also contains several intrinsic 198 

biochemical activities and binds to several cellular proteins, directing the cellular machinery to support viral 199 

replication. LT-ag interacts with heat shock protein 70 (Hsc70) through its DnaJ domain and with members of the 200 

retinoblastoma (Rb) family of pocket proteins (i.e. pRB, p107, and p130) through the LXCXE motif in its N-201 

terminal region. Binding of LT-ag to the Rb family of proteins impairs their role as repressor of E2F transcription 202 

factors promoting transition into S-phase of the cell cycle (Box 5). LT-ag also interacts with the tumor suppressor 203 

protein p53 and functionally inactivates its ability to induce cellular senescence or apoptosis in response to DNA 204 

damage (Cheng et al., 2009,Topalis et al., 2013,An et al., 2012). Thus, the LT-ag has pleiotropic functions, 205 

including initiation and maintenance of viral DNA replication, regulation of early and late genes transcription, 206 

virion assembly and manipulation of the host cell cycle through a number of protein-protein interactions. The 207 

LT-ag has also been shown to induce transformation and immortalization in different in vitro and in vivo models 208 

which can be attributed, in part, to the ability to inactivate the tumor suppressor proteins p53 and pRb.   209 

The LT-ag is such a multifunctional protein that the immediate targets of interaction with host cell regulatory 210 

proteins are very difficult to unleash, even with experimental site-directed mutagenesis of this very large, multi-211 

domain viral protein that forms 12 subunit homo-complexes as well as diverse hetero-complexes with various 212 

host proteins.  Papillomaviruses carry out virtually the same interactions with the host cell as do PyVs, although 213 

PVs do so by using separate gene products. Therefore, the targets and functions of HPV early proteins (i.e. E6, 214 

E7, E1, and E2) are far more assignable than they are with large T-ag, which incorporates all these functions. 215 

Another source of misinformation when comparing PyVs with PVs is that almost all the biology of the PyVs has 216 

been studied using immortalized cell lines grown in monolayers, and many important interactions have been 217 

missed because the cells are constitutively activated for pathways normally targeted for activation (or 218 

suppression) by the viruses in living host organisms. 219 

LT-ag is indispensable for PyV DNA replication which begins when two hexamers of the LT-ag are formed in a 220 

head-to-head orientation at the origin of replication. Most organisms have a replicative DNA helicase that 221 

unwinds DNA as a single hexamer that encircles and translocates along one strand of the duplex DNA and 222 

excludes the complementary strand (known as steric exclusion). It has been a matter of debate whether a single 223 

or a double hexamer of LT-ag encircles and acts on single-stranded DNA or double-stranded DNA during 224 

unwinding. A recent study has clearly shown that a double hexamer of LT-ag assembles at replication origin, and 225 

then separates into two single hexamers and each hexamer unwinds dsDNA by encircling and translocating 226 

along each ssDNA in the 3’- to -5’ direction (Box 4) (Yardimci et al., 2012). Furthermore, the authors described 227 
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the surprising ability of the LT-ag to overcome molecular barriers in its path by transiently opening its ring. This 228 

highlights the remarkable plasticity of hexameric structures. 229 

Following recognition and binding to the origin of replication, melting of the DNA helix surrounding the 230 

origin, and oligomerization into two hexamers at the origin of replication, the LT-ag then recruits the cellular 231 

DNA replication factors: RPA, topoisomerase I and polymerase α primase. Type I topoisomerases are essential to 232 

relieve supercoiling stress as the strands unwind (Lin et al., 2002). Podophyllotoxin (Condylox) is a 233 

topoisomerase I inhibitor in clinical use against HPV lesions to block viral DNA replication (Stern et al., 2012). As 234 

podophyllotoxin is also active against host chromosomal replication, it is cytotoxic. Following the initiation 235 

events, the clamp loader, replication factor C (RFC), and the polymerase processivity factor, PCNA (proliferating 236 

cell nuclear antigen), are recruited and loaded leading to the binding and activity of DNA polymerase δ, which 237 

extends both lagging and leading strands. After PyV DNA replication and the expression of late structural 238 

proteins, new progeny virions are assembled and are released from the infected cell. 239 

Papillomaviruses are highly diverse and have been discovered in a wide array of vertebrates and their host 240 

range include all amniotes (Rector and Van Ranst, 2013). Papillomaviruses are highly host-restricted, and cause 241 

abortive infections in non-host species. The HPV life cycle is closely linked to the differentiation state of the 242 

epithelial cells and the initial step involves the infection of keratinocytes in the basal layer of squamous epithelia 243 

(Box 6) (Stanley, 2012,Chow et al., 2010,Duensing and Munger, 2004,zur Hausen H., 2002).  Similarly to PyVs, 244 

HPVs do not encode for their own DNA polymerases but they encode for viral proteins (i.e. E1 and E2) that are 245 

required for viral genome replication during the HPV productive cycle (Box 7). (D'Abramo and Archambault, 246 

2011,McBride, 2013,Bergvall et al., 2013).  E1 is the most highly conserved HPV protein and the only one with 247 

enzymatic activity. E1 is the replicative helicase of HPV and is essential for viral replication and pathogenesis. 248 

Both LT-ag and the E1 protein are structurally related members of the helicase superfamily III (SF3).  E1 binds to 249 

the origin of replication together with E2 protein. In fact, the E2 protein assists and directs faithful viral origin 250 

recognition of E1 while E1 is the replicative DNA helicase, melting the DNA around the origin of replication and 251 

establishing itself as a double hexameric helicase. The formation of the E1-E2-origin of replication complex 252 

involves not only the binding of E1 and E2 to specific viral DNA elements in the origin of replication but also a 253 

protein-protein interaction between the N-terminal transactivation domain of E2 and the helicase/ATPase 254 

domain of E1 (Box 7). Similar to LT-ag, E1 also acts to recruit the cellular DNA replication proteins to the PV DNA 255 

replication fork.  256 

HPV E6 and E7 genes encode low molecular weight proteins of about, respectively, 150 and 100 amino acids 257 

(Box 8). It has been shown that expression of E6 and E7 from high-risk HPV types is necessary and sufficient to 258 

immortalize primary keratinocytes, abrogates DNA damage responses, causes genomic instability, and induces 259 

epithelial cell hyperplasia (Ghittoni et al., 2010,Hellner and Munger, 2011,Moody and Laimins, 2010). HPV E6 260 

and E7 proteins do not have intrinsic enzymatic activity but function by associating with several cellular proteins 261 
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resulting in the alteration of various host cellular pathways. Specific interactions of E6 and E7 with key cell cycle 262 

regulatory proteins [namely E6 with the tumor suppressor protein p53 and E7 with the Rb family of pocket 263 

proteins] are responsible for the potential oncogenicity of the high-risk HPV types (Box 9). An important function 264 

of p53 is to induce the expression of genes that alter cell cycle progression in G1/S phase in response to DNA 265 

damage. Crucial host cell targets of the high-risk E6 protein include many PDZ domain-containing proteins 266 

involved in cell-cell contact, communication and polarity (Howie et al., 2009). The Rb family of proteins control 267 

the transition at the G1/S phase of the cell cycle by binding and regulating the activity of the E2F family of 268 

transcription factors. As a consequence of these interactions, E7 stimulates quiescent cells to re-enter S-phase 269 

while E6 prevents cellular growth arrest or DNA-damage induced apoptosis (Box 9).  270 

In contrast to PyV LT-ag that inactivates Rb/E2F complexes by stoichiometric association with Rb, high-risk 271 

HPV E6 and E7 proteins target, respectively, p53 and Rb for ubiquitin-mediated proteosomal degradation (Pim 272 

and Banks, 2010,McLaughlin-Drubin and Munger, 2009,Yugawa and Kiyono, 2009,Moody and Laimins, 273 

2010,Miller et al., 2012). E6 associates with the cellular E3 ubiquitin ligase E6-associated protein (E6AP) and the 274 

E6/E6AP complex binds p53 and induces its specific ubiquitinylation and subsequent degradation by the 275 

proteasome (Box 9). High-risk HPV E7 mediates degradation of Rb by a mechanism involving association with 276 

and reprogramming of the cullin 2 (CUL2) ubiquitin ligase complex, resulting in the release of active E2F 277 

transcription factor which in turn activates the transcription of genes encoding proteins (such as cyclin E and 278 

cyclin A) necessary for cell cycle progression (Box 9).  279 

One member of the RB family, p130, appears to be an important target for E7 in promoting its proteosome-280 

mediated destruction and S-phase entry. Recent evidence indicates that p130 regulates cell-cycle progression as 281 

part of a large complex named DREAM (DP, Rb-like, E2F and MuvB). In addition, it was demonstrated that high-282 

risk HPVs can bind to MuvB core complex and activate gene expression during the G2 and M-phase of the cell 283 

cycle. Thus, high-risk HPV E7 perturbs the DREAM complex to prevent exit from the cell cycle entry and also to 284 

promote cellular proliferation and mitotic gene expression (DeCaprio, 2014,Banerjee et al., 2011,Nor et al., 285 

2013,Nor et al., 2011). 286 

E4 and E5 proteins contribute indirectly to genome amplification success because they modify the cellular 287 

environment.  E5 is a small transmembrane protein with a cytoplasmatic C-terminus (Box 8). It is thought to 288 

function by inducing ligand-independent dimerization and activation of receptor protein tyrosine kinases, 289 

including the epidermal growth factor receptor (EGFR) (DiMaio and Petti, 2013). Hence, E5 contributes to 290 

genome amplification success through its ability to stabilize EGFR and its role in up-regulation of mitogenic signal 291 

transduction. Many but not all HPVs encode for E5, and this viral oncoprotein contributes to some early steps of 292 

viral transformation but it is not necessary for malignant progression and/or maintenance of the transformed 293 

phenotype since E5 is not generally expressed in cervical carcinomas. While bovine papillomavirus (BPV)-1 E5 294 

protein interacts with PDGF (platelet derived growth factor), this is not an activity of the HPV E5 protein. BPV-1 295 
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E5 protein (which functions as a disulfide cross-linked dimer) is phylogenetically unrelated to the E5 proteins of 296 

alpha group HPV types (which form hexameric transmembrane pores, placing it within the virus-encoded 297 

“viroporin” family). It was found that high-risk human papillomavirus E5 oncoprotein displays channel-forming 298 

activity sensitive to small-molecule inhibitors (Wetherill et al., 2012). 299 

The productive phase of the HPV life cycle occurs in the terminally differentiated layers of the stratified 300 

epithelium, where viral particles are assembled and shed. Differentiation of infected cells induces genome 301 

amplification and a remarkable increase in late gene expression resulting in packaging of the viral genome and 302 

virus release (Doorbar et al., 2012). The E4 protein is abundantly expressed in the upper epithelial layers in cells 303 

that support viral genome amplification. E4 is primarily involved in some aspect of virus release or transmission, 304 

as it was shown to induce the disruption of keratin structure, and in promoting proper viral assembly (Doorbar 305 

et al., 1991,Wang et al., 2004).  306 

During the productive HPV life cycle, the genome is maintained as an episome but in almost all high-grade 307 

lesions and tumors, the viral genome is integrated into the host genome. The viral oncoproteins E6 and E7 are 308 

expressed in high-grade intraepithelial neoplasias associated with HPV infection (Bodily and Laimins, 309 

2011,Doorbar et al., 2012). Expression of E6 and E7 is transcriptionally regulated by E2 during the productive 310 

HPV life cycle. In cancer progression, the integration of the viral genome occurs in such a way that disruption of 311 

the E2 open reading frame occurs eliminating the E2-mediated transcriptional control of the early viral region 312 

(Box 2), leading to constitutive expression of E6 and E7 proteins in HPV-associated cancers. The continuous 313 

expression of these two viral oncoproteins contributes to the maintenance of proliferation and malignant 314 

phenotypes of the cancer cells due to their disruptive action on cell cycle checkpoint. Therefore, E6 and E7 are 315 

considered to be potential therapeutic targets for blocking the development of HPV-related cancer. Ideally, 316 

small molecules that target and prevent the interaction of E6 and E7 with cellular proteins may have interesting 317 

antiproliferative potential (Manzo-Merino et al., 2013). Besides E6 and E7, part or all of E1 is transcribed and 318 

translated in neoplasias. The amino-terminal portion of E1 protein or a truncated peptide is essential to bind to 319 

and neutralize over-abundant cyclins that are transcriptionally up-regulated by E7 (Stoler et al., 1992,Lin et al., 320 

2000,Coupe et al., 2012). 321 

 322 

3. Clinical impact of human polyomaviruses  323 

The name polyomavirus is derived from the ability of the first PyV discovered more than 50 years ago to 324 

induce multiple (poly) tumors (oma) in mice. However, most PyVs do not cause tumors in their natural host. 325 

Mouse polyomavirus (MPyVs) and the simian vacuolating agent 40 (SV40) were the first PyVs identified (Atkin et 326 

al., 2009). Two human PyVs were identified in 1971 and were named following the patients’ initials from whom 327 

they were isolated [JC polyomaviruses (JCPyV) was identified in a brain tissue extract from a patient (John 328 

