
cProbLog: Restricting the Possible Worlds of
Probabilistic Logic Programs

Dimitar Shterionov, Gerda Janssens

KULeuven, Belgium,
e-mail: firstname.lastname@cs.kuleuven.be

Abstract. A program in the Probabilistic Logic Programming language
ProbLog defines a distribution over possible worlds. Adding evidence
(a set of ground probabilistic atoms with observed truth values) rules
out some of the possible worlds. Generalizing the evidence atoms to
First Order Logic constraints increases the expressive power of ProbLog.
In this paper we introduce the first implementation of cProbLog – the
extension of ProbLog with constraints. Our implementation transforms
ProbLog programs with FOL constraints into ProbLog programs with
evidence that specify the same possible worlds. We backup our design
and implementation decisions with a series of examples.

1 Introduction

Statistical Relational Learning [5] (SRL) combines logic programming and ma-
chine learning with uncertainties. ProbLog [2, 7] is a powerful, general-purpose
SRL system based on Prolog. The main inference task of ProbLog is to compute
the marginal probabilities of a set of queries conditioned on some evidence1 –
the MARG task. ProbLog is a suitable formalism for a wide range of problems.
In some cases, though, it lacks language expressivity and users need to write
more complex programs to add additional knowledge. cProbLog [3] proposes to
extend the expressive power of ProbLog by generalizing evidence atoms (that
state which (atomic) observations are true or false) into First-Order Logic sen-
tences. Each of these sentences expresses a constraint that has to hold.

The ProbLog program in Example 1 encodes a small road map among 4
cities. Each atom of the form pi :: road(ai, bi) is a probabilistic fact: pi denotes
the existence probability of the fact road(ai, bi). It states that the road con-
necting cities ai and bi is available (eg. free of traffic jams) with probability pi.
Each probabilistic fact is either true or false in different interpretations of the
program. An interpretation of the ProbLog program, called a possible world, con-
tains all ground atoms with a specific truth value assignment. ProbLog defines
a distribution over all possible worlds. A query is true in some of these possible
worlds. Eg., reach(c1, c4) is true in 7 of the 16 possible worlds. Its (success)
probability, computed over these possible worlds, is P (reach(c1, c4)) = 0.7195.

1 When there is no evidence we refer to the computed probability as success probability.
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Example 1.
0.7::road(c1, c2). 0.7::road(c2, c4). 0.5::road(c1, c3). 0.9::road(c3, c4).
reach(A, B):-road(A, B).
reach(A, B):-road(A, A1), reach(A1, B).
query(reach(c1, c4)).

In ProbLog additional knowledge such as the road between city 3 and city 4 is

not available, is given as evidence: evidence(road(c3, c4), false). This evidence makes
all possible worlds where road(c1, c3) is true invalid and the probability of the
query is calculated with respect to the rest, in which road(c3, c4) is false. In
ProbLog, evidence can express only observations on ground atoms. That is why
encoding evidence over more complex knowledge can become cumbersome. Eg.,
to state that the road between city 2 and city 4 or the road between city 3 and city 4 is

available will require the following code to be added to the program of Example 1:
add_ev:- road(c2, c4). add_ev:- road(c3, c4). evidence(add_ev, true).

cProbLog allows one to encode complex additional knowledge as a single FOL
sentence (or constraint): constraint(road(c2, c4) or road(c3, c4)).. The probability of
the query is then computed with respect to the possible worlds which are valid
according to the constraints. Constraints generalize evidence to FOL sentences.
Furthermore, a cProbLog constraint can also contain universally and/or existen-
tially quantified variables: ∃X : road(X, c4). The possible values for every quan-
tified variable need to be defined explicitly. To do so, we introduce in cProbLog
the notion of domains.

In this paper we describe the first implementation of cProbLog. Our algo-
rithm converts cProbLog constraints (FOL sentences) to ground ProbLog rules
and evidence. To illustrate the requirements towards cProbLog and backup our
design decisions we use a series of examples.