Cunningham) with progressive multifocal leukoencephalopathy (PML) and BK polyomavirus (BKPyV) was isolated 329 
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from the urine of a nephropathic kidney transplant patient of unknown name] (Dalianis and Hirsch, 2013,Hirsch 330 

et al., 2013,Gjoerup and Chang, 2010). Subsequently, more PyVs were identified in mammals and birds. From 331 

2007 on, several new human PyVs have been discovered, including KI (Karolinska Institutet) virus (KIPyV), WU 332 

(Washington University) virus (WUPyV), Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, HPyV9, 333 

Trichodysplasia spinulosa virus (TSPyV), HPyV10 [Malawi virus (MWPyV and MX polyomavirus (MXPyV) variants], 334 

HPyV12 and Saint Louis Polyomavirus (STLpYV) (Van Ghelue et al., 2012,Pastrana et al., 2013,Ehlers and 335 

Wieland, 2013,Yu et al., 2012,Feltkamp et al., 2013,White et al., 2013).  336 

Serological studies indicate that human PyVs sub-clinically infect the general population with rates ranging 337 

from 35% to 90%, and significant disease is only observed in patients with impaired immune functions (Dalianis 338 

and Hirsch, 2013,Chang and Moore, 2012). Thus, BKPyV has been linked to hemorrhagic cystitis (HC) after 339 

allogenic hematopoietic stem cell transplantation and PyV-associated nephropathy (PyVAN) after kidney 340 

transplantation, while JCPyV is associated with PML in HIV-AIDS, haematological diseases and in autoimmune 341 

diseases treated with certain lymphocyte-specific antibodies (Dalianis and Hirsch, 2013,Bennett et al., 2012,Jiang 342 

et al., 2009).   343 

TSPyV was identified in Trichodysplasia spinulosa, a rare skin disease characterized by virus-induced lytic as 344 

well as proliferative tumor-like features observed in immunosuppressed transplant recipients (Kazem et al., 345 

2012,Wanat et al., 2012,van der Meijden E. et al., 2010,Kazem et al., 2013). MCPyV is associated with a rare skin 346 

cancer, Merkel cell carcinoma (MCC), seen in the elderly and in chronically immunosuppressed individuals 347 

(Spurgeon and Lambert, 2013,Arora et al., 2012). MCPyV is found in at least 80% of MCC and clonal viral 348 

integration and truncating mutations of the Large T antigen (LT-ag) support an etiopathogenic role of MCPyV in 349 

MCC (Feng et al., 2008,Rodig et al., 2012,Shuda et al., 2008). MCPyV might not be exclusively linked to the 350 

development of MCC. The presence of MCPyV DNA has been evaluated in a variety of other cancers since this 351 

virus was linked to MCC (Spurgeon and Lambert, 2013). A potential role of MCPyV in a significant subset of 352 

chronic lymphocytic leukemia (CLL) is claimed based on a study performed on 70 patients (Pantulu et al., 2010). 353 

The authors demonstrated a relative high incidence of MCPyV in highly purified CLL cells in 27.1 % of patients 354 

and the presence of a truncating LT-ag deletion in 8.6% of CLL cases. Thus, MCPyV may represent the molecular 355 

correlate of the long term recognized epidemiologic association of CLL and MCC and vice versa. Additionally, 356 

contradictory reports have been published on the relationship between squamous cell carcinoma (SCC) and 357 

MCPyV. Some groups have found no significant association (Andres et al., 2010,Reisinger et al., 2010) whereas 358 

others found virus DNA in 40% of cutaneous SCC  (Kaibuchi-Noda et al., 2011,Rollison et al., 2012). 359 

In contrast, KIPyV and WUPyV (found in the respiratory tract), HPyV6 and 7 (present in the skin), and HPyV9 360 

(isolated from serum and skin), MWPyV, STLPyV and HPyV12 (found in stool samples) have so far not been 361 

linked to any disease (Ehlers and Wieland, 2013). 362 
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Infections with human PyVs occur early in life leading to a primary viremia followed by a state of 363 

latency/persistence and escape from the immune system. The site and the molecular nature of viral 364 

latency/persistence are not fully understood and differs among human PyVs (White et al., 2013). They can 365 

persist in the host cells in the absence of viral replication, i.e. a state of viral latency, for example JCPyV in the 366 

brain. Alternatively, human PyVs may persist in a state of active but asymptomatic viral replication, as it is the 367 

case for JCPyV and BKPyV in the kidney.  368 

 369 

4. Clinical importance of HPVs 370 

Papillomaviruses have a tropism for squamous epithelia and today, 165 HPV types have been described (Burk 371 

et al., 2013,Bernard et al., 2010), the number is growing as more types are officially classified. Although various 372 

HPV types have a comparable genomic organization, different HPVs infect mucosal or cutaneous epithelia at 373 

distinct body locations. About 48 of the 165 different HPV types are able to infect the anogenital and oral 374 

mucosa, and they can be further classified into low-risk and high-risk types based on their potential to induce 375 

cellular transformation. Low-risk types cause benign epithelial proliferation (warts), while infection with high-376 

risk types may lead to cancer progression. HPV6 and 11 are the most abundant low-risk types, causing more 377 

than 90% of condylomata acuminata (genital warts) (Doorbar et al., 2012). Recurrent respiratory papillomatosis 378 

(RRP) is also caused by low-risk HPV types (mostly HPV6 and 11).  HPV infection leading to RRP occurs mostly 379 

during vaginal delivery but HPV DNA detection in amniotic fluid, foetal membranes, cord blood and placental 380 

trophoblastic cells suggest that HPV infection can also take place in utero, i.e. prenatal transmission (Syrjanen, 381 

2010).  Recurrent respiratory papillomatosis can also arise later in life and, indeed, about half of all RRP cases 382 

first show up in adults. (Derkay and Wiatrak, 2008). 383 

In 2008, H. zur Hausen was awarded the Nobel Prize of Physiology or Medicine because of his research on the 384 

association between high-risk HPV types with premalignant cervical lesions and cancer (zur Hausen H., 2002). 385 

Virtually 100% of cervical cancers contain HPV DNA sequences from a high-risk oncogenic HPV type, HPV16 and 386 

18 being found in about 70% of cases. Besides cervical cancer, HPVs are associated with a number of other 387 

anogenital cancers, including vulvar, vaginal, penile and anal cancers. HPV-associated anogenital cancers are 388 

preceded by a spectrum of intraepithelial abnormalities, ranging in the case of the cervix from low-grade CIN 389 

(cervical intraepithelial neoplasia) 1, moderate CIN2 and high-grade CIN3 (Hellner and Munger, 2011,Cubie, 390 

2013). Genital infections with high-risk HPV types are very common among sexually active individuals and 391 

although the majority of them clear the infection with time, a proportion of women (approximately 15%) cannot 392 

eliminate the virus and persistence with a high-risk HPV type is considered the major risk factor for the 393 

development of malignancies.  394 

High-risk HPVs are also found in a proportion of head and neck squamous cell carcinomas (HNSCC) and it is 395 

recognized that HPV-positive HNSCC present a different biology than that of HPV-negative HNSCC (Miller et al., 396 
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2012,Leemans et al., 2011). Recent studies have shown that the incidence of HPV-negative HNSCC has 397 

decreased as a consequence of public efforts encouraging smoking cessation and reduced consumption of 398 

alcohol, in contrast to HPV-positive HNSCC whose incidence is increasing (most likely due to changes in sexual 399 

behaviour) (Olthof et al., 2012,Rietbergen et al., 2013). 400 

 401 

5. PME derivatives 402 

5.1 In vitro and in vivo antiproliferative activities  403 

PMEG was studied for effectiveness against cotton tail rabbit papillomavirus (CRPV) infection of rabbits and 404 

HPV11 infection of human foreskin xenografts in athymic mice (Kreider et al., 1990). PMEG strongly suppressed 405 

the growth rates of Shope papillomas and inhibited HPV11 infections of human skin. Although drug toxicity 406 

paralleled the therapeutic effects in rabbits, there was much less toxicity in athymic mice. 407 

Three phosphonomethoxyalkyl purine analogues, i.e. HPMPA {(S)-9-[(3-hydroxy-2-408 

phosphonylmethoxy)propyl]adenine}, PMEA, and PMEG proved modestly active against intraperitoneal injected 409 

P388 murine leukemia cells in mice, PMEG being the most active and most potent of the three compounds (Rose 410 

et al., 1990). In this study, PMEG was also evaluated against subcutaneously implanted B16 melanoma in mice, 411 

affording increased life span and delay in primary tumor growth.  412 

When the PME analogues PMEA, PMEDAP and PMEG were evaluated for their in vitro antitumor efficacy 413 

against human leukemia cells (Franek et al., 1999), they caused reversible slowdown of growth at low 414 

concentrations due to continuous repairing of damaged DNA, while high concentrations induced apoptosis and a 415 

reduction of the proportion of cells in the G1 phase of the cell cycle. The antitumor properties of these 416 

analogues increased in the order PMEA<PMEDAP<PMEG.  417 

PMEG, PMEA, and PMEDAP were also investigated in a model of spontaneous T-cell lymphoma in inbred 418 

SD/cub rats (Otova et al., 1999). Treatment with 16 daily doses of PMEDAP at 5 mg/kg applied to the vicinity of 419 

the growing lymphoma resulted in significant therapeutic effects while daily PMEA or PMEG administration 420 

(although at lower doses than those of PMEDAP) did not affect survival of lymphoma-bearing mice. PMEDAP 421 

was shown to induce apoptosis in this in vivo model of hematological malignancies.  422 

Because the utility of PMEG as an anticancer agent is limited by poor cellular permeability and toxicity 423 

(especially for the kidney and gastrointestinal tract), prodrugs such as N6-cyclopropyl-PMEDAP (cPr-PMEDAP),  424 

GS-9191 and GS-9219 (Figure 2) have been designed to increase permeability and accumulation of PMEGpp 425 

intracellularly (Kreider et al., 1990,Compton et al., 1999,Vail et al., 2009,Wolfgang et al., 2009). cPr-PMEDAP is 426 

converted to PMEG and can be considered as an intracellular prodrug of PMEG, limiting plasma exposure to the 427 

toxic agent PMEG. cPr-PMEDAP showed higher antitumor efficacy and selectivity in choriocarcinoma-bearing 428 

rats compared to PMEDAP or PMEG (Naesens et al., 1999) and was reported to have 8- to 20-fold more 429 
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pronounced cystostatic activity than PMEDAP and equivalent activity as PMEG against a variety of tumor cell 430 

lines (Hatse et al., 1999a). 431 

GS-9191, a double prodrug of PMEG, was specifically designed as a topical agent to permeate the skin and to 432 

be metabolized to the active form in the epithelial layer. The conversion of GS-9191 to cPr-PMEDAP was shown 433 

to occur in lysosomes via carboxypeptidase cathepsin A-mediated ester cleavage, being cPr-PMEDAP 434 

subsequently translocated to the cytosol where it undergoes deamination and phosphorylation, yielding the 435 

active metabolite PMEGpp (Birkus et al., 2011). Recently, it was demonstrated that the adenosine deaminase-436 

like (ADAL) protein plays a key role in the deamination of cPr-PMEDAP to produce PMEG, as mutations in this 437 

enzyme were shown to confer resistance to cPr-PMEDAP and its prodrugs but not to PMEG (Frey et al., 2013). 438 

On the other hand, resistance to both PMEG and cPr-PMEDAP was associated with a decreased capacity of the 439 

resistant cells to metabolically activate (phosphorylate) PMEG, resulting from amino acid substitutions in the 440 

guanylate kinase (involved in the conversion of PMEG to PMEGp) (Mertlikova-Kaiserova et al., 2011). 441 

GS-9191 administered topically decreased the size of papillomas in a dose-dependent manner in an animal 442 

model of CRPV, affording the highest dose (0.1%) evident cures at the end of 5 weeks (Wolfgang et al., 2009). 443 

Based on these encouraging findings, topical GS-9191 was evaluated in a Phase II clinical trial (ClinicalTrials.gov 444 

Identifier: NCT00499967) for the treatment of genital warts in 2009 by Graceway Pharmaceuticals but the 445 

results of this trial have not been published (http://clinicaltrials.gov). 446 

GS-9219, a phosphonoamidate prodrug of PMEG was designed as a cytotoxic agent that preferentially targets 447 

lymphoid cells in vivo, releasing PMEG in a two-steps process via enzymatic hydrolysis and deamination (Reiser 448 

et al., 2008). GS-9219 displayed considerable antiproliferative activity against activated lymphocytes and 449 

hematopoietic tumor cell lines while resting lymphocytes and solid tumor cell lines were less sensitive to the 450 

compound. GS-9219 showed substantial in vivo efficacy in five dogs with advanced-stage non-Hodgkin's 451 

lymphoma (NHL) after a single intravenous administration, with either no or low-grade adverse events (Reiser et 452 

al., 2008). In a Phase I/II trial conducted in pet dogs (n = 38) with naturally occurring NHL using different dose 453 

schedules of GS-9219, the compound was generally well tolerated and showed significant activity (Vail et al., 454 