2 Background

2.1 ProbLog

ProbLog is a probabilistic logic formalism, based on Prolog. It combines tech-
niques from logic programming and machine learning to reason with uncertain
knowledge. A ProbLog program is a logic program where some facts are an-
notated with probabilities. A probabilistic fact has the form pi :: fi, where pi
denotes the existence probability of the fact fi. It can be either true with proba-
bility pi or false with probability (1−pi). Each probabilistic fact gives rise to two
possible interpretations: one where the fact is true and another where the fact
is false. A specific choice on the truth values of all probabilistic facts determines
a unique interpretation, called a possible world. A ProbLog program defines a
distribution over possible worlds according to the Distribution Semantics [10].

Let Ω = {ω1, .., ωn} be the set of possible worlds corresponding to a ProbLog
program.Given that only probabilistic facts have probabilities, we view a possible
world ωi as the tuple ωi = (ω+

i , ω
−
i ), where ω+

i is the set of true ground proba-
bilistic atoms and ω−i the set of false ground probabilistic atoms. Each atom aj
in ω+

i is true with probability pj ; each atom aj in ω−i is false with probability
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(1− pj). The union ω+
i ∪ω

−
i is the set of all possible ground probabilistic atoms

of the ProbLog program with a specific truth value assignment corresponding to
the possible world ωi. The intersection ω+

i ∩ ω
−
i is the empty set.

A ProbLog program then defines a probability distribution over possible
worlds as given in Equation 1, where with pi we denote the probability of the
atom ai.

P (ωi) =
∏

aj∈ω+
i

pj
∏

aj∈ω−i

(1− pj) (1)

A query atom q is true in a subset of the possible worlds: Ωq ⊆ Ω. Each ωqi ∈ Ωq
has a corresponding probability as computed by Equation 1. The probability of q
(P (q)) is the sum of the probabilities of all worlds in which q is true. Enumerating
all possible worlds is almost always impossible. Thus, ProbLog uses a form of
Weighted Model Counting for MARG inference [3, 4].

Additional knowledge about the problem can be encoded as evidence. Evi-
dence is a set of pairs (ai, αi) with αi the observed truth value of the ground
atom ai (αi ∈ {true, false}). We denote with E = {ai} the set of evidence atoms
and with e = {αi} – their corresponding truth values. Evidence restricts the set
of possible worlds of a ProbLog program to the ones in which each ai = αi is
valid. A query q can be true in some of these possible worlds. These are the ones
in which the conjunction q ∧ E = e is true: Ωq∧E=e ⊆ Ωq ⊆ Ω. Using Bayes’

rule ProbLog computes the marginal probability P (q|E = e) = P (q∧E=e)
P (E=e) .

Consider the ProbLog program of Example 2. It encodes a problem where
some items need to be packed in a suitcase. Each item has a certain weight and a
probability to be packed. The total weight of the suitcase needs to remain within
a predetermined limit. The predicates query/1 and evidence/2 are ProbLog2

built-ins to define queries and evidence. The query inlimit(10), asks the prob-
ability of packing items with a total weight of less or equal than 10. Table 1 enu-
merates all possible worlds of the ProbLog program. Using Equation 1 for the
possible worlds in which the query is true – {ω4, ω7, ω8, ω11, ω12, ω14, ω15, ω16},
we compute its probability: P (inlimit(10)) = 0.9162.

Example 2.
weight(skis,6). weight(board, 8). weight(boots,4). weight(helmet,3).
0.16::pack(skis). 0.125::pack(board). 0.25::pack(boots). 0.33::pack(helmet).
inlimit(Limit) :- inlimit([skis,boots,board,helmet],Limit).
inlimit([],Limit) :- Limit>=0.
inlimit([I|R],Limit) :- pack(I), weight(I,W), L is Limit-W, inlimit(R,L).
inlimit([I|R],Limit) :- \+pack(I), inlimit(R,Limit).
query(inlimit(10)).

Example 3. For Example 2 an observation (evidence) like boots are already packed
restricts the set of valid possible worlds to {ω4, ω11, ω12} and gives the probabil-
ity P (inlimit(10)|pack(boots) = true) = 0.2072

0.25 = 0.8288.
The requirement if the skis are packed then also the boots need to be packed can be ex-

pressed by the additional rules: add_ev:- \+ pack(skis). add_ev:- pack(boots). and the
evidence add ev is true. The conditional probability is then P (inlimit(10)|add ev =
true) = 0.8112125

0.88 = 0.9218.
2 When discussing the ProbLog system we refer to its most recent version ProbLog2
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Possible pack: Query Probability of pack: P (ω)
World skis boots board helmet inlimit(10) skis boots board helmet
ω1 T T T T F 0.16 0.25 0.125 0.33 0.002
ω2 T T T F F 0.16 0.25 0.125 0.67 0.003
ω3 T T F T F 0.16 0.25 0.875 0.33 0.012
ω4 T T F F T 0.16 0.25 0.875 0.67 0.023
ω5 T F T T F 0.16 0.75 0.125 0.33 0.005
ω6 T F T F F 0.16 0.75 0.125 0.67 0.010
ω7 T F F T T 0.16 0.75 0.875 0.33 0.035
ω8 T F F F T 0.16 0.75 0.875 0.67 0.070
ω9 F T T T F 0.84 0.25 0.125 0.33 0.009
ω10 F T T F F 0.84 0.25 0.125 0.67 0.018
ω11 F T F T T 0.84 0.25 0.875 0.33 0.061
ω12 F T F F T 0.84 0.25 0.875 0.67 0.123
ω13 F F T T F 0.84 0.75 0.125 0.33 0.026
ω14 F F T F T 0.84 0.75 0.125 0.67 0.053
ω15 F F F T T 0.84 0.75 0.875 0.33 0.182
ω16 F F F F T 0.84 0.75 0.875 0.67 0.369

Table 1: Possible worlds and their probabilities of the packing program of Example 2.

2.2 cProbLog

By introducing FOL constraints cProbLog [3] increases the expressivity of the
ProbLog language and allows users to encode complex evidence without directly
transforming it to ProbLog. E.g., the second observation in Example 3 can be
written as an FOL sentence: pack(skis)⇒ pack(boots).

Constraints are true in a subset of the possible worlds of a ProbLog program.
Satisfying the constraints restricts the set of possible worlds of a ProbLog pro-
gram. Thus, we categorize cProbLog constraints as restrictive. We write ω |= c
to express that the constraint c is satisfied in a possible world ω. From Ta-
ble 1 we see that the constraint c = pack(skis) ⇒ pack(boots) is satisfied in
ΩC = {ω1, .., ω4, ω9, .., ω16} (ωci |= c, for ωci ∈ ΩC).

cProbLog was introduced in [3] where the authors define its semantics. In
the current paper we present an in-depth analysis of the semantics, the design
and the first implementation of cProbLog. Our approach is based on the relation
between constraints and evidence. Our implementation is not strictly related to
the rest of ProbLog inference pipeline and thus can easily be employed by other
probabilistic logic programming languages.

3 Syntax and Semantics

3.1 Syntax

cProbLog extends the ProbLog language with FOL constraints. That is, the
cProbLog language consists of (i) facts – probabilistic and non probabilistic, (ii)
logic programming rules, (iii) built-ins and (iv) FOL constraints.

The FOL sentences of cProbLog constraints use standard logic operators: ∀,
∃, ∧, ∨, ¬, ⇔ and ⇒, represented in cProbLog by for_all, exists, and, or,
not, iff and implies. The quantifier delimiter is written as : and parentheses
are used to indicate priority.
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Example 4. In cProbLog the constraint of Example 3, if the skis are packed then
also the boots need to be packed is written as: pack(skis) implies pack(boots)

Example 4 shows a cProbLog constraint with two ground probabilistic atoms.
The generalization power of cProbLog, though, comes with the support of non
ground constraints – FOL sentences with quantified variables. In a cProbLog
constraint the range of values of every quantified variable needs to be explicitly
defined. ProbLog is an untyped language hence we do not introduce type dec-
larations for cProbLog, but rather an explicit enumeration of values, that is, a
domain. The domain has to be specified in the constraint. There are two ways to
express a domain: either as a set enumerating all possible values of the concrete
variable or as a call to a predicate; this predicate serves as a generator for the
values of the variable. In principle the domain definition can be a more complex
(Prolog) expression as long as it generates the values for the variables.

Example 5. Assume it is required to have at least 2 items in the suitcase and
one of them should be the boots. We can encode this constraint in two ways:
(i) pack(boots) and exists X of item(X) : pack(X) and not X == boots.