2009). Antitumor responses were observed in 79% of dogs and occurred in previously untreated dogs and dogs 455 

with chemotherapy-refractory NHL. Recently, GS-9219 (currently referred as VDC-1101) was evaluated against 456 

three human multiple myeloma (MM) cell lines, showing a dose-dependent antiproliferative activity (Thamm et 457 

al., 2014). In a Phase II clinical trial in dogs with spontaneous MM, major antitumor responses were observed in 458 

9 of 11 evaluable dogs for a median of 172 days (Thamm et al., 2014). 459 

Hostetler’s group has synthesized alkoxyalkyl esters of PMEG and compared their antiproliferative activities 460 

with unmodified PMEG in primary human fibroblasts and CaSki, Me-180 and HeLa human cervical cancer cell 461 

lines in vitro (Valiaeva et al., 2010). Octadecyloxyethyl (ODE)-PMEG had excellent antiproliferative activity in 462 

vitro against the different human cervical carcinoma cell lines. In a Me-180 xenograft model in athymic nude 463 

http://clinicaltrials.gov/�
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mice, intratumoral injection of 25 µg of ODE-PMEG or 100 µg of ODE-CDV daily for 21 days resulted in near-464 

complete disappearance of measurable tumors, suggesting that ODE-PMEG may be suitable for local or topical 465 

treatment of cervical dysplasia. 466 

5.2 Mechanism of antiproliferative effects of PME derivatives  467 

As mentioned above, to exert their antiviral or antiproliferative activity, the PME derivatives need to be 468 

converted by cellular enzymes to their diphosphate forms. Studies performed with purified viral and cellular 469 

enzymes showed that the diphosphate metabolites effectively compete with the corresponding 470 

deoxynucleoside triphosphate (dGTP or dATP) for incorporation into DNA. As the diphosphate forms of PME 471 

derivatives are recognized as substrates by cellular DNA polymerases, they are able to inhibit cellular DNA 472 

synthesis by a direct inhibition of replicative cellular DNA polymerases. Indeed, a close correlation between 473 

cytostatic activities of PME derivatives and the inhibitory effects of their active metabolites on cellular DNA 474 

polymerases α, δ, and ε was established, emerging PMEG as the most potent chain terminating inhibitor of 475 

cellular DNA polymerases (Kramata et al., 1996,Kramata et al., 1998). Thus, the primary mechanism of action of 476 

PMEG in replicating cells is incorporation of its active metabolite PMEGpp into DNA and subsequent chain 477 

termination due to the lack of a 3’-hydroxy moiety.  478 

Of note, PMEGpp was found to be more efficiently incorporated into DNA by DNA polymerases α and δ than 479 

by DNA polymerases β, γ, and ε (Kramata et al., 1996,Kramata et al., 1998). The interaction of PMEGpp with 480 

purified rat pol α, β, and δ, bovine pol δ and human pol ε were investigated by using oligonucleotide template-481 

primers and by examining the inhibitory effects of PMEGpp and the ability of these enzymes to incorporate the 482 

analogue into DNA as well as to excise it from 3′-ends. DNA polymerases α (associated with primase activity) and 483 

δ are required for DNA synthesis of, respectively, the lagging strand and the leading strand of chromosomal DNA 484 

while DNA polymerase ε is required as a second DNA polymerase on the lagging DNA strand. In contrast to DNA 485 

polymerase α, both DNA polymerases δ and ε have intrinsic 3’-5’-exonuclease activity associated with a 486 

proofreading function and are necessary for the repair of DNA damage. While both enzymes can recognize 487 

PMEGpp as a substrate and can incorporate PMEG into DNA, DNA polymerase ε but not δ was shown to be able 488 

to repair the incorporated analogue (Kramata et al., 1998).  489 

Wolfgang and collaborators investigated the mechanism of inhibition of PMEG and its prodrug GS-9191 490 

against HPV (Wolfgang et al., 2009). Inhibition of DNA polymerases by PMEGpp was proposed as the prevailing 491 

mechanism of action, and this activity alone may explain their antiproliferative activity against cervical 492 

carcinoma HPV positive cells. Treatment of cells with these drugs resulted in inhibition of DNA synthesis and S-493 

phase arrest leading to apoptosis induction. Thus, PMEG and GS-9191 preferentially affect rapidly dividing HPV-494 

transformed cells (compared to normal keratinocytes, the majority of which are quiescent) because the 495 

inhibition of chromosomal DNA replication affects only cells in the S-phase of the cell cycle. In conclusion, due to 496 

the lack of an HPV viral polymerase, the active metabolite PMEGpp exerts its effect by inhibiting host cell 497 
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polymerases, and in vivo, partial selectivity for virally infected cells is likely derived based on the increased 498 

proliferation of infected cells and due to the fact that the compounds are locally administered.  499 

Kramata and collaborators demonstrated that differences in inhibition of cellular DNA synthesis by PMEG, 500 

PMEDAP, and PMEA may be explained not only by different affinities of DNA polymerases (primarily DNA 501 

polymerase δ) for the nucleotide analogues but also by different intracellular ratios of the diphosphate 502 

analogues to their corresponding deoxynucleoside triphosphates (Kramata et al., 1996). Treatment of the 503 

human T lymphoblast cell line CEM with PMEG, PMEDAP or PMEA resulted in increased deoxynucleotide 504 

triphosphate (dNTP) pools, with PMEG producing the greatest increase. Although no significant differences in 505 

cellular uptake were found for these ANPs, CEM cells were found to accumulate higher levels of PMEGpp than 506 

PMEDAPpp or PMEApp, pointing also to differences in the efficiency of phosphorylation among these nucleotide 507 

analogues (Pisarev et al., 1997). It is interesting to note that more PMEGpp than PMEApp are produced 508 

considering that there is much more adenylate kinase than guanylate kinase in the cells resulting in more 509 

ADP/ATP than GDP/GTP.  The investigations carried out by Pisarev and colleagues also highlighted that the 510 

factors contributing to the enhanced antileukemic activity of PMEG derives both from its increased anabolic 511 

phosphorylation and the increased potency of PMEGpp to target the cellular DNA polymerases compared to 512 

other PME analogues. 513 

PMEA proved to be a strong inducer of differentiation of the erythroleukemia K562 cell line, as evidenced by 514 

hemoglobin production, increased expression of glycophorin A on the cell membrane, and induction of 515 

acetylcholinesterase activity (Hatse et al., 1999b). After exposure to PMEA, K562 cell cultures displayed a marked 516 

retardation of S-phase progression, leading to a severe perturbation of the normal cell cycle distribution pattern 517 

with marked accumulation of cyclin A and, most strikingly, cyclins E and B1. A similar effect on cell cycle 518 

deregulation was also observed in PMEA-exposed human myeloid THP-1 cells but, in contrast to the strong 519 

differentiation-inducing activity of PMEA in K562 cells, the drug completely failed to induce monocytic 520 

maturation of THP-1 cells. On the contrary, THP-1 cells underwent apoptotic cell death in the presence of PMEA. 521 

These data suggested that, depending on the nature of the tumor cell line, PMEA can trigger a process of either 522 

differentiation or apoptosis by affecting cell cycle processes through inhibition of DNA replication during the S 523 

phase. 524 

Among several diphosphates of ANPs tested in a telomeric repeat amplification protocol (TRAP) for their 525 

ability to inhibit the extension of telomeres by human telomerase, the diphosphates of PMEG and PMEDAP 526 

emerged as the most potent drugs (Hajek et al., 2005). In this study, the ability of well-known inhibitors of the 527 

HIV reverse transcriptase to interfere with telomerase activity was investigated as the human telomerase active 528 

site (i.e. hTERT) was shown to function as a reverse transcriptase. However, the most potent chain-terminating 529 

inhibitors of retroviral reverse transcriptase (such as PMPApp and PMPDAPpp) did not inhibit human telomerase 530 

activity. In fact, PMEGpp (IC50 12.7 ± 0.5 mmol at 125 mmol deoxynucleoside triphosphates (dNTPs) emerged as 531 
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the most potent inhibitor of human telomerase in vitro, consistent with the antitumor activities of PMEG. The 532 

PMEG-MP and PMEG itself did not show any effect on telomerase activity. The effects of PMEG on telomerase 533 

appear to be marginal compared to the inhibition of cellular DNA polymerases by PMEG-DP [IC50 = 2.50 ± 0.97 534 

µM (DNA polymerase α), 1.60 ± 0.53 (DNA polymerase β) and 59.4 ± 17.6 (DNA polymerase γ) (Wolfgang et al., 535 

2009). 536 

In a follow-up study, the authors found that PMEG and PMEDAP were able to differently modulate telomere 537 

length in T-lymphoblastic leukemia cell lines (Hajek et al., 2010). The most striking difference concerned the 538 

CCRF-CEM and MOLT-4 cells. While in CCRF-CEM cells delayed and progressive telomere shortening was 539 

observed, MOLT-4 cells responded to the treatment by a rapid telomere elongation that could be observed as 540 

early as after 3 days of incubation and remained elevated throughout the treatment. This cell specific effect on 541 

telomere shortening was not due to direct telomerase inhibition or impairment of hTERT expression. Hajec and 542 

collaborators (Hajek et al., 2010) speculated about the mechanism of the observed telomere elongation in 543 

MOLT-4 cells. Considering that both PMEG and PMEDAP can activate and up-regulate poly (ADP-544 

ribose)polymerase (PARP), a similar effect can be possibly anticipated on tankyrase, which is a telomeric protein 545 

possessing PARP activity. Tankyrase inhibits binding of TRF1 to telomeric DNA in vitro, where under normal 546 

conditions TRF1 prevents the access of telomerase to telomeric complex. Therefore, overexpression and/or 547 

activation of tankyrase in telomerase positive cells may induce telomere elongation without a direct effect on 548 

telomerase activity. Another possible explanation of the increase in the mean telomere length can be activation 549 

of a different telomere maintenance mechanism, termed “alternative lengthening of telomeres” (ALT), a 550 

recombination mediated process that enables survival of telomerase-negative cancer cells. It was also suggested 551 

that the factors determining the PMEG- and PMEDAP-induced telomere shortening might depend on p53 552 

functional status (CCRF-CEM – mutated, MOLT-4 – wild-type since telomere length is connected with p53 553 

expression and functional status and cells with mutated p53 may be more susceptible to telomere shortening 554 

induced by external stimuli (chemotherapy, irradiation, etc.).  Besides, oxidative degradation of telomeres by 555 

reactive oxygen species leaking from the damaged mitochondria following treatment with PMEG and PMEDAP 556 

may affect telomere length as cells treated with these drugs  were found to contain elevated levels of reactive 557 

oxygen species and telomeres have been shown to be highly susceptible to oxidative stress. 558 

Otova and co-workers suggested that DNA-damage induced by ANPs should affect signalling pathways 559 

associated with cell proliferation, apoptosis and angiogenesis (Otova et al., 2009). They demonstrated that the 560 

antitumor efficacy of PMEG and PMEDAP in spontaneous lymphomas in rats was not only caused by inhibition of 561 

DNA synthesis but also by an effect on angiogenesis, a process stimulated by the secretion of various signalling 562 

molecules to promote neovascular formation. PMEG was found to down-regulate selected proangiogenic genes 563 

much more efficiently than PMEDAP (Otova et al., 2009). 564 
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In addition, the involvement of mitogen activated protein kinases (MAPKs) in the cytotoxicity of PME 565 

derivatives has also been reported in leukemic cell lines (Mertlikova-Kaiserova et al., 2012). MAPKs comprise a 566 

family of serine/threonine kinases that convert extracellular signals, such as stress stimuli and cytokines, into a 567 

variety of cellular processes including cell proliferation, survival, death, and differentiation. The best 568 

characterized groups of MAPKs in mammals include the extracellular signal-related kinases (ERK), c-Jun N-569 

terminal kinase (JNK) and p38. The ERK and p38 pathways were found to be activated by PMEG and PMEDAP in 570 

leukemic cells and pretreatment with a p38 inhibitor diminished PMEG- and PMEDAP-induced apoptosis 571 

whereas inhibition of ERK, JNK or AKT (also known as protein kinase B) pathways did not (Mertlikova-Kaiserova 572 

et al., 2012). 573 

 574 

6. Cidofovir activity against viruses not encoding for their own DNA polymerases 575 

CDV can be given intravenously, intralesional or topically. Systemic administration of the drug requires co-576 

administration of oral probenecid and intravenous hydration in order to prevent nephrotoxicity which is the 577 

dose-limiting clinical adverse effect of CDV. The drug is accumulated in the kidney where it reaches significantly 578 

higher concentration levels compared with other organs and tissues (Cundy et al., 1996,Cundy, 1999). The 579 

uptake of CDV across the basolateral tubular membrane is more efficient than the subsequent secretion into 580 

tubular lumen resulting in drug accumulation in renal tubules. CDV was shown to be a substrate for human and 581 

rat renal organic transport 1 (OAT1) and intravenous hydration and administration of oral probenecid [an 582 

inhibitor of OAT1 that interferes with the transporter-mediated tubular uptake of cidofovir] are used in order to 583 

prevent CDV-induced nephrotoxicity (Cihlar et al., 1999,Cihlar et al., 2001).   584 