(ii) pack(boots) and exists X in {skis, boots, board, helmet} : pack(X) and not X==boots.

The first formulation requires that the ProbLog program defines a predicate
item/1 that, naturally, contains all items which can possibly be packed. It acts
as value enumerator. The second one defines the domain of X as a set. We
can simplify the constraint by omitting boots from the domain of X and remove
not X == boots.: pack(boots) and exists X in {skis, board, helmet} : pack(X)

In cProbLog we use the constraint/1 predicate to define a constraint. The
last constraint of Example 5 can be stated in a cProbLog program as:
constraint(pack(boots) and exists X in {skis, board, helmet} : pack(X)).

3.2 Semantics

The semantics of cProbLog is based on the semantics of ProbLog (cf. Section 2.1).
Consider a ProbLog program L and a set of constraints C = {c1, ..cn} which,
together, constitute a cProbLog program LC . L has a set of possible worlds Ω.
As stated in Section 2.2, constraints in cProbLog are restrictive. That is, the set
of possible worlds of LC (where the constraints are satisfied) is a subset of the
possible worlds of L: ΩC ⊆ Ω.

For ΩC = {ωk|ωk ∈ Ω and ωk |= C}, the distribution of the cProbLog
program LC over possible worlds is as defined in Equation 2.

PC(ωi) =


P (ωi)∑

ωk∈ΩC
P (ωk) , if wi ∈ ΩC

0, if ωi ∈ Ω \ΩC
, (2)

where P (ωi) is as defined in Equation 1. The denominator which expresses a
summation over the probabilities of all possible worlds which satisfy the con-
straints, is a normalization factor.

Table 2 shows the application of Equation 2 for each possible world of the
program of Example 2 and the constraint of Example 4.



6

Possible pack: Query Constraint P (ω) PC(ω)
World skis boots board helmet inlimit(10) ω |= C
ω1 T T T T F T 0.002 0.0019
ω2 T T T F F T 0.003 0.0038
ω3 T T F T F T 0.012 0.0131
ω4 T T F F T T 0.023 0.0266
ω5 T F T T F F / 0.0000
ω6 T F T F F F / 0.0000
ω7 T F F T T F / 0.0000
ω8 T F F F T F / 0.0000
ω9 F T T T F T 0.009 0.0098
ω10 F T T F F T 0.018 0.0200
ω11 F T F T T T 0.061 0.0689
ω12 F T F F T T 0.123 0.1399
ω13 F F T T F T 0.026 0.0295
ω14 F F T F T T 0.053 0.0600
ω15 F F F T T T 0.182 0.2067
ω16 F F F F T T 0.369 0.4197

Sum: 0.88

Table 2: The possible worlds and the corresponding probabilities of the program of
Example 2 given the constraint pack(skis) implies pack(boots).

For a ProbLog program the success probability of a query q is the sum of the
probabilities of all possible worlds in which q is true. In cProbLog, satisfying a
set of constraints C limits the set of possible worlds in which q is true to the
ones where q∧C is true: Ωq∧C = Ωq∩ΩC . We define the conditional probability
of a query (q) given a set of constraints (C) are satisfied as:

P (q|C) =
∑

ωi∈Ωq∧C
PC(ωi) =

∑
ωi∈Ωq∧C P (ωi)∑
ωi∈ΩC P (ωi)

(3)

Applying Equation 3 on Table 2, that is, summing up the numbers in bold
results in: P (inlimit(10)|pack(skis) implies pack(boots)) = 0.9218.

Note the similarity between Equation 3 and the formula used for comput-
ing the conditional probability given evidence (cf. Section 2.1). cProbLog con-
straints are a generalization of evidence and in practice Equation 3 computes
the probability over the possible worlds restricted by the constraints or evidence
(ΩC or ΩE=e) in which also a query q is true.

4 Inference with cProbLog

In Section 2 we showed that the same additional knowledge can be expressed
either as a FOL constraint, or as an adequate ProbLog predicate (add_ev/0)
that defines the “evidence” that has to be true (cf. Example 3). After adding the
predicate add_ev/0 to the initial ProbLog program and imposing the evidence
add ev = true, ProbLog computes the conditional probability of the query given
add ev = true. Since both add ev and the constraint validate the same possible
worlds, the computed probability is in practice the conditional probability of the
query given that the constraint is satisfied. The transformation of constraints
into ProbLog rules is the basis of our cProbLog implementation.
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4.1 ProbLog Inference Pipeline

As stated in Section 2.1, explicitly enumerating possible worlds is not feasible.
That is why the inference mechanism of ProbLog for the MARG task [4] employs
several distinct tasks to transform the initial program to a weighted Boolean
circuit and does a weighted model counting on this circuit. The weighted Boolean
circuit, in practice, encodes implicitly the possible worlds and their probabilities.
First, it grounds the initial ProbLog program L with respect to a set of query
atoms Q and a set of evidence atoms E = e yielding a ground program Lr
relevant only to Q and E. An atom is relevant with respect to Q and E if it
occurs in some proof of a goal g ∈ Q∪E. A ground rule is relevant with respect
to Q and E if its head is a relevant atom and its body only contains relevant
atoms. ProbLog uses SLD resolution with the atoms in Q and E as its initial
queries to determine Lr, that is, to collect all relevant ground atoms and all
relevant ground rules. Furthermore, ProbLog uses tabling to avoid querying the
same atom twice. Next Lr is converted into a CNF formula ϕr.

The conjunction ϕE of all atoms in E with observed value true and the
negation of the atoms in E with value false states that the evidence should hold.

ProbLog then uses the formula ϕ = ϕr ∧ ϕE to generate a Boolean circuit
which allows to efficiently compute the conditional probabilities of the queries
given the evidence [4].

4.2 cProbLog Inference Algorithm

Consider the simple case with no queries (Q = ∅) but only evidence (E), thus, Lr
is relevant only to E. The models of ϕ satisfy the evidence. Consider a cProbLog
constraint c that is ground and in CNF, which we write as ϕc. We can, by using
the ProbLog approach, find the relevant grounding for each of the ground atoms
of c and generate the corresponding CNF ϕcr. The models of the conjunction
ϕc = ϕcr ∧ ϕc are models of L which satisfy c. In the case that c and E contain
exactly the same atoms and c enforces the same truth values as in E, ϕc ⇔ ϕ.

Instead of generating ϕcr for the constraint c, we can also add the rule:
add_ev:-c. and the evidence add ev = true. add_ev is true if and only if the
constraint formula c is true, thus the CNF contains add ev ⇔ ϕc. ProbLog will
then find the relevant instances of the rules for the ground atoms in c (as it does
for evidence atoms) and converts them into ϕc

′

r . Now we have ϕc
′

r ∧ (add ev ⇔
ϕc) ∧ (add ev = true) which is equivalent to ϕcr ∧ ϕc.

Generally, Q 6= ∅, and Lr also contains the relevant groundings for the queries
qi ∈ Q which will appear in ϕr as is needed for correct weighted model counting.

We cannot use general FO sentences with quantified variables as the body of
a ProbLog rule. That is why, in order to use the constraint-evidence approach,
for each constraint that is not in CNF and is not ground, we apply a set of
transformations. They are given in Fig. 1. Our method first makes sure that
the FOL constraint is in prenex normal form [6] (PNF). In PNF all quantifiers
are moved at the left hand side and the formula (variables and conjunctives) is
at the RHS. This form facilitates the application of our rewriting rules. Other
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systems that handle FOL constraints (e.g. IDP [8]) push quantifiers inwards to
delay their instantiation and detect failure as soon as possible. This is not the
case for cProbLog: the constraints are satisfied during ProbLog grounding for
which the complete instance set needs to be collected first. The rewriting rules
of Fig. 1 exhaustively generate all possible combinations of the domain elements.
The complexity of converting one constraint is then O(nm), where n is the size
of the (largest) domain and m is the number of variables for a single constraint.