CDV is given mostly systemic for the management of PyV-associated diseases, although Intravesical CDV-585 

instillation therapy for polyomavirus-associated hemorrhagic cystitis (Koskenvuo et al., 2013,Eisen et al., 586 

2009,Mackey, 2012) and topical CDV for treatment of trichodysplasia spinulosa virus (TSPyV) (van der Meijden E. 587 

et al., 2010,Wanat et al., 2012) have been reported.  588 

 CDV has been mostly used intralesional or topically for the management of HPV-related diseases, being the 589 

therapy usually well-tolerated with minimal, if any, side effects, pointing to the selectivity of CDV for the 590 

affected tissue. In case of appearance of local side effects (presented as ulcerations at the site of the affected 591 

mucosa but not in the surrounding normal tissue), these are self-limiting and do not need cessation of treatment 592 

(Stier et al., 2013,Tjon Pian Gi et al., 2013).  593 

Although polyoma- and papillomaviruses lack their own polymerases, off-label use of CDV, mostly in 594 

immunocompromised individuals, has proven effective in the management of diseases caused by HPV. The 595 

compound has also been used off-label for therapy of human PyV-associated illnesses with more controversial 596 

results. A puzzling situation has been why cidofovir inhibits papilloma- and polyomaviruses even though the 597 

effects of CDVpp on cellular DNA polymerization are weak compared to PMEG [inhibition constant (Ki) of CDVpp 598 
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for cellular DNA polymerase α of 51 µM versus 0.55 µM for PMEGpp] (Wolfgang et al., 2009,Kramata et al., 599 

1996,Kramata et al., 1998). Another important difference between PME derivatives and CDV is the fact that 600 

CDVpp can still be incorporated during DNA elongation as CDV has a 3’-OH moiety. 601 

6.1 In vitro, in vivo and clinical evidences for the anti-polyomavirus activity of CDV 602 

CDV proved active against murine and primate non-human PyVs (i.e. SV40) (Andrei et al., 1997,Lebeau et al., 603 

2007) as well as against human BKPyV and JCPyV (Topalis et al., 2011,Farasati et al., 2005,Gosert et al., 604 

2011,Rinaldo et al., 2010) replication in vitro. Despite CDV shows modest in vitro activity against BKPyV, CDV is 605 

the drug most frequently used clinically to block BKPyV replication. Although the data are based solely on case 606 

reports, CDV does appear to be effective, albeit inconsistently, for the treatment of BKPyV and JCPyV infections 607 

(Kwon et al., 2013,De Luca et al., 2008,Ripellino et al., 2011,Savona et al., 2007). CDV proved also active in cases 608 

associated with productive infection of TSPyV and MCPyV in immunocompromised patients when the drug was 609 

administered topically (van der Meijden E. et al., 2010,van Boheemen et al., 2014,Wanat et al., 2012) or 610 

intravenously (Maximova et al., 2013) . CDV has been used mostly systemic for the management of BKPyV and 611 

JCPyV related diseases, although intravesical instillation of CDV has been used to manage BKPyV-associated 612 

hemorrhagic cystitis in hematopoietic stem cell transplant recipients (Koskenvuo et al., 2013,Cesaro et al., 613 

2013,Ganguly et al., 2010).  614 

For the management of BKPyV infections, a low dose intravenous CDV regimen of 0.25-1.0 mg/kg weekly is 615 

used empirically. The use of adjuvant low-dose CDV therapy was shown to result in prolonged graft survival and 616 

stabilized graft function in renal transplant recipients suffering from BKPyV interstitial nephritis (Kuypers et al., 617 

2005). A recent study has demonstrated that CDV clearance and the mean estimated glomerular filtration rate in 618 

renal transplant recipients with persistent BKPyV viremia without nephropathy were linearly related irrespective 619 

of probenecid administration (Momper et al., 2013). Based on this relationship, the systemic exposure to CDV in 620 

individual patients can be predicted and may be used to evaluate exposure-response relationships to optimize 621 

CDV dosing regimen for BKPyV infection. 622 

 One may question why inconsistent results have been reported for CDV in the therapy of human PyV-623 

associated diseases. It can be hypothesized that the pathology resulting from the relative contributions of viral 624 

replication and host response in human PyV-associated diseases may explain, at least in part, why the efficacy of 625 

CDV may vary among different patients. The diverse human PyV pathologies are the consequence of diverse 626 

viral and immunological processes that drive the disease, as reviewed by (Dalianis and Hirsch, 2013). For some 627 

human PyV pathologies such as PyVAN, HC, and PML, a reduction in viral load may be a good marker of efficacy 628 

of an antiviral drug because these pathologies are associated with high levels of viral replication. However, in 629 

cases of autoimmune or oncogenic pathology that is independent of viral replication, other markers for drug 630 

efficacy need to be developed.  631 
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The usefulness of CDV for the treatment of PML in HIV-positive patients is rather controversial. There are 632 

studies supporting a therapeutic efficacy of CDV (De Luca et al., 2000,De Luca et al., 1999) but its activity was 633 

not proven in a multicohort analysis (De Luca et al., 2008).  Similarly, in HIV-negative patients some studies 634 

report efficacy (Naess et al., 2010,Viallard et al., 2007,Viallard et al., 2005) and others lack of activity (Osorio et 635 

al., 2002). If one considers that restoring the immune response in the host is one of the crucial steps in PML 636 

therapy in HIV-negative individuals and highly active antiretroviral therapy is the first treatment option for PML 637 

in HIV-positive patients, the immune status of the patient, the time of addition and dose of CDV administered 638 

may indeed have an impact on the response to treatment. 639 

Of particular relevance in the treatment of PML is the question of the penetration of CDV across the blood-640 

brain barrier because according to the product labelling there is no penetration of the drug into the CNS 641 

following intravenous administration.  642 

A point that needs to be mentioned is the challenge of diagnosing PML in patients with sarcoidosis because 643 

neurosarcoidosis presents a similar pathology to that seen in PML. While neurosarcoidosis is usually treated with 644 

steroid therapy, this treatment results in enhancement of JCPyV replication in PML. Therefore, a misdiagnosis of 645 

PML may explain the lack of activity of CDV in patients previously receiving steroid therapy (Volker et al., 646 

2007,Granot et al., 2009). Recent reports demonstrated the efficacy of CDV alone (De Raedt et al., 2008) or in 647 

combination with the anti-depressant mirtazapine (a blocker of receptors used by JCPyV to infect human glial 648 

cells) (Owczarczyk et al., 2007,Park et al., 2011) for the therapy of PML in patients with sarcoidosis that did not 649 

receive previous steroid treatment. Furthermore, combination of CDV and mirtazapine found to be helpful in the 650 

treatment of PML in HIV-negative patients (Ripellino et al., 2011). 651 

Most predisposing risk factors for BKPyV reactivation and development of PyVAN are directly or indirectly 652 

associated with the function and activity of the immune response. Issues to be considered include: age of the 653 

patient and of the donor, viral co-infections, placement of urethral stents, the degree of HLA mismatch, episodes 654 

of acute rejection, BKPyV-specific antibody status, male sex, white ethnicity, being immunosuppressive therapy 655 

and its intensity the most important risk factor (Babel et al., 2011). As these factors might trigger or promote 656 

viral replication and increase susceptibility to PyVAN, they may affect the efficacy of adjuvant therapies, such as 657 

CDV. A comparison of the available data from case series and retrospective studies is further complicated by 658 

differences in the type of immunosuppressive therapy, patient’s characteristics, CDV doses (varying from 0.25 659 

mg/kg to 1 mg/kg), duration of treatment (3-10 weekly cycles) and use of probenecid (Kuypers, 2012). 660 

A reduction of immunosuppression (which facilitates re-establishment of BKPyV-specific immunity) is used to 661 

prevent graft failure in many patients (Babel et al., 2011). However, this approach does not work in all 662 

individuals, raising questions about the reasons why patients respond differently following treatment with 663 

comparable protocols. Based on the pathogenesis of PyVAN, a reduction of immunosuppression can lead to a 664 

beneficial outcome only at an early stage of BKPyV infection while reduction of immunosuppressive therapy can 665 
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be damaging in patients with persistent, uncontrolled BKPyV replication and may not be considered as a 666 

therapeutic option. Thus, a reduction of immunosuppression to improve antiviral immunity appears to be more 667 

harmful than beneficial in patients with long-lasting BKPyV infection and this may also impact the effects of 668 

adjuvant therapies such as CDV.  669 

Although supportive care has been the standard of treatment for HC during many years, several clinical 670 

studies have demonstrated successful use of CDV for BKPyV-HC after hematopoietic stem cell transplantation 671 

not only in adults but also in children (Savona et al., 2007,Cesaro et al., 2013,Gaziev et al., 2010).  Important 672 

factors in the pathogenesis of HC involve severe immune suppression together with urothelial damage due to 673 

conditioning and radiation (which creates a favourable environment for viral replication and leads to an 674 

augmentation in immunological signals and antigen presentation) and the attack of virus-infected urothelial cells 675 

by donor T cells. Additional risk factors for HC include donor origin, NCCR (non-coding control region) viral 676 

mutants, treatment with anti-thymocyte globulins and type of conditioning. All these factors may influence the 677 

response to adjuvant therapies.  678 

6.2   Polyomavirus replicative cycle: potential targets for CDV 679 

It has been shown that CDV does not affect early steps of PyV replication such as receptor binding and entry 680 

(Bernhoff et al., 2008). Neither initial transcription nor expression of the LT-ag was impaired by CDV. However, 681 

the drug reduced intracellular BKPyV DNA replication by >90% while at equivalent concentrations a reduction of 682 

cellular DNA replication and metabolic activity of 7% and 11%, respectively, in uninfected human renal tubular 683 

cells was found. Furthermore, BKPyV infection increased cellular DNA replication to 142% and metabolic activity 684 

to 116%, respectively, which were reduced by CDV to levels of uninfected untreated cells.  685 

Our laboratory selected SV40 mutants resistant to CDV, following growth of the virus in increasing drug-686 

concentration in the Monkey African green kidney epithelial cell line BSC-1. This system was used because the 687 

entire lytic replicative cycle of SV40 is accomplished. CDV-resistant viruses bear mutations in the ORI and 688 

helicase domains of the LT-ag, indicating that the helicase activity required for viral DNA unwinding during 689 

replication may be affected by CDV (our unpublished data). Further research is required to prove that the 690 

helicase/ATPase activity of the LT-ag is affected by CDV and/or its metabolites.  691 

Interference with the helicase/ATPase activity of the LT-ag may explain the activity of CDV during PyV 692 

productive infection but not against PyV-induced tumors. Liekens and collaborators reported the activity of CDV 693 

against cerebral hemangiomas induced following intraperitoneal inoculation of newborn rats with mouse PyV 694 

(Liekens et al., 1998). The drug was able to completely suppress hemangioma development even when applied 3 695 

days following viral inoculation and resulted in 40% survival and delay in tumor-associated mortality when 696 

treatment started at the time cerebral hemangiomas were macroscopically visible (i.e. 9 days post-viral 697 

infection). Infectious virus or viral DNA were not detected in the brain of the infected animals at any time post-698 

infection, indicating that there was not viral replication in mouse PyV-infected rats and that an antitumor effect 699 
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of CDV should be responsible for the activity of the drug in this model. A similar mode of action was postulated 700 

to explain the efficacy of CDV on the growth of hemangiosarcomas in mice originating from PyV-transformed 701 

(PV/2b/35) cells which do not produce infectious virus but express the viral T antigen (Liekens et al., 2001). CDV 702 

was also found to induce apoptosis in the hemangiosarcomas. 703 

CDV anti-proliferative effects against PyVs can be explained by the cells infected by PyV being more 704 

sensitive to the drug because of the effects of the LT-ag on G1/S cell checkpoint deregulation. This is sustained 705 

by the higher antiproliferative effects of CDV against LT-ag transformed cells compared to the corresponding 706 

non-transformed cells (Andrei et al., 1998a).  707 

 708 

6.3 In vitro, in vivo and clinical evidences for the anti-papillomavirus activity of CDV 709 

The in vitro antiproliferative activities of CDV were first reported in 1998 (Andrei et al., 1998a) and later 710 

confirmed in several studies (Johnson and Gangemi, 1999,Johnson and Gangemi, 2003,Abdulkarim and Bourhis, 711 

2001,Abdulkarim et al., 2002). CDV was shown not only to inhibit the growth of cervical carcinoma xenografts in 712 

athymic nude mice (Andrei et al., 1998b,Yang et al., 2010), but also to improve the pathology associated with 713 

tumor growth (De Schutter et al., 2013a). Intratumoral administration of CDV resulted in a beneficial effect on 714 

body weight gain, a reduction in splenomegaly, a partial restoration of tryptophan catabolism, and diminished 715 

the inflammatory state induced by the xenografts. The beneficial effect of CDV on the host inflammatory 716 

response was evidenced by a reduction in the number of immune cells in the spleen, histopathology of the 717 

spleen and levels of host pro-cachectic cytokines. Also, a decrease in tumor (human)-derived cytokines was 718 

measured following CDV administration. Furthermore, the positive effects of intratumoral CDV (including 719 

increased body weight gain and decreased inflammatory response) correlated with a reduction in tumor size (De 720 

Schutter et al., 2013a). 721 

CDV is the only ANP successfully used as an antiproliferative agent in humans. Several reports have 722 

highlighted the efficacy of CDV against HPV-associated malignancies, including hypopharyngeal and esophageal 723 

(Van Cutsem et al., 1995), gingival and oral neoplasias (Collette and Zechel, 2011) as well as several anogenital 724 

neoplasias such as cervical (Snoeck et al., 2000,Van Pachterbeke et al., 2009), vulvar (Koonsaeng et al., 725 

2001,Tristram and Fiander, 2005,Stier et al., 2013), and perianal intraepithelial neoplasias (Snoeck et al., 1995). 726 

It should be noted that in the neoplasias successfully treated with CDV, no viral productive infection is detected 727 

and only a limited number of viral genes are expressed. 728 

Over the last years, CDV has increasingly been used as therapy for severe recurrent anogenital warts 729 

associated with the low-risk HPV6 and HPV11 types (Coremans and Snoeck, 2009,Gormley and Kovarik, 730 

2012,Calisto and Arcangeli, 2003). The efficacy of CDV for this indication has been documented in several case 731 

reports as well as in two clinical trials [one in immunocompetent individuals (Snoeck et al., 2001) and the other 732 

one in HIV-infected patients (Matteelli et al., 2001)]. CDV has also been employed to manage recalcitrant cases 733 
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of verruca vulgaris, mosaic verruca plana, and different skin lesions caused by HPV (Stragier et al., 2002,Bonatti 734 

et al., 2007,Kralund et al., 2011,Field et al., 2009).  735 

Importantly, following the first report on the use of CDV for the treatment of severe RRP in 1998 (Snoeck et 736 

al., 1998), the application of the drug as adjuvant  therapy for severe cases of RRR has been documented by 737 

several investigators (Derkay et al., 2013,Mikolajczak et al., 2012,Ksiazek et al., 2011,Derkay and Wiatrak, 2008). 738 

Although there were some anecdotal reports documenting serious adverse reactions in RRP in off-label use of 739 

CDV (Tjon Pian Gi et al., 2012), a multicentre retrospective chart review involving 16 hospitals from 11 countries 740 

worldwide with 635 RRP patients (of whom 275 were treated with CDV) was performed. In this study, no clinical 741 

evidence was found for more long-term nephrotoxicity, neutropenia or laryngeal malignancies after intralesional 742 

administration of CDV (Tjon Pian Gi et al., 2013). In another recent study, it was concluded that CDV remains the 743 

leading option for adjuvant treatment of patients with RRP of all ages whose disease is difficult to manage with 744 

surgery alone. CDV represents an option to reduce the risks of frequent surgical debulking and airway 745 

obstruction in children and adults with recurrent or severe disease (Derkay et al., 2013).   CDV is nowadays 746 

recognized as an adjuvant therapy for the management of this disease (Tjon Pian Gi et al., 2013,Graupp et al., 747 

2013). A type specific real-time PCR to measure HPV6 and HPV11 DNA loads in patients with recurrent 748 

respiratory papillomatosis treated with CDV, indicated that the drug significantly reduced viral load following 749 

intralesional application (Mikolajczak et al., 2012). Although CDV has been reported to be ineffective in the 750 

treatment of epidermodysplasia verruciformis (a rare inherited disease characterized by widespread HPV 751 

infection of the skin) (Preiser et al., 2000), a more recent study documented its efficacy against 752 

epidermodysplasia verruciformis caused by novel HPV types (Darwich et al., 2011). 753 

 754 

6.4 Why is CDV selective against HPV-induced hyperproliferation? 755 

The anti-proliferative effects of CDV against HPV-induced transformation have intensively been studied the 756 

last years. The first studies showing the cytostatic activity of the drug against cervical carcinoma cells date from 757 

1998 (Andrei et al., 1998a), where CDV and related ANPs displayed time-dependent anti-proliferative effects, in 758 

contrast to what is normally seen with chemotherapeutic drugs. HPV- and PyV-transformed cells appeared to be 759 

more sensitive to the effects of CDV due to the fact that the viral oncoproteins induce cellular proliferation 760 

making the cells more sensitive to the anti-proliferative drug effects. Thus, the activity of CDV against HPV- and 761 

PyV-transformed cells may be explained, at least in part, by an inhibitory effect of the compound on rapidly 762 

dividing cells, and the presence of the HPV or PyV genome might enhance the sensitivity of the cells to CDV. 763 

When various cell lines not containing HPV (i.e. human melanomas, lung carcinomas, colon carcinomas, breast 764 

carcinomas) were tested, CDV also showed an anti-proliferative effect (Andrei et al., 1998a). 765 

CDV was demonstrated to induce apoptosis in cervical carcinoma cell lines and to arrest the cells in the S-766 

phase of the cell cycle with increased levels of the tumor suppressor proteins p53 and pRb and of the cyclin-767 
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dependent kinase inhibitor p21/WAF-1. Thus, CDV was able to restore the function of p53 and pRb, which are 768 

neutralized by the oncoproteins E6 and E7, respectively, in HPV-transformed cells (Andrei et al., 2000). Induction 769 

of apoptosis by CDV was confirmed later in several tumor models, including human cancer xenografts in athymic 770 

nude mice (Yang et al., 2010,Abdulkarim et al., 2002).   771 

CDV proved to reduce E6 and E7 expression in the HPV-18 positive cervical carcinoma ME-180 cells and in the 772 

HEP-2 cells (originally believed to be derived from a head and neck squamous cell carcinoma but later turned out 773 

to be HeLa cells) at the transcriptional level with subsequent reactivation of p53 and pRb (Abdulkarim et al., 774 

2002). In a model of stromal-derived factor 1 (SDF-1α)-stimulated invasiveness of HPV-positive cells, CDV had 775 

anti-metastatic action which was mediated by inhibition of E6/E7, CXCR4 and Rho/ROCK signalling (Amine et al., 776 

2009).  777 

Donne and co-workers tested the effects of CDV on the non-HPV cervical carcinoma cell line C33A compared 778 

to two derived cell lines, i.e. the C33AT6E6 cells (stable transfected with the low risk HPV6 E6) and the 779 

C33AT16E6 cells (stable transfected with the high-risk HPV16 E6). The authors found that CDV treatment had a 780 

marked growth-inhibitory effect on high-risk E6 expressing C33AT16E6 cells, supporting the use of CDV for 781 

treatment of high-risk HPV-associated diseases. However, unlike high-risk E6, expression of low-risk HPV E6 in 782 

C33A cells did not augment the sensitivity of these cells to CDV. The authors conclude from their studies that 783 

CDV may have little selectivity for low-risk HPV related diseases. However, they based their conclusion only on 784 

the expression of one of the viral oncoproteins neglecting the fact that low-risk HPV lesions are due to HPV-785 

induced hyperproliferation resulting from productive HPV infection. On the other hand, Donne’s experiments 786 

presumably used newly transfected E6 and E7 expression vectors that had not replicated in the presence of CDV 787 

and therefore would not have incorporated CDV to block transcription. On the other hand, they tested the 788 

effects of CDV on expression of HPV6b and HPV16 E6 mRNA levels in a system that over-expresses these viral 789 

proteins. Also, they used the cervical carcinoma HPV-negative cell line C33A which is also sensitive to the 790 

antiproliferative effects of CDV. In contrast to previous results, they found increased HPV E6 RNA levels in C33A 791 

cells that over-expressed HPV6b or HPV16 E6 and no selectivity of CDV for HPV-positive cells (Donne et al., 792 

2009,Donne et al., 2007). 793 

A crucial difference between normal keratinocytes, benignly HPV-infected cells, and immortalized or 794 

transformed cells is the frequency as well as level of induction of host enzymes associated with energy 795 

metabolism and with S-phase entry and cell cycle progression to G2 phase, driven by the PyV LT-ag or the PV E7 796 

protein. Notably, the DNA viruses strongly up-regulate glycolysis including kinases such as pyruvate kinase. It can 797 

be hypothesized that phosphorylation of CDV and other ANPs might be selectively activated in this productive or 798 

transformed environment compared to more quiescent normal cells. Accordingly, to explain the selectivity of 799 

CDV for HPV-positive cells, Johnson and Gangemi (Johnson and Gangemi, 1999) claimed that CDV could be 800 

differentially metabolized in HPV-positive cells and normal keratinocytes. Following 8 and 16 hours incubation, 801 
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CDV was found to predominantly accumulate in the form of CDVp-choline (considered the intracellular depot 802 

form of CDV) in human primary keratinocytes (PHKs) while in HPV16-transformed keratinocytes, CDVpp was the 803 

most abundant anabolic product with little CDVp-choline having formed.  804 

Recently, we reported that following 72 h incubation with CDV, CDVp-choline appeared to be the most 805 

abundant metabolite while the monophosphate form was the least abundant one in PHKs as well as in HPV-806 

positive and HPV-negative tumor cells (De Schutter et al., 2013c). Importantly, no significant differences in the 807 

levels of the active metabolite CDVpp, CDVp-choline or CDV were observed between PHKs and HPV-positive 808 

tumor cells. However, lower CDVp levels were measured in PHKs compared to HPV-positive cells following 72 h 809 

incubation. Notably, lower concentrations of CDV and of all metabolites were observed in the spontaneously 810 

transformed keratinocyte cell line HaCaT that lack HPV sequences, compared to either HPV-positive cells or 811 

PHKs, suggesting that HaCaT cells have a different uptake and/or efflux of CDV, rather than differences in drug 812 

metabolism. 813 

To reveal the molecular mechanisms underlying the selectivity of CDV for tumor cells, in particular for HPV-814 

positive carcinoma cells, our research team evaluated gene expression changes following CDV treatment of 815 

different cell types [including two HPV-positive cervical carcinoma cell lines (SiHa, HPV16+ and HeLa HPV18+), an 816 

HPV-immortalized keratinocyte cell line (HaCaT), and PHKs (De Schutter et al., 2013c). In addition, drug 817 

incorporation into genomic DNA was analysed in the four cell types. An exhaustive and thorough analysis of the 818 

microarray data highlighted distinct responses to CDV exposure in PHKs compared to HPV-positive cervical 819 

carcinoma cells, on the one hand, and to HPV-immortalized keratinocytes, on the other hand. Our data indicated 820 

that the selectivity of CDV for HPV-transformed cells is based on differences in response to DNA damage, 821 

replication rate and CDV incorporation into cellular DNA between immortalized cells and normal cells, rather 822 

than on a specific effect of CDV on expression of the viral oncoproteins (De Schutter et al., 2013c). Normal cells 823 

possess an arsenal of repair pathways and cell cycle checkpoints to detect and repair DNA damage unlike 824 

transformed cells that have a significantly reduced set of DNA repair pathways for survival (Figure 3A).  825 

The presence of E6 and E7 appears to indirectly contribute to the efficacy and selectivity of CDV because the 826 

role of E7 interactions with host cell cycle control proteins is (a) to reactivate cell cycle (notably S-phase) in 827 

differentiated cells that had withdrawn from the cell cycle, and (b) to trigger unscheduled DNA synthesis.  As a 828 

consequence, E7 quickly leads to the stabilization of p53 and hence the need for E6:E6AP to neutralize p53 or 829 

lead to its ubiquitinylation and proteasome-mediated turnover. 830 

 The selective mechanism of action of CDV as antiproliferative agent could be inferred by analyzing the 831 

specific signatures identified in CDV-exposed PHKs that were not found in tumor cells, including cell cycle 832 

regulation and activation of DNA-double strand breaks (DSBs) repair mechanisms (i.e. ‘ATM Signalling’ and 833 

‘Double-Strand Break Repair by Homologous Recombination’) (Figure 3B). These findings suggest that CDV can 834 
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generate double-strand DNA breaks that cannot be repaired by tumor cells but well by normal cells (De Schutter 835 

et al., 2013c).  836 

Furthermore, when we compared the efficiency of CDV incorporation into genomic DNA in the different cell 837 

types, higher amounts of CDV were incorporated in the genomic DNA of transformed epithelial cells compared 838 

to PHKs, despite the fact that the levels of intracellular CDV metabolites were not significantly different among 839 

the cell types investigated. Recently, these findings were confirmed by P. Hadaczek and co-workers who also 840 

found that CDV is incorporated into cellular DNA activating DNA damage response pathways due to increased 841 