For a set of variables x1..xn with domains Dx1 to Dxn and a FOL sentence F (x1, .., xn):
1. Convert to Prenex Normal Form:

F (x1, .., xn)
PNF−→ FPNF (x1, .., xn)

2. Apply rewriting rules:

R1: ∃xiDxi : FPNF (x1/dx1 , .., xi−1/dxi−1
, xi, .., xn)→ FPNF (x1/dx1 , .., xi−1/dxi−1

, xi/dxi , .., xn)

∨ ∃xiDxi \ {dxi} : FPNF (x1/dx1 , .., xi−1/dxi−1
, xi, .., xn)

R2: ∀xiDxi : FPNF (x1/dx1 , .., xi−1/dxi−1
, xi, .., xn)→ FPNF (x1/dx1 , .., xi−1/dxi−1

, xi/dxi , .., xn)

∧ ∀xiDxi \ {dxi} : FPNF (x1/dx1 , .., xi−1/dxi−1
, xi, .., xn)

R3: FPNF (x1/dx1 , .., xn/dxn )→ add_ev :- FPNF (x1/dx1 , .., xn/dxn )(∧/,,∨/;).

Fig. 1: Transformation steps for constraint initialization.

Fig. 2 shows the application of our approach on a small probabilistic graph
(similar to Example 1). Our rewriting rules in practice generate a ProbLog pro-
gram from a cProbLog one. Once the constraints are converted to ProbLog
clauses we add the clause evidence(add_ev, true).. ProbLog then can apply
its inference mechanism to compute the probability of a query given the evidence
that the constraints are satisfied. In the process it finds the relevant ground pro-
gram with respect to the query (reach(c1, c3)) and the evidence (add_ev).

i_city(c1). i_city(c2). 1. Apply R2:
e_city(c2). e_city(c3). exists Y of e_city(Y) : reach(c1,Y)∧
0.7::road(c1,c2). 0.8::road(c2,c3). for_all X of i_city(X)X 6=1, exists Y of e_city(Y) : reach(X,Y)
0.9::road(c1,c3). 2. Apply R1:
reach(A,B):- road(A,B). (reach(c1,c2)∨exists Y of e_city(Y)Y 6=2: reach(c1,Y))∧
reach(A,B):- road(A,A1), reach(A1,B). for_all X of i_city(X)X 6=1, exists Y of e_city(Y) : reach(X,Y)
query(reach(c1,c3)). 3. Apply R1:
constraint((for_all X of i_city(X), (reach(c1,c2)∨reach(c1,c3))∧

exists Y of e_city(Y)) : reach(X,Y)). for_all X of i_city(X)X 6=1, exists Y of e_city(Y) : reach(X,Y)
4. Apply R2, R1, R1, R3:
add_ev :- (reach(c1,c2); reach(c1,c3)),

(reach(c2,c2); reach(c2,c3)).
a. Code b. Conversion

Fig. 2: A small cProbLog program and the conversion of constraints to evidence.

5 Examples

This section aims at familiarizing the user with writing constraints in cProbLog
and showing the equivalence with ProbLog evidence: where feasible we give the
equivalent evidence atoms as it would have to be written in ProbLog.
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5.1 Probabilistic Graph

The program presented in Fig. 3 encodes a probabilistic graph where each edge
has a length of 1. The path/3 predicate finds a path between two nodes, as well
as its length. We use constraints to add knowledge about the path length(s).
Eg., one can query for the probability of a path from a to h only considering
paths longer than 5. The conditional probability P (path(a, h)|C) is 0.014. Here,

0.6::edge(a,b). 0.7::edge(a,c). 0.55::edge(b,c). 0.36::edge(b,d). 0.45::edge(c,e). 0.7::edge(d,f).
0.8::edge(e,d). 0.25::edge(e,g). 0.25::edge(f,g). 0.3::edge(f,h). 0.4::edge(g,h).
path(A, B):- path(A, B, _).
path(A, B, 1):- edge(A, B).
path(A, B, L):- edge(A, B1), path(B1, B, L1), L is L1 + 1.
query(path(a, h)). constraint(for_all L in {1,2,3,4,5} : not path(a, h, L)).

Fig. 3: The “length path” example program.

the domain of L is given as a set. For this example, instead of the constraint one
can state the evidence: evidence(path(a, h, 1), false). evidence(path(a, h, 2), false).

evidence(path(a, h, 3), false). evidence(path(a, h, 4), false). evidence(path(a, h, 5), false).