DNA breaks that prompt elevated tumor cell apoptotic response in glioblastoma cells (Hadaczek et al., 2013).  842 

Besides differences in cell cycle regulation and DNA repair pathways, our gene expression profiling analysis 843 

also allowed the identification of other pathways and functions that were induced or repressed following 844 

exposure to CDV differently in PHKs compared to HPV-positive and/or HPV-negative cells (De Schutter et al., 845 

2013c). For instance, Rho GTPase pathways and the acute phase response pathway were solely activated in 846 

immortalized cells while normal keratinocytes showed the activation of several metabolic pathways (Figure 4). 847 

Therefore, besides induction of double-strand DNA breaks, CDV showed a differential effect on specific 848 

pathways in normal cells compared to transformed cells that may contribute to the activity and selectivity of the 849 

drug for tumor cells.   850 

Furthermore, in vitro acquisition of resistance to CDV in SiHa cells was found to implicate a variety of cellular 851 

functions and pathways linked to cell death, cell growth and differentiation, cellular movement, metabolism, 852 

tissue development as well as inflammatory response (De Schutter et al., 2013b). Notably, SiHa cells selected for 853 

resistance to CDV presented a reduced growth in vitro and in the mouse xenograft model inducing a reduced 854 

inflammation, as measured by a reduced production of mice- and human-derived cytokines, diminished effect 855 

on chemical and haematological blood parameters, lower number of cells in the spleen and lesser splenomegaly 856 

compared to parental cells. Interestingly, when parental and CDV-resistant cells produced an equivalent size of 857 

xenografts (i.e. 3 and 5 weeks post cell-inoculation), the amount of neutrophils, macrophages, NK cells and 858 

inflammatory cytokines was significantly higher in the animals inoculated with the parental cells compared to 859 

those that received the CDV-resistant cells. 860 

 861 

7. Extension of the clinical use of CDV for the treatment of tumors not induced by oncogenic viruses 862 

Our data obtained by whole genome gene expression profiling of normal versus immortalized cells exposed 863 

to CDV supports the use of CDV for the treatment of non-viral induced neoplasias. Furthermore, a few reports 864 

sustain this hypothesis. For instance, CDV proved effective in reducing the growth of melanoma B16 in an 865 

experimental model in mice (Redondo et al., 2000). The most effective treatment in this model was 866 

subcutaneous administration of 67 mg/kg on alternative days three times weekly that resulted in 90% inhibition 867 

of tumor growth.  868 
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When CDV antiproliferative effects were evaluated against a series of nine HPV-negative cells, the 50% 869 

cytostatic concentrations of the drug following 7 days of incubation varied between 1.4 µg/ml (for the cervical 870 

carcinoma cell line C33A) and 43 µg/ml (for the breast carcinoma cell line BT-20) compared to 0.7 to 2.0 µg/ml 871 

for four different HPV-positive cell lines [SiHa and CaSki (HPV-16), HeLa (HPV-18) and CK-1 (HPV-33) (Andrei et 872 

al., 1998a). When ODE-CDV was compared to CDV, ODE-CDV proved more potent than the parent compound 873 

against the HPV-positive cell carcinoma cell lines HeLa, CaSki, Me-180 (HPV-68) and the C33A cervical carcinoma 874 

cells lacking HPV (Hostetler et al., 2006).  875 

Liekens et al have demonstrated the inhibitory effects of CDV on the development of virus-independent 876 

vascular tumors originated by basic fibroblast growth factor (FGF2)-overexpressing endothelial cells (FGF2-T-877 

MAE). The in vivo antitumor efficacy of CDV was attributed to specific induction of apoptosis in this model 878 

(Liekens et al., 2007). In addition, CDV treatment of FGF2-T-MAE cells resulted in a pronounced up-regulation of 879 

the tumor suppressor protein p53. However, the expression of Bax (pro-apoptotic) and Bcl-2 (anti-apoptotic) 880 

proteins remained unchanged, and CDV did not induce the release of cytochrome c from the mitochondria. 881 

Therefore CDV appeared to inhibit the growth of FGF2-T-MAE cells via inhibition of FGF2 expression and 882 

signalling (Liekens et al., 2007). 883 

Recently, it was shown that CDV possesses potent antineoplastic activity against both HCMV positive and 884 

negative glioblastomas (Hadaczek et al., 2013). While this activity was associated with inhibition of HCMV 885 

expression and with activation of cellular apoptosis in HCMV-positive glioblastomas, CDV was also demonstrated 886 

to induce cell death in the absence of HCMV. CDV incorporated into tumor cell DNA promoting double-strand 887 

DNA breaks and apoptosis.  888 

 889 

8. Can the antitumor activity of CDV be synergized? 890 

Considering the mode of cell killing by CDV, combination of CDV and radiation therapy can be considered as a 891 

promising and feasible strategy to improve treatment outcomes for different tumor types, of both viral and non-892 

viral origin.  893 

By the addition of further DNA damage, such as irradiation therapy, it can be hypothesized that cellular 894 

apoptotic response to CDV would increase. Indeed, combining CDV with irradiation both in vitro and in 895 

engrafted nude mice resulted in a marked radio-sensitization in HPV-positive cells, which was not observed in 896 

HPV-uninfected cells (Abdulkarim et al., 2002). The synergistic effect of CDV and radiation in HNSCC cells was 897 

associated with p53 accumulation. It has also been shown that the combination of CDV and radiation had a 898 

potent anti-angiogenic effect, inducing inhibition of E6 expression, restoration of p53, and reduction of the pro-899 

angiogenic phenotype of HPV18 positive cells associated with VEGF (vascular endothelial growth factor) 900 

inhibition (Amine et al., 2006).  CDV also enhanced the radiation-induced apoptosis in EBV-positive cells and in 901 

EBV-related cancer xenografts (Abdulkarim et al., 2003). CDV induced a downregulation of the EBV oncoprotein 902 
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LMP1 associated with a decrease in expression of the anti-apoptotic Bcl-2 protein and an increase of the pro-903 

apoptotic Bax protein in Raji (Burkitt lymphoma) and C15 (nasopharyngeal carcinoma) cells (Abdulkarim et al., 904 

2003).  905 

The antitumor effect of CDV was also evaluated in combination with radiation therapy against glioblastoma 906 

(Hadaczek et al., 2013). In vitro, a dramatic increase (over 21-fold) of phosphorylated H2AX, an indicator of DNA 907 

damage/instability, after exposure to both CDV and ionizing radiation was observed. Furthermore, this 908 

combination resulted in reduced tumor growth in a model of human glioblastoma-derived intracranial 909 

xenografts in mice leading to increased animal survival.  910 

On the other hand, the combination of cidofovir with chemotherapeutics presenting a different mode of 911 

antitumor action may be expected to result in synergistic antitumor activity. In line with this assumption, 912 

Deberne and colleagues investigated the combination of cidofovir with the anti-epidermal growth factor 913 

receptor monoclonal antibody cetuximab in vitro (using a clonogenic survival assay, cell cycle analysis, and 914 

phospho-H2AX levels) and in vivo (using xenograft models) (Deberne et al., 2013). This combination was 915 

assessed considering the cross-talk between epidermal growth factor receptor and HPV that is implicated in 916 

tumor progression. The CDV-cetuximab combination inhibited the growth of the different cell lines tested, 917 

including HPV-positive (HeLa and Me 180) and HPV-negative (C33A, H460 and A549) cells, with synergistic 918 

activity on HPV-positive but not on HPV-negative cells. The CDV-cetuximab combination also delayed tumor 919 

growth of HPV-positive tumors in vivo but no efficacy was reported on HPV-negative C33A xenografts. The 920 

combination induced S-phase arrest associated with enhanced levels of double-strand breaks (as measured by 921 

phosphorylation of H2AX) in HeLa and Me 180 cells.  922 

 923 

9. Conclusions and Perspectives 924 

The research performed in the last years has provided a better understanding on the mechanisms of 925 

antitumor efficacy of ANPs. Although comparative studies between CDV and ANPs of the PME series (such as 926 

PMEG) are missing, their action on cellular DNA polymerization appeared to be different, PMEG having a higher 927 

affinity for cellular DNA polymerases than CDV. An important difference between both drugs is the ability of 928 

PMEG to cause chain termination of viral DNA synthesis in contrast to CDV that can be incorporated. Although 929 

both PMEG and CDV can cause DNA damage, they may differ in the type of damage induced. In the case of CDV, 930 

it appeared that the drug is able to induce double-stranded DNA damage and that only normal cells are capable 931 

of activating a DNA damage response and repair the damage via homologous recombination (considered as a 932 

very faithful mechanism of DNA repair). On the other hand, it appears that CDV is able to trigger several 933 

signalling pathways in tumor cells, both HPV-positive and HPV-negative cells, such as Rho GTPase signalling and 934 

acute phase response that may also contribute to its antitumor efficacy and selectivity. 935 
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There is an unmet need for effective anti-HPV treatments for existing infections and for patients that do not 936 

receive the prophylactic vaccination. Also, no FDA-approved treatments exist to manage human PyV infections.  937 

The use of cidofovir derivatives such as CMX001 (with substantially improved oral bioavailability and reduced 938 

toxicity compared to CDV) and HPMP-5-azaC (with in vitro and in vivo antiproliferative effects equivalent as 939 

those described for CDV) deserve further evaluation. Also, the use of formulations of CDV should be envisaged in 940 

order to use lower drug levels and enhance efficacy. A recent study has shown that formulation of CDV 941 

improved the anti-papillomavirus activity of topical CDV treatments in the CRPV/rabbit model (Christensen et 942 

al., 2014). 943 

Importantly, CDV was suggested to affect the LT-ag of PyV, indicating that the helicase activity associated 944 

with the LT-ag may be the target of CDV. Although there is no overall homology among the PyV and PV 945 

genomes, the helicase motif of PV E1 protein, a domain stretching about 230 amino acids, has some sequence 946 

similarity with the SV40 LT-ag (de Villiers et al., 2004). Furthermore, a comparison of the active s                                        947 

ite from SV40 LT-ag and HPV E1 proteins shows high similarities (Figure 5). The lysine finger is conserved in the 948 

LT-ag and the HPV E1 proteins and, in addition, a number of aspartates, asparagines and threonines are 949 

conserved in the active site of both types of proteins. Structural similarities between the LT-ag and the BPV E1 950 

protein have also been described (Topalis et al., 2013). This opens new perspectives in the understanding of the 951 

mechanism of inhibition by CDV during productive PyV and HPV replication as the E1 HPV protein also has 952 

helicase activity. Various validated systems for testing the components of HPV E1 helicase and viral DNA 953 

replication using transient transfection of E1 and E2 expression plasmids or using purified enzymes in vitro have 954 

been reported (Liu et al., 1995,Kuo et al., 1994,Fradet-Turcotte et al., 2010).   955 

Further research is also needed in understanding the effects of CDV on the productive replicative cycle of 956 

low-risks HPVs and the organotypic epithelial raft cultures appear to be the ideal system to perform these 957 

investigations as they reproduce epithelial differentiation in an ex vivo system. A fully productive 3-dimensional 958 

tissue culture system for production of high yields of infectious HPV-18 virions was first described in 2009, with 959 

multiple published applications since then (Wang et al., 2009). 960 

This system appears to be also more appropriate to analyze drug-metabolism because nucleoside 961 

metabolism in cell monolayer cultures (especially with immortalized and transformed cells) are considerably 962 

abnormal compared to 3-dimensional tissues, where most cells are quiescent. Moreover, uptake of small 963 

molecules is substantially altered in rapidly dividing monolayer cells that do not have cell-cell junctions. 964 

Nucleotide synthetic pathways have exquisitely coordinated balancing of de novo production of the 965 

ribonucleoside and the deoxyribonucleoside triphosphates, and these regulatory responses are also heavily 966 

influenced by salvage of nucleosides from broken down RNA and DNA or from the general circulation. 967 

Exogenous agents such as inhibitors of these synthetic or salvage pathways (eg. hydroxyurea, methotrexate) or 968 

from nucleoside analogs (eg. 5-FU) can substantially alter this balancing network.  Whether CDV or other ANP's 969 
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have an impact on the normal distribution of ribo- and deoxyribo-nucleosides and their phosphorylated 970 

derivatives should be investigated.  How CDV and other ANPs impact ribonucleoside diphosphate reductase, the 971 

main source of deoxynucleotide synthesis in virally infected cells should be considered, as well as the 972 

consequences of cell growth in the presence of CDV with respect to ribosomal RNA transcription and processing.  973 

 One of the major findings regarding CDV-antitumor activities points to the potential use of the drug in the 974 

therapy of non-viral induced tumors such as glioblastomas. Also, further research will be necessary to elucidate 975 

the effects of CDV in several signalling pathways compared to PME derivatives and other chemotherapeutics in 976 

order to highlight (dis)similarities and understand their mechanisms of action. 977 
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 1002 

Legends to the figures 1003 

Figure 1. Intracellular metabolism of CDV and mechanism of action against viruses encoding for their own 1004 

DNA polymerases. Once inside the cells, CDV needs to be activated by cellular enzymes (Ho et al., 1992). UMP-1005 

CMP kinase catalyses the conversion of CDV to CDV-monophosphate (CDVp), which is then further 1006 

phosphorylated to the active form, CDV-diphosphate (CDVpp) by nucleoside 5‘-diphosphate kinase, pyruvate 1007 

kinase or creatine kinase. CDVpp can be used by the choline phosphate cytidyltransferase to form the CDVp-1008 

choline according to the reaction : CDVpp + choline phosphate → CDVp -choline + pyrophosphate (Cihlar and 1009 

Chen, 1996). Choline-phosphate cytidylyltransferase (EC 2.7.7.15) is an enzyme that catalyzes the chemical 1010 

reaction CTP + choline phosphate   diphosphate + CDP-choline where the two substrates of this enzyme are 1011 

CTP and choline phosphate, and the two products are diphosphate and CDP-choline. Choline phosphate 1012 

cytidyltransferase is responsible for regulating phosphatidylcholine content in membranes. CDVp-choline is 1013 

considered to serve as an intracellular reservoir for the mono- and diphosphate derivatives of CDV. The active 1014 

form of CDV (i.e. CDVpp) interacts with the viral DNA polymerase as either competitive inhibitor [with respect to 1015 

the natural substrates (i.e. dCTP)] or alternative substrate (thus leading to incorporation into DNA). CDV has a 1016 

hydroxyl function in the acyclic side chain that would allow further chain elongation. For human CMV, chain 1017 

termination occurs when two consecutive CDVpp are incorporated in the growing DNA chain. 1018 

 1019 

Figure 2. Scaffold of PME and HPMP derivatives. Chemical structures of PME and HPMP derivatives that are 1020 

known for their antiproliferative activities. Chemsketch has been used to draw the structures of the different 1021 

drugs. 1022 

 1023 

Figure 3. (A) Differential response of normal cells and cancer cells to DNA damage. Adapted from (Khalil et al., 1024 

2012). Lines with arrow head indicate activation, while lines with bar head indicate inhibition. In response to 1025 

DNA damage, normal cells activate the DNA damage response pathway which will cause G1/S arrest via the p53 1026 

pathway and G2/M arrest via checkpoint kinases Chk1 and Chk2 pathway. In normal cells, cell cycle arrest by 1027 

either of these pathways allows time for DNA repair resulting in the prevention of genomic instability. In 1028 

contrast, cancer cells have a dysfunctional G1/S checkpoint because of loss of p53 function. In addition, most of 1029 

the tumor cells present alterations in the ATM pathway leading to disruption of the G2/M checkpoint. As a 1030 

result, cancer cells will accumulate irreparable lesions resulting in the activation of apoptosis. (B) Differential 1031 

response of normal cells and tumor cells to CDV. According to the microarray data reported by (De Schutter et 1032 

al., 2013c), primary human keratinocytes (PHKs) activate cell cycle regulation mechanisms that allow DNA repair 1033 

by means of homologous recombination (HR), leading to genomic stability and cell survival. Complete lines with 1034 
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arrow heads indicate activation while dashed lines indicate alternative repair pathways that were not identified 1035 

in the microarray data. In contrast to normal cells, the immortalized keratinocyte cell line HaCaT and the cervical 1036 

carcinoma cell lines SiHa (HPV16) and HeLa (HPV18) are unable to repair DNA damage resulting in genomic 1037 

instability and induction of apoptosis. The most relevant genes related to cell cycle regulation and/or DNA 1038 

damage repair pathways found upregulated following CDV exposure of PHKs are shown in red.  1039 

 1040 

Figure 4. Differential response to CDV treatment of HPV-positive and HPV-negative immortalized 1041 

keratinocytes versus primary keratinocytes based on a whole genome gene expression profile reported by (De 1042 

Schutter et al., 2013c). Activation of several metabolic, cell cycle regulation and DNA repair pathways were 1043 

solely activated in normal keratinocytes while immortalized cells failed to induce DNA repair mechanisms 1044 

following exposure to CDV. Importantly, two pathways (i.e. ‘activation of Rho GTPase signaling’ and ‘acute phase 1045 

response signaling’) were exclusively identified in CDV-treated immortalized cells. 1046 
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Table 1. Clinical uses of CDV (as an antiviral and antiproliferative agent) either approved [by the Food and 1588 
Drug Administration (FDA)] or supported by clinical data (De Clercq, 2003,Snoeck and De Clercq, 2002,De 1589 
Clercq, 2006,De Clercq, 2011).  1590 
 1591 

Route of administration Clinical indication 

Systemic (intravenous) 
 

• HCMV retinitis in AIDS patients (approved). 
• HSV-1, HSV-2 and VZV infections (particularly those that are 

resistant to acyclovir and/or foscavir). 
• HCMV infections, mainly those resistant to ganciclovir due to 

mutations in the UL97 gene. 
• EBV, HHV-6, HHV-7 and HHV-8 (Kaposi’s sarcoma associated 

herpesvirus) infections. 
• Polyomavirus infections due to JCPyV [progressive multifocal 

leukoencephalopathy (PML)] and polyoma BKPyV [hemorrhagic 
cystitis]. 

• Systemic adenovirus infections. 

Systemic (intravenous) or topical 
(gel/cream) 

• Molluscum contagiosum, orf and other poxvirus infections such as 
monkeypox and smallpox.  

• Complications of smallpox vaccine (vaccinia). 

Topical (gel/cream) • Mucocutaneous HSV-1 or HSV-2 infections (particularly those 
resistant to acyclovir and/or foscavir. 

Topical (eyedrops) • Keratoconjunctivitis due to HSV or adenovirus. 

Topical (intravitreal) • HCMV retinitis. 

Topical (gel/cream), intralesional 
injection, infrequently systemic 
administration) 

• Human papillomavirus-associated lesions: 
- recurrent laryngeal papillomatosis 
- anogenital warts 
- common warts 
- cervical/vulvar/anal/penile intraepithelial neoplasia 

Herpes simplex 1 (HSV-1) and 2 (HSV-2), human cytomegalovirus (HCMV), varicella-zoster virus (VZV), human 1592 
herpesvirus 6 (HHV-6), 7 (HHV-7), 8 (HHV-8). Foscavir: foscarnet sodium injection. 1593 
 1594 
 1595 
 1596 

  1597 
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Table 2. Major similarities and differences between polyoma- and papillomaviruses. 

 Polyomavirus Papillomaviruses 

Genome • Double-stranded 
• Circular 
• DNA 
• ∼5 kbp 
• Uses overlapping genes and both strands 

of DNA to pack all 6 genes into 5 kbp 

• Double-stranded 
• Circular 
• DNA 
• ∼8 kbp 
• Uses overlapping genes and one strand of 

DNA to pack all 7 genes into 8 kp 
Morphology • Non-enveloped 

• ∼ 45 nm diameter 
• Icosahedral, T=7 
• 3 capsid proteins (VP1, VP2, VP3) 

• Non-enveloped 
• ∼ 52-55 nm diameter 
• Icosahedral, T=7 
• 2 capsid proteins (L1, L2) 

Early proteins • LT-ag 
• sT-ag 
• mT-ag (in murine PyV) 
• ALTO (in TSPyV) 

 

• E1: viral replication 
• E2: viral replication and transcription 
• E4: desestabilization of cytokeratin 

network 
• E5: alteration of growth factor signaling 
• E6: oncoprotein 
• E7: oncoprotein 

DNA Replication • LT-ag is the multifunctional initiator 
protein 
 

• The C-terminal domain of LT-ag have 
ATPase/helicase activity and is sufficient 
for oligomeriation into hexamers 

• The central part of LT-ag contains an origin-
binding domain (OBD) which recognizes 
specific sequences in the origin 

 
 
• The LT-ag OBD can bind with high-affinity 

to its target binding site as a monomer  
• Specific N-terminal domain of LT-ag that 

contains a unique J-domain, a monopartite 
nuclear localization signal (NLS) and several 
phosphorylation sites for different kinases 
that modulate either the nuclear import of 
LT-ag or its assembly into a double 
hexamer at the origin 

• E1 is the multifunctional initiator protein 
but also requires E2 to initiate viral 
replication in vivo 

• E1 requires interaction with E2 to 
oligomerize into hexamers 
 

• Replication begins with the recruitment of 
E1 by E2 to the Ori and requires an 
essential protein-protein interaction 
between the E2 transactivating domain 
(i.e. TAD) and the E1 helicase domain  

• The E1 OBD needs to dimerize to bind with 
high-affinity to its target binding site  

• Specific N-terminal domain of E1 that 
contains a bi-partite NLS, a Crm1-
dependent nuclear export signal (NES), and 
a binding site for cyclin A/E-cdk2 and 
several phosphorylation sites for different 
kinases that modulate either the nuclear 
import of LT-ag or its assembly into a 
double hexamer at the origin 

Interaction with 
tumor suppressor 
proteins  

• The LT-ag binds to both Rb family proteins 
and p53. 

• E6 binds to p53 and other pro-apoptotic 
proteins and E7 binds to Rb family proteins 

 

 

 



50 
 

Table 3.  Comparison of the ATP binding site from SV40 LT-ag and HVP-16/18/6 E1. The ATP binding site is formed from 
residues belonging to two adjacent monomers (cis- and trans-domains). The P-loop (sequence G(X)4GKT/S) is a motif 
present in all the proteins harboring an ATP binding site. 

² 
Polyomavirus High Risk HPV Low Risk HPV 

ATP binding domain SV40 LT-ag HPV-16 E1 HPV-18 E1 HPV-6 E1 

Trans-domain 
K418-K419 

R498, D502, R540 
K469-K470 

R537, D541, R581 
K476-K477 

R544, D548, R589 
K470-471 

R538, D542, R582 

Cis-domain D474, N529 D523, N567 D530, N574 D524, N568 

P-loop 426-GPIDSGK-432 477-GAANTGK-483 484-GPANTGK-490 478-GPPDTGK-484 
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Box 1. 

 

 
Polyomavirus (PyVs) genome organization. The PyV genome is functionally divided into coding (early and late) and non-coding 
regions. In all PyVs, the early coding region encodes for the Large T antigen (LT-ag) and small T antigen (sT-ag) while the late 
region encodes for the viral structural proteins and the non-structural agnoprotein, which is exclusively found in BKPyV and 
JCPyV (Khalili et al., 2005). Agnoproteins contribute to viral propagation at various stages in the replication cycle, including 
transcription, translation, processing of late viral proteins, assembly of virions, and viral propagation. The non-coding control 
region (NCCR) contains the viral promoters and origin of replication. The late region encodes the viral capsid proteins VP1-3 and 
the recently discovered VP4 in SV40. VP1 forms 72-pentameric capsomers, each capsomer containing a single copy of the minor 
structural protein VP2 or VP3 in its central cavity. VP4 is expressed during the late stages of SV40 replication and is not found in 
the virion. SV40 appears to initiate cell lysis by expression of VP4 which acts as a viropin that form pores resulting in perforation 
of cellular membranes for virus release (Raghava et al., 2011,Raghava et al., 2013).  The JCPyV agnorpotein was also shown to 
act as a viropin (Suzuki et al., 2010). 
 