5.2 Burglary-earthquake-alarm Bayesian network

Fig. 4 illustrates a cProbLog program which encodes a Bayesian network [4].
The program defines two neighbors – John and Mary. Burglary and earthquake
may trigger an alarm. If the alarm goes off, one of the people calls the owner of
the house. The initial program states that either John or Mary or both may call.
Using a constraint we encode that at most one of them calls. For this example
we can easily write a predicate equivalent to our rule rewriting transformation
but much more simple (see Fig. 4 b) and c)). The observed blow-up is due to
the fact that variables are blindly instantiated with values from their domain,
without evaluating any subgoals. The evaluation is (currently) left to ProbLog.

person(john). person(mary).
0.1::burglary. 0.2::earthquake.
0.7::hears_alarm(X) :- person(X).
alarm:- burglary. alarm:- earthquake.
calls(X):- alarm, hears_alarm(X).
constraint((for_all X of person(X),

for_all Y of person(Y)) :
(calls(X) and calls(Y))
implies X == Y).

query(burglary). query(earthquake).

a) A cProbLog program.

add_ev:-
((\+ calls(mary); \+ calls(mary));

mary==mary),
(\+ calls(mary); \+ calls(john));

mary==john)),
((\+ calls(john); \+ calls(mary));

john==mary),
(\+ calls(john); \+ calls(john));

john==john)).
evidence(add_ev, true).

b) cProbLog transformation of the
constraint.

ev1:-
\+ calls(mary).

ev1:-
\+ calls(john).

evidence(ev1, true).

c) User-defined
clauses.

Fig. 4: An example program of a Bayesian network.

Despite this drawback, it can easily be noticed that with growth of the domain
such manual encoding becomes infeasible. Moreover, the rules which cProbLog
generates can be preprocessed and optimized.
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5.3 Student exams

The example in Fig. 5 is about students and exams. There are four ways that a
student passes an exam: by having studied enough; by luck; by cheating and by
knowledge from previous experience. Passing an exam has certain probabilities,
eg., a student passes an exam by luck with probability 0.4. One can query this
program for the probability a student passes all exams. The first constraint is
a ground constraint which expresses that one can pass “Machine Learning” or
“Artificial Neural Networks (ANNs)” by luck but not both of them. The second
constraint defines that 3 years of experience are not enough to pass any exam.
For these constraints there is no straightforward alternative using evidence.

0.8::pass_exam(Exam, studied_enough). 0.4::pass_exam(Exam, luck). 0.7::pass_exam(Exam, cheating).
P::pass_exam(Exam, experience, Years):- P is Years/7.
exam(E):- member(E, [prolog, cog_sci, anns, comp_vis, m_learn]).
student(john, [prolog, cog_sci, anns, comp_vis, m_learn], 3).
succeed(Student):- student(Student, Exams, Experience), pass_all(Exams, Experience).
pass_all([], _).
pass_all([F|Rest], Exp):- pass_one(F, Exp), pass_all(Rest, Exp).
pass_one(Ex, _):-pass_exam(Ex, _).
pass_one(Ex, Years):-pass_exam(Ex, experience, Years).
constraint(pass_exam(m_learn, luck) implies not pass_exam(anns, luck)).
constraint((for_all X of exam(X), for_all Y in {0,1,2,3}) : not pass_exam(X, experience, Y)).
query(succeed(john)).

Fig. 5: The “student exams” example program.

6 Related Work

PCLP. A PCLP [9] (short for Probabilistic Constraint Logic Programming)
theory T is defined by a set of constraints CT , a set of random variables VT and
a set of rules RT . V (t1, .., tn) ∼ {p1 : c1, .., pm : cm} defines the random variable
V (t1, .., tn) ∈ VT (with ti a term), over the distribution3 {p1 : c1, .., pm : cm},
where cj is a constraint and pj its probability. The constraints c1 to cm specify
the possible values of the variable and the probability of their assignment. That
is why we classify them as generative as opposed to the restrictive constraints
of cProbLog, which rule out some of the possible worlds of a ProbLog program.
A PCLP rule is valid only when the constraints in its body are satisfied.