 

 
Merkel cell polyomavirus (MCPyV) integration in Merkel cell carcinoma (MCC), adapted from (Moore and Chang, 2010). In 
case a rare integration mutation into the host cell genome occurs, the MCV T antigen can activate independent DNA replication 
from the integrated viral origin, which would result in replication fork collision and DNA fragmentation. Hence, a second 
mutation in the LT-ag that eliminates its replication functions upon integration is required for tumorigenesis. All MCC-derived 
LT-ag sequences analyzed so far present premature stop codons or deletions leading to abrogation of the helicase domain. 
These mutations are specific for MCPyV in MCC and are absent in viruses derived from non-tumor tissues. The truncation 
mutations eliminate LT-ag helicase activity but retain the LXCXE–retinoblastoma protein-binding motif as well as other N-
terminal motifs of the LT-ag. Thus, the integrated virus in MCC retains the ability to regulate the host cell cycle and inhibit the 
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Box 2 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Schematic presentation of the closed circular double-stranded human papillomavirus (HPV) DNA and its integration into 
host-cell DNA. Adapted from (Stanley et al., 2007). In the circular HPV genome are shown the non-coding region (i.e. long 
control region) and the open reading frames (ORFs) encoding the early and late viral proteins. During the process of 
oncogenesis, the viral genome becomes integrated into host cellular DNA. The circular HPV DNA is usually opened within 
the E2 ORF, disrupting its continuity. Part of E2, E4, E5 and L2 are regularly deleted after integration (partial genes are 
represented by an asterisk).  
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Box 3 

 

 

 

 

Scheme of the polyomavirus replicative cycle. To gain entry into the cells, viral capsid proteins interact directly with the 
receptor molecules. The PyV capsids consist of 72 pentamers of the major capsid protein viral protein 1 (VP1), which is 
responsible for antigenicity and receptor specificity. PyVs are internalized by the interaction of VP1 with specific cellular 
receptors. Gangliosides [glycosphingolipids (ceramide and oligosaccharide) with one or more sialic acids (n-acetylneuraminic 
acid, NANA) linked on the sugar chain] are used as receptors for most of the well-characterized polyomaviruses.  For instance, 
gangliosides GD1a and GT1b are recognized as receptors for murine PyVs and GM1 for SV40 (Ashok and Atwood, 2006). In the 
case of BKPyV, it was shown that the virus uses specific gangliosides that all contain a common α2,8-disialic acid motif to infect 
the cells (Neu et al., 2013). Lactoseries tetrasaccharide c (LSTc) which terminates in α2,6-linked sialic acid was identified as the 
specific receptor for JCPyV and the presence of α2,6-linked sialic acid correlates with JCPyV cell and tissue infection, including B 
lymphocytes, kidney, and the glial cells astrocytes and oligodendrocytes (Hirsch et al., 2013,Maginnis et al., 2013). PyVs enter 
into the host cell via a caveolae-mediated endocytic pathway (Tsai and Qian, 2010). In contrast to most PyVs, JCPyV 
internalization relies on clathrin-dependent receptor-mediated endocytosis and is then sorted to caveosomes.  Trafficking 
through the endoplasmatic reticulum (ER) appears to be a necessary step for all PyVs (Bennett et al., 2012). The presence of 
chaperons, disulfite isomerases and reductases in the ER may facilitate the capsid uncoating process. The viral genome, still 
associated with some viral proteins, is imported into the nucleus via importin recognition of a nuclear localization signal 
present in VP3. In the nucleus, early genes are expressed by the host transcriptional machinery (Fanning et al., 2009,Hirsch et 
al., 2013). After translation of the early proteins, the LT-ag initiates DNA replication of the viral genome that is carried out by 
cellular DNA polymerases. The shift to transcription of late genes is not completely elucidated but involves transcriptional 
activation of the late and repression of the early promoters by LT-ag. The constitutive viral capsid proteins are imported to the 
nucleus where encapsidation of the viral genomes occur followed by release of new virions. 
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Box 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Functional domains of polyomavirus (PyV) Large T antigen (LT-ag). Adapted from (DeCaprio and Garcea, 2013). The N 
terminus of LT-ag contains a DnaJ domain (or J domain), necessary for efficient viral DNA replication, recruits heat shock 
cognate protein (HSC70) homologues. Besides the DnaJ domain, all LT-ag’s contain a LXCXE motif that binds directly to the 
tumour suppressor retinoblastoma protein family of proteins (i.e. pRb, p130 and p107). The DnaJ domain and the LXCXE motif 
cooperate to disrupt the interaction of Rb and the E2F family of transcription factors in order to promote cell cycle 
progression. The LT-ag of all PyVs also contain a threonine-proline-proline-lysine (TPPK) motif, a nuclear localization signal 
(NLS), a DNA-binding domain (DBD) and a helicase domain. Phosphorylation of the threonine residue in the TPPK motif is 
required for LT-ag-mediated viral DNA replication. The DBD and helicase domains are required for viral replication and recruit 
cellular DNA replication factors [DNA polymerase-α catalytic subunit (POLA), the replication protein A complex (RPA) and the 
DNA primase complex (PRIM) for DBD and EP300, CREBBP, p53 and DNA topoisomerase (TOP1) for the helicase domain]. The 
outside surface of the helicase domain of PyVs binds to the tumor suppressor protein p53, blocking p53-dependent gene 
expression in response to DNA damage signals. After the helicase domain, the C-terminal region of JCPyV and BKPyV contains a 
C-terminal region that bears some homology with the SV40 C-terminal domain. This region of homology includes threonine-
701 in SV40 that when phosphorylated competes with phosphorylated cyclin E and MYC, increasing their levels and in this way 
contributing to cellular growth and proliferation. The C-terminal region of SV40 also binds to FAM111A known to contribute to 
viral gene expression, host range restriction and adenovirus replication. Except for JCPyV and BKPy V, all the human 
polyomaviruses LT-ag’s contain much shorter C-terminal region with little homology among them or with SV40. 

 

   

Mechanism of DNA unwinding by the LT-ag. Adapted from (Trakselis and Graham, 2012). LT-ag binds to the origin of 
replication as a double hexamer which then splits into two single hexamers. Each hexamer tracks along a “leading” strand in 
the 3’-to-5’ direction while excluding the other “lagging” strand, unwinding double-stranded DNA as they go. If the hexamers 
encounter a protein covalently attached, they can bypass it efficiently without dissociating from the DNA (Yardimci et al., 
2012). 
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Box 5 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell cycle regulation. The transcription factor p53 responds to diverse stresses, including DNA damage, regulating many target 
genes that induce cell-cycle arrest, apoptosis, senescence, DNA repair or altered metabolism. The tumor suppressor protein p53 
prevents cells from entering to or progressing through the cell cycle under conditions that could cause DNA damage. p53-functions 
in the cell cycle include the control of the G1 transition to the S phase of the cell cycle at the G1 checkpoint by inducing expression 
of cyclin inhibitors p16, p21 and p27 that block the activities of cyclin-cyclin-dependent kinase (CDK) complexes, thus mediating 
arrest of the cell cycle by blocking the progression of the cell cycle at the G1/S transition. Because of the central role of p53 in life or 
death decisions, an exquisite control mechanism of p53 exists. Central to this regulation are the essential p53 inhibitors MDM2 and 
MDM4, although other participants in p53 control have been described although they are not shown in this figure. In normal cells, 
Mdm2 and Mdm4 (also called Mdmx; human orthologues often referred to as HDM2 and HDM4/HDMX, respectively) are key 
regulators of the tumor suppressor protein p53 (MDM2 mainly regulates p53 stability while MDM4 has a major role in regulating 
p53 activity). DNA damage induces MDM2 self-degradation and an MDM2-dependent degradation of MDM4, a process essential to 
mount a p53 response.  
 

 
 
Deregulation of the cell cycle by polyoma- and papillomaviruses. Initially, polyomavirus LT-ag binds to products of the RB-family of 
proteins thereby interfering with their activity and inducing the infected cell to enter the cell cycle S phase. Subsequently, the LT-ag 
inactivation of p53 allows re-phosphorylation of Rb proteinsthrough the cyclin dependent kinase (cdk) pathway and prevents the 
p53-mediated apoptosis of the infected cell. In HPV, Inactivation of p53 by the high-risk E6 proteins results in abrogation of growth 
arrest and pro-apoptotic effects of p53 whose levels increase due to the constitutive E2F gene transcription as a consequence of 
inactivation of Rb proteins by the E7 oncoprotein. 
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Box 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme of the life cycle of human papillomaviruses. Adapted from (Moody and Laimins, 2010). Following exposure through 
microwounds, keratinocytes in the basal layer of the epithelium are infected by HPV. The infected epithelium (on the right) is 
compared to the uninfected epithelium (on the left). Following infection, viral genomes are maintained in the nucleus as low 
copy numbers in an episomal state and they are replicated together with the cellular DNA. Early viral genes are expressed. 
Following cell division, one daughter cell leaves the basal layer undergoing differentiation and this process of differentiation 
induces the productive phase of the viral life cycle. In order to activate the cellular DNA synthesis machinery, the viral E6 and E7 
proteins are expressed which are responsible for deregulation of the cell cycle control, pushing the differentiating cells to enter 
into S phase of the cell cycle. Viral genome replication occurs then in cells that normally would have undergone terminal 
differentiation. The late proteins L1 and L2 are synthesized only in the upper layers of the epithelium and are assembled 
together with the viral genomes to form virions that are released at the surface of the epithelium. 
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Box 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 8 

 
Schematic representation of E1 and E2 proteins. Adapted from (D'Abramo and Archambault, 2011). E1 and E2 are about 650 and 370 
amino acids long and are necessary for replication of the viral genome. Three functional domains are recognized in E1: a C-terminal 
ATPase/helicase domain that can oligomerize into hexamers, a central origin DNA-binding domain (OBD), and an N-terminal regulatory 
region which is essential for optimal replication in vivo but not in vitro. The N-terminal region consists of conserved sequences for 
nuclear localization (NLS), nuclear export (NES) and a conserved cyclin-binding motif. E1 functions as a DNA binding protein to 
recognize the viral origin and also as a helicase to unwind DNA. E1 is also responsible for the recruitment of cellular proteins to the 
origin of replication. The E2 protein contains two functional domains: an N-terminal transactivation domain (TAD) that is involved in 
transcriptional regulation and direct association with E1, and a C-terminal DNA-binding/dimerization domain (DBD). These domains are 
separated by a hinge region. E2 facilitates recognition of the viral replication origin and helps in the assembly of additional E1 proteins 
into replication competent double hexamers required for bidirectional DNA unwinding. E2 is also implicated in the regulation of viral 
gene transcription and segregation of the viral genome at mitosis. 
 

 
 
Initiation of HPV DNA replication. Replication begins with the recruitment of E1 by E2 to the Ori (which contains of a cluster of three 
E2 binding sites flanking a series of overlapping E1 binding sites) (Chow and Broker, 2013). This recruitment step involves an essential 
protein-protein interaction between the E2 transactivating domain (i.e. TAD) and the E1 helicase domain. In a second step, the E2 
protein recruits additional E1 molecules promoting their assembly into a replication-competent double hexameric helicase. ATP also 
stimulates the oligomerization of E1 and is required for the helicase activity of E1 protein. Finally, the E1 protein interacts with host 
cell replication factors [replication protein A, topoisomerase I and DNA polymerase α primase (pol α)] promoting bidirectional 
replication of the viral genome. Following initiation, the clamp loader, RFC (replication factor C 
 



58 
 

Box 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic representation of high-risk HPV16 E5 (top), E6 (middle) and E7 (bottom) oncoproteins. C: cysteine, L: leucine, E: 
glutamic acid, T: threonine, Q: glutamine, S: serine, X: any amino acid. TM: transmembrane domain, CR: conserved region. E5 is 
a transmembrane protein that functions by inducing ligand-independent dimerization and activation of receptor protein 
tyrosine kinases including epidermal growth factor receptor. E5 oncoprotein may contribute to some early steps of viral 
transformation but it is not necessary for malignant progression and/or maintenance of the transformed phenotype and it is 
generally not expressed in cervical carcinoma. In contrast to E5, the E6 and E7 oncoproteins are consistently expressed in 
cervical carcinomas and maintenance of the transformed state. Both E6 and E7 contain zinc-binding domains consisting of two 
copies of CXXC separated by 29 amino acid residues and they may have evolved from a common ancestor.  
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Box 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

(A) Targeting of the tumor suppressor protein p53 via ubiquitination by HPV E6. The best characterized HPV16 E6 
activity is the association with the ubiquitin-protein ligase E6AP (E6 associated protein). The dimeric complex then binds to 
p53 and E6AP catalizes the multi-ubiquitination of p53. (B) Deregulation of the cell cycle restriction point G1/S by HPV E7. 
The E7 protein binds to several cellular factors, being the best characterized of these interactions the association with the 
retinoblastoma (Rb) family of proteins. The Rb family of proteins controls the G1/S phase transition by regulating the 
activity of the E2F family of transcription factors. The transcriptionally active forms of E2F are heterodimers that contain an 
E2F polypeptide (E2F1-8) and a polypeptide encoded by the E2F dimerization partner (DP) gene family (DP-1, DP-2). The 
transcriptional activity of E2F/DP heterodimers is influenced by association with the members of the retinoblastoma (Rb) 
tumor suppressor protein family (pRb, p107, and p130). E2F transcription factors are critical regulators of G1 exit and S-phase 
progression as well as a number of other cellular processes, including cellular differentiation, apoptosis, and genomic instability. The G1 
specific Rb/E2F complex acts as a transcriptional repressor. In quiescent cells, the hypo-phosphorylated form of Rb represses 
transcription of E2F-dependent promoters by directly binding to the E2F transactivation domain. Following exposure to 
mitogenic signals, normal cells activate genes encoding the G1 specific D-type cyclins (i.e. D1, D2, and D3). These cyclins 
associate with a catalytic subunit (i.e. CDK4 or CDK6) and the kinase complexes phosphorylate Rb in mid-G1 phase which 
results in the release of active E2F/DP-1 heterodimer complexes and progression through the restriction point. The binding 
of high-risk E7 to Rb disrupts Rb-E2F complexes, leading to the constitutive expression of E2F-reponsive genes. As a result, 
cells that express E7 can enter the S phase without mitogenic signals.  
 