With respect to the inference, the main difference among the two systems
is that on the one hand, a PCLP theory T specifies a class of distributions in
which the constraints are satisfied and the lower and upper bounds are computed
from different subsets of the distributions within that class. On the other hand,
cProbLog generalizes evidence by FOL constraints to allow computing condi-
tional probabilities of queries under the conditions stated by the constraints.

Under certain conditions a PCLP theory can be mapped to a ProbLog pro-
gram (with annotated disjunctions). However, there is no direct correspondence
to a cProbLog program. In contrary, PCLP and cProbLog are complementary
and may possibly coexist (a question which we aim to tackle in the future).

3 The distribution can also be continuous eg., X ∼ N (µ, σ2)
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CLP(BN ). A CLP(BN )[1] program Lclp(BN) is a set of clauses which con-
tain in their bodies a (possibly empty) set of constraints. Each constraint has
the form {V = Rv with CPT} and identifies the possible values of V with the
random variable Rv. The conditional probability table CPT defines a probabil-
ity distribution over the possible values of Rv. Each random variable is a Skolem
term and appears in only one clause of Lclp(BN). The constraints in CLP(BN ),
similarly to PCLP and in contrast to cProbLog, define the possible values of a
variable (V ) through the probability distribution of the random variable.

Each clause Ci, associated to a set of probability distributions defines a
Bayesian network BNi. For a given subset of clauses, the constraints create
dependencies between the Bayes networks associated with these clauses to gen-
erate a large Bayesian network BN . A CLP(BN ) program defines a unique joint
probability distribution over the ground Skolem it contains as the Bayesian net-
work BN . Computing the probability of a query given evidence in the framework
of CLP(BN ), is solving the Bayes’ network generated from the conjunction of
the networks corresponding to the query and to the evidence.

CHRiSM. A CHRiSM [11] program consists of a set of rewrite rules of the
form P ?? Hk \ Hr <=> G | B, where P is a probabilistic expression, Hk is a
conjunction of kept head constraints, Hr a conjunction of removed head con-
straints, G is a guard condition and B is the rule body. The rule body B is defined
as a conjunction of CHRiSM constraints, Prolog goals and/or probabilistic dis-
junctions (an annotated disjunction or a CHRiSM-style disjunction).

A CHRiSM constraint c(X1, .., Xn) is a Prolog-like predicate.The initial
multiset of constraints of a CHRiSM program is called a store S . Applying
exhaustively the rules of the program results in a new store. A rule can be
applied if there is a matching substitution which unifies a subset of constraints
from S to the head of that rule and also, the guard G is satisfied. Depending on
the probability expression of the rule it can be either applied or ignored.

When a rule is applied all the constraints matching Hr are removed from S
(the ones in Hk are kept), the goals in B are called and the constraints in B are
added to the store. That is why we see CHRiSM constraints as restrictive. The
goal is reached by a chain of rule applications, each specified by a transition
probability. The probability of the final state (or the goal) is the product of the
transition’s probabilities. In (c)ProbLog the probability of a query considers all
possible worlds defined by the random variables (the probabilistic atoms) of the
program in which a query is true.

7 Conclusions and Future Work

In this paper we described the first implementation of cProbLog – a Constraint
Probabilistic Logic Programming formalism which enriches ProbLog with FOL
constraints. Our algorithm converts a constraint to a ground ProbLog rule and
imposes evidence on it. With the existing inference mechanisms of ProbLog
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the conditional probability of a query given this evidence is the same as the
conditional probability of the query given that the constraints are satisfied.

Our approach is built on top of ProbLog’s inference mechanism without
changing it. It can be easily employed by other systems. A drawback of our cur-
rent implementation is the rather naive grounding of formulas with quantifiers
(cf. Fig. 4). Our current work aims at reducing the size of the grounding. More-
over, we investigate an approach which directly merges the CNF of the relevant
ground program (with respect to a set of queries and evidence atoms) with the
CNF of the constraints thus bypassing the conversion (from ground program to
CNF) for the constraints. We investigate other fields of application of cProbLog,
eg., using it to efficiently process annotated disjunctions [12] in ProbLog.

We also compared cProbLog to other Constraint Probabilistic Logic Pro-
gramming formalisms from the perspective of type and usage of constraints.
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